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Measurement error of state variables creates substantial bias in results of

demographic population models
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Abstract. Integral projection and matrix population models are commonly used in ecological and
conservation studies to assess the health and extinction risk of populations. These models use one (or
more) measurable state variable(s), such as size or age, to predict individual performance, which, ide-
ally, is the sole determinant of an individual’s expected fate. However, even if ecologists successfully
identify and measure the observable state variable(s) that best predicts individual fate, we are rarely, if
ever, able to perfectly measure state for many species, especially those with size structure, where total
plant biomass or starch stores, for example, may be the best predictors of fate. Here, we used a series
of simulations to test how this imperfect quantification of actual state (“measurement error”) leads to
inaccurate prediction of state-dependent fates and influences the predictions of structured population
models. We simulated 10 yr of best practice field data collection using known vital rate functions and
incorporated measurement error of different magnitudes and types (completely random, temporal,
and individual based) for two size-structured life histories. We found that even for conservative error
rates, most types of measurement error increased the median predicted population growth rate by
1-2% growth per year. However, the magnitude of this error differed substantially with life history
strategy and error type, with some scenarios resulting in >8% median overestimation of population
growth rate. This effect arises largely from the well-known econometrics problem of “regression dilu-
tion” (overestimation of the intercept and underestimation of the slope of a regression when the pre-
dictor variable is measured with error), which in our simulations typically results in overly optimistic
predictions of small or young individuals’ vital rates. Our results suggest that the problem of measure-
ment error for state variables, present in many demographic studies but virtually unacknowledged in
the ecological literature, may lead to substantial misestimation of population behavior, resulting in
erroneous inferences about not only growth, but also extinction risk and other aspects of population
dynamics.
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INTRODUCTION

Demographic matrix models and integral projection mod-
els (IPMs) are commonly used in ecological and conserva-
tion studies to assess the health, viability, and extinction risk
of populations. These models use one or more state variables
to predict individual traits and performance. Ecologists
commonly use age or size as state variables, as well as other
traits such as breeding status, developmental stage, and loca-
tion within different habitats or subpopulations. Identifica-
tion of an appropriate state variable, or variables, is a
critical consideration for all demographic models for any
species (Pfister and Stevens 2003, Ellner and Rees 2006, Pal-
mer et al. 2010). Ideally, the state variable(s) used in a model
is the sole determinant of expected individual fates, such as
probability of survival, mean growth increment, and repro-
ductive output. However, in practice, state variables
employed in population models may not have strong predic-
tive power, in part because the choice of state variables is
strongly driven by practicality and convention. It is fairly
rare for researchers to test the power of alternate state vari-
ables to predict demographic traits, and even if ecologists
successfully identify and measure the observable state
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variable that best predicts individual fate, we are very rarely
able to perfectly measure state. We test how this imperfect
quantification of state (hereafter, “measurement error”) will
influence the accuracy of predictions made from demo-
graphic models that rely on state-dependent vital rate func-
tions, including both IPMs and population matrix models.
While several related topics have received significant
attention in the ecological literature (Fig. 1), we have little
understanding of how simple measurement errors will influ-
ence demographic predictions. To illustrate the ubiquity of
this problem, consider the monitoring and then the con-
struction of a demographic model for a perennial geophyte.
For this species, starch stores in corms are likely the best
predictor of individual fate. However, starch stores, or even
corm mass, can only be measured destructively; therefore, a
researcher instead measures the number and length of the
leaves of each plant, combining these into a single estimate
of leaf area, which correlates well, but imperfectly, with
corm mass. In addition to this random error introduced into
each measurement of each plant’s size, plants could be sys-
tematically mismeasured in one of two ways: (1) on an indi-
vidual basis, such that corm mass correlates with leaf area
more or less strongly in some individuals, due to either dif-
ferences in individual quality or microhabitat-driven differ-
ences in resource allocation, or (2) on a yearly basis, such
that corm mass correlates with leaf area more strongly in
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one year than another, due to differences in within-plant
resource allocation as a function of environmental forcing,
or due to measurement by different researchers in different
years. Exactly the same problem applies to many species.
For example, in trees, diameter at breast height is often used
to quantify size, and in reptiles and amphibians, snout-vent
length is often used to quantify size, but these measurements
are not a perfect metric of size or state. Similar mismeasure-
ment occurs for many taxa with varying morphologies,
where we can rarely measure the state variable that best pre-
dicts fate, and in many cases, do not know what this state
variable might be.

