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ELECTRODIFFUSIVE FLUX THROUGH A STOCHASTICALLY
GATED ION CHANNEL\ast 

SEAN D. LAWLEY\dagger AND JAMES P. KEENER\ddagger 

Abstract. A fundamental assumption of the Hodgkin--Huxley model and other conductance-
based neuron models is that the average flux of ions through a stochastically gated ion channel is the
product of (a) the flux of ions through a channel that is always open and (b) the proportion of time
that the gated channel is open. In this paper, we propose and analyze a model of electrodiffusion
through a stochastically gated ion channel to investigate the validity of this classical assumption. We
find that this assumption is valid for typical physiological parameter regimes, and we also show that
it breaks down for parameters outside of typical physiological ranges. Indeed, we show that the flux
through a gated channel can be orders of magnitude larger than this classical assumption if either
the gating is fast or the potential difference across the membrane is large. Mathematically, our model
consists of one-dimensional advection-diffusion equations with a stochastically switching boundary
condition. Employing an iterated random function approach, we prove that the solution converges
in distribution at large time and find (i) the support of the solution, (ii) analytical formulas for the
mean solution and mean flux, and (iii) analytical formulas for the full probability distribution of the
solution in various parameter regimes. All of our analysis is accompanied by numerical simulations
of the stochastic PDE.
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1. Introduction. The Hodgkin--Huxley model [13] is perhaps the most impor-
tant model in all of physiology. Named after Alan Hodgkin and Andrew Huxley, this
mathematical model consists of a system of nonlinear differential equations and de-
scribes how action potentials in neurons are initiated and propagated. In addition to
transforming the field of neuroscience [11, 24] (Hodgkin and Huxley won the 1963 No-
bel Prize in Physiology or Medicine), the model has stimulated an enormous amount
of research in mathematics [9].

A fundamental assumption of the Hodgkin--Huxley model and other conductance-
based neuron models is that the flux of ions through a stochastically gated ion channel
is the product of (a) the flux of ions through a channel that is always open and (b)
the proportion of time that the gated channel is open. That is, these models assume

Jgated = \rho 0Jopen,(1)

where Jgated, Jopen are the fluxes through either a gated or always open channel, and
\rho 0 \in (0, 1) is the proportion of time that the gated channel is open. While this
assumption is intuitive, to our knowledge, its validity has not been systematically
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investigated. Indeed, there are several outstanding questions. What conditions guar-
antee that (1) holds? Are there physiologically relevant situations in which (1) breaks
down? Can we ever expect Jgated to be larger (or smaller) than \rho 0Jopen? How does the
validity of (1) depend on the many parameters involved, such as the electric potential
difference across the cell membrane, ion diffusion coefficients, gating rates, etc.?

In this paper, we propose and analyze a model of electrodiffusion through a
stochastically gated ion channel to investigate the validity of the classical assumption
in (1) and answer these questions. We find that (1) is valid for typical physiological
parameter regimes. This agreement is an important validation of our model, since
the full Hodgkin--Huxley model quantitatively reproduces a large range of empirical
data. However, our analysis predicts that (1) breaks down for parameters not far out-
side of typical physiological ranges. Indeed, we show that Jgated can be much higher
than \rho 0Jopen if either (i) the gating is fast or (ii) the potential difference across the
membrane is large (in a sense to be made precise below).

Mathematically, our model of ion channel conduction takes the form of advection-
diffusion equations on a finite interval with stochastically switching boundary condi-
tions. We employ several methods to analyze this random partial differential equation
(PDE). First, we cast the problem in a framework of iterated random functions and
prove that the solution converges in distribution at large time. We then determine
the support of this large time random solution and find analytical formulas for its
probability distribution in various parameter regimes. Following these results about
the full distribution of the solution, we derive and analyze analytical formulas for
the mean solution and the mean flux at large time. Our analysis is accompanied by
numerical simulations of the stochastic PDE.

The diffusion equation on an interval with randomly switching boundary condi-
tions was first studied in [19], and additional methods of analyzing similar stochastic
PDEs were then developed in [3, 16]. Closely related models were later studied in the
chemical physics literature [1, 2]. Additional related work includes extensions of the
classical Smoluchowski theory of diffusion-influenced reactions to stochastically gated
reactions [4, 8, 26]. In contrast to previous work, the PDE in this paper includes ad-
vection, and we study the full probability distribution of the random solution rather
than only the mean.

The rest of the paper is organized as follows. First, we formulate the model and
describe our main results in section 2. We then present our mathematical analysis in
sections 3--4, with section 3 focusing on the full distribution of the random solution
and section 4 focusing on its mean. In section 5, we explore our results for typical
physiological parameter values. We conclude with a brief discussion.

2. Model and main results.

2.1. Gate always open. We first describe an electrodiffusion model for an ion
channel that is always open. Generalizing the model in Chapter 3 of [14], we suppose
that there are N types of ions, S1, . . . , SN with concentrations c1(x, t), . . . , cN (x, t),
passing through an ion channel of length L > 0; see Figure 1. The ion channel is in
a cell membrane separating the inside of the cell (at x = 0) from the outside of the
cell (at x = L).

Denoting the valences of the N ions by z1, . . . , zN , the potential in the channel
\phi (x, t) satisfies Poisson's equation,

\partial 2

\partial x2
\phi =  - F

\varepsilon \prime 

N\sum 
k=1

zkck,(2)
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Fig. 1. Schematic diagram of electrodiffusion model for two ions in an ion channel that is
always open.

where F is Faraday's constant and \varepsilon \prime is the dielectric constant of the channel medium.
The ion concentrations satisfy the conservation equation,

\partial 

\partial t
ck =  - \partial 

\partial x
Jk
NP, k \in \{ 1, . . . , N\} ,

where the movement of ions in response to a concentration gradient and an electric
field is described by the Nernst--Planck equation,

Jk
NP =  - Dk

\Bigl( \partial 

\partial x
ck +

zkF

RT
ck

\partial 

\partial x
\phi 
\Bigr) 
, k \in \{ 1, . . . , N\} ,(3)

where D1, . . . , DN > 0 are the diffusion coefficients of the N ions, R is the universal
gas constant, and T is absolute temperature.

Putting this together, the ion concentrations satisfy the advection-diffusion equa-
tions,

\partial 

\partial t
ck = Dk

\Bigl[ \partial 2
\partial x2

ck +
\partial 

\partial x

\Bigl( zkF
RT

ck
\partial 

\partial x
\phi 
\Bigr) \Bigr] 
, k \in \{ 1, . . . , N\} ,(4)

where the advection velocity \partial 
\partial x\phi couples to c1, . . . , cN through Poisson's equation (2).

Supposing that the ion channel is always open, the boundary conditions are

ck(0, t) = cki > 0, ck(L, t) = cke > 0, k \in \{ 1, . . . , N\} ,(5)

\phi (0, t) = V , \phi (L, t) = 0.(6)

Here, cki and cke denote the internal and external concentrations of the kth ion. Fur-
ther, V is the potential difference across the membrane, defined as the internal po-
tential minus the external potential.

We nondimensionalize by defining new time and space variables, t = D1

L2 t, x =
x/L, and

\phi = \phi z1F/(RT ), V = V z1F/(RT ), ck = ck/(c
k
e + cki ) for k \in \{ 1, . . . , N\} ,(7)

and cki = cki /(c
k
e + cki ), c

k
e = cke/(c

k
e + cki ) for k \in \{ 1, . . . , N\} . In these new variables,

our PDEs (2) and (4) become

\partial 

\partial t
ck = Dk/D1

\Bigl[ \partial 2
\partial x2

ck +
zk
z1

\partial 

\partial x

\Bigl( 
ck

\partial 

\partial x
\phi 
\Bigr) \Bigr] 
, k \in \{ 1, . . . , N\} ,(8)

\partial 2

\partial x2
\phi =  - 

N\sum 
k=1

\gamma kck,(9)
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where we have defined the dimensionless constants,

\gamma k =
L2F 2(cke + cki )zk

\varepsilon \prime RTz1
, k \in \{ 1, . . . , N\} .

