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Abstract. Integral projection and matrix population models are commonly used in ecological and
conservation studies to assess the health and extinction risk of populations. These models use one (or
more) measurable state variable(s), such as size or age, to predict individual performance, which, ide-
ally, is the sole determinant of an individual’s expected fate. However, even if ecologists successfully
identify and measure the observable state variable(s) that best predicts individual fate, we are rarely, if
ever, able to perfectly measure state for many species, especially those with size structure, where total
plant biomass or starch stores, for example, may be the best predictors of fate. Here, we used a series
of simulations to test how this imperfect quantification of actual state (“measurement error”) leads to
inaccurate prediction of state-dependent fates and influences the predictions of structured population
models. We simulated 10 yr of best practice field data collection using known vital rate functions and
incorporated measurement error of different magnitudes and types (completely random, temporal,
and individual based) for two size-structured life histories. We found that even for conservative error
rates, most types of measurement error increased the median predicted population growth rate by
1–2% growth per year. However, the magnitude of this error differed substantially with life history
strategy and error type, with some scenarios resulting in >8% median overestimation of population
growth rate. This effect arises largely from the well-known econometrics problem of “regression dilu-
tion” (overestimation of the intercept and underestimation of the slope of a regression when the pre-
dictor variable is measured with error), which in our simulations typically results in overly optimistic
predictions of small or young individuals’ vital rates. Our results suggest that the problem of measure-
ment error for state variables, present in many demographic studies but virtually unacknowledged in
the ecological literature, may lead to substantial misestimation of population behavior, resulting in
erroneous inferences about not only growth, but also extinction risk and other aspects of population
dynamics.

Key words: demography; integral projection model; matrix model; measurement error; population growth;
regression dilution.

INTRODUCTION

Demographic matrix models and integral projection mod-

els (IPMs) are commonly used in ecological and conserva-

tion studies to assess the health, viability, and extinction risk

of populations. These models use one or more state variables

to predict individual traits and performance. Ecologists

commonly use age or size as state variables, as well as other

traits such as breeding status, developmental stage, and loca-

tion within different habitats or subpopulations. Identifica-

tion of an appropriate state variable, or variables, is a

critical consideration for all demographic models for any

species (Pfister and Stevens 2003, Ellner and Rees 2006, Pal-

mer et al. 2010). Ideally, the state variable(s) used in a model

is the sole determinant of expected individual fates, such as

probability of survival, mean growth increment, and repro-

ductive output. However, in practice, state variables

employed in population models may not have strong predic-

tive power, in part because the choice of state variables is

strongly driven by practicality and convention. It is fairly

rare for researchers to test the power of alternate state vari-

ables to predict demographic traits, and even if ecologists

successfully identify and measure the observable state

variable that best predicts individual fate, we are very rarely

able to perfectly measure state. We test how this imperfect

quantification of state (hereafter, “measurement error”) will

influence the accuracy of predictions made from demo-

graphic models that rely on state-dependent vital rate func-

tions, including both IPMs and population matrix models.

While several related topics have received significant

attention in the ecological literature (Fig. 1), we have little

understanding of how simple measurement errors will influ-

ence demographic predictions. To illustrate the ubiquity of

this problem, consider the monitoring and then the con-

struction of a demographic model for a perennial geophyte.

For this species, starch stores in corms are likely the best

predictor of individual fate. However, starch stores, or even

corm mass, can only be measured destructively; therefore, a

researcher instead measures the number and length of the

leaves of each plant, combining these into a single estimate

of leaf area, which correlates well, but imperfectly, with

corm mass. In addition to this random error introduced into

each measurement of each plant’s size, plants could be sys-

tematically mismeasured in one of two ways: (1) on an indi-

vidual basis, such that corm mass correlates with leaf area

more or less strongly in some individuals, due to either dif-

ferences in individual quality or microhabitat-driven differ-

ences in resource allocation, or (2) on a yearly basis, such

that corm mass correlates with leaf area more strongly in
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one year than another, due to differences in within-plant

resource allocation as a function of environmental forcing,

or due to measurement by different researchers in different

years. Exactly the same problem applies to many species.