While measurement error has received little attention in
the literature, past work on related issues suggests that it
may have important consequences for population projec-
tions (Fig. 1). For example, parameterization of models
from small data samples can lead to misestimation and often
bias of both deterministic and stochastic lambda (“sampling
variability”; Brault and Caswell 1993, Doak et al. 2005,
Fiske et al. 2008). Other issues with the overly simplified use
of state variables have also been shown to substantially alter
estimated population growth rates. For example, including
individual-level heterogeneity in structured population
growth models (some individuals consistently exhibit a
stronger correlation between measured size and true state;
e.g., Fox et al. 2006, or “growth autocorrelation” sensu Fuji-
wara et al. 2004) generally increases projected population
growth rate (Conner and White 1999) and can increase vari-
ability in size structures through time (Pfister and Stevens
2002). The most likely route for measurement error to influ-
ence demographic predictions is through the well-known
statistical problem of regression dilution, in which the slope
of a linear regression is consistently underestimated when
there is measurement error in the predictor variable. In the
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face of measurement error, this phenomenon will lead to
misestimation of stage-variable vital rate relationships,
which in turn may lead to significant bias in the projections
of population growth rates and other model outputs. The
direction of vital rate estimation bias is straightforward in
linear models, but more difficult to predict in non-linear
models, such as binomial survival probabilities (Hausman
2001). Further, almost all methods of correcting for this bias
require independent measurements of the magnitude and
structure of error (Carroll et al. 2006). In spite of these rea-
sons to suspect that error in quantifying state variables
could have strong impacts on demographic predictions, we
are aware of no work that directly explores this issue. The
closest analysis of which we are aware is that of Janeiro
et al. (2017), who show that the statistical process of regres-
sion to the mean, resulting from autocorrelation in size in
repeated measurements of growth, results in misestimation
of vital rates consistent with regression dilution. This mises-
timation has the potential to misrepresent variance in indi-
vidual growth trajectories across ages as well as heritability
of life history traits, potentially leading to mischaracteriza-
tion of any autocorrelated process, such as growth rates or
trait evolution, by typically parameterized IPMs. However,
as we have noted, the consequences of state variable mea-
surement errors go beyond just misestimation of growth
resulting from autocorrelated size measurements made with
errofr.

To test how the type and magnitude of measurement error
influence demographic model outputs, we conducted simu-
lations that replicate the most common approach to
constructing size-based demographic models, as well as
exemplary data collection techniques, for two disparate life
histories. We simulate annual monitoring of individual plant
size, survival, and reproduction, but with the inclusion of
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spond to bodies of literature addressing the role(s) of error in the construction of population matrix models and integral projection models.
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differing degrees and types of error in the measurement of
the underlying state variable “true size.” We then construct
IPMs with these data and ask how well the models predict
true annual population growth rate for each species. We
hypothesized that error would increase projected population
growth rate for all types of error (e.g., Conner and White
1999) but that the magnitude of this misestimation would
depend on life history due to differences in the sensitivity of
population growth rate to different vital rates.