The boundary conditions (5)--(6) become

ck(0, t) = cki \in (0, 1), ck(1, t) = cke = 1 - cki , k \in \{ 1, . . . , N\} ,(10)

\phi (0, t) = V, \phi (1, t) = 0.(11)

Even at steady state, these equations cannot be solved analytically. However, one
can find approximate steady state solutions if \gamma := maxk\{ | \gamma k| \} \ll 1. In particular,
if \gamma \ll 1 (the so-called short channel or low concentration limit), then (9) becomes

Laplace's equation \partial 2

\partial x2\phi = 0. Hence, upon consulting the boundary conditions for \phi ,
we see that the electric potential is the linear function

\phi (x, t) = (1 - x)V.(12)

It follows that c1, . . . , cN decouple, and (8) becomes the advection-diffusion equation
for k = 1,

\partial 

\partial t
c =

\partial 2

\partial x2
c - V \partial 

\partial x
c,(13)

after dropping the subscript on the ion concentration. Indeed, we henceforth consider
only c(x, t) := c1(x, t) with boundary conditions c(0, t) = ci := c1i and c(1, t) = ce :=
c1e , since the analysis of ck(x, t) is the same after replacing V by (zk/z1)V and using
diffusion coefficient Dk/D1.

One can show that the steady state ion concentration limt\rightarrow \infty c(x, t) is

uss0 (x) :=
ci(e

V  - eV x) + ce(e
V x  - 1)

eV  - 1
,(14)

and the steady state ion flux is

Jopen := V
ci  - cee - V

1 - e - V
.(15)

Equation (15) is the famous Goldman--Hodgkin--Katz flux equation and is commonly
used in models of cellular electrical activity [12].

2.2. Stochastic gating. We now modify this classical electrodiffusion model by
supposing that the channel is gated. Specifically, we suppose that the channel has a
gate at x = 1 that opens and closes according to a two-state Markov jump process
n(t) \in \{ 0, 1\} with dimensionless transition rates \alpha 0 > 0, \alpha 1 > 0,

open 0
\alpha 0

\rightleftharpoons 
\alpha 1

1 closed.(16)

Of course, if the dimensional rates are \alpha 0, \alpha 1, then \alpha 0 = L2

D1
\alpha 0 and \alpha 1 = L2

D1
\alpha 1. We

have assumed a two-state channel for simplicity, though we note that more complex
gating models involving multiple subunits of multiple types are commonly used [5,
10, 14] (see the discussion section below for more on this topic).
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Fig. 2. Schematic diagram of electrodiffusion model in a stochastically gated ion channel.

We model the effect of the gate by making the boundary condition for c at x = 1
depend on the state of the gate. In particular, when the gate is open (n(t) = 0), then
we impose

c(1, t) = ce,(17)

and when the gate is closed (n(t) = 1), we impose

\partial 
\partial xc(1, t) - V c(1, t) = 0.(18)

That is, we impose the condition in (10) when the gate is open, and we impose a no
flux condition when the gate is closed; see Figure 2. The boundary condition for c at
x = 0 is unchanged and is independent of the gate,

c(0, t) = ci.(19)

Since the gate n(t) is a stochastic process, it follows that \{ c(x, t)\} t\geq 0 is now a stochas-
tic process.

In this paper, we investigate how the stochastic opening and closing of the gate
affects the ionic flux. It is commonly assumed [12] that the flux through a gated chan-
nel is merely the flux through an always open channel multiplied by the proportion
of time that the gated channel is open. For our model of a gate (16), this means that

Jgated = \rho 0Jopen,(20)

where Jgated, Jopen are the fluxes through either a gated or always open channel, and
\rho 0 := \alpha 1

\alpha 1+\alpha 0
\in (0, 1) is the proportion of time that the gated channel is open.

We prove that Jgated > \rho 0Jopen for all parameter values and that (20) holds only
in the limit of either (i) slow gating or (ii) a large negative potential difference. That
is, we prove that (20) holds only in the limit of either

\alpha 0 + \alpha 1 \rightarrow 0 or V \rightarrow  - \infty .

Furthermore, we find an analytical formula for the mean flux through a gated channel
that holds for any choice of parameters, \alpha 0, \alpha 1, V, ci. This calculation shows that the
flux through a gated channel can be much larger than the estimate (20). Indeed, for
any fixed proportion of time open \rho 0 \in (0, 1), the flux through a gated channel in the
fast gating limit is

lim
\alpha 0+\alpha 1\rightarrow \infty 

Jgated = Jopen,(21)

where Jopen is given in (15). In addition, for any fixed transition rates \alpha 0 > 0, \alpha 1 > 0,
the flux through a gated channel in the limit of a large potential difference is

lim
V\rightarrow \infty 

Jgated = Jopen.(22)
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3. Distribution of the random ion concentration. In this section, we con-
struct the random solution to (13), (17)--(19) and study its distribution. In particu-
lar, we prove that the random solution converges in distribution at large time to an
L2[0, 1]-valued random function C(x) and determine the support of C(x). We also
find analytical formulas for the random function C(x) in certain parameter limits
(\alpha 0 + \alpha 1 \rightarrow 0 and V \rightarrow \pm \infty ).

3.1. Construction of the random solution. We first construct the random
solution to (13) with boundary condition (19) at x = 0 and randomly switching
conditions (17) and (18) at x = 1 by repeatedly composing the solution operators
to the pair of deterministic PDEs corresponding to either an open or closed gate.
These solution operators are given in the next lemma. In the following, we denote
the standard L1[0, 1] and L\infty [0, 1] norms by \| \cdot \| 1 and \| \cdot \| \infty , respectively. We also
use the weighted L2[0, 1] inner product,

(f, g)w :=

\int 1

0

f(x)g(x)e - V x dx,(23)

and the associated norm, \| f\| w :=
\sqrt{} 

(f, f)w. We note that the spatial differential
operators are self-adjoint with this inner product.

Lemma 3.1. The solution operator, \Phi t
0 : L2[0, 1]\rightarrow L2[0, 1], which takes an initial

condition f \in L2[0, 1], and maps it to the solution of (13) with boundary conditions
(17) and (19) is

(\Phi t
0(f))(x) := uss0 (x) +

\infty \sum 
k=1

e - \mu 
(k)
0 t

\bigl( 
\phi 
(k)
0 , f  - uss0

\bigr) 
w
\phi 
(k)
0 (x),(24)

where uss0 (x) is the steady state solution defined in (14), and the eigenvalues and
orthonormal (with respect to (\cdot , \cdot )w) eigenfunctions are

 - \mu (k)
0 :=  - 

\Bigl( V 2

4
+ \lambda 

(k)
0

\Bigr) 
< 0, \phi 

(k)
0 (x) :=

\surd 
2e

V
2 x sin(k\pi x), k \geq 1,

where \lambda 
(k)
0 := k2\pi 2 > 0.