For example, in trees, diameter at breast height is often used

to quantify size, and in reptiles and amphibians, snout–vent

length is often used to quantify size, but these measurements

are not a perfect metric of size or state. Similar mismeasure-

ment occurs for many taxa with varying morphologies,

where we can rarely measure the state variable that best pre-

dicts fate, and in many cases, do not know what this state

variable might be.

While measurement error has received little attention in

the literature, past work on related issues suggests that it

may have important consequences for population projec-

tions (Fig. 1). For example, parameterization of models

from small data samples can lead to misestimation and often

bias of both deterministic and stochastic lambda (“sampling

variability”; Brault and Caswell 1993, Doak et al. 2005,

Fiske et al. 2008). Other issues with the overly simplified use

of state variables have also been shown to substantially alter

estimated population growth rates. For example, including

individual-level heterogeneity in structured population

growth models (some individuals consistently exhibit a

stronger correlation between measured size and true state;

e.g., Fox et al. 2006, or “growth autocorrelation” sensu Fuji-

wara et al. 2004) generally increases projected population

growth rate (Conner and White 1999) and can increase vari-

ability in size structures through time (Pfister and Stevens

2002). The most likely route for measurement error to influ-

ence demographic predictions is through the well-known

statistical problem of regression dilution, in which the slope

of a linear regression is consistently underestimated when

there is measurement error in the predictor variable. In the

face of measurement error, this phenomenon will lead to

misestimation of stage-variable vital rate relationships,

which in turn may lead to significant bias in the projections

of population growth rates and other model outputs. The

direction of vital rate estimation bias is straightforward in

linear models, but more difficult to predict in non-linear

models, such as binomial survival probabilities (Hausman

2001). Further, almost all methods of correcting for this bias

require independent measurements of the magnitude and

structure of error (Carroll et al. 2006). In spite of these rea-

sons to suspect that error in quantifying state variables

could have strong impacts on demographic predictions, we

are aware of no work that directly explores this issue. The

closest analysis of which we are aware is that of Janeiro

et al. (2017), who show that the statistical process of regres-

sion to the mean, resulting from autocorrelation in size in

repeated measurements of growth, results in misestimation

of vital rates consistent with regression dilution. This mises-

timation has the potential to misrepresent variance in indi-

vidual growth trajectories across ages as well as heritability

of life history traits, potentially leading to mischaracteriza-

tion of any autocorrelated process, such as growth rates or

trait evolution, by typically parameterized IPMs. However,

as we have noted, the consequences of state variable mea-

surement errors go beyond just misestimation of growth

resulting from autocorrelated size measurements made with

error.

To test how the type and magnitude of measurement error

influence demographic model outputs, we conducted simu-

lations that replicate the most common approach to

constructing size-based demographic models, as well as

exemplary data collection techniques, for two disparate life

histories. We simulate annual monitoring of individual plant

size, survival, and reproduction, but with the inclusion of

FIG. 1. Schematic of construction of population demographic models, showing the relationship between true state and measured state vari-
ables (MSV), fitting of vital rate functions (either continuous or binned), and subsequent construction of population projections. Colors corre-
spond to bodies of literature addressing the role(s) of error in the construction of population matrix models and integral projection models.
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differing degrees and types of error in the measurement of

the underlying state variable “true size.” We then construct

IPMs with these data and ask how well the models predict

true annual population growth rate for each species. We

hypothesized that error would increase projected population

growth rate for all types of error (e.g., Conner and White

1999) but that the magnitude of this misestimation would

depend on life history due to differences in the sensitivity of

population growth rate to different vital rates.

METHODS

The true demographic process model

For our first species (hereafter, “short-lived species”), we

simulated data sets based on Easterling et al.’s (2000) pub-

lished relationships of survival, growth, variance in growth,

and number of offspring as a function of size (stem diame-

ter) for Aconitum noveboracense, a flowering herb. We

simplified reproduction to only include production of (vege-

tative) shoots, with no fission of larger individuals (see

Easterling et al. [2000] for details; shoot production is a

common mode of reproduction in this species). We also

assumed that they observed offspring number in time t + 1

rather than t and increased the intercept in the reproduction

equation from 0.034 to 0.054 to obtain a deterministic popu-

lation growth rate (k) of ~1. For our second species (here-

after, “long-lived species”), we modified parameter estimates

to increase growth rates and large individuals’ survival and

reproduction. Finally, we added a probability of reproduc-

tion vital rate, while also maintaining k approximately equal

to one, thereby generating higher sensitivity to large individ-

uals’ vital rates (Fig. 2). Appendix S1: Table S1 lists all these

“true” demographic parameters and relationships for both

life histories, as well as k calculated using true size (ktrue).