METHODS

The true demographic process model

For our first species (hereafter, “short-lived species”), we
simulated data sets based on Easterling et al.’s (2000) pub-
lished relationships of survival, growth, variance in growth,
and number of offspring as a function of size (stem diame-
ter) for Aconitum noveboracense, a flowering herb. We
simplified reproduction to only include production of (vege-
tative) shoots, with no fission of larger individuals (see
Easterling et al. [2000] for details; shoot production is a
common mode of reproduction in this species). We also
assumed that they observed offspring number in time ¢ + 1
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rather than ¢ and increased the intercept in the reproduction
equation from 0.034 to 0.054 to obtain a deterministic popu-
lation growth rate (1) of ~1. For our second species (here-
after, “long-lived species”), we modified parameter estimates
to increase growth rates and large individuals’ survival and
reproduction. Finally, we added a probability of reproduc-
tion vital rate, while also maintaining A approximately equal
to one, thereby generating higher sensitivity to large individ-
uals’ vital rates (Fig. 2). Appendix S1: Table S1 lists all these
“true” demographic parameters and relationships for both
life histories, as well as A calculated using true size (Ayyue)-
While we focus on two specific life histories, our results
apply to any species whose measured state correlates imper-
fectly with an unmeasured state that best predicts fate.

We first simulated the true demographic process for each
species, which we assume is deterministic, overlaying on top
of this process a monitoring program that results in data
taken with imperfect size measurements. We initiated our
projections with a size distribution reflective of the stable size
distribution (SSD), divided into 100 mesh points. For the
short-lived species, we truncated our initial size distribution
at the largest mesh point with an abundance >1% that of the
second mesh point. Thus, initial sizes in the IPM models
range from 0.04 to 5.08, with an upper size limit of 8. For the
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long-lived species, we used an initial size distribution with all
mesh points that had an abundance >4% that of the second
mesh point; thus, initial sizes ranged from 0.1 to 12.9, with
100 mesh points and with an upper size limit of 20.

We used these rules to simulate the fates of replicate sam-
ples of monitored individuals for 10 yr. We initiated each
replicate with a population of 2,032 individuals (2,036 for
long-lived), with sizes reflective of the population SSD as
described above. Using the true size dependency of vital
rates (Table S1), we simulated individual fates (using true
sizes) for 10 yr, adding in new recruits each year to balance
the number of non-surviving plants; sizes of new individuals
were drawn from a uniform distribution bounded by [0.15,
0.25], following Easterling et al. (2000). These procedures
correspond to a common field approach to demographic
data collection: sample all individuals within a plot or set of
plots and then search for and add new recruits to the set of
monitored plants each year.

Simulation of monitoring with measurement error

Using these sets of true sizes and fates, we added different
types and degrees of size measurement errors. We simulated
seven different types of measurement error: 62 (each datum,
or individual x year combination, has an associated, inde-
pendent error value), 6,2 (each year has an associated error
value, applied to all individuals in that year), and o? (each
individual has an associated error value, which is constant
across all years of its life), and all combinations of these
(c%,,,0%,,,02,,,62,.:,). Note that we assume reproduction
and survival are measured without error.

We simulated five magnitudes of total measurement error,
corresponding to ps (correlations) between true size and size
with error = 0.99, 0.95, 0.85, 0.75, and 0.65. For a given error
level, we normalized single and combined types of error such
that the total amount of variability in all types of error was
the same (e.g., for each error level, o}, = o2 =02, =
o2 +i+ss Appendix S1). For combined error types, we assumed
equal variance of each error type, with the summed variance
equal to the desired value.

Error was added symmetrically around the true size of
monitored individuals. To prevent unrealistic measured sizes
(negative or infinite), we used a stretched beta to simulate
measurement error of measured size (s,,) around true size
(8): Sm =+ fmin + (fmax — fmin) * Beta(a, B). Here, o= p,
so that the mean of Beta(a,B) = 0.5, and its variance is
621 * (1 (s = fouin))?> Where fonin and finax are the mini-
mum and maximum error values (Morris and Doak 2002).
Here, fiin = — fmax» such that s,, is symmetrically dis-
tributed around s, bounded by [s + fmax, §— fmax]; for all
simulations, fm.x = 2 (short-lived) or 5 (long-lived). For
individuals smaller than f,,;,, we set the minimum and maxi-
mum values used to estimate error to a plant’s true size, such
that the minimum estimated size was never <0. Results do
not differ substantially if we simulate measurement error
proportional to true size: s, = 5 * (fmax — fmin) * Beta(a, B),
where o and 3 are as above, but finax = 1 = —fmin» such that
size with measurement error is bounded by [0, 2 x s];
Appendix S1: Fig. S1. To identify the Gfmal necessary to gen-
erate the desired correlation value for each type of error for

each species, we solved directly for a series of Gtzotal values
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(Appendix S1); size distributions used in making these cal-
culations were reflective of SSD, as we have described.

