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ANALYSIS OF NONPROCESSIVE MOLECULAR MOTOR
TRANSPORT USING RENEWAL REWARD THEORY∗

CHRISTOPHER E. MILES† , SEAN D. LAWLEY† , AND JAMES P. KEENER‡

Abstract. We propose and analyze a mathematical model of cargo transport by nonprocessive
molecular motors. In our model, the motors change states by random discrete events (corresponding
to stepping and binding/unbinding), while the cargo position follows a stochastic differential equation
(SDE) that depends on the discrete states of the motors. The resulting system for the cargo position
is consequently an SDE that randomly switches according to a Markov jump process governing motor
dynamics. To study this system we (1) cast the cargo position in a renewal theory framework and
generalize the renewal reward theorem and (2) decompose the continuous and discrete sources of
stochasticity and exploit a resulting pair of disparate timescales. With these mathematical tools,
we obtain explicit formulas for experimentally measurable quantities, such as cargo velocity and
run length. Analyzing these formulas then yields some predictions regarding so-called nonprocessive
clustering, the phenomenon that a single motor cannot transport cargo, but two or more motors can.
We find that having motor stepping, binding, and unbinding rates depend on the number of bound
motors, due to geometric effects, is necessary and sufficient to explain recent experimental data on
non-processive motors.
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1. Introduction. Active intracellular transport of cargo (such as organelles) is
critical to cellular function. The primary type of active transport involves molecular
motors, which alternate between epochs of active transport (discrete stepping) along
a microtubule and epochs of passive diffusion when the motors are unbound from the
microtubule. Stochastic modeling of this fundamental process has a rich and fruitful
history (see the review [5]).

In both experimental and modeling studies, processive motors have received con-
siderable attention. Processive motors are characterized by taking hundreds of steps
along a microtubule before unbinding. In contrast, nonprocessive motors (such as
most members of the kinesin-14 family) take very few (1 to 5) steps before unbind-
ing from a microtubule [6, 11]. Nonprocessive motors are crucial to a number of
cellular processes, including directing cytoskeletal filaments [42], driving microtubule-
microtubule sliding during mitosis [14], and retrograde transport along microtubules
in plants [48]. Here, we focus on motor behavior during transport.

Some curious properties of nonprocessive motor transport were found in [16].
One nonprocessive (Ncd) motor has extremely limited transport ability, measured by
both velocity and run length (distance traveled before detaching from a microtubule).
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However, two nonprocessive motors somehow act in unison to produce significant di-
rected motion, a phenomenon termed “clustering.” This observation is supported
by the subsequent studies [26, 38], where similar experiments were performed creat-
ing a mutant of attached nonprocessive kinesin-14 motors, and processivity emerges.
Moreover, the authors of [16] note that adding more Ncd motors beyond two further
increases transport ability. In contrast, one processive motor (kinesin-1) is sufficient
to produce transport, and additional motors do not significantly increase transport
ability [16, 45]. Other interesting facets of transport by nonprocessive motors in-
clude the emergence of processive transport in the presence of higher microtubule
concentration [17] or opposing motors [22].

In this work, we formulate and analyze a mathematical model to investigate
the natural question, how do nonprocessive motors cooperate to transport cargo?
Our model predicts that nonprocessive motor stepping, binding, and unbinding rates
must depend on the number of bound motors, and that this dependence is a key
mechanism driving the collective transport of nonprocessive motors. We note that
such dependence has been observed in experiments [13, 20] and in simulations of
detailed computational models [30, 12, 35, 17], all stemming from geometric effects of
cargo/motor configuration.

Nonprocessive motors are notoriously difficult to study experimentally, because
they take only a few steps before detaching. For this same reason, it is not clear how
to best model nonprocessive motors, or known if existing modeling frameworks, such
as mean-field methods [27, 9] or averaging the stepping dynamics into an effective ve-
locity [36], are appropriate. Hence, our model explicitly includes the discrete binding,
unbinding, and stepping dynamics of each motor, as well as the continuous tethered
motion of the cargo.

Mathematically, our model takes the form of a randomly switching stochastic dif-
ferential equation (SDE), and thus merges continuous dynamics with discrete events.
The continuous SDE dynamics track the cargo position, while the discrete events cor-
respond to motor binding, unbinding, and stepping. Our model is thus a stochastic
hybrid system [4], which is often a two-component process, (J(t), X(t))t≥0 ∈ I × Rd,
where J is a Markov jump process on a finite set I, and X evolves continuously by

dX(t) = FJ(t)(X(t)) dt+ σ dW (t),(1)

where {Fj(x)}j∈I is a given finite family of vector fields, σ ≥ 0, and W is a Brownian
motion. That is, X follows an SDE whose right-hand side switches according to the
process J .

However, our model differs from most previous hybrid systems in some key ways.
First, the set of possible continuous dynamics (e.g., possible right-hand sides of (1))
for our model is infinite. Second, the new right-hand side of (1) that is chosen when
J jumps depends on the value of X at that jump time, although the rates dictating
J are taken to be independent of X.

We employ several techniques to analyze our model and make predictions regard-
ing nonprocessive motor transport. First, we cast our model in a renewal theory frame-
work and generalize the classical renewal reward theorem [47] to apply to our setting,
distinct from previous motor applications [31, 23, 24, 25, 44]. Next, we decompose
the stochasticity in the system by averaging over the diffusion while conditioning on
a realization of the jump process. This effectively turns the randomly switching SDE
into a randomly switching ordinary differential equation (ODE) and thus a piecewise
deterministic Markov process [8]. Finally, we observe that for biologically reasonable
parameter values, the relaxation rate of the continuous cargo dynamics is much faster
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than the jump rates for the discrete motor behavior. We then exploit this timescale
separation to find explicit formulas for key motor transport statistics.

The rest of the paper is organized as follows. We formulate the mathematical
model in section 2. In section 3, we generalize the renewal reward theorem to apply
to our model. In section 4, we derive explicit formulas to evaluate motor transport.
In section 5, we use the model to make biological predictions. We conclude with a
brief discussion and an Appendix that collects several proofs.

2. Mathematical model. We model the motion of a single cargo driven by
M ≥ 1 motors along a single microtubule. These motors are permanently attached
to the cargo, but they can bind to and unbind from the microtubule. At any time
t ≥ 0, the state of our model is specified by(

X(t),Z(t),J(t)
)
∈ R× RM × {u, b}M ,

where X(t) ∈ R is the location of the center of the cargo, Z(t) = (Zi(t))
M
i=1 ∈ RM

gives the locations of the centers of M motors, and J(t) = (Ji(t))
M
i=1 specifies if each

motor is unbound or bound. Spatial locations are measured along the principal axis
of the microtubule, which we identify with the real line.

