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Abstract
We study the Taylor expansion around the point x = 1 of a classical modular form,
the Jacobi theta constant θ3. This leads naturally to a new sequence (d(n))∞n=0 =
1, 1,−1, 51, 849,−26199, . . . of integers, which arise as the Taylor coefficients in the
expansion of a related “centered” version of θ3.Weprove several results about the num-
bers d(n) and conjecture that they satisfy the congruence d(n) ≡ (−1)n−1 (mod 5)
and other similar congruence relations.

Keywords Theta function · Jacobi theta constant · Modular form

Mathematics Subject Classification 11F37 · 14K25 · 30B10

1 Introduction

1.1 The derivatives of the theta constant�3(x) at x = 1

The Jacobi theta constant (or “thetanull”) function θ3 is defined by

θ3(x) =
∞∑

n=−∞
e−πn2x = 1 + 2

∞∑

n=1

e−πn2x (Re x > 0), (1)

and is one of the most classical and well-studied objects in number theory, being
intimately tied to the study of integer partitions, representations of integers as sums
of squares, the Riemann zeta function, modular forms, and much else. In this paper
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D. Romik

we will study the Taylor coefficients of θ3(x) around x = 1, that is, the sequence of
derivatives θ

(n)
3 (1). This is motivated by the fact that θ3(x) satisfies the well-known

modular transformation property

θ3

(
1

x

)
= √

x θ3(x), (2)

which makes the point x = 1 left fixed under x �→ 1/x a natural point near which
to try to understand the local behavior of θ3(x) (in particular as a way of gaining
new insight into the content of (2)). Two additional relevant motivating facts from the
literature are the explicit evaluation

θ3(1) = �
( 1
4

)
√
2π3/4

(3)

(where �(·) is the Euler gamma function)—see [3, p. 325]—and the relation

θ ′
3(1) = −1

4
θ3(1),

which follows on differentiating (2) and setting x = 1 (as pointed out for exam-
ple in [5, p. 17]). It seems natural to ask about the values of the higher derivatives
θ ′′
3 (1), θ ′′′

3 (1), . . ., but this problem does not appear to have been previously addressed
in the literature (although related questions have been considered; see Sect. 1.4). It
turns out that these values can be expressed in terms of θ3(1) and an additional constant

� = �
( 1
4

)8

32π4 .

For example, we will show that the first few are given by

θ ′′
3 (1) = 1

16
θ3(1) (3 + �) ,

θ ′′′
3 (1) = − 1

64
θ3(1) (15 + 15�) ,

θ
(4)
3 (1) = 1

256
θ3(1)

(
105 + 210� − �2

)
.

These formulas are special cases of amore general result,which introduces a curious
new object: an integer sequence (d(n))∞n=0 that will be our main object of study.

Theorem 1 (Taylor coefficients of θ3(x)) There exists a sequence of integers

(d(n))∞n=0 = 1, 1,−1, 51, 849,−26199, 1341999, . . .
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The Taylor coefficients of the Jacobi theta constant θ3

with the property that

θ
(n)
3 (1) = θ3(1) · (−1)n

4n

�n/2	∑

k=0

(2n)!
2n−2k(4k)!(n − 2k)!d(k)�k (n ≥ 0). (4)

The initial values (d(n))20n=0 are tabulated in Appendix. Later we will present two
different methods for computing the d(n)’s.

1.2 A centered version of�3 and the integer sequence (d(n))∞n=0

While (4) gives an answer of sorts to the original question we posed, the relative
messiness of the expansion on the right-hand side of (4) serves to obscure somewhat
the underlying phenomena at play and the true significance of the integer sequence
(d(n))∞n=0. This significance is mademore apparent by a change of coordinates: define
a function σ3(z) of a complex variable by

σ3(z) = 1√
1 + z

θ3

(
1 − z

1 + z

)
(|z| < 1). (5)

A trivial calculation shows that the modular transformation relation (2) is equivalent
to the simpler relation

σ3(−z) = σ3(z), (6)

that is, the statement thatσ3(z) is an even function. (Geometrically, note that the change
of coordinates x �→ z = 1−x

1+x maps the right half-plane {Re(x) > 0} conformally to
the unit disk, and that under this change of coordinates theMöbius inversion x �→ 1/x
translates to the simple reflection z �→ −z.) Thus, we can think of σ3(z) as a version of
θ3 that is “centered” around x = 1. This point of view naturally suggests considering
the Taylor expansion of σ3(z) around z = 0 (the point in the z-plane whose preimage
under the coordinate change is x = 1), which encodes the same information as (4)
but packaged in a different way. Our next result shows that the coefficients in this
expansion are, modulo trivial factors, the integers d(n).