Similarly, the solution operator of (13) with boundary conditions (18) and (19)
is

(\Phi t
1(f))(x) := uss1 (x) +

\infty \sum 
k=0

e - \mu 
(k)
1 t

\bigl( 
\phi k, f  - uss0

\bigr) 
w
\phi 
(k)
1 (x),(25)

where uss1 (x) := cie
V x, and the eigenvalues are  - \mu (k)

1 :=  - (V 2

4 + \lambda 
(k)
1 ) < 0 for k \geq 1,

where \{ \lambda (k)1 \} \infty k=1 are the positive solutions of the transcendental equation

tan(
\surd 
\lambda )\surd 

\lambda 
=

2

V
,

and the associated eigenfunctions are \phi 
(k)
1 (x) := \nu (k)e

V
2 x sin

\bigl( \sqrt{} 
\lambda 
(k)
1 x

\bigr) 
for k \geq 1,

where \nu (k) is such that \| \phi (k)1 \| w = 1. If V \leq 2, then \phi 
(0)
1 \equiv 0 and the value of \mu 

(0)
1 is
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irrelevant. If V > 2, then  - \mu (0)
1 :=  - (V 2

4 + \lambda 
(0)
1 ) < 0, where \lambda 

(0)
1 \in ( - V 2

4 , 0) is the
unique solution of the transcendental equation

tanh(
\surd 
 - \lambda 0)\surd 
 - \lambda 0

=
2

V
,(26)

and \phi 
(0)
1 (x) := \nu (0)e

V
2 x sin

\bigl( \sqrt{} 
\lambda 
(0)
1 x

\bigr) 
, where \nu (0) is such that \| \phi (0)1 \| w = 1.

As the operators involved are self-adjoint, the proof of Lemma 3.1 is straightfor-
ward and is therefore omitted.

Having defined the maps \Phi t
0 and \Phi t

1, the solution of (13) with randomly switching
boundary conditions (17)--(18) is constructed by iteratively composing these maps
according to the transition times of the Markov process \{ n(t)\} t\geq 0. More precisely, let
\{ \xi k\} \infty k=1 denote the sequence of states visited by \{ n(t)\} t\geq 0. That is, let \xi 1 \in \{ 0, 1\} be
a Bernoulli random variable with mean \rho 0 = \alpha 1

\alpha 0+\alpha 1
and let \xi k = 1  - \xi k\pm 1. Further,

let \{ sk\} \infty k=1 be a sequence of independent exponential random variables, each with
mean E[sk] = 1. The sequence of sojourn times of \{ n(t)\} t\geq 0 are then \tau k := sk/\alpha \xi k

for k \geq 1, and the time of the kth switch is

Sk :=

k\sum 
j=1

\tau k.

Let N(t) be the number of jumps of n before time t,

N(t) := sup
\bigl\{ 
k \in N \cup \{ 0\} : Sk < t

\bigr\} 
,

and let a(t) := t - SN(t) be the time elapsed since the last jump. The random solution
at time t \geq 0 is then

c(x, t) = \Phi 
a(t)
\xi N(t)+1

\circ \Phi SN(t)

\xi N(t)
\circ \cdot \cdot \cdot \circ \Phi S1

\xi 1
(c(x, 0)).(27)

3.2. Large time distribution of random solution. To prove that c(x, t)
converges in distribution at large time and to study this limiting distribution, we
apply the methods developed in [19]. In order to apply these methods, we need to
check that the maps \Phi t

0,\Phi 
t
1 in (27) are contracting on average, which we prove in the

following lemma.

Lemma 3.2. For each n \in \{ 0, 1\} , there exists a constant \zeta n > 0 so that for all
f, g \in L2[0, 1] and t \geq 0, we have that

\| \Phi t
n(f) - \Phi t

n(g)\| w \leq e - \zeta nt\| f  - g\| w.

Proof. Since \mu 
(k)
0 > 0 for k \geq 1, we have that

\| \Phi t
0(f) - \Phi t

0(g)\| 2w =
\bigm\| \bigm\| \bigm\| \infty \sum 

k=1

e - \mu 
(k)
0 t(\phi 

(k)
0 , f  - g)w\phi (k)0

\bigm\| \bigm\| \bigm\| 2
w

=
\infty \sum 
k=1

e - 2\mu 
(k)
0 t(\phi 

(k)
0 , f  - g)2w

\leq e - 2\mu 
(1)
0 t

\infty \sum 
k=1

(\phi 
(k)
0 , f  - g)2w = e - 2\mu 

(1)
0 t\| f  - g\| 2w.

(28)

Thus, we may take \zeta 0 = \mu 
(1)
0 > 0. Taking either \zeta 1 = \mu 

(1)
1 > 0 for V \leq 2 or

\zeta 1 = \mu 
(0)
1 > 0 for V > 2, the proof for n = 1 is the same.
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Having established that the maps \Phi t
0,\Phi 

t
1 are contractions, we can now determine

the large time distribution of c(x, t). To describe this distribution, we need some more
notation. Define the two compositions,

\Psi s,t
n = \Phi s/\alpha n

n \circ \Phi t/\alpha 1 - n

1 - n , s, t \geq 0, n \in \{ 0, 1\} ,

and the two L2[0, 1]-valued random variables,

Cn := lim
K\rightarrow \infty 

\Psi s1,s2
n \circ \Psi s3,s4

n \circ \cdot \cdot \cdot \circ \Psi s2K - 1,s2K
n (f), f \in L2[0, 1], n \in \{ 0, 1\} .(29)

As above, \{ sk\} \infty k=1 is a sequence of independent exponential random variables, each
with mean E[sk] = 1. The random variables C0, C1 are called random pullback
attractors because they take an initial condition (here, f \in L2[0, 1]) and pull it back
to the infinite past [7, 22, 25]. By Lemma 3.2, we have that \Psi s,t

n is a contraction in
L2[0, 1] with the weighted norm \| \cdot \| w for all s, t > 0. Thus, we can apply Proposition
2.1 in [19] to conclude that C0, C1 exist almost surely as limits in L2[0, 1], where the
notion of convergence is with respect to the weighted norm \| \cdot \| w, but convergence in
this weighted norm is equivalent to convergence in the standard L2[0, 1] norm, \| \cdot \| 2.
Further, Proposition 2.1 in [19] yields that C0, C1 are independent of f .

The following proposition gives the large time distribution of c(x, t). The propo-
sition follows immediately from Corollary 2.5 in [19].

Proposition 3.3. If \eta \in \{ 0, 1\} is a Bernoulli random variable with mean E[\eta ] =
\rho 1 := \alpha 0

\alpha 0+\alpha 1
, then we have the following convergence in distribution as t\rightarrow \infty ,

(n(t), c(x, t))\rightarrow d (\eta , C(x)) as t\rightarrow \infty ,

where C is the following mixture of the pullbacks in (29),

C(x) = (1 - \eta )C0(x) + \eta C1(x).

In words, Proposition 3.3 says that one can sample the large time distribution of
c(x, t) by doing the following. First, flip a coin (with parameter \rho 1) to determine if
the gate is either open (\eta = 0) or closed (\eta = 1). If the gate is open, then sample
the pullback C0 and, if the gate is closed, then sample the pullback C1. One can
thus think of the pullback C0 (respectively, C1) as the ion concentration profile in the
channel conditioned that the gate is open (respectively, closed).

Using Proposition 3.3, we now determine the support of the large time distribution
of c(x, t). Put simply, the next proposition ensures that the solution is smooth and
lies between the two steady states. Indeed, the region between the two steady states
serves as a trapping region for the random PDE; see Figure 3.

Proposition 3.4. Define the set of functions

S := \{ g \in C\infty [0, 1] : min\{ uss0 (x), uss1 (x)\} \leq g(x) \leq max\{ uss0 (x), uss1 (x)\} \} .(30)

Then,

\Phi t
n : S \rightarrow S, n \in \{ 0, 1\} , t \geq 0,

and

C(x) \in S almost surely.



ELECTRODIFFUSIVE GATED FLUX 559

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

uss0
uss1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

x

uss0
uss1

Fig. 3. The support of the large time solution to the random PDE lies between the two steady
states, uss
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Proof. Let g \in S. It is immediate that \Phi t
n(g) is infinitely differentiable in x since

\Phi t
n(f) is infinitely differentiable in x for each f \in L2[0, 1], t > 0.