The cargo position evolves continuously in time, while the positions and states of
motors change by discrete events, which correspond to binding to the microtubule,
stepping along the microtubule, or unbinding from the microtubule. Specifically,
in between these discrete motor events, X(t) follows an Ornstein–Uhlenbeck (OU)
process centered at the average bound motor position,

dX(t) =
k

γ

∑
i∈I(t)

(
Zi(t)−X(t)

)
dt+

√
2kBT/γ dW (t).(2)

Here, I(t) = {i : Ji(t) = b} ⊆ {1, . . . ,M} gives the indices of motors that are bound
at time t ≥ 0, and {W (t)}t≥0 is a standard Brownian motion. The SDE (2) stems
from assuming a viscous (low Reynolds number) regime with drag coefficient γ > 0,
and that each bound motor exerts a Hookean force on the cargo with stiffness k > 0.
The Stokes–Einstein relation specifies the diffusion coefficient kBT/γ, where kB is
Boltzmann’s constant and T is the absolute temperature.

The discrete behavior of motors is as follows. Let m(t) ∈ {0, 1, . . . ,M} denote
the number of bound motors at time t ≥ 0,

m(t) =
M∑
i=1

1{Ji(t)6=u} ∈ {0, 1, . . . ,M},

where 1{A} denotes the indicator function on an event A. Each unbound motor binds
to the microtubule at rate kon(m(t)) > 0. Since unbound motors are tethered to the
cargo, if an unbound motor binds at time t ≥ 0, then we assume that it binds to the
track at X(t) (motors can bind anywhere along the microtubule, not only at binding
sites). We could allow it to bind to a random position, but if the mean binding position
is X(t), then our results are unchanged. The position of each bound motor is fixed
until it either steps or unbinds. Each bound motor unbinds at rate koff(m(t)) > 0
and steps at rate kstep(m(t)) > 0. When a motor steps, we add δ > 0 to its position,
which is then fixed until it steps again or unbinds. This discrete motor behavior
is summarized in Figure 1. We emphasize that the motor binding, unbinding, and
stepping rates are allowed to depend on the number of bound motors, m(t), but are
otherwise independent of X(t).
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Fig. 1. Schematic describing the binding, unbinding, and stepping of motors. The positions of
cargo and bound motors are X(t) and Zi(t), respectively, both measured with respect to the principal
axis of the microtubule. The state of the motor can switch between bound or unbound, and while
bound, the motor can step, incrementing Zi(t) by displacement δ.

2.1. Nondimensionalization and assumptions. We now give a dimension-
less and more precise formulation of the model described above. First, we nondimen-
sionalize the model by rescaling time by the rate koff(1) and space by the inverse length
δ−1. Next, we note that unbound motors do not affect the cargo position. Hence, for
convenience we can take Zi(t) = X(t) if the ith motor is unbound, meaning that we
can include unbound motors in the sum in (2) with zero contribution and make the
sum over all motors. This yields the simplified dimensionless form

dX(t) = ε−1
M∑
i=1

(
Zi(t)−X(t)

)
dt+ σdW (t),(3)

where

ε := koff(1)γ/k, σ :=
√

2kBT/(δ2koff(1)γ),

and motors bind, unbind, and step at dimensionless rates

λon(m) :=
kon(m)

koff(1)
, λoff(m) :=

koff(m)

koff(1)
, λstep(m) :=

kstep(m)

koff(1)
.(4)

We find it convenient for our analysis to track the number of steps taken by each
motor before unbinding, so let us expand the state space of J(t) so that its components
(Ji(t))

M
i=1 each take values in {u, 0, 1, 2, . . . } with transition rates

u
λon(m(t))→ 0, j

λstep(m(t))→ j + 1, j
λoff(m(t))→ u, j 6= u.(5)

The components of J(t) are conditionally independent given m(t). At time t ≥ 0, the
ith motor is unbound if Ji(t) = u, bound if Ji(t) ≥ 0, and steps when Ji(t) transitions
from j to j + 1 for j ≥ 0. Under these assumptions, m(t) is itself a Markov process
on {0, 1, . . . ,M} with transition rates

(6) 0
Mλon(0)



1

1
(M−1)λon(1)



2λoff(2)

2 
 · · ·
M − 2
2λon(M−2)



(M−1)λoff(M−1)

M − 1
λon(M−1)



Mλoff(M)

M.

For simplicity, we assume that the motors are initially unbound and that the
cargo and motors start at the origin,

Ji(0) = u, X(0) = Zi(0) = 0, i ∈ {1, . . . ,M}.
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The position of the ith motor is then

Zi(t) =
(
X(τi(t)) + Ji(t)

)
1{Ji(t)6=u} +X(t)1{Ji(t)=u}, i ∈ {1, . . . ,M},(7)

where τi(t) is the most recent binding time of the ith motor,

τi(t) = sup{s < t : Ji(s) = u}, i ∈ {1, . . . ,M}.

We assume the Brownian motion W = {W (t)}t≥0 and the jump process J = {J(t)}t≥0

are independent.

3. Cargo position as a renewal reward process. In order to analyze our
model, we first show that X(t) is a renewal reward process with partial rewards
(see [47]) and extend the classical renewal reward theorem to our case of partial
rewards. This framework has an intuitive interpretation: the net displacement of
cargo is determined by the displacement accrued at each epoch of being bound or
unbound. However, there is a technical challenge. In the most classical setting, the
renewal reward theorem accrues rewards at the end of each epoch, and boundedness
of expectation of the rewards is sufficient to apply the renewal reward theorem. In
the case of partial rewards (which we have in our model), where rewards are accrued
during an epoch, stronger conditions are required, which we prove are satisfied.

First, define the sequence of times in which the cargo completely detaches from
the microtubule (off) and subsequently reattaches to the microtubule (on),

0 = τ0
on = τ0

off < τ1
on < τ1

off < τ2
on < τ2

off < · · ·

by

τkoff := inf{t > τkon : m(t) = 0}, k ≥ 1,

τkon := inf{t > τk−1
off : m(t) ≥ 1}, k ≥ 1.

(8)

Next, define the sequence of cargo displacements when the cargo is attached to the
microtubule (on) and detached from the microtubule (off),

Rkon := X(τkoff)−X(τkon), Rkoff := X(τkon)−X(τk−1
off ), k ≥ 1,(9)

and the corresponding times spent attached or detached,

T kon := τkoff − τkon, T koff := τkon − τk−1
off , k ≥ 1.(10)

It follows directly from the strong Markov property that {(T koff +T kon, R
k
off +Rkon)}k≥1

is an independent and identically distributed (iid) sequence of random variables.
In the language of renewal theory, {T koff + T kon}k≥1 are the interarrival times and

{Rkoff +Rkon}k≥1 are the corresponding rewards. Let N(t) be the renewal process that
counts the number of arrivals before time t ≥ 0,

N(t) := sup{k ≥ 0 : τkoff ≤ t}.(11)

Define the reward function, R(t), and the partial reward function, Y (t), by

R(t) :=

N(t)∑
k=1

(
Rkon +Rkoff

)
, Y (t) := X(t)−X

(
τ
N(t)
off

)
,(12)
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and observe that

X(t) = R(t) + Y (t).

