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Abstract

We study the Taylor expansion around the point x = 1 of a classical modular form,
the Jacobi theta constant 3. This leads naturally to a new sequence (d(n));>, =
1,1,—1,51, 849, —26199, ... of integers, which arise as the Taylor coefficients in the
expansion of arelated “centered” version of 3. We prove several results about the num-
bers d(n) and conjecture that they satisfy the congruence d(n) = (=" (mod 5)
and other similar congruence relations.

Keywords Theta function - Jacobi theta constant - Modular form

Mathematics Subject Classification 11F37 - 14K25 - 30B10

1 Introduction
1.1 The derivatives of the theta constant 83 (x) atx = 1
The Jacobi theta constant (or “thetanull”) function 63 is defined by
ac 2 ac 2
frx)= Y eT"F=1+42) e (Rex > 0), (1)
n=-—00 n=1
and is one of the most classical and well-studied objects in number theory, being

intimately tied to the study of integer partitions, representations of integers as sums
of squares, the Riemann zeta function, modular forms, and much else. In this paper
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we will study the Taylor coefficients of 63(x) around x = 1, that is, the sequence of
derivatives 0§">(1). This is motivated by the fact that 63(x) satisfies the well-known
modular transformation property

1
03 (;) = Vx 03(x), @)

which makes the point x = 1 left fixed under x — 1/x a natural point near which
to try to understand the local behavior of 63(x) (in particular as a way of gaining
new insight into the content of (2)). Two additional relevant motivating facts from the
literature are the explicit evaluation

r(z)

o = =

3)
(where I'(-) is the Euler gamma function)—see [3, p. 325]—and the relation

1
03(1) = — 70D

which follows on differentiating (2) and setting x = 1 (as pointed out for exam-
ple in [5, p. 17]). It seems natural to ask about the values of the higher derivatives
657 (1),65"(1), ..., but this problem does not appear to have been previously addressed
in the literature (although related questions have been considered; see Sect. 1.4). It
turns out that these values can be expressed in terms of 83 (1) and an additional constant

L)’

Q= .
3274

For example, we will show that the first few are given by

1
63 (1) = 393(1) B+Q)),
6y (1) = —6%93(1) (15 + 15Q) ,

1
05 (1) = 505D (105 +2102 - 22).

These formulas are special cases of a more general result, which introduces a curious
new object: an integer sequence (d(n));-, that will be our main object of study.

Theorem 1 (Taylor coefficients of 63(x)) There exists a sequence of integers
(dn)2y=1,1,—-1,51, 849, —26199, 1341999, . ..

@ Springer
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with the property that
ln/2]
) (=D" (2n)! k
05 (1) = 63(1) - T kgzo RGN = 2k)!d(k)Q n=>0. &

The initial values (d (n))20 - are tabulated in Appendix. Later we will present two
different methods for computing the d(n)’s.

1.2 A centered version of 9; and the integer sequence (d(n)),‘f‘;0

While (4) gives an answer of sorts to the original question we posed, the relative
messiness of the expansion on the right-hand side of (4) serves to obscure somewhat
the underlying phenomena at play and the true significance of the integer sequence
(d(n))52,- This significance is made more apparent by a change of coordinates: define
a function 03(z) of a complex variable by

1 1-z2
03(2) = ﬁ93 <1 ~|—z) (Iz| < D). (5

A trivial calculation shows that the modular transformation relation (2) is equivalent
to the simpler relation
03(—z) = 03(2), (6)

thatis, the statement that 03(z) is an even function. (Geometrically, note that the change
of coordinates x > z = ﬁ maps the right half-plane {Re(x) > 0} conformally to
the unit disk, and that under this change of coordinates the Mobius inversion x +— 1/x
translates to the simple reflection z +— —z.) Thus, we can think of 03(z) as a version of
03 that is “centered” around x = 1. This point of view naturally suggests considering
the Taylor expansion of 03(z) around z = O (the point in the z-plane whose preimage
under the coordinate change is x = 1), which encodes the same information as (4)
but packaged in a different way. Our next result shows that the coefficients in this
expansion are, modulo trivial factors, the integers d(n).