Defining the ratio R(x) = uss0 (x)/u
ss
1 (x), a direct calculation shows that

sgn(R\prime (x)) = sgn(ce  - cieV ) = sgn(uss0 (1) - uss1 (1)), x \in [0, 1],

where sgn(z) is the signum function. Since R(1) = 1, it follows that

sgn(uss0 (x) - uss1 (x)) = sgn(uss0 (1) - uss1 (1)) = sgn(ce  - cieV ), x \in (0, 1].(31)

Suppose uss1 (x) \geq uss0 (x) for some x \in (0, 1], thus uss1 (x) \geq uss0 (x) for all x \in (0, 1] by
(31). Observe that

\Phi t
0(g)(x) - \Phi t

0(u
ss
0 )(x) = \Psi t

0(g  - uss0 )(x),
where \Psi t

0 is the solution operator for the advection-diffusion equation (13) with ho-
mogeneous Dirichlet conditions. It is easy to check that \Psi t

0 satisfies the property that
if f \geq 0, then \Psi t

0(f) \geq 0. Therefore, if g \in S, then g(x) - uss0 (x) \geq 0 for all x \in [0, 1],
and thus (\Phi t

0(g))(x) \geq (\Phi t
0(u

ss
0 ))(x) = uss0 (x) for all x \in [0, 1] and t \geq 0.

To check that \Phi t
0(g) \leq uss1 , consider the function

h(x, t) := uss1 (x) - (\Phi t
0(g))(x).

Then, h satisfies (13) by linearity, with a nonnegative initial condition, h(x, 0) =
uss1 (x)  - g(x) \geq 0, and nonnegative boundary conditions h(0, t) = 0 and h(1, t) =
uss1 (1)  - ce \geq 0, since ce = uss0 (1) \leq uss1 (1) by assumption. It follows that h(x, t) \geq 0
for all x \in [0, 1] and t \geq 0, and thus \Phi t

0 : S \rightarrow S. Checking that \Phi t
1 : S \rightarrow S is

similar, and the argument in the case that uss1 \leq uss0 is analogous. Since \Phi t
n : S \rightarrow S

for n \in \{ 0, 1\} , it follows from Theorem 7 on page 24 of [15] that both pullbacks, C0

and C1, are in S, and thus C \in S.
3.3. Almost sure limits. In this section, we use Proposition 3.3 to investigate

the ion concentration for either slow gating (\alpha 0 + \alpha 1 \ll 1), a large negative potential
difference (V \ll  - 1), or a large positive potential difference (V \gg 1).

Our first theorem states that the pullbacks defined in (29), C0 and C1, converge
to their corresponding steady states solutions, uss0 and uss1 , in the slow gating limit.
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Theorem 3.5. For any fixed proportion of time open \rho 0 \in (0, 1) and n \in \{ 0, 1\} ,
we have that

Cn(x)\rightarrow ussn (x) uniformly in x \in [0, 1] as \alpha 0 + \alpha 1 \rightarrow 0 almost surely.

Combining this theorem with Proposition 3.3, it follows that the large time distribu-
tion of the random solution in the slow gating limit \alpha 0 + \alpha 1 \rightarrow 0 is

(1 - \eta )uss0 (x) + \eta uss1 (x),(32)

where \eta \in \{ 0, 1\} is a Bernoulli random variable with mean E[\eta ] = \rho 1 := \alpha 0

\alpha 0+\alpha 1
.

Having found the entire distribution (32) in this limit, we can of course analytically
calculate statistics. For example, the second moment is

E
\Bigl[ \bigl\{ 

(1 - \eta )uss0 (x) + \eta uss1 (x)
\bigr\} 2

\Bigr] 
= \rho 0(u

ss
0 (x))

2 + \rho 1(u
ss
1 (x))

2,

and hence the standard deviation is

\surd 
\rho 0\rho 1

\bigm| \bigm| uss1 (x) - uss0 (x)\bigm| \bigm| .(33)

Proof of Theorem 3.5. As in the definition of Cn in (29), let \{ sk\} \infty k=1 be a sequence
of independent exponential random variables, each with mean E[sk] = 1. Define the
function

g1 - n := lim
K\rightarrow \infty 

\Phi 
s2/\alpha 1 - n

1 - n \circ \Psi s3,s4
n \circ \cdot \cdot \cdot \circ \Psi s2K - 1,s2K

n (uss0 ).

That is, g1 - n is defined so that Cn = \Phi 
s1/\alpha n
n (g1 - n). Since Proposition 3.4 implies

that g1 - n \in S, where S is defined in (30), we have that

\| Cn  - ussn \| \infty = \| \Phi s1/\alpha n
n (g1 - n) - ussn \| \infty 

\leq e - V 2

4 s1/\alpha n

\sum 
k

e - \lambda (k)
n s1/\alpha n | (\phi (k)n , g1 - n  - ussn )w| \| \phi (k)n \| \infty 

\leq e - V 2

4 s1/\alpha n\| uss0  - uss1 \| \infty 
\sum 
k

e - \lambda (k)
n s1/\alpha n\| e - V x\phi (k)n \| 1\| \phi (k)n \| \infty .(34)

Since s1 > 0 almost surely, taking \alpha 0 + \alpha 1 \rightarrow 0 completes the proof.

Similarly, our next theorem states that the pullbacks converge to their corre-
sponding steady state solutions in the limit V \rightarrow  - \infty .

Theorem 3.6. For any fixed proportion of time open \rho 0 \in (0, 1) and n \in \{ 0, 1\} ,
we have that

| Cn(x) - ussn (x)| \rightarrow 0 uniformly in x \in [0, 1] as V \rightarrow  - \infty almost surely.

Combining this theorem with Proposition 3.3, we have that the large time distribution
of the random solution in the limit V \rightarrow  - \infty is again given by (32).

Proof of Theorem 3.6. As in the proof of Theorem 3.5, we have that for V < 2,

\| Cn  - ussn \| \infty \leq e - 
V 2

4 s1/\alpha n\| uss0  - uss1 \| \infty 
\infty \sum 
k=1

e - \lambda (k)
n s1/\alpha n\| e - V x\phi (k)n \| 1\| \phi (k)n \| \infty .
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It is straightforward to check that if V < 0, then \| uss0  - uss1 \| \infty , \| e - V x\phi 
(k)
n \| 1, and

\| \phi (k)n \| \infty can each be bounded above independently of V and k \geq 1. Furthermore, it
is straightforward to check that for V < 0, we have

 - \lambda (k)1 <  - (k + 1/2)2\pi 2 <  - k2\pi 2 =  - \lambda (k)0 .

Since s1 > 0 almost surely, taking V \rightarrow  - \infty completes the proof.

Determining the ion concentration in the limit of a large positive potential differ-
ence across the membrane (V \gg 1) is more difficult. In particular, we need to control
how the principal eigenvalue and eigenfunction associated with \Phi t

1 behave as V grows.

The first lemma shows that this principal eigenvalue  - \mu (0)
1 =  - (V 2

4 + \lambda 
(0)
1 ) < 0 van-

ishes for large V and bounds the error.

Lemma 3.7. For all V > 2, we have that

0 <

\sqrt{} 
 - \lambda (0)1 =

V

2
 - V

1 + e2
\sqrt{} 

 - \lambda 
(0)
1

.(35)

Furthermore, for each \varepsilon > 0, there exists a V0(\varepsilon ) so that for all V \geq V0(\varepsilon ) we have
that

V

1 + eV
<

V

1 + e2
\sqrt{} 

 - \lambda 
(0)
1

\leq V

1 + e(1 - \varepsilon )V
.(36)

Proof. The equality in (35) follows immediately from Lemma 3.1. Since (35)

implies

\sqrt{} 
 - \lambda (0)1 < V

2 , the first inequality in (36) follows. It follows from (26) that the

limV\rightarrow \infty 

\sqrt{} 
 - \lambda (0)1 = \infty , since limx\rightarrow 0 tanh(x)/x = 1. Thus, limV\rightarrow \infty tanh(

\sqrt{} 
 - \lambda (0)1 ) =

1 and therefore for each \varepsilon > 0, we can find V0(\varepsilon ) so that for all V \geq V0(\varepsilon ),

(1 - \varepsilon )V \leq V tanh
\Bigl( \sqrt{} 
 - \lambda (0)1

\Bigr) 
= 2

\sqrt{} 
 - \lambda (0)1 ,

by (26). The second inequality in (36) follows.