In other words, R(t) describes rewards accrued during past epochs, and Y (t) is the
partial reward accrued during the current epoch. We show below that E[|Ron+Roff|] <
∞ and E[Ton + Toff] < ∞, and therefore the classical renewal reward theorem [47]
ensures that

lim
t→∞

R(t)

t
= lim
t→∞

E[R(t)]

t
=

E[Ron] + E[Roff]

E[Ton] + E[Toff]
almost surely.(13)

The following theorem verifies that this convergence actually holds for X(t).

Theorem 1. The following limit holds:

lim
t→∞

X(t)

t
= lim
t→∞

E[X(t)]

t
=

E[Ron] + E[Roff]

E[Ton] + E[Toff]
almost surely.(14)

To prove this theorem, we need several lemmas. We collect the proofs of these
lemmas in Appendix A. The first lemma bounds the probability that the partial reward
function Y (t) in (12) is large when the cargo is detached from the microtubule.

Lemma 2. Define the sequence of iid random variables {Y koff}k≥1 by

Y koff := sup
t∈[τk−1

off ,τk
on]

∣∣X(t)−X(τkoff)
∣∣, k ≥ 1.

Then for any C > 0 and k ≥ 1, we have that

P(Y koff ≥ C) ≤
√
π/x(2x+ 1)e−x, where x = C

σ

√
2Mλon(0) > 0.(15)

Similarly, the next lemma bounds the probability that the partial reward function
is large when the cargo is attached to the microtubule.

Lemma 3. Define the sequence of iid random variables {Y kon}k≥1 by

Y kon := sup
t∈[τk

on,τ
k
off]

|X(t)−X(τkon)|, k ≥ 1.

There exists λ0 > 0, λ1 > 0 so that if k ≥ 1, then P(Y kon ≥ C) ≤ λ0

√
Ce−λ1

√
C for all

sufficiently large C > 0.

The next lemma uses Lemmas 2 and 3 to prove that the partial reward function
gets large only finitely many times.

Lemma 4. Define the sequence of iid random variables {Yk}k≥1 by

Yk := sup
t∈[τk−1

off ,τk
off]

∣∣X(t)−X(τkoff)
∣∣, k ≥ 1.(16)

Then

P

(
lim
K→∞

∞⋃
k=K

{
Yk >

√
k
})

= 0.

The last lemma checks that the mean of Yk in (16) is finite.
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Lemma 5. Define {Yk}k≥1 as in (16). Then E[Yk] <∞ for all k ≥ 1.

With these lemmas in place, we are ready to prove Theorem 1.

Proof of Theorem 1. It follows immediately from Lemma 5 that E[|Rkon +Rkoff|] <
∞. Furthermore, T koff is exponentially distributed with rate Mλon(0), and the proof of
Lemma 3 shows that E[T kon] < E[S] for an exponentially distributed random variable
S with some rate λ > 0. Hence, E[T kon + T koff] < ∞, and thus (13) holds by a direct
application of the classical renewal reward theorem [47].

Therefore, it remains to check that

lim
t→∞

E
[
X(t)−X

(
τ
N(t)
off

)]
t

= 0 = lim
t→∞

X(t)−X
(
τ
N(t)
off

)
t

almost surely.(17)

The first equality in (17) follows immediately from Lemma 5.
To verify the second equality in (17), we note that Lemma 4 ensures that

lim sup
k→∞

Yk√
k
≤ 1 almost surely.

Therefore,

lim
t→∞

∣∣∣X(t)−X
(
τ
N(t)
off

)∣∣∣
t

≤ lim
t→∞

|YN(t)|
t
≤ lim
t→∞

√
N(t)

t
= 0 almost surely,

since

lim
t→∞

N(t)

t
=

1

E[Ton + Toff]
almost surely

by the strong law of large numbers for renewal processes [47].

Consequently, the position of the cargo does indeed satisfy a classical renewal
reward structure with two different types of epochs: bound and unbound, each of
which accrue some net displacement.

4. Mathematical analysis of transport ability. With the framework of
renewal theory constructed in section 3, we are ready to analyze the transport ability
of the model introduced in section 2. To assess the transport ability of the motor
cargo ensemble, we analyze the expected run length, expected run time, and asymp-
totic velocity. We define the run length to be the distance traveled by the cargo from
the first time a motor attaches to the cargo until the next time that all motors are
detached from the microtubule, which was defined precisely in (9) and denoted by
Ron. The run time is the corresponding time spent attached to a microtubule, which
was defined precisely in (10) and denoted by Ton. The asymptotic velocity is

(18) V := lim
t→∞

X(t)

t
.

The velocity V includes the time the cargo is both being transported along the mi-
crotubule and diffusing while unattached.

Applying Theorem 1, we have that

V =
E[Ron] + E[Roff]

E[Ton] + E[Toff]
almost surely.(19)
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Now,

E[Roff] = 0,(20)

since the cargo is freely diffusing when no motors are bound, and since motor binding
and unbinding is independent of Brownian motion {W (t)}t≥0. Furthermore, when all
of the M motors are unbound, each motor binds at rate λon(0). Hence,

E[Toff] = (Mλon(0))−1.(21)

It therefore remains to calculate two of the three quantities, V , E[Ron], and E[Ton],
since the third is given by (19). We calculate E[Ton] first since it is the simplest, as it
is a mean first passage time of a continuous-time Markov chain.

4.1. Expected run time. As we noted in section 2.1, the number of motors
bound m(t) is itself the Markov process (6). To compute the expected run time, we
compute the mean time for m(t) to reach state m = 0 starting from m(0) = 1.

Let Q̃ ∈ R(M+1)×(M+1) be the generator of the Markov chain m(t) in (6). That

is, the (i, j)-entry of Q̃ gives the rate that m(t) jumps from state i to state j 6= i,

and the diagonal entries are chosen so that Q̃ has zero row sums. Let Q ∈ RM×M
be the matrix obtained from deleting the first row and column of Q̃. The matrix Q
is tridiagonal, with the mth row containing subdiagonal, diagonal, and superdiagonal
entries mλoff(m), −(mλoff(m) + (M −m)λon(m)), (M −m)λon(m), respectively. The
expected run time E[Ton] is (by Theorem 3.3.3 in [40])

(22) E[Ton] = 1T t, where QT t = −e1,

where 1 ∈ RM is the vector of all 1’s and e1 ∈ RM is the standard basis vector.

4.2. Decomposing stochasticity. Having calculated E[Ton] in (22), we can
determine V by determining E[Ron] (or vice versa). Two key steps allow us to analyze
V and E[Ron]: (i) we average over the diffusive dynamics while conditioning on a
realization of the jump dynamics, and (ii) we take advantage of a timescale separation
between the relaxation rate of the cargo dynamics and the jump rate of the motor
dynamics.

4.2.1. Conditioning on jump realizations. Observe that the stochasticity
in the model can be separated into a continuous diffusion part and a discrete part
controlling motor binding, unbinding, and stepping. Mathematically, the continuous
diffusion part is described by the Brownian motion W in (3), and the discrete motor
state is described by the Markov jump process J. We first average over the diffusion
by defining the conditional expectations

x(t) := E[X(t)|J], zi(t) := E[Zi(t)|J], t ≥ 0, i ∈ {1, . . . ,M}.(23)

We emphasize that (23) are averages over paths of W given a realization J. Thus,
{x(t)}t≥0 and {{zi(t)}t≥0}Mi=1 are functions of the realization J. This definition is
convenient, because while X(t) follows the randomly switching SDE (3), the process
x(t) follows a randomly switching ODE, whose solution is known explicitly.