Analysis of simulation data and population projections

We simulated 500 replicate 10-yr data sets for the short-
lived species and 1,000 replicates for the long-lived species.
To each replicate, we added error in 35 different ways (7 pat-
terns of error x 5 magnitudes of error), to create separate
observed data sets. For each year in each data set, we fit
regressions of survival, growth, variance in growth, and
amount of reproduction on measured size, all of the same
functional form as the true relationships (Appendix Sl1:
Table SI; for the long-lived species, we fit probability of
reproduction as well, and amount of reproduction was con-
ditional on reproducing). Thus, we assume that the correct
functional forms of all vital rates are known, but that the
parameter estimates are unknown, as is any annual variation
in demography (which does not in fact exist in the actual
demographic process). For our long-lived species, not all of
the binomial regressions converged; for the regressions that
did not converge, we refit them without a size term; these
were a small percentage of the total binomial regressions
(0.00002%). Using a binning approach to obtaining vital
rates, rather than fitting continuous functions, does not
change our results; thus, the results we outline apply also to
discrete parameterizations of matrix models (Appendix S1:
Fig. S2).

We constructed year-specific kernels with 100 mesh points
using these model fits. As different error magnitudes and
types lead to different maximum sizes of plants, the mesh
points for each combination of error parameters were set to
evenly divide sizes between a minimum of 0 and a maximum
of 1.5 x the maximum measured size observed across all
years in a simulation (results do not differ if we use a con-
stant upper size class bound of 8 for the short-lived species;
Appendix S1: Fig. S3). When constructing kernels, if proba-
bility density functions (pdfs) of growth fell outside of the
size class bounds, we discarded all probability outside of the
size class bounds and renormalized the pdf to one (Williams
et al. 2012). Results do not differ if we remove one-half of
the simulations in which >0.1 probability was outside either
the lower or upper bound of the kernel in any year (83%
of error type x p x simulation x year combinations;
Appendix S1: Fig. S4).

We obtained a separate estimate of stochastic lambda ()
for the model fit to each data set by selecting from each
year-specific kernel with equal probability, using the last
8,000 years of 10,000-year projections to guard against tran-
sient dynamics. We initiated these projections with the stable
size distribution obtained from across-year average kernels,
obtained for each fitted model. To visualize the effect of
error on deviation from A, we compared the across-repli-
cate average As to Ayye (Which is based on unvarying rela-
tionships of survival, growth, reproduction, and true size),
summarizing the direction and magnitude of error in esti-
mates of A for each error type and magnitude.

For each data set, in addition to estimating A, we used two
modified approaches to obtain estimates of (deterministic) A.
First, we calculated A from the average of the year-specific
kernels obtained above; second, we fit models for survival,
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growth, variance in growth, probability of reproduction
(long-lived only), and amount of reproduction (conditional
on reproducing for the long-lived species) with data from all
years and then constructed kernels and obtained determinis-
tic A using these relationships. Results using the across-
replicate average of both types of deterministic A do not differ
from results using A, (Appendix S1: Fig. S5, S6). A, and A
of the mean kernel across years are highly correlated
(Appendix S1: Table S2), suggesting the majority of the mis-
estimation of A with measurement error arises due to misesti-
mation of the mean vital rates, rather than misestimation of
the variance or covariance of these rates.