Theorem 2 (Taylor expansion of σ3(z)) The function σ3(z) has the Taylor expansion

σ3(z) = θ3(1)
∞∑

n=0

d(n)

(2n)!�
nz2n (|z| < 1), (7)

where we denote � = �

4
= �

( 1
4

)8

128π4 .

In addition to the fact that it clarifies the role of the numbers d(n), the series
expansion (7) also has the advantage that it converges for all |z| < 1, whereas the

Taylor series θ3(x) = ∑∞
n=0

θ
(n)
3 (1)
n! (x −1)n around x = 1 has radius of convergence 1
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and consequently converges only on a small part of the region {Re(x) > 0}where θ3(x)
is defined. Equivalently, converting (7) back to a formula for θ3(x) via the relation

θ3(x) =
√

2

1 + x
σ3

(
1 − x

1 + x

)
(8)

inverse to (5), we get that θ3(x) has the expansion

θ3(x) = θ3(1)

√
2√

1 + x

∞∑

n=0

d(n)

(2n)!�
n
(
1 − x

1 + x

)2n

(Re x > 0),

which converges throughout the domain of θ3(x).
Note as well that the expansion (7) has the even symmetry (6) of σ3(z) built into

it, thus neatly encapsulating the modular transformation property (2).

1.3 A generating function identity for the d(n)’s

Having motivated the definition of the sequence of coefficients (d(n))∞n=0, our main
goal is to understand their behavior and derive interesting formulas involving them;
as corollaries we will obtain proofs of Theorems 1 and 2, and practical algorithms
for computing the d(n)’s. The most fundamental identity, which we formulate now,
relates the generating function of the sequence (d(n))∞n=0 to two specializations of the
Gauss hypergeometric function 2F1. Recall that 2F1 is defined by

2F1(a, b; c; z) =
∞∑

n=0

1

n!
(a)n(b)n

(c)n
zn,

where

(x)n = x(x + 1) · · · (x + n − 1)

is the Pochhammer symbol.

Theorem 3 (Generating function identity for the numbers d(n)) Define functions
U (t), V (t) by

U (t) = 2F1(
3
4 ,

3
4 ; 3

2 ; 4t)
2F1(

1
4 ,

1
4 ; 1

2 ; 4t)
, (9)

V (t) =
√

2F1(
1
4 ,

1
4 ; 1

2 ; 4t). (10)

Then (d(n))∞n=0 is the unique sequence of real numbers satisfying the generating
function identity

∞∑

n=0

d(n)

2n(2n)! t
n U (t)2n = V (t) (|t | < 1). (11)
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The Taylor coefficients of the Jacobi theta constant θ3

1.4 Taylor coefficients of modular forms and connections to previous work

The results of this paper can be viewed as part of themuchbroader themeof considering
theTaylor coefficients of generalmodular forms around complexmultiplication points.
This point of view seems to have its roots in the work of Shimura [8], and was later
considered by Villegas and Zagier [10,11] and others [4,6,12]; see also [15, Sects. 5.1
and 6.3]. Our idea of considering the “centered” version of a modular form, and the
connection between the Taylor expansions of the centered and non-centered version,
are discussed in [15] in that broader setting.

While our point of view has some overlap with the existing literature and therefore
in some sense our results can be viewed as not much more than a special case of a
more general theory, the emphasis in the current work is on considering the sequence
(d(n))∞n=0 as an interesting sequence of integers and studying its properties, deriving
explicit algorithms for its computation, etc. Moreover, our impression is that in the
existing literature scant attention has been paid to the fact that sequences of Taylor
coefficients of modular forms can give rise to sequences of integers (as opposed to
algebraic numbers) that are worth studying for their own sake. We believe that this
point of view deserves to be emphasized and further explored systematically; see also
the discussion in the section on open problems (Sect. 8).