Proposition 6. For each t > 0, the expected cargo position x(t) conditioned on
a realization of the jump process satisfies

d

dt
x(t) = ε−1

M∑
i=1

(
zi(t)− x(t)

)
almost surely.(24)
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Proof. Using the explicit solution of an OU process, we have that

X(t) = X(τ)e−θ(t−τ) + µ(1− e−θ(t−τ)) +M,(25)

where τ is the most recent jump time of J,

τ = sup
{
{0} ∪ {s < t : J(s−) 6= J(s+)}

}
,

θ = m(τ)ε−1, µ = 1
m(τ)

∑
i∈I(τ) Zi(τ), andM satisfies E[M|J] = 0. We have used the

notation f(t±) := lims→t± f(s). Hence, taking the expectation of (25) conditioned
on J yields

x(t) = E
[
X(τ)e−θ(t−τ)|J

]
+ E

[
µ
(

1− e−θ(t−τ)
)
|J
]

= e−θ(t−τ)E[X(τ)|J] +
(

1− e−θ(t−τ)
) 1

m(τ)

∑
i∈I(τ)

E[Zi(τ)|J],

since τ are {m(s)}s≥0 measurable with respect to the σ-algebra generated by J.

4.2.2. Separation of timescales. We next make an observation of disparate
timescales. After averaging over the diffusive noise W , the model effectively depends
on two timescales: the relaxation time of the continuous dynamics (24) (characterized
by the dimensionless rate ε−1) and the switching times of the discrete motor dynamics
(5) (characterized by the dimensionless rates λon, λstep, λoff). Even for conservative
parameter estimates, the continuous timescale is much faster than the discrete switch-
ing timescale. For instance, suppose a motor exerts a Hookean force with stiffness
k = 0.5 pN/nm [16] on a spherical cargo with radius r = 1 µm in cytosol with viscos-
ity η equal to that of water. It follows that k/(6πηr) ≈ 3 × 104 s−1, whereas koff(1)
is on the order of 10−1 to 101 s−1 [16]. Hence,

ε := koff(1)γ/k ≈ 3×10−4 � 1.(26)

Further, λon, λstep, λoff are roughly order one since kon, kstep, koff have similar orders
of magnitude [16].

Therefore, compared to the switching timescale, x(t) quickly relaxes to an equilib-
rium between motor switches. Furthermore, we are interested in studying E[Ron] and
V , which depend on the behavior of x(t) over the course of several motor switches.
Hence, we approximate x(t) by a jump process x(t) obtained from assuming x(t)
immediately relaxes to its equilibrium after each motor switch.

More precisely, let (x(t), z1(t), . . . , zM (t)) ∈ RM+1 be a J-measurable, right-
continuous process,

x(t) = x(t+), zi(t) = zi(t+), t ≥ 0, i ∈ {1, . . . ,M},
with x(0) = x(0) and zi(0) = zi(0), i ∈ {1, . . . ,M}, that evolves in the following
way. In light of (7), we define the effective motor positions by how they are modified
through the jump process, binding at τi and then incrementing from stepping, or
staying unbound at the cargo position x(t),

zi(t) =
(
x(τi(t)) + Ji(t)

)
1{Ji(t)6=u} + x(t)1{Ji(t)=u}, i ∈ {1, . . . ,M}.(27)

Due to the assumed fast relaxation, x(t) only changes when a motor steps or
unbinds, as newly bound motors exert no force. That is, if Ji(t+) = Ji(t−) for
all i ∈ {1, . . . ,M} satisfying Ji(t−) ≥ 0, then x(t−) = x(t+). Otherwise, x(t)
evolves according to the following two rules, which describe how the cargo position
x(t) changes when a motor steps or unbinds.
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1. If the ith motor steps (Ji(t−) = j ≥ 0 and Ji(t+) = j + 1), then x(t+) =
x(t−) + 1/m(t).

2. If the ith motor unbinds (Ji(t−) = j ≥ 0 and Ji(t+) = u), then x(t+) =
x(t−) + ∆i,(z1,...,zm(t−)), where (z1, . . . , zm(t−)) gives the positions of the
m(t−) bound motors just before time t, and

∆i,(z1,...,zm(t−)) =
1

m(t−)− 1

m(t−)∑
i′=1,i′ 6=i

zi′(t−)− 1

m(t−)

m(t−)∑
i′=1

zi′(t−).(28)

In other words, if either of these events occurs, the cargo position x(t) relaxes to the
mean position of the motors. These two rules describe how the mean motor position
changes in the two scenarios. If a single motor steps, incrementing its position by 1,
the mean motor position increases by 1/m(t). If a motor unbinds, (28) is the change
in the mean motor position from removing that motor.

It follows from these two evolution rules for x(t) that

x(t) =
M∑
m=1

1

m
Sm(t) + χ(t),(29)

where Sm(t) is the number of steps taken when m motors are bound before time t
(each of which modifies the position by 1/m), and χ(t) accounts for changes in the
cargo position that result from a motor unbinding,

χ(t) =

Noff(t)∑
k=1

∆jk,(z1(skoff−),...,z
m(sk

off
−)(skoff−),(30)

where 0 = s0
off < s1

off < · · · is the sequence of times in which a motor unbinds,

skoff := inf
{
t > sk−1

off : Ji(t−) ≥ 0 and Ji(t) = u for some i ∈ {1, . . . ,M}
}
, k ≥ 1,

and Noff(t) := sup{k ≥ 0 : skoff ≤ t} is the number of unbindings before time t ≥ 0,
and jk ∈ {1, . . . ,M} gives the (almost surely unique) index of the motor that unbinds
at time skoff. That is, jk satisfies Jjk(skoff−) 6= Jjk(skoff) = u.

The following proposition checks that x(t) converges almost surely to the jump
process x(t) as ε→ 0. The proof is in Appendix B.

Proposition 7. If T ≥ 0 is an almost surely finite stopping time with respect to
{J(t)}t≥0, then

lim
ε→0

x(T ) = x(T ) almost surely.

From this proposition, we conclude that studying the mean behavior of the cargo
position X(t) can ultimately be reduced to studying the jump process x(t), where the
jumps correspond to motor stepping and unbinding events.

4.3. Run length and velocity. Since ε � 1 for biologically relevant parame-
ters, we investigate the run length and velocity of X(t) by investigating the analogous
quantities for x(t),

R := x(τ1
off)− x(τ1

on), V := lim
t→∞

x(t)

t
.(31)
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4.3.1. Run length. The following proposition checks that the mean run length
of the full process X(t) converges to the mean run length of the jump process x(t) as
ε→ 0.

Proposition 8. E[Ron]→ E[R] as ε→ 0.