To better understand how measurement errors drive
effects in estimated A;, we conducted two sensitivity analy-
ses. First, we calculated sensitivities and elasticities of Ay
to survival, growth, variance in growth, and amount of
reproduction (and probability of reproduction for the long-
lived species) via simulation, perturbing mesh-point-specific
vital rates 5% higher and lower than their true value, sepa-
rately for each vital rate x mesh point combination. Second,
for each life history, we quantified the contribution of each
parameter types’ misestimation to the total misestimation of
As across all error type x p combinations. We first substi-
tuted the parameter estimates for all vital rates from the
model run associated with the median estimated A for each
error type x p combination into our “true” kernel, calculat-
ing an expected percent deviation from A, given the mises-
timation in all vital rates. We then calculated a deviation
from A separately for each vital rate, using the misesti-
mated parameter values only for the vital rate of interest,
with misestimated parameters of growth/variance in growth
and reproduction/probability of reproduction substituted at
the same time. We then regressed the total expected percent
deviation (A calculated using all misestimated vital rate val-
ues) on the contribution of each vital rate’s separate pre-
dicted misestimation values, and interactions among these
effects, using type II sum of squares to partition the variance
attributable to each of these effects. All analyses were con-
ducted with R version 3.3.2 (R Core Team 2016) and R code
is available in Data S1.

REsuULTS

All types of measurement error result in overestimation of
mean Ag in our short-lived species (Fig. 3); overestimation
of As ranges up to 11.24% for a single simulated data set,
and up to 3.32% median error for o2, temporally correlated
error, at p = 0.65. The simplest type of error, completely
random (Gg,), shows median overestimation of Aqyue Of
1.86% when p = 0.65. Other error types also show substan-
tial overestimation of Ay, when p < 0.75. Higher error also
generally increases the variability in predictions of . o2,
temporally correlated error, creates far higher median error
and variability in estimated A; compared to other error
types, likely due to a limited number of randomly sampled
error magnitudes for years compared to individuals or indi-
vidual x years.

Effects of measurement error for the long-lived species are
similar to those for the short-lived species, but with some
differences (Fig. 3). The A values are again overestimated,
as with the short-lived species. However, error types that
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contain o? show even stronger overestimation than for the
short-lived species (maximum median overestimation for o2
in long-lived, 8.30%; short-lived, 3.32%; see Appendix S1:
Fig. S7), and greater variance, with some A, estimates
actually lower than A rather than higher (Fig. 3).

Deviation from LA is due to a misestimation of vital rate
relationships when including measurement error. In the
short-lived species, for survival, growth, and reproduction,
increasing amounts of error generally lead to an overestima-
tion of the intercept (bo) and an underestimation of the slope
(b1, Fig. 4; Appendix S1: Fig. S8). Conversely, for regres-
sions of variance in growth, increasing amounts of error
lead to an overestimation of both the intercept and the
slope, likely due to the higher overall variability in observed
growth when including measurement error of any kind. Mis-
estimation of survival, growth, and reproduction parameter
estimates for o2 overestimate both intercept and slope
parameters, resulting in population projections that strongly
deviate from A (Fig. 3).

For the long-lived species, some vital rates that strongly
impact A¢ (survival, probability of reproduction; Fig. 2) do
not show the classic misestimation patterns expected from
regression dilution for any error type (Fig. 5). In particular,
both survival parameters are strongly overestimated for all
types of error, and misestimation of probability of reproduc-
tion parameters varies with error type. Classic regression
dilution (an overestimation of by and underestimation of b;)
only occurs for most error types for growth and amount of
reproduction vital rates.

Our analyses of each vital rate’s contributions to expected
percent deviation from A, suggest that the misestimation
of growth parameters and, much less importantly, survival
parameters, drives much of the pattern in misestimation of
Ahuue In the short-lived species (Table 1). Overestimation
arises consistently for the short-lived species because it has
higher sensitivity to growth and survival in smaller size
classes than larger size classes (Fig. 2), and growth and sur-
vival both show classic regression dilution (Fig. 4). Thus,
small individuals’ vital rates are overestimated, resulting in
overestimation of Aye.