Theorem 2 (Taylor expansion of 03(z)) The function 03(z) has the Taylor expansion

03(2) —93<1>Z e ),cp" 2" (2l < D), %)

where we denote ® = — = .
4 12874

In addition to the fact that it clarifies the role of the numbers d(n), the series
expansion (7) also has the advantage that it converges for all |z| < 1, whereas the

Taylor series 63(x) = > oo 6’3 (1)

(x — 1) around x = 1 has radius of convergence 1

@ Springer
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and consequently converges only on a small part of the region {Re(x) > 0} where 63 (x)
is defined. Equivalently, converting (7) back to a formula for 63(x) via the relation

2 1 —x ®)
1+xa3 14+x

inverse to (5), we get that 3 (x) has the expansion

63(x) =

05 (x) = 65(1 V2 dn) —x\” R 0
3() = 05() == Z(Zn), (1+x> (Rex > 0),

which converges throughout the domain of 63 (x).
Note as well that the expansion (7) has the even symmetry (6) of 03(z) built into
it, thus neatly encapsulating the modular transformation property (2).

1.3 A generating function identity for the d(n)’s

Having motivated the definition of the sequence of coefficients (d(n));",, our main
goal is to understand their behavior and derive interesting formulas involving them;
as corollaries we will obtain proofs of Theorems 1 and 2, and practical algorithms
for computing the d(n)’s. The most fundamental identity, which we formulate now,
relates the generating function of the sequence (d(n));2, to two specializations of the
Gauss hypergeometric function , Fj. Recall that  F) is defined by

2F1(“’b;C:Z):ZlMZn,

= n!  (¢)n
where
W =x(x+1--(x+n-1)

is the Pochhammer symbol.

Theorem 3 (Generating function identity for the numbers d(n)) Define functions
U(r), V(1) by

A 3 3

U =2 ; )
2Fi(3, 33 7340

V() =/2F1(5. §: 5140 (10)

Then (d(n))32, is the unique sequence of real numbers satisfying the generating
function identity

i d(n) MU =VaE) (i <1) (11)
21 (2n)! '

@ Springer
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1.4 Taylor coefficients of modular forms and connections to previous work

The results of this paper can be viewed as part of the much broader theme of considering
the Taylor coefficients of general modular forms around complex multiplication points.
This point of view seems to have its roots in the work of Shimura [8], and was later
considered by Villegas and Zagier [10,11] and others [4,6,12]; see also [15, Sects. 5.1
and 6.3]. Our idea of considering the “centered” version of a modular form, and the
connection between the Taylor expansions of the centered and non-centered version,
are discussed in [15] in that broader setting.

While our point of view has some overlap with the existing literature and therefore
in some sense our results can be viewed as not much more than a special case of a
more general theory, the emphasis in the current work is on considering the sequence
(d(n));2, as an interesting sequence of integers and studying its properties, deriving
explicit algorithms for its computation, etc. Moreover, our impression is that in the
existing literature scant attention has been paid to the fact that sequences of Taylor
coefficients of modular forms can give rise to sequences of integers (as opposed to
algebraic numbers) that are worth studying for their own sake. We believe that this
point of view deserves to be emphasized and further explored systematically; see also
the discussion in the section on open problems (Sect. 8).

1.5 Structure of the paper

The rest of the paper is organized as follows. In Sect. 2 we prove Theorem 3, starting
from (7), which we take as our definition of d(n). In Sect. 3 we will show how
Theorem 3 can be reformulated into a recurrence relation for d(n). In Sect. 4 we
prove Theorem 1. In Sect. 5 we recast some of the results as explicit formulas for
some infinite series. In Sect. 6 we show that the centered function o3(z) satisfies a
nonlinear third-order differential equation that is very similar to the one satisfied by
63(x). In Sect. 7 we discuss some conjectural congruences satisfied by the sequence
of coefficients ((d(n));2 . Section 8 lists some open problems.