Proof. By the tower property of conditional expectation (see Theorem 5.1.6 in
[10]), we have that

E[Ron] = E[E[Ron|J]] = E[E[X
(
τ1
off

)
−X

(
τ1
on

)
|J]] = E[x

(
τ1
off

)
− x
(
τ1
on

)
].

Now, Proposition 7 ensures that

x
(
τ1
off

)
− x
(
τ1
on

)
→ R almost surely as ε→ 0.(32)

Let N ≥ 0 be the number of steps taken between time τ1
on and time τ1

off. Since motors
take steps of distance one, we have the almost sure bound, x(τ1

off)−x(τ1
on) ≤ N . Steps

are taken at Poisson rate m(t)λstep(m(t)) ≤MΛ, where Λ := maxm∈{1,...,M} λstep(m).
Thus E[N ] ≤ ΛME[τ1

off−τ1
on] <∞. Thus, (32) and the bounded convergence theorem

complete the proof.

4.3.2. Velocity. Let us now investigate V in (31), observing that this quantity
can be approached in two ways. The first exploits the observation that nonzero mean
displacements only occur from motor stepping, so the velocity can be interpreted as
the product of how often a step occurs with m motors and the size of the displacement.
The second approach is again a renewal reward argument, noting that the only nonzero
displacements occur during epochs of bound cargo. The connection between these two
approaches provides explicit relationships between the velocity, run lengths, and run
times.

Recalling the decomposition of the jump process x in (29), we seek to compute
the expected value

E[x(t)] =

m∑
m=1

1

m
E[Sm(t)] + E[χ(t)].

Using the definition of χ(t) in (30), we compute its expectation by summing over
all possible displacements from one of m motors unbinding ∆j,(z1(t−),...,z

m(sk
off
−)

(t−),

which yields

m∑
j=1

∆j,(z1,...,zm) =
1

m− 1

m∑
j=1

(
−zj +

m∑
i=1

zj

)
−

m∑
i=1

zi = 0.

Since each of the bound motors is equally likely to unbind, it follows that E[χ(t)] = 0.
This can be interpreted as the observation that the arithmetic mean does not change in
expectation when removing a randomly (uniformly) chosen element. In other words,
the effects of motors unbinding ahead of the cargo are completely offset in the mean
by motors unbinding behind the cargo. Therefore, the only long-term influence on x
is stepping events.

Given a realization {m(s)}s≥0, the number of steps taken with m motors bound

before time t ≥ 0 is Poisson distributed with mean mλstep(m)
∫ t

0
1m(s)=m ds. Hence,

E[Sm(t)] = mλstep(m)E
[∫ t

0

1m(s)=m ds

]
.
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Now, {m(s)}s≥0 is an ergodic Markov process, so the occupation measure converges
almost surely to the stationary measure (see Theorem 3.8.1 in [40])

1

t

M∑
n=1

∫ t

0

1m(s)=m ds→ pm almost surely as t→∞,

where pm := limt→∞ P(m(t) = m) is the stationary probability that m motors are
bound. We note that pm is the (m+ 1)st component of the unique probability vector,
p ∈ R1×(M+1) satisfying (see Theorem 3.5.2 in [40])

pQ̃ = 0,(33)

where Q̃ ∈ R(M+1)×(M+1) is the generator matrix defined in section 4.1. Since the
occupation measure is bounded above by one, the bounded convergence theorem gives

lim
t→∞

E[x(t)]

t
= lim
t→∞

M∑
m=1

λstep(m)E
[

1

t

∫ t

0

1m(s)=m ds

]
=

M∑
m=1

λstep(m)pm.

It is easy to see that the classical renewal reward theorem applies to x(t) so that

M∑
m=1

λstep(m)pm = lim
t→∞

E[x(t)]

t
= lim
t→∞

x(t)

t
=

E[R]

E[Ton] + E[Ton]
almost surely.

Furthermore, (19), (20), (21), and Proposition 8 yield

lim
ε→0

V = lim
ε→0

E[Ron]

(Mλon(0))−1 + E[Ton]
=

E[R]

(Mλon(0))−1 + E[Ton]
=

M∑
m=1

λstep(m)pm.

In summary, we now have explicit formulas for the velocity V and expected run
length E[Ron] of X(t) in the small ε limit,

lim
ε→0

V = V =
M∑
m=1

λstep(m)pm,(34)

lim
ε→0

E[Ron] = E[R] =
((
Mλon(0)

)−1
+ E[Ton]

) M∑
m=1

λstep(m)pm,(35)

where pm is given by (33) and E[Ton] is given by (22). In Figure 2, we compare these
formulas for E[R] and V with estimates of E[Ron] and V from simulations of the full
process (X(t),Z(t),J(t)) (for details on our statistically exact simulation method, see
section 4.5).

Furthermore, some experimental works [16, 26] measure the average run velocity,
E[R/Ton]. Now, if σ(m) denotes the σ-algebra generated by {m(t)}t≥0, then recalling
(8) and (10) and using the tower property of conditional expectation yields

E
[
R

Ton

]
= E

[
1

Ton
E[R|σ(m)]

]
= E

[
1

T 1
on

M∑
m=1

1

m
E[Sm(τ1

off)|σ(m)]

]

=
M∑
m=1

1

m
mλstep(m)E

[
1

T 1
on

∫ τ1
off

0

1m(s)=m ds

]
.

Hence, it follows from (34) that

V := E[R/Ton] = V /pon,(36)

where pon =
∑M
m=1 pm is the stationary probability that m(t) ≥ 1.
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Fig. 2. Expected run lengths E[R] and asymptotic velocities V as a function of the parameters
kon, koff, kstep for M = 1, 2, 3 total motors. The curves are the analytical formulas (34)–(35) for
the ε → 0 limit, and the dots are estimates from statistically exact realizations of the full process,
{(X(s),Z(s),J(s))}ts=0, where the ending time t is such that N(t) = 105, where N(t) is defined in
(11). Unless noted otherwise, kon(m) = 10

[
s−1

]
, kstep(m) = 20

[
s−1

]
, koff(m) = 5

[
s−1

]
for each

m. Further, k and γ are as in (26), and kBT = 4.1 [pN · nm].

4.4. Cases M = 1, M = 2, and M = 3. In this subsection, we collect
explicit formulas for the run length E[R] and run velocity V when the total number of
motors is M = 1, 2, 3. The run time E[Ton] and net velocity V can be easily deduced
from these quantities using (34)–(35) but are omitted for brevity.

For M = 1 total motors, the quantities are simply

E[R] = λstep(1), V = λstep(1).(37)

For M = 2 total motors, we find

E[R] = λstep(1) +
λon(1)λstep(2)

2λoff(2)
, V =

2λoff(2)λstep(1) + λon(1)λstep(2)

2λoff(2) + λon(1)
.(38)

For M = 3 total motors, we find

E[R] = λstep(1) +
λon(1)(3λoff(3)λstep(2) + λon(2)λstep(3))

3λoff(2)λoff(3)
,

V =
3λoff(3) [λoff(2)λstep(1) + λon(1)λstep(2)] + λon(1)λon(2)λstep(3)

3λoff(3) [λoff(2) + λon(1)] + λon(1)λon(2)
.