The next lemma controls the asymptotic behavior of the principal eigenfunction

\phi 
(0)
1 and related quantities. It is convenient to refer to the normalizing factor in this

eigenfunction, so we define \psi (x) := e
V
2 x sinh

\bigl( \sqrt{} 
 - \lambda (0)1 x

\bigr) 
and thus \phi 

(0)
1 (x) = \nu 

(0)
1 \psi (x).

Further, since \lambda 
(0)
1 \approx  - V 2

4 for large V , we define \widetilde \phi := \widetilde \nu \widetilde \psi , where
\widetilde \psi (x) = e

V
2 x sinh

\Bigl( V
2
x
\Bigr) 
, \widetilde \nu =

\Bigl[ \int 1

0

sinh2
\Bigl( V
2
y
\Bigr) 
dy

\Bigr]  - 1/2

=

\sqrt{} 
2V

sinh(V ) - V .

Lemma 3.8. As V \rightarrow \infty , the following asymptotic behavior holds:\bigl( 
\nu 
(0)
1

\bigr) 2
= \scrO (V e - V ) = \widetilde \nu 2, \psi (x) = \scrO (eV x) = \widetilde \psi (x),

(\psi , uss1  - uss0 )w = \scrO (eV ) = ( \widetilde \psi , uss1  - uss0 )w.

Proof. It is immediate that \widetilde \nu 2 = \scrO (V e - V ). It then follows from Lemma 3.7

that
\bigl( 
\nu 
(0)
1

\bigr) 2
= \scrO (V e - V ). Similarly, it is immediate that \widetilde \psi (x) = \scrO (eV x). Again,

it follows from Lemma 3.7 that \psi (x) = \scrO (eV x). Now, it is easy to check that

\| (uss1  - uss0 )e - V y\| 1 = \scrO (1). Since \psi (x) and \widetilde \psi (x) are both \scrO (eV x), it follows that

both (\psi , uss1  - uss0 )w and ( \widetilde \psi , uss1  - uss0 )w are \scrO (eV ).
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With these lemmas in place, we are now ready to prove that the ion concentration
is unaffected by the gate if the potential difference across the membrane is large
(V \gg 1). That is, if the potential difference is large, then the ion concentration
behaves as if the channel is always open. Intuitively, one can understand this result
by noting that (a) the relaxation rate of \Phi t

0 (the solution operator for an open channel)

grows like V 2

4 as V grows, while (b) the relaxation rate of \Phi t
1 (the solution operator for

a closed channel) vanishes as V grows. Therefore, if V \gg 1, then the ion concentration
rapidly approaches equilibrium when the channel opens, but it hardly changes when
the channel closes. The following theorem makes this precise.

Theorem 3.9. For any proportion of time open \rho 0 \in (0, 1) and x \in [0, 1), we
have

| C(x) - uss0 (x)| \rightarrow 0 almost surely as V \rightarrow \infty .

It is easy to see from (14) that uss0 (x)\rightarrow ci for x \in [0, 1) as V \rightarrow \infty , and thus this
theorem implies that C(x)\rightarrow ci almost surely as V \rightarrow \infty for x \in [0, 1).

Proof. Let \{ sk\} \infty k=1 and g1 - n be as in the proof of Theorem 3.5. By (34), we have

\| C0  - uss0 \| \infty \leq e - 
V 2

4 s1/\alpha 0\| uss0  - uss1 \| \infty 
\infty \sum 
k=1

e - \lambda 
(k)
0 s1/\alpha n\| e - V x\phi 

(k)
0 \| 1\| \phi 

(k)
0 \| \infty .

It is straightforward to check that \| uss0  - uss1 \| \infty \leq eV and \| e - V x\phi 
(k)
0 \| 1\| \phi 

(k)
0 \| \infty \leq eV

for sufficiently large V . Since \lambda 
(k)
0 = k\pi 2 and s1 > 0 almost surely, we have that for

sufficiently large V ,

\| C0  - uss0 \| \infty \leq e - 
V 2

4 s1/\alpha 0e2V
\infty \sum 
k=1

e - \lambda 
(k)
0 s1/\alpha n .(37)

Thus, C0 \rightarrow uss0 almost surely uniformly in x \in [0, 1] as V \rightarrow \infty .
We now check the convergence of C1 as V \rightarrow \infty . Observe that

| C1(x) - uss0 (x)| = | (\Phi s1/\alpha 1

1 (g0))(x) - uss0 (x)| \leq \scrS 1(x) + \scrS 2,

where

\scrS 1(x) := | uss1 (x) - uss0 (x) - e - (V 2

4 +\lambda 
(0)
1 )s1/\alpha 0(\phi 

(0)
1 , uss1  - g0)w\phi (0)1 (x)| ,

\scrS 2 := e - 
V 2

4 s1/\alpha 0\| uss0  - uss1 \| \infty 
\infty \sum 
k=1

e - \lambda 
(k)
1 s1/\alpha 0\| e - V x\phi 

(k)
1 \| 1\| \phi 

(k)
1 \| \infty .

In the rest of the proof, all of the asymptotic \scrO (\cdot ) statements are in the limit V \rightarrow \infty .

It is straightforward to check that \lambda 
(k)
1 > k2\pi 2 and \| e - V x\phi 

(k)
1 \| 1\| \phi 

(k)
1 \| \infty = \scrO (eV ) for

all k \geq 1. It follows that \scrS 2 decays to zero almost surely as V \rightarrow \infty .
We now move to \scrS 1. For ease of notation, in the rest of the proof we drop the

subscript and superscripts by setting \lambda = \lambda 
(0)
1 , \phi = \phi 

(0)
1 , and \nu = \nu 

(0)
1 . Recalling the

notation of Lemma 3.8, a direct calculation shows that

\widetilde \nu 2( \widetilde \psi , uss0  - uss1 )w \widetilde \psi = uss0  - uss1 .
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Thus, adding terms to and subtracting terms from \scrS 1 and using the triangle inequality
yields

\scrS 1(x) \leq | \widetilde \nu 2( \widetilde \psi , uss1  - uss0 )w \widetilde \psi (x) - \widetilde \nu 2(\psi , uss1  - uss0 )w \widetilde \psi (x)| 
+ | \widetilde \nu 2(\psi , uss1  - uss0 )w \widetilde \psi (x) - \widetilde \nu 2(\psi , uss1  - uss0 )w\psi (x)| 
+ | \widetilde \nu 2(\psi , uss1  - uss0 )w\psi (x) - \nu 2(\psi , uss1  - uss0 )w\psi (x)| 
+ | \nu 2(\psi , uss1  - uss0 )w\psi (x) - e - (V 2

4 +\lambda 0)s1/\alpha 0\nu 2(\psi , uss1  - uss0 )w\psi (x)| 

+ | e - (V 2

4 +\lambda 0)s1/\alpha 0\nu 2(\psi , uss1  - uss0 )w\psi (x) - e - (V 2

4 +\lambda 0)s1/\alpha 0\nu 2(\psi , uss1  - g0)w\psi (x)| 
=: \scrT 1(x) + \scrT 2(x) + \scrT 3(x) + \scrT 4(x) + \scrT 5(x).