2 Proof of Theorem 3 assuming Theorem 2
For the remainder of the paper, we take the Taylor expansion (7) as the definition of
the sequence (d(n));°,. Our goal in this section is to prove the generating function

identity (11). The main tool we will use is a well-known identity of Jacobi that relates
03 (x) to the complete elliptic integral of the first kind. Specifically, define

G(r>=2F1(%,%;1;t>=Z<n”) (%) : (12)

which can also be written as G(t) = %K (V/1), where

@ Springer
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K(k) =

/1 dx
0 V(I —x2)(1 —k2x2)

is the complete elliptic integral of the first kind. Jacobi’s identity states [2, p. 101] that

93<M>=m O<i<1) (13)

G(1)

(see also [13, pp. 479, 499]). Without doing any explicit computations, one can see
immediately from (13) that the local behavior of 03(z) near z = 0, which (as we
noted in the introduction) is equivalent through the change of variables 7z = }% to
the local behavior of 63(x) near x = 1, also becomes equivalent through the further
change of variables x = G(1 — t)/G(¢) to the local behavior of 63(x) = +/G(t) near
t = 1/2. Thus, it seems plausible that (13) could be used to obtain information about
the Taylor expansion of 03(z) near z = 0. However, this requires understanding the
Taylor expansion of G(¢) around ¢ = 1/2 (where note that it is defined as a Taylor
series around ¢ = (). The next result bridges that gap.

Proposition 4 The Taylor expansion of G(t) around t = 1/2 is given by

4" ’_'_|_l 2
Gt) = = 3/22 (2 4) (t—1/2)n

1
= 2132 (F (:1;) Ot —1/2) +4r (%)zp(z — 1/2)), (14)

where we define

S 2
G3-7-11---(4m — 1))
Py =Y W = u P13 3 3 4ud),

= 2m + 1)!

(159 (4m —3)? ,, |
JOESY W =,Fi(1, 45 5: 4ud).

— (2m)! AR

Proof The second equality in (14) is immediate upon separating the infinite sum on the
first row into its odd and even (as functions of the variable s = ¢t — 1/2) components.
It is therefore enough to show that G(¢) coincides with the function

y (1) :=ﬁ2&%r(f )oa-1pr.

Butrecallthat G(t) =, F (%, %; 1; 1), being a specialization of a Gauss » F (a, b; c¢; t)
function, satisfies the hypergeometric differential equation [1]

t(1—0)g" )+ (1 —20g'(t) — %g(t) =0. (15)

@ Springer
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Itis likewise easy to verify directly from its definition that y (¢) is also a solution to (15).
Since G(t) and y(¢) both satisfy the same second-order linear ordinary differential
equation, it suffices to prove that G(1/2) = y(1/2) and G’(1/2) = y'(1/2). Now,
the definition of y (¢) gives that

1 1
7(1/2) = =50 (1)’ 00 = 55T (4)".

, 1 , 2 2
y(l/z)zm.w(z) P(O):m-r(;%) .

These numbers indeed coincide with G(1/2) and G’(1/2), respectively, since the
value G(1/2) = hmr (%)2 is classically known, [1, p. 11] and the evaluation

G'(1/2) = #F (Z) is similarly easy to obtain using standard identities (specif-
ically, the differential equation 480 — k(f£k£2) — X0 and Legendre’s relation
K(&K)EWX) + Ek)K(K') — KK (') = m/2, where k¥’ = /1 — k2, and E(k)

denotes the complete elliptic integral of the second kind). O

We are now ready to prove Theorem 3. Let  and x be related by x = G(1—1¢)/G(2).
Then making use of (7), (8) and (13) we have that

— (G =0\ _ W2 1 —x
Gm_a‘( G() )‘93(x)_m“3<1+x>

NG JG(1) (G(t) -G —t))
=2 03
JG)+ G —1) GH)+G(A —1)

3 G0 dm) o, (G0 = G-\
_ﬁ«/—G(t)JrG(l ()Z@ )! (G(r)+G<1—r>) ’

or, equivalently,

_ _ 2n
JGH+G—1)=+2- 9;(1)2‘1(") <G(t) Ga t)> . (16)

¢ (@2n)! Gt)+G(—1)
But now note that from (14), we have that

Gt) -G —-1t)=—+ P(t—1/2)

GH)+GA -1 = %F

)
)t —1/2) - 2FGL 3 340 - 1/2)D),
) 0t —1/2)
)

2R3, 3 A4 —1/2)%),

@ Springer
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so that, denoting s = (r — 1/ 2)2, we can rewrite (16) as