(39)

To put these quantities in dimensional units, recall the jump rates (4) and multiply
E[R] by the dimensional step distance δ > 0 and multiply V by δkoff(1) > 0.

4.5. Numerical simulations. To verify our predictions for the expected run
lengths and velocities, we compare them to statistically exact numerical simulations
of the full process (X(t),Z(t),J(t)). In a given state, we use the classical Gillespie
stochastic simulation algorithm to generate the time of the next transition for the
Markov chain J(t) and to choose which transition occurs. For m(t) ≥ 1, X(t) is an
OU process, generically described by
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dX(t) = α [µ−X(t)] dt+ βdW (t).

To update X(t) to the next time t+τ , we use the statistically exact method described
in [18], summarized by

(40) X(t+ τ) = e−ατX(t) + (1− e−ατ )µ+ β

√
(1− e−2ατ )

2α
n,

where n is a standard normal random variable. When m(t) = 0, X(t) is a pure
diffusion process with α = 0, so (40) becomes an Euler–Maruyama update. This
procedure generates statistically exact sample paths of X(t), sampled at the transition
times of J(t). We use this scheme to generate a long realization of (X(t),Z(t),J(t)),
thereby providing Monte Carlo estimates for E[Ron] and V for a given parameter set.

5. Biological application. We now use the formulas (37)–(39) for run velocity,
V, and run length, E[R], to explore the behavior of nonprocessive motors. The behav-
ior of individual nonprocessive motors is characterized by two observations: (i) short
attachment times and (ii) the time it takes to hydrolyze ATP (and consequently, to
step) coincides with this attachment time [6, 15, 39]. Concretely, Ncd motors in the
kinesin-14 family take 1 to 5 steps before unbinding [2, 11]. In our model, λstep(1)
gives the expected number of steps before unbinding, so we characterize nonprocessive
motors as those with λstep(1) ∈ [1, 5].

Using this characterization, we explore the observation made in [16, 26, 48] that
nonprocessive motors in the kinesin-14 family cooperate to produce long-range trans-
port. This behavior is reported in [16, 26] in terms of a velocity that is analogous
to the run velocity V in our model. Specifically, the primary manifestation of coop-
erativity is that V increases substantially when the total number of motors increases
from M = 1 to M = 2. For M ≥ 2, the velocity remains relatively constant.

We thus ask the question, what features are necessary to produce this behavior?
Now, if the step rate is independent of the number of bound motors, m, then it
follows immediately from (34) and (36) that V is independent of M . In particular, if
the dimensional step rate is kstep(m) ≡ k0 for all m ∈ {1, . . . ,M}, then in dimensional
units, V is simply δk0, regardless of any other parameter values.

Therefore, our model predicts that the stepping rate must depend on the number
of bound motors in order to produce the cooperative behavior seen in run velocities
in [16, 26]. This prediction is bolstered by the simulation results of [16]. There, the
authors constructed a detailed computational model of motor transport, and they had
to improve motor stepping ability when two or more motors are bound in order for
simulations of their computational model to match experimental run velocities.

The authors of [16] also describe motor cooperativity in terms of the average
distance traveled by a cargo before all of its motors detach from a microtubule, which
is analogous to E[R] in our model. Namely, they find that the run length E[R]
dramatically increases when M increases from 1 to 2. Our model can replicate this
cooperativity if and only if we allow the binding rate, kon, and/or the unbinding rate,
koff, to depend on the number of bound motors, m.

To illustrate, we find the parameter values needed for our model to match the
measurements from [16]. However, we emphasize the qualitative results rather than
the precise quantitative values of our parameters. Indeed, there are issues preventing
an exact comparison of our model with the data in [16]. For example, as the au-
thors point out, the length of the microtubules sometimes caused run lengths to be
significantly altered (see Figures 1 and S6 in [16]). Furthermore, for a single motor
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(M = 1), the authors report average run lengths of approximately 300 [nm], and they
note that this value is necessarily an overestimate since they were unable to measure
very short runs. Furthermore, this value must also be an overestimate since a single
nonprocessive motor takes only a few steps per run (by definition of nonprocessive),
and each step is approximately 7 [nm] [11].

We thus assume that λstep(1) = 4, based on [2, 11] and δ = 7 [nm]. This gives
E[R] = 28 [nm] for M = 1, which we use instead of the reported value in [16]. We
then match the respective approximate run lengths of 1300 [nm] and 3300 [nm] for
M = 1, 2 and the respective approximate run velocities of 100, 150, and 150 [nm/s] for
M = 1, 2, 3 reported in [16]. Using the formulas in (37)–(39), this uniquely determines
the stepping rates, kstep(1) ≈ 14 [s−1] and kstep(2) ≈ kstep(3) ≈ 21 [s−1], and the
unbinding rate koff(1) ≈ 3.5 [s−1], which are all within the range of previously reported
rates. The other binding/unbinding rates are not uniquely specified but rather must
satisfy the relations koff(2) ≈ 0.02kon(1) and koff(3) ≈ 1.1kon(2). Hence, if koff were
constant in m, then kon(1) ≈ 200 [s−1] and kon(2) ≈ 3 [s−1].

We make two observations about this result: (i) the binding rate kon(1) is an
order of magnitude larger than reported values in [2, 16], and (ii) the binding rate
decreases as the number of bound motors increases from 1 to 2. Both of these points
can be explained by geometry. First, the value of kon(1) is enhanced because the
single bound motor tethers the unbound motors close to the microtubule and thus
allows those motors to bind more easily. This binding enhancement due to geometry
has precedent in motor studies. Indeed, in a different family of kinesins, it was shown
to be critical for determining run lengths; see [13]. Further, it was shown to play
a critical role in enabling dynein processivity (see [20]), and it was posited as an
explanation for why myosin motors can become processive when processive kinesin
motors are present; see [22]. The authors in [3] report large kon values in a model of
microtubule sliding driven by kinesin-14 motors and also speculate that this is due to
tethering effects.

This effect can also be understood in terms of rebinding. If two motors are bound
and one unbinds, then that motor can rapidly rebind since the bound motor keeps it
near the microtubule. Such rebinding was the mechanism posited in [17] to explain
the processive behavior of nonprocessive motors along microtubule bundles. Further,
rebinding is very important in enzymatic reactions [46, 19, 33, 34]. In that context, one
incorporates rebinding by using an “effective” unbinding rate, which is the intrinsic
unbinding rate multiplied by the probability that the particle does not rapidly rebind;
see [32]. Hence, this effect could be included in our model by reducing koff(2) rather
than (or in addition to) increasing kon(1). Importantly, this is exactly what is implied
by the relation, koff(2) ≈ 0.02kon(1), derived above.