By contrast, misestimation of reproduction, survival, and
growth, as well as interactions among vital rate misestima-
tions, all contribute to the overall misestimation of Aye In
the long-lived species (Table 1). Classic regression dilution
in amount of reproduction parameters and growth parame-
ters, as well as overestimation of both survival parameters
(Fig. 5), likely lead to an overall increase in estimated A,
countering any effects of pessimistic probability of reproduc-
tion parameter estimates. Interactions between survival and
reproduction vital rates (both probability and amount) likely
increase estimated A, because with increases in survival, indi-
viduals can more quickly transition to the high-reproducing
larger size classes.

DiscussioN

For both species, our results suggest that measurement
error creates considerable variability in estimated A, and also
results in its consistent overestimation (Fig. 3). In the short-
lived species, the median overestimation of A, arises from
overly optimistic estimates of small individuals’ vital rates
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are consistent with subsequent figures. Note change in scale in ¢, g, and h; see Appendix S1: Figs. S12, S7 for all p values and error types.

(Fig. 4) coupled with high sensitivity to these same rates
(Fig. 2). Vital rates of large individuals have low sensitivity
in this species (Fig. 2), such that pessimistic estimates of
their vital rates do not counterbalance the effects on vital
rates of small individuals. For the long-lived species, we do
not see classic regression dilution for all vital rates, making
the explanation of the consistent overestimation of Ay
more complex. In this life history, there are relatively high
sensitivities to large individuals’ vital rates (Fig. 2), but
these rates are not consistently overestimated. For example,
both survival parameters are overestimated, so all survival
rates are estimated to be higher than is correct, but we see
regression dilution for growth parameters, meaning that
large individuals’ growth rates are underestimated. Results
on both species are consistent with a series of studies (Doak
et al. 2005, Fiske et al. 2008) finding overestimation of pop-
ulation growth rate with small sample sizes that also results
(for different reasons) from misestimation of vital rates. Our
findings may provide some explanation for overly optimistic

predictions of population growth rate seen empirically in a
variety of species (e.g., Arisaema triphyllum [Bierzychudek
1999] and Lepanthes rubripetala [Schodelbauerova et al.
2010], but see Brook et al. 2000, Crone et al. 2013).

Our results suggest that overestimation of population
growth is a common phenomenon, but depends on the pres-
ence and strength of classic regression dilution as well as less
predictable patterns of misestimation due to measurement
errors. Previous studies show that, while regression dilution
is predictable for linear vital rates (as we usually see here), it
is inconsistent for non-linear vital rates (as we see here for
binomial outcomes in our long-lived species). For situations
similar to our completely random (g) error structure, past
simulations for logistic regressions sometimes show classic
regression dilution (Reeves et al. 1998, Kim et al. 2000).
However, under other circumstances, including with large
sample sizes, the direction of bias can reverse (Kim et al.
2006). Unequal numbers of observations across the range of
predictor values (Kim et al. 2006) and heteroscedastic
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Fic. 4. Misestimation of the vital rate function parameters in the short-lived species for p (correlation) = 0.85, 0.75, and 0.65 for survi-
val (a—c), growth (d-f), variance in growth (g-i), and amount of reproduction (j-1); points represent mean misestimation and bars indicate
standard deviation. For all vital rates, we show the mean misestimation of intercept, by, and coefficient of size, b;, by subtracting these num-
bers from their true value. Dotted lines show 0, representing no change in either b, or ;. Colors correspond to those used in Fig. 3 to repre-
sent different error types; recall that 62 represents random error, o> temporally correlated error, and o7 individually correlated error, and

2
Gs+i+t

a combination of these; when o2 (black) is not visible, these data are simply obscured by the o? (green) data. For an alternate repre-

sentation that shows the predicted values, see Appendix S1: Fig. S13, and for all p values and error types, see Appendix S1: Fig. S14. For a
discussion of how error in independent and dependent variables are expected to change the fits of linear and binomial regressions, see

Appendix SI.

between-plant variance in size (Burstyn et al. 2006) can also
substantially influence the strength and direction of bias.
The magnitude of classical regression dilution in logistic
regression, and when logistic regression should experience
classical regression dilution vs. the opposite (here, in the
long-lived species, overestimation of the size coefficient), is
an active area of research in biomedical fields (Burstyn et al.
2006, Kim et al. 2006).