While we focus on two specific life histories, our results

apply to any species whose measured state correlates imper-

fectly with an unmeasured state that best predicts fate.

We first simulated the true demographic process for each

species, which we assume is deterministic, overlaying on top

of this process a monitoring program that results in data

taken with imperfect size measurements. We initiated our

projections with a size distribution reflective of the stable size

distribution (SSD), divided into 100 mesh points. For the

short-lived species, we truncated our initial size distribution

at the largest mesh point with an abundance ≥1% that of the

second mesh point. Thus, initial sizes in the IPM models

range from 0.04 to 5.08, with an upper size limit of 8. For the

FIG. 2. Sensitivities of ktrue to size-specific vital rate values for both (a–d) short-lived and (e–h) long-lived species, estimated through
perturbation from the matrix constructed used true vital rates. See Appendix S1: Fig. S11 for elasticities. For the long-lived species, note that
there is very low sensitivity to amount of reproduction, so the gray is barely visible.
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long-lived species, we used an initial size distribution with all

mesh points that had an abundance ≥4% that of the second

mesh point; thus, initial sizes ranged from 0.1 to 12.9, with

100 mesh points and with an upper size limit of 20.

We used these rules to simulate the fates of replicate sam-

ples of monitored individuals for 10 yr. We initiated each

replicate with a population of 2,032 individuals (2,036 for

long-lived), with sizes reflective of the population SSD as

described above. Using the true size dependency of vital

rates (Table S1), we simulated individual fates (using true

sizes) for 10 yr, adding in new recruits each year to balance

the number of non-surviving plants; sizes of new individuals

were drawn from a uniform distribution bounded by [0.15,

0.25], following Easterling et al. (2000). These procedures

correspond to a common field approach to demographic

data collection: sample all individuals within a plot or set of

plots and then search for and add new recruits to the set of

monitored plants each year.

Simulation of monitoring with measurement error

Using these sets of true sizes and fates, we added different

types and degrees of size measurement errors. We simulated

seven different types of measurement error: r2
e (each datum,

or individual 9 year combination, has an associated, inde-

pendent error value), r2
t (each year has an associated error

value, applied to all individuals in that year), and r2
i (each

individual has an associated error value, which is constant

across all years of its life), and all combinations of these

(r2
iþt;r

2
eþi;r

2
eþt;r

2
eþiþt). Note that we assume reproduction

and survival are measured without error.

We simulated five magnitudes of total measurement error,

corresponding to qs (correlations) between true size and size

with error = 0.99, 0.95, 0.85, 0.75, and 0.65. For a given error

level, we normalized single and combined types of error such

that the total amount of variability in all types of error was

the same (e.g., for each error level, r2
total ¼ r2

e ¼ r2
eþt ¼

r2
eþiþt; Appendix S1). For combined error types, we assumed

equal variance of each error type, with the summed variance

equal to the desired value.

Error was added symmetrically around the true size of

monitored individuals. To prevent unrealistic measured sizes

(negative or infinite), we used a stretched beta to simulate

measurement error of measured size (sm) around true size

(s): sm ¼ sþ fmin þ fmax � fminð Þ � Beta a; bð Þ. Here, a ¼ b;
so that the mean of Beta a; bð Þ = 0.5, and its variance is

r2
total � 1=ðfmax � fminð ÞÞ2, where fmin and fmax are the mini-

mum and maximum error values (Morris and Doak 2002).

Here, fmin = � fmax, such that sm is symmetrically dis-

tributed around s, bounded by sþ fmax; s� fmax½ �; for all

simulations, fmax = 2 (short-lived) or 5 (long-lived). For

individuals smaller than fmin, we set the minimum and maxi-

mum values used to estimate error to a plant’s true size, such

that the minimum estimated size was never <0. Results do

not differ substantially if we simulate measurement error

proportional to true size: sm ¼ s � fmax � fminð Þ � Beta a; bð Þ,
where a and b are as above, but fmax ¼ 1 ¼ �fmin, such that

size with measurement error is bounded by [0, 2 9 s];

Appendix S1: Fig. S1. To identify the r2
total necessary to gen-

erate the desired correlation value for each type of error for

each species, we solved directly for a series of r2
total values

(Appendix S1); size distributions used in making these cal-

culations were reflective of SSD, as we have described.