Second, geometric exclusion effects can explain a decrease in binding rates as the
number of bound motors increases from 1 to 2. When more motors are bound, it is
more difficult for additional motors to bind because the range of diffusive search is
reduced for unbound motors. In numerical investigations of motor transport systems,
this exact effect is observed; see [30, 35]. Furthermore this decrease in binding rate can
arise due to motors competing for binding sites, a point posited in [29]. Interestingly,
these authors find that negative cooperativity has little impact on transport velocity.
The same is true in our model, as the value of V changes by less than 1 [nm/s]
as kon(2) ranges from 0 to ∞ while keeping the other parameters fixed. However,
we note that the run length for M = 3 is greatly affected by kon(2), and thus this
highlights the importance of using both run velocity and run length to study motor
transport.
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6. Discussion. In this work, we formulated and analyzed a mathematical model
of transport by nonprocessive molecular motors. We deliberately made our model
simple enough to enable us to extract explicit formulas for experimentally relevant
quantities yet also maintain agreement with detailed computational studies. One such
simplification is to assume the motor stepping and unbinding rates are independent
of force. The justification for this assumption is that since nonprocessive motors
take only a few steps before unbinding (compared to hundreds of steps by processive
motors), these motors are unlikely to be stretched long distances and therefore are
unlikely to generate large forces. This assumption on the stepping rate has been
made in other models involving nonprocessive motors [39] and did not appear to be
a necessary feature in that context, and how force affects stepping is not completely
clear [41]. However, we note that force-dependent unbinding can be an important
characteristic of processive motors, as kinesin-1 and kinesin-2 detach more rapidly
under assisting loads than under opposing loads [1], which increases run velocity and
run length.

These limitations notwithstanding, our model makes some concrete predictions
about motor number-dependent stepping, binding, and unbinding behavior and how
these quantities contribute to transport by nonprocessive motors. Specifically, we ob-
serve that a complex cooperativity mechanism appears to be a necessary ingredient for
nonprocessive motor transport, and these predictions align with several recent experi-
mental and computational works. Furthermore, these predictions can be investigated
experimentally. Indeed, we hope that the work here will spur further investigation into
how geometry affects nonprocessive motor transport, especially given that kinesin-14
motors are known to transport a wide variety of cargo, including long, cylindrical
microtubules [21, 14] and large, spherical vesicles in plants [48].

Appendix A. Proofs of Lemmas 2–5.

Proof of Lemma 2. Between time τk−1
off and τkon, the cargo is freely diffusing.

Therefore, to control Y koff, we need to control the supremum of a Brownian motion.
Now, for any fixed T > 0 and C > 0, it follows from Doob’s martingale inequality
(see Theorem 3.8(i) in [28]) and symmetry of Brownian motion that

P

(
sup
t∈[0,T ]

|W (t)| ≥ C
)
≤ 2 exp

(−C2

2T

)
.(41)

Hence, it follows that

P
(
Y koff ≥ C|T koff

)
≤ 2 exp

( −C2

2σ2T koff

)
almost surely.(42)

Note that (42) is an average over realizations of the diffusion W for fixed realizations
of the time T koff. That is, the inequality holds for almost all realizations of T koff.

Now, T koff is exponentially distributed with rate Mλon(0). Hence, the tower prop-
erty of conditional expectation (see Theorem 5.1.6 in [10]) yields

P(Y koff ≥ C) = E[P(Y koff ≥ C|T koff)] ≤ 2Mλon(0)

∫ ∞
0

exp

(−C2

2σ2t
−Mλon(0)t

)
dt.

(43)

Now, we have that∫ ∞
0

λe−λte−a/t dt = 2
√
aλK1(2

√
aλ) if a > 0, λ > 0,(44)
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where K1(x) denotes the modified Bessel function of the second kind. Hence, the
proof is complete after combining (43) and (44) and the following bound,

K1(x) ≤
√
π/x(1 + 1/(2x))e−x, x > 0,

which was proven in [49].

Proof of Lemma 3. To control Y kon, we note that if t ∈ [τkon, τ
k
off], then X(t) is an

OU process centered at µ(t) = 1
m(t)

∑
i∈I(t) Zi(t) with relaxation rate θ(t) = ε−1m(t).

Hence, after shifting time and space so that τkon = 0 and X(τkon) = 0, we have that

X(t) =

∫ t

0

µ(s)θ(s)e−
∫ t
s
θ(s′) ds′ ds+ σ

∫ t

0

e−
∫ t
s
θ(s′) ds′ dW (s).(45)

Since each bound motor takes steps of unit length at a Poisson rate, and since a motor
binds at the current cargo location, it follows that

|µ(t)| ≤ P (t) +Xsup(t), where Xsup(t) := sup
t′∈[0,t]

|X(t′)|,(46)

and {P (s)}s≥0 is a Poisson process with rate µ := M maxm∈{1,...,M} λstep(m). Thus,

|X(t)| ≤ σ
∣∣∣∣∫ t

0

e−
∫ t
s
θ(s′) ds′ dW (s)

∣∣∣∣+ P (t) +

∫ t

0

Xsup(s)θ(s)e−
∫ t
s
θ(s′) ds′ ds,(47)

where we have used the fact that∫ t0

0

f(s)θ(s)e−
∫ t0
s
θ(s′) ds′ ds ≤

∫ t

0

f(s)θ(s)e−
∫ t
s
θ(s′) ds′ ds ≤ f(t), 0 ≤ t0 ≤ t,(48)

if f is any nonnegative and nondecreasing function.
Now, a straightforward calculation using integration by parts shows that

sup
t′∈[0,t]

∣∣∣∣∣
∫ t′

0

e−
∫ t′
s
θ(s′) ds′ dW (s)

∣∣∣∣∣ ≤ 2 sup
s∈[0,t]

|W (s)|.(49)

Therefore, combining (47), (48), and (49) yields

Xsup(t) ≤ α(t) +

∫ t

0

Xsup(s)θ(s)e−
∫ t
s
θ(s′) ds′ ds,(50)

where α(t) := 2σ sups∈[0,t] |W (s)| + P (t). Multiplying (50) by e
∫ t
0
θ(s′) ds′ , applying

Gronwall’s inequality, and then dividing by e
∫ t
0
θ(s′) ds′ yields

Xsup(t) ≤ α(t) +

∫ t

0

α(s)θ(s) ds.

Since α(t) is nondecreasing and θ(t) ≤ Θ := ε−1M , we obtain Xsup(t) ≤ α(t)(1+Θt).
Therefore, we have the following almost sure inequality for ζ := (1 + ΘT kon)−1:

P(Y kon ≥ C|T kon) ≤ P
(
P (T kon) ≥ Cζ/2

∣∣T kon

)
+ P

(
sup

t∈[0,Tk
on]

|W (t)| ≥ Cζ/(4σ)
∣∣T kon

)
.

(51)
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We thus need to control the distribution of T kon. Now, the Markov chain m(t) in
(6) is a finite state space birth-death process, and thus there exists (see [7]) a unique
quasi-stationary distribution ν ∈ RM , which is a probability measure on {1, . . . ,M}
so that if P(m(0) = m) = νm for m ∈ {1, . . . ,M}, then

P
(
m(t) = m

∣∣m(s) 6= 0 for all s ∈ [0, t]
)

= νm, m ∈ {1, . . . ,M}.