1
mr (41‘1) \/ZFI(%,JT§%§4S)
2n 2n
dw o, (40 G) P13, 35 3 45)
=V265(1 4 n (201844 22"
o >Z(2 )! (r(g_f S Ad T

Equivalently, referring to (9)—(10), we have that

— d
V(s)=C Z zn((;))vcg "U ()™,

where we define constants

2
V2r3 (1) 4r (3)
— Cy =20 T2
r(3) r(z)
Now, referring to (3) we see that C; = 1. Similarly, recalling the standard relation
r (l) r (%) = /27, one can easily check that C; = 1. This finishes the proof of
(1

2

Ci =

a
O

3 Arecurrence relation for d(n)

We now reformulate the generating function identity (11) as an explicit recurrence
relation for d(n).
Lemma5 The Taylor expansion of U (t) (defined in (9)) around t = 0 is given by

> u(n)
v =3y 40
= 2n + 1)!

where (u(n));>, = 1,6,256,28560, ... is a sequence of integers which satisfy for
n > 1 the recurrence relation

n—1
u(n) = (3.7-11.-.(4n—1))2—2 <22::11__11><1-5~9~~(4(n—m)—3))2u(m).
m=0

7)

Proof The relation (17) is immediate from the definition of u(n) upon rewriting (9) in
the form

UaFi(y, 35 3340 = 2F1(3, 35 33 40) (18)
and equating the Taylor coefficients on both sides. The recurrence then implies that
u(n) is an integer. O

@ Springer
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Lemma 6 The Taylor expansion of V (t) around t = 0 is given by

V() = 2_(:) 2:((2)! " (19)

where (v(n))zo o = 1,1,47,7395,2453425, . .. are integers which satisfy for n > 1

the recurrence relation

n—1

m=1

Proof To prove (20), rewrite (9) in the form
V() =2Fi(5, 13 5: 41)

and equate coefficients. It is also not difficult to see that v(n) is an integer, by exploiting
symmetry to rewrite (20) in the form

() = 2n—1(1 5.9...(4n — 3))2 — Z (22:1>v(m)v(n —m)
l<m<|}]

1 2n 2
— 5 X even}(n )v(n/Z) (2D

(where x{; eveny = 1 if n is even, 0 otherwise) and noting that (2:) is always an even
integer. O

Theorem 7 (Recurrence relation for d(n)) The numbers (d(n));°, satisfy the recur-

rence relation
n—1

d(n) =v(n) =Y r(n,kdk) (n>=1), (22)

k=1
where (r(n, k))1<k<n is a triangular array of integers defined by
2n)!

r(n, k) = 2"*km[r"*kw(t)2k 1<k <n). (23)

(Here, [t/1f(t) refers as usual to the jth coefficient c j in a power series f(t) =
> m=o Cmt™)

Proof Thinking of (23) as also defining (1, k) when k = 0, by comparing coefficients
of like powers of ¢ in (11) and (19) we get that the equation

n

v(n) =Y r(n. k)d(k)

k=0

@ Springer
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holds. Observing that r(n, 0) = 0 (if n > 1) and r(n, n) = 1 gives (22).

It remains to prove that r (n, k) is an integer forall 1 < k < n. This is a consequence
of the exponential formula from combinatorics [9, Ch. 5], which gives a combinatorial
interpretation for the coefficients b, ; in the power series expansion

o) a; oo by i
o (1G] = 3 M,
= nk=0

and in particular implies that if all the a;’s are integers then so are the b, ;’s. Further-
more, b, i is given explicitly by

k
| T
buk = =0 [ S| (24)
J

To see why this is precisely what we need, observe that (23) can be rewritten as

2k
ok 2, () j+1/2
r(n k) =200 o] jX_(:)(sz)zt
2k
e R 10 ) BTN
=2 o jX_;)(Zj—i-l)!s ’

which coincides with 27—k ba, 2k in (24) if the coefficient sequence (a j)?il is defined
bya; =0, a2j41 = u(j). |

Corollary 8 d(n) is an integer for alln > 0.

Here are the first few entries in the array of numbers (7 (n, k))1<k<n (formatted in
matrix notation as the lower triangular part of an infinite matrix):

1
48 1
7584 240 1
(r(n, k) 1<k<n = | 2515468 97664 672 1

1432498176 63221760 560448 1440 1

The formulas in this section are implemented in a Maple software package written
by Zeilberger [16].