While generalities about regression dilution may be diffi-
cult, ecologists could easily simulate regression results with
measurement errors and their actual distribution of sizes (or
other state variable) to test for the direction of parameter

misestimation for each vital rate. For example, ecologists
could (1) assume a size- (or other state variable-) dependent
function for survival; (2) simulate survival probabilities of
each of their measured individuals using this function; (3) fit
a function for survival using these simulated probabilities; (4)
add normally distributed error around measured sizes, then
repeat steps 1-3 and assess the direction of parameter bias in
the resulting functions. We recommend conducting this anal-
ysis separately for growth rates, where effects of measurement
errors are compounded across years (Janeiro et al. 2017).
The magnitude of bias in A, we find in this study is similar
to what we might expect to find in many demographic
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the o7 (green) data. See Figure 4 for further explanation. For an alternate representation that shows predicted values, see Appendix S1:
Fig. S15, and for all p values and error types, see Appendix S1: Fig. S16.

studies, including the best executed studies. Across the few
studies we found that present multiple metrics of size, the
mean Pearson’s R? value between size measures is 0.80
(range 0.97-0.42), while the mean correlation coefficient
between the best estimate of true size and other measures is
0.67 (range 0.95-0.31; Appendix S1: Table S3). We find sub-
stantial bias in A, estimates even though, in many ways, our
study represents an ideal sampling protocol that is not
attained by all or most field studies. In our short-lived spe-
cies, for less well-designed sampling regimes (e.g., initiating
our population at a uniform size distribution), measurement
error can result in even larger overestimates of Aqye
(Appendix S1: Fig. S9). Finally, studies conducted on non-
stable populations might overestimate A, even more. For
example, maximum median overestimation is even higher
(3.76%) when A = 1.02 in the short-lived species. For A
values <1, these effects depend on life history: maximum

median estimation is increased to 3.58% for the short-lived
but decreased to 2.65% for the long-lived species (with
Arue = 0.98 for short-lived, 0.99 for long-lived species).
Importantly, other predictions of demographic models could
also be affected by measurement error; for example, Janeiro
et al. (2017) show that measurement error results in misesti-
mation of the covariance among subsequent ages’ measured
phenotype, and results in poor predictions of phenotypic
similarity across relatives, two phenomena that drastically
reduce our ability to accurately predict evolutionary dynam-
ics using IPMs (Janeiro et al. 2017).

As outlined in the introduction, individual variation in
measurement error might arise if some individuals have high
intrinsic quality (e.g., consistently high tuber storage through-
out their life), whereas temporal variation in error could occur
if annual fluctuations in the environment elicit differential
allocation (e.g., a wet year promotes higher allocation to
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TaBLE 1. Variance explained by misestimation of each vital rates’
parameters and the interactions among misestimation of
parameters.

Variance explained (%)
Short-lived Long-lived

Vital rate species species

Survival 11.1 16.8

Growth and var(growth) 86.7 20

Reproduction <0.1 29.7

Survival x growth and var(growth) <0.1 8.3

Survival x reproduction <0.1 12.1

Growth x reproduction <0.1 6.2

Survival x growth and var(growth) 0.9 2.5

x reproduction
Residual variance 1.2 4.5

Note: For the short-lived species, “reproduction” includes only
amount of reproduction, but for the long-lived species, “reproduc-
tion” includes both probability and amount of reproduction. Note
the relatively large contributions of interactions among vital rates in
the long-lived, but not short-lived species (Appendix S1: Fig. S10).

above- vs. belowground organs); regardless, all types of error
result in overestimation of population growth rates. For dif-
ferent reasons, if temporal or individual variation in growth
rates is present in a population but not included in population
projections, omission of this individual-level heterogeneity
can often result in underestimation of population growth
rates (Conner and White 1999, Fox and Kendall 2002). Pfister
and Wang (2005) show that underestimation of population
growth rate can arise when large, fast-growing individuals’
growth rates are not incorporated into population projections
that exclude individual heterogeneity (though see Vindenes
and Langangen (2015), who see dissimilar results for an IPM
with a genetic component). Similar to our short-lived species,
Kendall et al. (2011) found strong effects of misestimation of
survival rates on population growth rate: simulating individ-
ual-level heterogeneity in survival increases estimated popula-
tion growth rate, whereas simulating individual-level
heterogeneity in reproductive rate has little effect on popula-
tion growth rate.