Analysis of simulation data and population projections

We simulated 500 replicate 10-yr data sets for the short-

lived species and 1,000 replicates for the long-lived species.

To each replicate, we added error in 35 different ways (7 pat-

terns of error 9 5 magnitudes of error), to create separate

observed data sets. For each year in each data set, we fit

regressions of survival, growth, variance in growth, and

amount of reproduction on measured size, all of the same

functional form as the true relationships (Appendix S1:

Table S1; for the long-lived species, we fit probability of

reproduction as well, and amount of reproduction was con-

ditional on reproducing). Thus, we assume that the correct

functional forms of all vital rates are known, but that the

parameter estimates are unknown, as is any annual variation

in demography (which does not in fact exist in the actual

demographic process). For our long-lived species, not all of

the binomial regressions converged; for the regressions that

did not converge, we refit them without a size term; these

were a small percentage of the total binomial regressions

(0.00002%). Using a binning approach to obtaining vital

rates, rather than fitting continuous functions, does not

change our results; thus, the results we outline apply also to

discrete parameterizations of matrix models (Appendix S1:

Fig. S2).

We constructed year-specific kernels with 100 mesh points

using these model fits. As different error magnitudes and

types lead to different maximum sizes of plants, the mesh

points for each combination of error parameters were set to

evenly divide sizes between a minimum of 0 and a maximum

of 1.5 9 the maximum measured size observed across all

years in a simulation (results do not differ if we use a con-

stant upper size class bound of 8 for the short-lived species;

Appendix S1: Fig. S3). When constructing kernels, if proba-

bility density functions (pdfs) of growth fell outside of the

size class bounds, we discarded all probability outside of the

size class bounds and renormalized the pdf to one (Williams

et al. 2012). Results do not differ if we remove one-half of

the simulations in which >0.1 probability was outside either

the lower or upper bound of the kernel in any year (83%

of error type 9 q 9 simulation 9 year combinations;

Appendix S1: Fig. S4).

We obtained a separate estimate of stochastic lambda (ks)

for the model fit to each data set by selecting from each

year-specific kernel with equal probability, using the last

8,000 years of 10,000-year projections to guard against tran-

sient dynamics. We initiated these projections with the stable

size distribution obtained from across-year average kernels,

obtained for each fitted model. To visualize the effect of

error on deviation from ktrue, we compared the across-repli-

cate average ks to ktrue (which is based on unvarying rela-

tionships of survival, growth, reproduction, and true size),

summarizing the direction and magnitude of error in esti-

mates of ks for each error type and magnitude.

For each data set, in addition to estimating ks, we used two

modified approaches to obtain estimates of (deterministic) k.

First, we calculated k from the average of the year-specific

kernels obtained above; second, we fit models for survival,

October 2018 MISMEASUREMENT BIASES DEMOGRAPHIC MODELS 2311



growth, variance in growth, probability of reproduction

(long-lived only), and amount of reproduction (conditional

on reproducing for the long-lived species) with data from all

years and then constructed kernels and obtained determinis-

tic k using these relationships. Results using the across-

replicate average of both types of deterministic k do not differ

from results using ks (Appendix S1: Fig. S5, S6). ks and k

of the mean kernel across years are highly correlated

(Appendix S1: Table S2), suggesting the majority of the mis-

estimation of kswith measurement error arises due to misesti-

mation of the mean vital rates, rather than misestimation of

the variance or covariance of these rates.