Furthermore, it is known that the first passage time of m(t) to state 0 is exponentially
distributed with some rate λ > 0 if P(m(0) = m) = νm for m ∈ {1, . . . ,M} [37]. Now,
Ton is the first passage time of m(t) to state m = 0 starting from state m = 1, which
must be less than the first passage time to state m = 0 starting from any other
state. Therefore, if S is the first passage time to state m = 0 starting from this
quasi-stationary distribution, then

P(Ton > T ) ≤ P(S > T ) = 1− e−λT , T > 0.

Thus, since both terms in the upper bound in (51) are increasing functions of the
realization T kon > 0, the tower property yields for ζS := (1 + ΘS)−1,

P(Y kon ≥ Cζ) = E
[
P(Y kon ≥ Cζ|T kon)

]
≤ E [P(P (S) ≥ CζS/2|S)] + E

[
P

(
sup
t∈[0,S]

|W (t)| ≥ CζS/(4σ)|S
)]

.

(52)

Next, if P is Poisson distributed with mean µ0, then Corollary 6 from [43] yields

P(P ≥ C0) ≤ eC0−µ0

(
µ0

C0

)C0

if C0 ≥ µ0.

Noting that C
2 < µS(1 + ΘS) if and only if S > Σ :=

√
2CΘ/µ+1−1

2Θ , we obtain

P(P (S) ≥ CζS/2|S) ≤ 1S>Σ + e
C

2(1+ΘS)
−µS

(
2µS(1 + ΘS)

C

) C
2(1+ΘS)

1S≤Σ.(53)

Since S ∼ Exponential(λ), taking the expectation of (53) gives

E[P(P (S) ≥ CζS/2|S)] ≤ e−λΣ +

∫ Σ

0

λe
C

2(1+Θs)
−(µ+λ)s

(
2µs(1 + Θs)

C

) C
2(1+Θs)

ds.

(54)

A quick calculation shows that if C ≥ (Θε0)−2 for ε0 := (8eµΘ)−1/2, then

λe
C

2(1+Θs)
−(µ+λ)s

(
2µs(1 + Θs)

C

) C
2(1+Θs)

≤
{
λ2−κ0

√
C if s ∈ [0, ε0

√
C],

λe−λε0
√
C if s ∈ [ε0

√
C,Σ]

for κ0 := (4Θε0)−1. Hence, if C ≥ (Θε0)−2, then

E[P(P (S) ≥ CζS/2|S)] ≤ λe−λΣ + Σλ
(

2−κ0

√
C + e−λε0

√
C
)
.(55)

Moving to the second term in (52), we have that (41) yields
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E

[
P

(
sup
t∈[0,S]

|W (t)| ≥ CζS/(4σ)|S
)]
≤
∫ ∞

0

2λe−λs exp

{
− κC2

s(1 + Θs)2

}
ds,

where κ = (32σ2)−1. It is straightforward to check that

2λe−λs exp

{
− κC2

s(1 + Θs)2

}
≤
{

2λ exp
{
− κ

√
C

Θ2+2ΘC−1/2+C−1

}
if s ∈ [0,

√
C],

2λe−λs if s ∈ [
√
C,∞).

Therefore, for sufficiently large C, we have that

E

[
P( sup
t∈[0,S]

|W (t)| ≥ CζS/(4σ)|S)

]
≤ 2λ

√
Ce−(2κ/θ2)

√
C + 2e−λ

√
C .(56)

Combining (52), (55), and (56) completes the proof.

Proof of Lemma 4. Since Yk ≤ Y koff + Y kon for k ≥ 1, we have that

∞∑
k=1

P(Yk >
√
k) ≤

∞∑
k=1

P(Y koff >
1
2

√
k) +

∞∑
k=1

P(Y kon >
1
2

√
k).(57)

Therefore, the upper bounds established in Lemmas 2 and 3 and the integral test
show that (57) converges. Applying the Borel–Cantelli lemma (see Theorem 2.3.1 in
[10]) completes the proof.

Proof of Lemma 5. Since Yk ≥ 0 almost surely, we have that E[Yk] =
∫∞

0
P(Yk >

C) dC. Using the bounds in Lemmas 2 and 3 as in the proof of Lemma 4 shows that
this integral is finite.

Appendix B. Proof of Proposition 7.

Proof. Fix a realization J. Let K ≥ 0 denote the almost surely finite number of
jump times of J before time T , where t is said to be a jump time if J(t+) 6= J(t−).
Denote these K jump times by 0 < τ1 < · · · < τK < T and let τ0 = 0 and τK+1 = T .

For ease of notation, define the sequences

xk := x(τk), xk := x(τk), zik := zi(τk), zik := zi(τk), mk := m(τk)

for k ∈ {0, 1, . . . ,K}. Further, define the time between jumps, sk := τk − τk−1, for
k ∈ {1, . . . ,K}. It follows immediately from Proposition 6 that

xk+1 = xke
−sk+1/ε + µk+1(1− e−sk+1/ε), k ∈ {0, 1, . . . ,K},(58)

where for k ∈ {0, 1, . . . ,K + 1} we define

µk+1 :=

{
1
mk

∑
i∈I(τk) z

i
k if mk > 0,

xk if mk = 0.
(59)

Furthermore, it follows from the definition of x(t) that for k ∈ {0, 1, . . . ,K},

xk+1 :=

{
1
mk

∑
i∈I(τk) z

i
k if mk > 0,

xk if mk = 0.
(60)

Now, since motors take steps of size one, it follows that if k ∈ {0, . . . ,K} and
i ∈ {1, . . . ,M}, then 0 ≤ zik ≤ K + 1 and 0 ≤ xk ≤ K + 1. Hence, if k ∈ {0, . . . ,K},
then (59) implies
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|xk − µk+1| < K + 1.(61)

Next, we claim that if k ∈ {0, . . . ,K} and

max
j∈{0,...,k}

{
|xj − xj |, max

i∈{1,...,M}
|zij − zij |

}
< η,(62)

then

max

{
|xk+1 − xk+1|, max

i∈{1,...,M}
|zik+1 − zik+1|

}
< (K + 1)e−sk+1/ε + η.(63)

To see this, we use (58) and (61) to obtain

|xk+1 − xk+1| = |xke−sk+1/ε + µk+1(1− e−sk+1/ε)− xk+1|
≤ (K + 1)e−sk+1/ε + |µk+1 − xk+1|.

Using (59) and (60), we have that

|µk+1 − xk+1| ≤
{

1
mk

∑
i∈I(τk) |zik − zik| if mk > 0,

|xk − xk| if mk = 0.

Furthermore, it follows from (7) and (27) that

|zik+1 − zik+1| ≤ max
j∈{0,...,K+1}

|xj − xj |, i ∈ {1, . . . ,M}.

Hence, the claim (63) is verified.
Define the largest time between jumps, s := maxk∈{1,...,K} sk. Since x0 = x0 =

zi0 = zi0 for i ∈ {1, . . . ,M}, we apply (62) and (63) iteratively to obtain

|xK+1 − xK+1| ≤ (K + 1)2e−s/ε.

Taking ε→ 0 completes the proof.
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