We work on these five terms separately.
Starting with \scrT 1, observe that

| ( \widetilde \psi , uss1  - uss0 )w  - (\psi , uss1  - uss0 )w| \leq \| (uss1  - uss0 )e - V y\| 1\| \widetilde \psi  - \psi \| \infty .
It is straightforward to check that \| (uss1  - uss0 )e

 - V y\| 1 = \scrO (1). Fix x \in [0, 1) and
choose \varepsilon > 0 so that

0 \leq x < 1 - \varepsilon < 1.(38)

If we define

E :=
V

1 + e2
\surd 

 - \lambda 1
0

,

then it follows from Lemma 3.7 and the bound

1 - e - y \leq y, y \in R,(39)

that we have

\widetilde \psi (z) - \psi (z) \sim 1

2
eV z(1 - e - Ez) = \scrO (V eV ze - (1 - \varepsilon )V ), z \in [0, 1].(40)

Therefore \| \widetilde \psi  - \psi \| \infty = \scrO (V eV e - (1 - \varepsilon )V ). Since \widetilde \nu 2 = \scrO (V e - V ) and \widetilde \psi (x) = \scrO (eV x)
by Lemma 3.8, and since \varepsilon satisfies (38), it follows that \scrT 1(x) \rightarrow 0 almost surely as
V \rightarrow \infty . Similarly, it follows from (40), Lemma 3.8, and (38), that \scrT 2(x) \rightarrow 0 as
V \rightarrow \infty .

Moving to \scrT 3, we first note that

| \widetilde \nu 2  - \nu 2| \leq 2V
\bigm| \bigm| \bigm| sinh(V  - 2E) - sinh(V ) + 2E

[sinh(V ) - V ][sinh(V  - 2E) - (V  - 2E)]

\bigm| \bigm| \bigm| 
+
\bigm| \bigm| \bigm| 4E

sinh(V  - 2E) - (V  - 2E)

\bigm| \bigm| \bigm| .
It follows from Lemma 3.7 that\bigm| \bigm| \bigm| 4E

sinh(V  - 2E) - (V  - 2E)

\bigm| \bigm| \bigm| = \scrO (V e - (1 - \varepsilon )V e - V )

and

V
\bigm| \bigm| \bigm| E

[sinh(V ) - V ][sinh(V  - 2E) - (V  - 2E)]

\bigm| \bigm| \bigm| = \scrO (V e - (1 - \varepsilon )V e - V ).
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Furthermore, we have that

2V
\bigm| \bigm| \bigm| sinh(V  - 2E) - sinh(V )

[sinh(V ) - V ][sinh(V  - 2E) - (V  - 2E)]

\bigm| \bigm| \bigm| 
\sim V

\bigm| \bigm| \bigm| eV (e - 2E  - 1)

[sinh(V ) - V ][sinh(V  - 2E) - (V  - 2E)]

\bigm| \bigm| \bigm| = \scrO (V 2e - (1 - \varepsilon )V e - V ),

by Lemma 3.7 and (39). Since (\psi , uss1  - uss0 )w = \scrO (eV ) and \psi (x) = \scrO (eV x) by
Lemma 3.8, and since \varepsilon satisfies (38), it follows that \scrT 3(x) \rightarrow 0 almost surely as
V \rightarrow \infty .

Moving to \scrT 4, Lemma 3.7 and (39) imply that for sufficiently large V ,

1 - e - (V 2

4 +\lambda )s1/\alpha 0 \leq (s1/\alpha 0)V
2e - (1 - \varepsilon )V .

Using Lemma 3.8 and (38), it then follows that \scrT 4(x)\rightarrow 0 almost surely as V \rightarrow \infty .
Finally, observe that

\scrT 5(x) = e - (V 2

4 +\lambda )s1/\alpha 0 | (\phi , uss0  - g0)w\phi (x)| 

\leq e - (V 2

4 +\lambda )s1/\alpha 0\| \phi e - V y\| 1\| uss0  - g0\| \infty \| \phi \| \infty .

It thus follows from (37) and the definition of g0 that \scrT 5 \rightarrow 0 almost surely as
V \rightarrow \infty .

4. Average ion concentration and ion flux. The analysis in the previous
section allowed us to find analytical formulas for the support of the solution to the
random PDE (equations (13), (17)--(19)) and the distribution of the large time solution
for slow gating (\alpha 0 + \alpha 1 \ll 1) or a large negative or positive potential (V \ll  - 1 or
V \gg 1). In this section, we find an analytical formula for the mean solution at large
time. Hence, this yields information about the solution for any parameter choice
(rather than only in certain parameter limits). In addition, it yields the distribution
of the solution in the limit of fast gating (\alpha 0 + \alpha 1 \gg 1).

The first step is to decompose the mean of the solution based on the state of the
gate by defining the pair of deterministic functions,

wn(x, t) := E[c(x, t)1n(t)=n], n \in \{ 0, 1\} ,

where 1n(t)=n denotes the indicator function on the event n(t) = n,

1n(t)=n =

\Biggl\{ 
1 if n(t) = n,

0 otherwise.

Thus, E[c(x, t)] = w0(x, t) + w1(x, t). Assuming that

E sup
x\in [0,1]

\bigm| \bigm| \partial 
\partial xc(x, t)

\bigm| \bigm| <\infty for each t \geq 0,

it follows from a direct application of Theorem 1 in [16] that w0, w1 satisfy the deter-
ministic advection-diffusion-reaction equations,

\partial 

\partial t
w0 =

\partial 2

\partial x2
w0  - V

\partial 

\partial x
w0  - \alpha 0w0 + \alpha 1w1,

\partial 

\partial t
w1 =

\partial 2

\partial x2
w1  - V

\partial 

\partial x
w1 + \alpha 0w0  - \alpha 1w1.

(41)
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In words, wn(x, t) evolves according to the same advection-diffusion dynamics in (13)
plus the switching dynamics (the terms in (41) involving \alpha 0, \alpha 1). Furthermore, the
boundary conditions are

w0(0, t) = \rho 0ci, w0(1, t) = \rho 0ce,

w1(0, t) = \rho 1ci,
\partial 
\partial xw1(1, t) - V w1(1, t) = 0,

(42)

assuming n(t) starts in its invariant measure,

P(n(0) = 0) = \rho 0 := \alpha 1

\alpha 1+\alpha 0
, P(n(0) = 1) = \rho 1 := \alpha 0

\alpha 1+\alpha 0
.

That is, the conditional expectation, E[c(x, t) | n(t) = n] = wn(x, t)/\rho n satisfies the
boundary condition corresponding to state n(t) = n.

Adding the PDEs in (41) and taking t \rightarrow \infty yields that the steady state mean
solution is

lim
t\rightarrow \infty 

E[c(x, t)] = lim
t\rightarrow \infty 

(w0(x, t) + w1(x, t)) =
\Bigl( 1 - eV x

V

\Bigr) 
Jgated + cie

V x,(43)

where Jgated is the flux,

 - \partial 
\partial x (w0 + w1) + V (w0 + w1),

at large time. Solving the boundary value problem (41)--(42) at steady state explicitly,
we find that this mean gated flux is

Jgated = f(\rho 0, \alpha 0 + \alpha 1, V )Jopen,(44)

where Jopen is the flux when the gate is always open ((15) above), and f(\rho 0, \alpha 0 +
\alpha 1, V ) \in (\rho 0, 1) is the dimensionless factor,

f(\rho 0, \alpha 0 + \alpha 1, V )

:=

1 - V/2\sqrt{} 
\alpha 0+\alpha 1+

V 2

4

tanh
\Bigl( \sqrt{} 

\alpha 0 + \alpha 1 +
V 2

4

\Bigr) 
1 - 1

\rho 0

\Bigl[ 
1 - (1 - \rho 0) coth (V/2)

\Bigr] 
V/2\sqrt{} 

\alpha 0+\alpha 1+
V 2

4

tanh
\Bigl( \sqrt{} 

\alpha 0 + \alpha 1 +
V 2

4

\Bigr) ,(45)

that describes how gating reduces the flux. Note that since f \in (\rho 0, 1), it follows that
Jgated is always strictly larger than the common estimate (20).