@ Springer
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4 Proof of Theorem 1

First, note that for any integer n > 0, we have the generating function identity

2n)! & 2m)!
(1 = duy~ @072 = 242; Z m!(;(nni)zn)!umizn (jul < 1/%)

(apply the binomial theorem, or start with the the case n = 0, which is the standard

generating function identity Y o, (zm)u ﬁ, and differentiate 2n times).

Now, still working with the expansion (7) as our definition of the sequence
(d(n));2 ), we apply (8) to get that

+

o () (5 (%)

mzanw 4 2 2

_24”41(;1) (1—x)2”(1 x>—<4”+1>/2

par S COM

=i d(n)9n<1—x>2”i 2m)! (1—x>m_2”
(4n)! 8 = mlm—2m)! \ 8

6:0) V2 Z d@) . (
63(1) V1 +x = 2n)!
V2

_ = 4"d(n) n ad 2m! 1—x\™
_nX:(:) (4n)! §2 mgn m!(m — 2n)! < 3 )
0 Lm /2]
= (_1)m 4n(2m)! n _1\ym
= 2 gt | 2 Gmton - 2% G- 0"

)
Equating the coefficient of (x — 1)™ in the last expression to 99 o) (rln), gives (4). Since

we already proved in the previous section that the d(n)’s are integers, this completes
the proof of Theorem 1. O

5 Some infinite sums

In this section we apply our results to prove explicit formulas for several interesting
infinite series.

Proposition 9 For any integer k > 0 we have

k/2
R & (26)!
Z n—e = 3) 3 Z =2 (A (k — 2 i)
r(3) (471) 287 4Nk = 2))!

n=—o0

d(j)’ (25)
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(with the convention that 0° = 1 being used to interpret the termn = 0 on the left-hand
side in the case k = 0).

Proof This is simply areformulation of (4), expressing the derivative 93(") (1) explicitly

. . . . .. 2
as an infinite sum and moving the factor (=m)¥ from the differentiation of e~ 7" to
the right-hand side. O

By replacing the monomial n%* on the left-hand side of (25) with a Hermite poly-
nomial, the right-hand side is simplified considerably.

Proposition 10 Let

2 d™
Hm(x) = (—1)"ex dx_’"e *

2

denote the mth Hermite polynomial. Then we have the identity

00 k pk/2
5 T () = {93(1)4 OF2d(k/2) k even, =0, (6
0 k odd,

n=—oo

Proof Combining (1), (5), and (7) gives that the expression on the right-hand side of
(26) is equal to

e ¢]

— —F¢€X —7n .
dzf =0 LV/T+2 P 1+z

n=—0oo

So we see that proving (26) reduces to showing that

dk 1 1—z :| b X
S ——exp(—x = 4% X Hyy (V2X),
dzk|z=0|:«/l+z p( 1+z) 2%(V2%)

where X > 0 is a parameter. It is easy to see that this is equivalent to the bivariate
generating function identity

1 2ZX i 1 Z\m
mexp<1+z> =”§0%H2m(\/ﬁ) (Z) . 27)

This in turn is a (trivial rescaling of a) known identity; see, e.g., [14, Eq. (3.5)]. O
Note that (26) gives another way to evaluate the d(n)’s numerically.
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6 A differential equation for 03(z)

Jacobi found that 65(x) satisfies the ordinary differential equation

3 2
(02" = 155y +3007) +32 (33" =30772) =7 (3" =307?)
(8)

a nonlinear, third-order equation [7]. As a possible alternative approach to studying
the Taylor coefficients d(n), we use this to derive an ordinary differential equation
satisfied by the associated function 03(z). Interestingly, the equation 03(z) satisfies is
almost identical to (28).

Theorem 11 The function o3(z) satisfies the ordinary differential equation

2
(y2 " — 15y y/ "y 30(y ) ) +32 (y y// _ 3()7/)2) _ 47T 10 ( y// _ 3()7/)2) .
29)

V2 o (H—x
Vx 03\T=x
(28) and compute both sides, then simplify algebraically. The details are left to the

reader. o

Proof This is a mechanical calculation: substitute y = 63(x) = ) into

It is useful to rewrite (29) as an equation satisfied by the rescaled version of 63(z)
defined by

1 oz d(n) ,,
5@ =550 (5) 2(2 AN GERT)

since 03(z) is a purely combinatorial generating function whose Taylor expansion
contains no transcendental constants. A simple rescaling of (29) yields the following
result.