To better understand how measurement errors drive

effects in estimated ks, we conducted two sensitivity analy-

ses. First, we calculated sensitivities and elasticities of ktrue
to survival, growth, variance in growth, and amount of

reproduction (and probability of reproduction for the long-

lived species) via simulation, perturbing mesh-point-specific

vital rates 5% higher and lower than their true value, sepa-

rately for each vital rate 9 mesh point combination. Second,

for each life history, we quantified the contribution of each

parameter types’ misestimation to the total misestimation of

ks across all error type 9 q combinations. We first substi-

tuted the parameter estimates for all vital rates from the

model run associated with the median estimated ks for each

error type 9 q combination into our “true” kernel, calculat-

ing an expected percent deviation from ktrue given the mises-

timation in all vital rates. We then calculated a deviation

from ktrue separately for each vital rate, using the misesti-

mated parameter values only for the vital rate of interest,

with misestimated parameters of growth/variance in growth

and reproduction/probability of reproduction substituted at

the same time. We then regressed the total expected percent

deviation (k calculated using all misestimated vital rate val-

ues) on the contribution of each vital rate’s separate pre-

dicted misestimation values, and interactions among these

effects, using type II sum of squares to partition the variance

attributable to each of these effects. All analyses were con-

ducted with R version 3.3.2 (RCore Team 2016) and R code

is available in Data S1.

RESULTS

All types of measurement error result in overestimation of

mean ks in our short-lived species (Fig. 3); overestimation

of ks ranges up to 11.24% for a single simulated data set,

and up to 3.32% median error for r2
t , temporally correlated

error, at q = 0.65. The simplest type of error, completely

random (r2
e ,), shows median overestimation of ktrue of

1.86% when q = 0.65. Other error types also show substan-

tial overestimation of ktrue when q ≤ 0.75. Higher error also

generally increases the variability in predictions of ks. r
2
t ,

temporally correlated error, creates far higher median error

and variability in estimated ks compared to other error

types, likely due to a limited number of randomly sampled

error magnitudes for years compared to individuals or indi-

vidual 9 years.

Effects of measurement error for the long-lived species are

similar to those for the short-lived species, but with some

differences (Fig. 3). The ks values are again overestimated,

as with the short-lived species. However, error types that

contain r2
t show even stronger overestimation than for the

short-lived species (maximum median overestimation for r2
t

in long-lived, 8.30%; short-lived, 3.32%; see Appendix S1:

Fig. S7), and greater variance, with some ks estimates

actually lower than ktrue rather than higher (Fig. 3).

Deviation from ktrue is due to a misestimation of vital rate

relationships when including measurement error. In the

short-lived species, for survival, growth, and reproduction,

increasing amounts of error generally lead to an overestima-

tion of the intercept (b0) and an underestimation of the slope

(b1, Fig. 4; Appendix S1: Fig. S8). Conversely, for regres-

sions of variance in growth, increasing amounts of error

lead to an overestimation of both the intercept and the

slope, likely due to the higher overall variability in observed

growth when including measurement error of any kind. Mis-

estimation of survival, growth, and reproduction parameter

estimates for r2
t overestimate both intercept and slope

parameters, resulting in population projections that strongly

deviate from ktrue (Fig. 3).

For the long-lived species, some vital rates that strongly

impact ks (survival, probability of reproduction; Fig. 2) do

not show the classic misestimation patterns expected from

regression dilution for any error type (Fig. 5). In particular,

both survival parameters are strongly overestimated for all

types of error, and misestimation of probability of reproduc-

tion parameters varies with error type. Classic regression

dilution (an overestimation of b0 and underestimation of b1)

only occurs for most error types for growth and amount of

reproduction vital rates.

Our analyses of each vital rate’s contributions to expected

percent deviation from ktrue suggest that the misestimation

of growth parameters and, much less importantly, survival

parameters, drives much of the pattern in misestimation of

ktrue in the short-lived species (Table 1). Overestimation

arises consistently for the short-lived species because it has

higher sensitivity to growth and survival in smaller size

classes than larger size classes (Fig. 2), and growth and sur-

vival both show classic regression dilution (Fig. 4). Thus,

small individuals’ vital rates are overestimated, resulting in

overestimation of ktrue.

By contrast, misestimation of reproduction, survival, and

growth, as well as interactions among vital rate misestima-

tions, all contribute to the overall misestimation of ktrue in

the long-lived species (Table 1). Classic regression dilution

in amount of reproduction parameters and growth parame-

ters, as well as overestimation of both survival parameters

(Fig. 5), likely lead to an overall increase in estimated ks,

countering any effects of pessimistic probability of reproduc-

tion parameter estimates. Interactions between survival and

reproduction vital rates (both probability and amount) likely

increase estimated ks because with increases in survival, indi-

viduals can more quickly transition to the high-reproducing

larger size classes.