In this study, we use the standard linear and non-linear
models most commonly employed to fit vital rate functions,
but a series of more complex, less commonly used alterna-
tive model-fitting metrics could reduce the magnitude of
misestimation. Correcting for regression dilution is com-
monly studied in other disciplines. For example, Frost and
Thompson (2000) and Longford (2001) show simple ways to
correct for this bias assuming normally distributed variables,
and these methods have been extended to non-linear models
(Carroll et al. 2006). Another promising approach for
reducing some measurement error bias is the use of multi-
time-step information to gauge across-age covariation in
vital rates to better estimate true state and covariation
effects on vital rates; a random regression approach, which
has been employed in multiple fields of biology including
genetics and behavior (Wilson et al. 2005, Martin et al.
2010, Dingemanse and Dochtermann 2012), provides one
avenue for such an analysis tactic (Janeiro et al. 2017). How-
ever, all of these corrections require information on the mag-
nitude and structure of error (e.g., remeasured independent
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variables, which is only easy to obtain for ¢2; but see Hong
and Tamer 2003). State-space [PMs can also explicitly incor-
porate observation error (Dennis et al. 2006, White et al.
2016), but one must specify the correlation structure of this
error. This structure is not always known, and at least for
our long-lived species, the magnitude of error differs
strongly with the structure of this error.

Hierarchal Bayesian approaches, while rarely employed in
demographic studies to date, allow estimation of both pro-
cess and measurement error, and most critically, can explic-
itly incorporate uncertainty in the magnitude and structure
of error (Elderd and Miller 2016). Such approaches could
allow one to parameterize regression models that explicitly
incorporate measurement error, associated with individual,
time, and/or space. One must still specify the form of the
error (additive vs. multiplicative) and structure of error
(completely random vs. temporally or individually corre-
lated), but many aspects of the error structure can be repre-
sented as fitted parameters (e.g., variance of random error
in measurements or variance of temporally correlated error),
meaning that model outputs provide a way to test whether
different types of error are small or nonexistent. However, it
remains to be seen if with realistic sample sizes and measure-
ment error processes, these models can accurately estimate
and thus correct for the measurement error in the construc-
tion of demographic models.

More simply, an approach similar to that used on our sim-
ulation models could be used to gauge the likely seriousness
of measurement errors for population predictions. First,
using observed samples and vital rates, a researcher can gen-
erate simulations with varying degrees and types of measure-
ment errors and ask how strong and consistent parameter
bias 1is, particularly for non-linear vital rates (see
Appendix S1: Fig. S8). Second, analysis of the sensitivity
patterns of the general life history (see Fig. 2) will provide a
sense of whether biased vital rate estimates will strongly
overlap with those rates to which population growth rate is
consistently sensitive. Third, a path analysis approach could
provide an estimate of the magnitude of measurement error,
provided some of the vital rates are linear and one has suffi-
cient data to accurately estimate 6> and o? (Janeiro et al.
2017). Perhaps most simply, ecologists should pay greater
attention to testing multiple possible state variables and
make efforts to directly test the strength and structure of
correlations between observable and the most direct mea-
sures of state. For example, for a sessile marine invertebrate,
one could regress non-destructively measured shell size with
total biomass (which likely correlates more strongly with
fate) in multiple years to assess the correlation coefficient
between measured and “true” size. Finally, we note that our
analyses have only focused on population growth rates, but
that the many other predictions of demographic models are
also likely to be altered by measurement error (Janeiro et al.
2017).
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