Corollary 12 The function 63(z) satisfies the ordinary differential equation
2.0 i " "2 3 10 " N2 2
(2" =15y y'y" +300)°)? +32(yy —3(y)) =32y (yy —3(y)) :
(30)
7 Conjectural congruence relations for the d(n)’s
Even a casual observation of the sequence (d(n));°, reveals that it has interesting
arithmetic properties. For example, the congruence relation d(n) = (—1)"~ I (mod 3)

is immediately apparent (as an empirical observation). Upon a bit of further inspection,
we were led to the following conjectures.

@ Springer
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Conjecture 13 For a finite sequence (cy, . . ., ck), denote by (c1, . . ., ci) its periodic
extension, and denote (cy, . .., cy)* the sequence (cy, ..., cx) appended by a infinite
sequence of zeros.

(a) The sequence (d(n))y° , satisfies the following congruences:

d(n) mod 5)°°, =(1,4),

(d(n) mod 13)%, = (1, 12,12,4,9,9, 3,10, 10, 12, 1, 1,9, 4, 4, 10, 3, 3),

(d(n) mod 17)%>., = (1, 16,0, 16, 15,2, 0,2, 4, 13,0, 13,
9,8,0,8,16,1,0,1,2,15,0, 15, 13,4,0,4, 8,9, 0, 9),

(d(n) mod 3)>2,=(1,1,2)",

d(n)ymod 1), =(1,1,6,2,2,2,1,0,3,0,6,0,6)*,

(d(n) mod 1Y%, = (1,1,10,7,2,3,10,7,1,1,2,0,6,2,0,1,5,0,
9,9,0,1,0,0,1,0,0,8,0,0, 10)*.

(b) More generally, forany prime p of the form 4k+1, the sequence (d(n) mod p);°
is periodic, and for any prime p of the form 4k + 3, the sequence has only finitely
many nonzero terms.

Note that in the congruences modulo primes p = 4k + 1 described above, the term
d(0) = 1 is excluded as it does not follow the periodical pattern of the congruence.

8 Open problems
We conclude with a few open problems.

1. Prove Conjecture 13.

2. Extend Conjecture 13 further, for example by studying the period of the sequence
(d(n) mod p)o2 ; of residues for primes p = 4k + 1, and congruences modulo
higher powers of primes.

3. Study integer sequences arising from the Taylor coefficient sequences of other
modular forms. Develop a general theory of when such sequences arise and find
connections between them and other problems in number theory.

4. Find a combinatorial interpretation for the sequence (d(n));>, (the possible exis-
tence of such an interpretation is suggested by the use of the combinatorial formula
in the proof of Theorem 7).

5. What can be said about the sequence of signs of d(n)?

6. The function 63(x) is intimately connected to the theory of the Riemann zeta

function via the classical relation

72T (s/2)¢(s) = %/w(em) — Dx*> 1 dx.
0
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By a change of variables r = (1 — x)/(1 4 x) this can be rewritten as

1 1
—s/2 _ _ _as/2—1 (1-s5)/2—1
TSP (s/2)¢(s) L <U3(t) Jl_th> (1—1) (1+1) dr.

Can this identity, combined with the Taylor expansion and additional observations
about the coefficient sequence (d (n))ZO:O, be used to deduce new facts about the

Riemann zeta function?
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Appendix: a table of the values (d(n))22

Table 1 The initial values of the

sequence (d(n))72 dm
0 1
1 1
2 -1
3 51
4 849
5 —26199
6 1341999
7 82018251
8 18703396449
9 —993278479599

10 —78795859032801
11 38711746282537251
12 —923351332174412751
13 4688204953344642495801
14 501271295036889289819599
15 —89944302490128540556106949
16 —104694993963067299023875442751
17 63396004159664562363095882996001
18 —10788308985765935467659682700676801
19 8534133600987639916144760846045541651
20 16747176493521483129100021404620455570449
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