4.1. Limiting behavior of mean solution and flux. We can now use (43),
(44), and (45), to investigate how the mean solution and mean flux behave in various
parameter limits.

4.1.1. Slow gating. First, it is easy to check that

lim
\alpha 0+\alpha 1\rightarrow 0

f(\rho 0, \alpha 0 + \alpha 1, V ) = \rho 0,

and thus it follows from (43) and (44) that

lim
\alpha 0+\alpha 1\rightarrow 0

Jgated = \rho 0Jopen and lim
\alpha 0+\alpha 1\rightarrow 0

lim
t\rightarrow \infty 

E[c(x, t)] = \rho 0u
ss
0 (x) + \rho 1u

ss
1 (x).

In words, if the gating is slow, then the gate reduces the flux by the proportion of
time that the gate is open. This agrees with Theorem 3.5 above.
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4.1.2. Fast gating. Next, since limy\rightarrow \infty tanh(y)/y = 0, it follows that for any
\rho 0 \in (0, 1],

lim
\alpha 0+\alpha 1\rightarrow \infty 

f(\rho 0, \alpha 0 + \alpha 1, V ) = 1.

Therefore, it follows from (43) and (44) that in the fast gating limit, the ion flux and
ion concentration are as if the gate is always open,

lim
\alpha 0+\alpha 1\rightarrow \infty 

Jgated = Jopen and lim
\alpha 0+\alpha 1\rightarrow \infty 

lim
t\rightarrow \infty 

E[c(x, t)] = uss0 (x).(46)

That is, if the gating is fast, then the gate does not affect the ion concentration or
ion flux.

While (46) is a result about the large time mean solution, we actually have that
the large time variance vanishes in the fast gating limit. The essential idea is that if a
random variable X \in R satisfies X \in [a, b] almost surely and E[X] = a, then it must
be the case that X = a almost surely. To apply this idea to our situation, we first
note that Proposition 3.4 implies that if the solution satisfies

min\{ uss0 (x), uss1 (x)\} \leq c(x, T ) \leq max\{ uss0 (x), uss1 (x)\} for all x \in [0, 1],(47)

at some some T > 0, then we actually have that the solution satisfies that inequality
for all future time t \geq T ,

min\{ uss0 (x), uss1 (x)\} \leq c(x, t) \leq max\{ uss0 (x), uss1 (x)\} for all x \in [0, 1], t \geq T .(48)

It is easy to see that regardless of the initial condition, the solution will almost surely
satisfy (47) at some finite time T , and therefore satisfy (48) for all sufficiently large
time. Suppose that uss1 (1) \leq uss0 (1), and thus uss1 (x) \leq uss0 (x) for all x \in [0, 1].
Therefore, by (46), Jensen's inequality, and (48), we have that

(uss0 (x))
2 = lim

\alpha 0+\alpha 1\rightarrow \infty 
lim
t\rightarrow \infty 

\Bigl( 
E[c(x, t)]

\Bigr) 2

\leq lim
\alpha 0+\alpha 1\rightarrow \infty 

lim
t\rightarrow \infty 

E
\Bigl[ 
(c(x, t))2

\Bigr] 
\leq (uss0 (x))

2.

Therefore,

lim
\alpha 0+\alpha 1\rightarrow \infty 

lim
t\rightarrow \infty 

Var
\bigl( 
c(x, t)

\bigr) 
= lim

\alpha 0+\alpha 1\rightarrow \infty 
lim
t\rightarrow \infty 

\Bigl( 
E
\bigl[ 
(c(x, t))2

\bigr] 
 - 

\bigl( 
E[c(x, t)]

\bigr) 2\Bigr) 
= 0.

To handle the case that uss0 (1) \leq uss1 (1), we apply the same argument to the function\widehat c(x, t) := uss1 (x) - c(x, t) \in [0, uss1 (x) - uss0 (x)].
4.1.3. Large negative or large positive potential difference. Next, it is

easy to check that

lim
V\rightarrow  - \infty 

f(\rho 0, \alpha 0 + \alpha 1, V ) = \rho 0 and lim
V\rightarrow \infty 

f(\rho 0, \alpha 0 + \alpha 1, V ) = 1.

Using (43) and (44), we can find the mean solution or mean flux in these limits, which
agrees with Theorems 3.6 and 3.9 above.

4.1.4. No potential difference: A stochastically gated Ohm's law. Fi-
nally, if there is no potential difference across the membrane, V = 0, then the flux
across the membrane is driven solely by the concentration difference across the mem-
brane. In particular, if the channel is always open, then the dimensionless flux is
simply

Jopen = ci  - ce.
This is often referred to as the chemical Ohm's law (see section 2.2.3 in [14]).
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Fig. 4. Pointwise mean and standard deviation of the large time solution of (13), (17)--(19)
for different rates of gating, \alpha 0 + \alpha 1. The markers (circles, plusses, and squares) are results of
stochastic simulations of the random PDE. In the left plot, the curves are the analytical formula
(43). In the right plot, the red curve is the analytical formula (33), which is valid for slow gating by
Theorem 3.5. See section 4.2 for more details.

To find the flux through a gated channel in the absence of a potential difference,
we evaluate (44) at V = 0 to obtain

Jgated = f(\rho 0, \alpha 0 + \alpha 1, 0)Jopen =
\Bigl[ 
1 +

\Bigl( 1 - \rho 0
\rho 0

\Bigr) tanh \bigl( \surd \alpha 0 + \alpha 1

\bigr) 
\surd 
\alpha 0 + \alpha 1

\Bigr]  - 1

(ci  - ce),(49)

which recovers a result first found in [19] in a model of insect respiration (see the later
works [1, 2] for similar results). We interpret (49) as a stochastically gated chemical
Ohm's law. We emphasize that f(\rho 0, \alpha 0 + \alpha 1, 0) \rightarrow 1 as \alpha 0 + \alpha 1 \rightarrow \infty for each
fixed \rho 0 \in (0, 1]. Thus, even in the purely diffusive case (V = 0), the flux through
a stochastic gate is the same as if the gate is always open, provided the gating is
sufficiently fast.

4.2. Stochastic simulations. In Figures 4, 5, and 6, we compare our analytical
results with stochastic simulations. To simulate the random PDE system (13), (17)--
(19) we first generate a realization of the gate n(t) until the gate transitions 104 times.
For this realization of the gate, we solve the PDE (13) with alternating boundary
conditions (17)--(18) using a MATLAB [21] built-in numerical PDE solver (pdepe)
with 100 spatial grid points. We then sample the solution at the 104 switching times
to compute statistics in Figures 4, 5, and 6.1

In Figure 4, we plot the pointwise mean and standard deviation of the large
time solution of (13), (17)--(19) for different rates of gating, \alpha 0 + \alpha 1. In both plots,
the markers (circles, plusses, and squares) are results of stochastic simulations of the
random PDE. In the left plot, the curves are the analytical formula (43). In the right
plot, the red curve is the analytical formula (33), which is valid for slow gating by
Theorem 3.5. The right plot also verifies that the standard deviation vanishes for fast
gating, as shown in section 4.1.2. In both plots, we take V = ci = 1 and \rho 0 = 1/2.