DISCUSSION

For both species, our results suggest that measurement

error creates considerable variability in estimated ks and also

results in its consistent overestimation (Fig. 3). In the short-

lived species, the median overestimation of ktrue arises from

overly optimistic estimates of small individuals’ vital rates
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(Fig. 4) coupled with high sensitivity to these same rates

(Fig. 2). Vital rates of large individuals have low sensitivity

in this species (Fig. 2), such that pessimistic estimates of

their vital rates do not counterbalance the effects on vital

rates of small individuals. For the long-lived species, we do

not see classic regression dilution for all vital rates, making

the explanation of the consistent overestimation of ktrue
more complex. In this life history, there are relatively high

sensitivities to large individuals’ vital rates (Fig. 2), but

these rates are not consistently overestimated. For example,

both survival parameters are overestimated, so all survival

rates are estimated to be higher than is correct, but we see

regression dilution for growth parameters, meaning that

large individuals’ growth rates are underestimated. Results

on both species are consistent with a series of studies (Doak

et al. 2005, Fiske et al. 2008) finding overestimation of pop-

ulation growth rate with small sample sizes that also results

(for different reasons) from misestimation of vital rates. Our

findings may provide some explanation for overly optimistic

predictions of population growth rate seen empirically in a

variety of species (e.g., Arisaema triphyllum [Bierzychudek

1999] and Lepanthes rubripetala [Sch€odelbauerov�a et al.

2010], but see Brook et al. 2000, Crone et al. 2013).

Our results suggest that overestimation of population

growth is a common phenomenon, but depends on the pres-

ence and strength of classic regression dilution as well as less

predictable patterns of misestimation due to measurement

errors. Previous studies show that, while regression dilution

is predictable for linear vital rates (as we usually see here), it

is inconsistent for non-linear vital rates (as we see here for

binomial outcomes in our long-lived species). For situations

similar to our completely random (ɛ) error structure, past

simulations for logistic regressions sometimes show classic

regression dilution (Reeves et al. 1998, Kim et al. 2006).

However, under other circumstances, including with large

sample sizes, the direction of bias can reverse (Kim et al.

2006). Unequal numbers of observations across the range of

predictor values (Kim et al. 2006) and heteroscedastic

FIG. 3. Deviation from ktrue for simulations with the correlation between true and measured size (q) ranging from 0.85 to 0.65 and dif-
ferent types of error structures for (a–d) short-lived species and (e–h) long-lived species. The variable r2

e represents random individual mea-
surement errors, r2

t temporally correlated error, r2
i individually correlated error, and r2

eþiþt a combination of all three error types. We show
standard boxplots, such that the midline represents the median, box edges represent the 25th and 75th percentiles, and whiskers represent
the reasonable extremes of the data. Data points larger or smaller than the reasonable extremes are shown by points. Dotted line shows the
median value of ktrue; numbers indicate the percentage of replications where estimated ks > ktrue. Colors correspond to error structures and
are consistent with subsequent figures. Note change in scale in c, g, and h; see Appendix S1: Figs. S12, S7 for all q values and error types.
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between-plant variance in size (Burstyn et al. 2006) can also

substantially influence the strength and direction of bias.

The magnitude of classical regression dilution in logistic

regression, and when logistic regression should experience

classical regression dilution vs. the opposite (here, in the

long-lived species, overestimation of the size coefficient), is

an active area of research in biomedical fields (Burstyn et al.

2006, Kim et al. 2006).

While generalities about regression dilution may be diffi-

cult, ecologists could easily simulate regression results with

measurement errors and their actual distribution of sizes (or

other state variable) to test for the direction of parameter

misestimation for each vital rate. For example, ecologists

could (1) assume a size- (or other state variable-) dependent

function for survival; (2) simulate survival probabilities of

each of their measured individuals using this function; (3) fit

a function for survival using these simulated probabilities; (4)

add normally distributed error around measured sizes, then

repeat steps 1–3 and assess the direction of parameter bias in

the resulting functions. We recommend conducting this anal-

ysis separately for growth rates, where effects of measurement

errors are compounded across years (Janeiro et al. 2017).

The magnitude of bias in ks we find in this study is similar

to what we might expect to find in many demographic

FIG. 4. Misestimation of the vital rate function parameters in the short-lived species for q (correlation) = 0.85, 0.75, and 0.65 for survi-
val (a–c), growth (d–f), variance in growth (g–i), and amount of reproduction (j–l); points represent mean misestimation and bars indicate
standard deviation. For all vital rates, we show the mean misestimation of intercept, b0, and coefficient of size, b1, by subtracting these num-
bers from their true value. Dotted lines show 0, representing no change in either b0 or b1. Colors correspond to those used in Fig. 3 to repre-
sent different error types; recall that r2

e represents random error, r2
t temporally correlated error, and r2

i individually correlated error, and
r2
eþiþt a combination of these; when r2

e (black) is not visible, these data are simply obscured by the r2
i (green) data. For an alternate repre-

sentation that shows the predicted values, see Appendix S1: Fig. S13, and for all q values and error types, see Appendix S1: Fig. S14. For a
discussion of how error in independent and dependent variables are expected to change the fits of linear and binomial regressions, see
Appendix S1.
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studies, including the best executed studies. Across the few

studies we found that present multiple metrics of size, the

mean Pearson’s R2 value between size measures is 0.80

(range 0.97–0.42), while the mean correlation coefficient

between the best estimate of true size and other measures is

0.67 (range 0.95–0.31; Appendix S1: Table S3). We find sub-

stantial bias in ks estimates even though, in many ways, our

study represents an ideal sampling protocol that is not

attained by all or most field studies. In our short-lived spe-

cies, for less well-designed sampling regimes (e.g., initiating

our population at a uniform size distribution), measurement

error can result in even larger overestimates of ktrue
(Appendix S1: Fig. S9). Finally, studies conducted on non-

stable populations might overestimate ktrue even more. For

example, maximum median overestimation is even higher

(3.76%) when ktrue = 1.02 in the short-lived species. For ktrue
values <1, these effects depend on life history: maximum

median estimation is increased to 3.58% for the short-lived

but decreased to 2.65% for the long-lived species (with

ktrue = 0.98 for short-lived, 0.99 for long-lived species).

Importantly, other predictions of demographic models could

also be affected by measurement error; for example, Janeiro

et al. (2017) show that measurement error results in misesti-

mation of the covariance among subsequent ages’ measured

phenotype, and results in poor predictions of phenotypic

similarity across relatives, two phenomena that drastically

reduce our ability to accurately predict evolutionary dynam-

ics using IPMs (Janeiro et al. 2017).

As outlined in the introduction, individual variation in

measurement error might arise if some individuals have high

intrinsic quality (e.g., consistently high tuber storage through-

out their life), whereas temporal variation in error could occur

if annual fluctuations in the environment elicit differential

allocation (e.g., a wet year promotes higher allocation to

FIG. 5. Misestimation of the parameters in our long-lived species for probability of survival (a–c), growth (d–f), variance in growth
(g–i), probability of reproduction (j–l), and amount of reproduction (m–o). For all vital rates, we show the mean misestimation of intercept
b0 and coefficient of size, b1, by subtracting these numbers from their true value. Points represent mean misestimation and bars indicate stan-
dard deviation, and dotted lines represent no misestimation of parameters. When r2

e (black) is not visible, these data are simply obscured by
the r2

i (green) data. See Figure 4 for further explanation. For an alternate representation that shows predicted values, see Appendix S1:
Fig. S15, and for all q values and error types, see Appendix S1: Fig. S16.
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above- vs. belowground organs); regardless, all types of error

result in overestimation of population growth rates. For dif-

ferent reasons, if temporal or individual variation in growth

rates is present in a population but not included in population

projections, omission of this individual-level heterogeneity

can often result in underestimation of population growth

rates (Conner and White 1999, Fox and Kendall 2002). Pfister

and Wang (2005) show that underestimation of population

growth rate can arise when large, fast-growing individuals’

growth rates are not incorporated into population projections

that exclude individual heterogeneity (though see Vindenes

and Langangen (2015), who see dissimilar results for an IPM

with a genetic component). Similar to our short-lived species,

Kendall et al. (2011) found strong effects of misestimation of

survival rates on population growth rate: simulating individ-

ual-level heterogeneity in survival increases estimated popula-

tion growth rate, whereas simulating individual-level

heterogeneity in reproductive rate has little effect on popula-

tion growth rate.