In Figure 5, we plot the pointwise mean and standard deviation of the large
time solution of (13), (17)--(19) for different values of the potential, V . In both
plots, the markers are the results of stochastic simulations of the random PDE. In

1The code used to generate the computational data is available on the GitHub database (https:
//github.com/seanlawley).

https://github.com/seanlawley
https://github.com/seanlawley


568 SEAN D. LAWLEY AND JAMES P. KEENER

0 0.2 0.4 0.6 0.8 1
10−2

10−1

100

101

102

103

x

M
ea
n

V = −5
V = 5
V = 15

0 0.2 0.4 0.6 0.8 1
10−14

10−10

10−6

10−2

102

x

S
ta
n
d
ar
d
d
ev
ia
ti
on

Fig. 5. Pointwise mean and standard deviation of the large time solution of (13), (17)--(19) for
different values of the potential, V . The markers (circles, plusses, and squares) are the results of
stochastic simulations. In the left plot, the curves are the analytical formula (43). In the right plot,
the red curve is the analytical formula (33), which is valid for V \ll  - 1 by Theorem 3.6. The thin
black curves in the right plot are the results of stochastic simulations for V = 20, 40, . . . , 200, veri-
fying that the standard deviation vanishes as V increases, as shown in Theorem 3.9. See section 4.2
for more details.
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Fig. 6. How stochastic gating affects the mean flux through a channel. In both plots, the
curves are the analytical formula (45). The markers (circles, plusses, and squares) are the results
of stochastic simulations of the random PDE. See section 4.2 for more details.

the left plot, the curves are the analytical formula (43). In the right plot, the red
curve is the analytical formula (33), which is valid for V \ll  - 1 by Theorem 3.6.
The thin black curves in the right plot are the results of stochastic simulations for
V = 20, 40, . . . , 200, verifying that the standard deviation vanishes as V increases, as
shown in Theorem 3.9. In both plots, we take ci = 0.9, \rho 0 = 1/2, and \alpha 0 + \alpha 1 = 1.

In Figure 6, the curves are the analytical formula (45) for the factor f that relates
the flux through a gated channel to the flux through a channel that is always open,
(44). The markers are the results of stochastic simulations. In both plots, the top
dashed black line is at 1, which is the limiting value of f for V \gg 1 or \alpha 0 + \alpha 1 \gg 1.
The lower black dashed lines are at \rho 0, which is the limiting value of f for V \ll  - 1
or \alpha 0 + \alpha 1 \ll 1. In the left plot, \rho 0 = 0.1. In the right plot, V = 4.

5. Physiological parameters. It is commonly assumed that the flux through
a gated channel, Jgated, is merely the flux through an always open channel, Jopen,
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multiplied by the proportion of time open, \rho 0. That is,

Jgated \approx \rho 0Jopen.(50)

Our model predicts that the flux through a gated channel is

Jgated = fJopen,(51)

where f \in (\rho 0, 1) is given in (45). We have shown that if the gating is sufficiently slow
(\alpha 0+\alpha 1 \ll 1), then f \approx \rho 0 and thus (50) is a good approximation. However, we have
shown that if the gating is not slow, and/or the potential does not satisfy V \ll  - 1,
then f can be much larger than \rho 0 and, hence, (50) can significantly underestimate
the flux through a gated channel. Indeed, if \rho 0 is small and gating is fast and/or the
potential is large, then (50) and (51) can differ by orders of magnitude.

Therefore, in this section we investigate the factor f as a function of physiolog-
ically reasonable parameter values. Since f depends on \alpha 0, \alpha 1, and V , we need to
estimate these three dimensionless parameters. We take the ion diffusion coefficient to
be D1 = 1\times 10 - 9 m2/s [27], the channel length to be the thickness of a cell membrane,
L = 10nm [23], the temperature to be 293 K = 20\circ C, and a unit valence z = 1. Since
potentials are generally in the range V \in [ - 100, 100]mV [14], it follows from (7) that
the dimensionless potential is approximately in the range

V \in ( - 4, 4).(52)

The time that a channel spends either open or closed can vary greatly [12], but unless
the channel is bursting [6], it typically spends at least 0.02 ms in either state. Hence,
\alpha 0 + \alpha 1 is typically no larger than 100ms - 1, and thus

\alpha 0 + \alpha 1 \leq 0.01.(53)

In Figure 6, we plot the factor f as a function of V for different choices of \alpha 0, \alpha 1.
This figure shows that f \approx \rho 0 for typical physiological parameters, and thus (50)
is typically a good approximation. Interestingly though, this figure also shows that
f is a steep sigmoidal function of V . In particular, if V is marginally outside the
range in (52), then the approximation (50) breaks down. In addition, if there are
circumstances in which \alpha 0 + \alpha 1 surpasses the bound (53), then the approximation
(50) rapidly breaks down for values of V in the physiological range (52).

6. Discussion. We have used mathematical modeling and analysis to investigate
how stochastic gating affects the electrodiffusive flux through an ion channel. Our
analysis predicts that

Jgated \approx \rho 0Jopen if \alpha 0 + \alpha 1 \ll 1,(54)

Jgated \approx \rho 0Jopen if V \ll  - 1,(55)

Jgated \approx Jopen if \alpha 0 + \alpha 1 \gg 1,(56)

Jgated \approx Jopen if V \gg 1.(57)

The result in (54) is intuitive. To see this, observe that there are four timescales
in the problem. The first is the time it takes the ion concentration c(x, t) to relax to
steady state when the gate is open (n \equiv 0). Call this time \tau 0 = \tau 0(V, ci), noting that
it depends only on the dimensionless parameters V and ci. Similarly, let \tau 1 = \tau 1(V, ci)
be the time it takes c(x, t) to relax to steady state when the gate is closed (n \equiv 1).



570 SEAN D. LAWLEY AND JAMES P. KEENER

The other two timescales are the average time spent in the open state, 1/\alpha 0, and
the average time spent in the closed state, 1/\alpha 1. For slow gating, we have that
1/\alpha 0 + 1/\alpha 1 \gg \tau 0 + \tau 1, and thus the time spent transitioning between the open
and closed steady states is negligible compared to the time spent in those steady
states. Hence, for slow gating, c(x, t) becomes a two-state system that quickly switches
between the open and closed steady states. Since the flux in the closed state is zero,
the result (54) follows. While this explanation is intuitive, to our knowledge it has
not been previously articulated. Furthermore, we have provided a precise quantitative
description of what is ``slow"" gating in terms of only a few biophysical parameters in
(44)--(45) above.

The results in (55), (56), and (57) require more mathematical analysis to under-
stand intuitively. Roughly speaking, (55) follows from a similar argument as (54) after
calculating that \tau 0 \rightarrow 0 and \tau 1 \rightarrow 0 as V \rightarrow  - \infty (see Theorem 3.6 for the precise
statement). The result in (57) is surprising, but it can be understood after finding
that \tau 0 \rightarrow 0 and \tau 1 \rightarrow \infty as V \rightarrow \infty (see Theorem 3.9 for the precise statement). The
result in (56) is also surprising, and contrary to the other results, it cannot be under-
stood solely in terms of the four timescales. Again, we emphasize that the transitions
between the parameter regimes in (54)--(57) follow immediately from the analytical
formula for Jgated in (44)--(45).

For typical physiological parameter values, we found that Jgated \approx \rho 0Jopen, which
is often assumed in conductance-based neuron models. Interestingly though, we have
found that Jgated can be much greater than \rho 0Jopen for parameters somewhat outside
of typical physiological ranges.

Finally, while our model assumed a two-state channel for simplicity, more detailed
gating models with multiple subunits of multiple types are more commonly used in
the neurophysiology literature [5, 10, 14]. Our stochastic PDE model could be gen-
eralized to include a more complicated gating model, which would entail making the
boundary conditions depend on a Markov chain with many states (rather than only
two states). Though this generalization would certainly complicate the analysis, the
model is likely still tractable, as analyzing PDEs with boundary conditions that switch
between many states has been done in [17, 18, 20]. However, we predict that the var-
ious limiting behaviors of the gated flux given in (54)--(57) for the simple two-state
model would still hold for these more detailed models (the parameter \alpha 0 + \alpha 1 would
simply be replaced by the analogous parameter describing the gating timescale of the
more complicated model).
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