In this study, we use the standard linear and non-linear

models most commonly employed to fit vital rate functions,

but a series of more complex, less commonly used alterna-

tive model-fitting metrics could reduce the magnitude of

misestimation. Correcting for regression dilution is com-

monly studied in other disciplines. For example, Frost and

Thompson (2000) and Longford (2001) show simple ways to

correct for this bias assuming normally distributed variables,

and these methods have been extended to non-linear models

(Carroll et al. 2006). Another promising approach for

reducing some measurement error bias is the use of multi-

time-step information to gauge across-age covariation in

vital rates to better estimate true state and covariation

effects on vital rates; a random regression approach, which

has been employed in multiple fields of biology including

genetics and behavior (Wilson et al. 2005, Martin et al.

2010, Dingemanse and Dochtermann 2012), provides one

avenue for such an analysis tactic (Janeiro et al. 2017). How-

ever, all of these corrections require information on the mag-

nitude and structure of error (e.g., remeasured independent

variables, which is only easy to obtain for r2
e; but see Hong

and Tamer 2003). State-space IPMs can also explicitly incor-

porate observation error (Dennis et al. 2006, White et al.

2016), but one must specify the correlation structure of this

error. This structure is not always known, and at least for

our long-lived species, the magnitude of error differs

strongly with the structure of this error.

Hierarchal Bayesian approaches, while rarely employed in

demographic studies to date, allow estimation of both pro-

cess and measurement error, and most critically, can explic-

itly incorporate uncertainty in the magnitude and structure

of error (Elderd and Miller 2016). Such approaches could

allow one to parameterize regression models that explicitly

incorporate measurement error, associated with individual,

time, and/or space. One must still specify the form of the

error (additive vs. multiplicative) and structure of error

(completely random vs. temporally or individually corre-

lated), but many aspects of the error structure can be repre-

sented as fitted parameters (e.g., variance of random error

in measurements or variance of temporally correlated error),

meaning that model outputs provide a way to test whether

different types of error are small or nonexistent. However, it

remains to be seen if with realistic sample sizes and measure-

ment error processes, these models can accurately estimate

and thus correct for the measurement error in the construc-

tion of demographic models.

More simply, an approach similar to that used on our sim-

ulation models could be used to gauge the likely seriousness

of measurement errors for population predictions. First,

using observed samples and vital rates, a researcher can gen-

erate simulations with varying degrees and types of measure-

ment errors and ask how strong and consistent parameter

bias is, particularly for non-linear vital rates (see

Appendix S1: Fig. S8). Second, analysis of the sensitivity

patterns of the general life history (see Fig. 2) will provide a

sense of whether biased vital rate estimates will strongly

overlap with those rates to which population growth rate is

consistently sensitive. Third, a path analysis approach could

provide an estimate of the magnitude of measurement error,

provided some of the vital rates are linear and one has suffi-

cient data to accurately estimate r2
t and r2

i (Janeiro et al.

2017). Perhaps most simply, ecologists should pay greater

attention to testing multiple possible state variables and

make efforts to directly test the strength and structure of

correlations between observable and the most direct mea-

sures of state. For example, for a sessile marine invertebrate,

one could regress non-destructively measured shell size with

total biomass (which likely correlates more strongly with

fate) in multiple years to assess the correlation coefficient

between measured and “true” size. Finally, we note that our

analyses have only focused on population growth rates, but

that the many other predictions of demographic models are

also likely to be altered by measurement error (Janeiro et al.

2017).
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TABLE 1. Variance explained by misestimation of each vital rates’
parameters and the interactions among misestimation of
parameters.

Variance explained (%)

Vital rate
Short-lived
species

Long-lived
species

Survival 11.1 16.8

Growth and var(growth) 86.7 20

Reproduction <0.1 29.7

Survival 9 growth and var(growth) <0.1 8.3

Survival 9 reproduction <0.1 12.1

Growth 9 reproduction <0.1 6.2

Survival 9 growth and var(growth)
9 reproduction

0.9 2.5

Residual variance 1.2 4.5

Note: For the short-lived species, “reproduction” includes only
amount of reproduction, but for the long-lived species, “reproduc-
tion” includes both probability and amount of reproduction. Note
the relatively large contributions of interactions among vital rates in
the long-lived, but not short-lived species (Appendix S1: Fig. S10).
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