1.5 Structure of the paper

The rest of the paper is organized as follows. In Sect. 2 we prove Theorem 3, starting
from (7), which we take as our definition of d(n). In Sect. 3 we will show how
Theorem 3 can be reformulated into a recurrence relation for d(n). In Sect. 4 we
prove Theorem 1. In Sect. 5 we recast some of the results as explicit formulas for
some infinite series. In Sect. 6 we show that the centered function σ3(z) satisfies a
nonlinear third-order differential equation that is very similar to the one satisfied by
θ3(x). In Sect. 7 we discuss some conjectural congruences satisfied by the sequence
of coefficients ((d(n))∞n=0. Section 8 lists some open problems.

2 Proof of Theorem 3 assuming Theorem 2

For the remainder of the paper, we take the Taylor expansion (7) as the definition of
the sequence (d(n))∞n=0. Our goal in this section is to prove the generating function
identity (11). The main tool we will use is a well-known identity of Jacobi that relates
θ3(x) to the complete elliptic integral of the first kind. Specifically, define

G(t) = 2F1(
1
2 ,

1
2 ; 1; t) =

∞∑

n=0

(
2n

n

)2 (
t

16

)n

, (12)

which can also be written as G(t) = 2
π
K (

√
t), where
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K (k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

is the complete elliptic integral of the first kind. Jacobi’s identity states [2, p. 101] that

θ3

(
G(1 − t)

G(t)

)
= √

G(t) (0 < t < 1) (13)

(see also [13, pp. 479, 499]). Without doing any explicit computations, one can see
immediately from (13) that the local behavior of σ3(z) near z = 0, which (as we
noted in the introduction) is equivalent through the change of variables z = 1−x

1+x to
the local behavior of θ3(x) near x = 1, also becomes equivalent through the further
change of variables x = G(1 − t)/G(t) to the local behavior of θ3(x) = √

G(t) near
t = 1/2. Thus, it seems plausible that (13) could be used to obtain information about
the Taylor expansion of σ3(z) near z = 0. However, this requires understanding the
Taylor expansion of G(t) around t = 1/2 (where note that it is defined as a Taylor
series around t = 0). The next result bridges that gap.

Proposition 4 The Taylor expansion of G(t) around t = 1/2 is given by

G(t) = 1

2π3/2

∞∑

n=0

4n �
( n
2 + 1

4

)2

n! (t − 1/2)n

= 1

2π3/2

(
�

( 1
4

)2
Q(t − 1/2) + 4�

( 3
4

)2
P(t − 1/2)

)
, (14)

where we define

P(u) =
∞∑

m=0

(3 · 7 · 11 · · · (4m − 1))2

(2m + 1)! u2m+1 = u · 2F1( 34 , 3
4 ; 3

2 ; 4u2),

Q(u) =
∞∑

m=0

(1 · 5 · 9 · · · (4m − 3))2

(2m)! u2m = 2F1(
1
4 ,

1
4 ; 1

2 ; 4u2).

Proof The second equality in (14) is immediate upon separating the infinite sum on the
first row into its odd and even (as functions of the variable s = t − 1/2) components.
It is therefore enough to show that G(t) coincides with the function

γ (t) := 1

2π3/2

∞∑

n=0

4n

n! �
(n
2

+ 1
4

)2
(t − 1/2)n .

But recall thatG(t) = 2F1(
1
2 ,

1
2 ; 1; t), being a specialization of aGauss 2F1(a, b; c; t)

function, satisfies the hypergeometric differential equation [1]

t(1 − t)g′′(t) + (1 − 2t)g′(t) − 1
4g(t) = 0. (15)
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The Taylor coefficients of the Jacobi theta constant θ3

It is likewise easy to verify directly from its definition that γ (t) is also a solution to (15).
Since G(t) and γ (t) both satisfy the same second-order linear ordinary differential
equation, it suffices to prove that G(1/2) = γ (1/2) and G ′(1/2) = γ ′(1/2). Now,
the definition of γ (t) gives that

γ (1/2) = 1

2π3/2�
( 1
4

)2
Q(0) = 1

2π3/2�
( 1
4

)2
,

γ ′(1/2) = 1

2π3/2 · 4� ( 3
4

)2
P ′(0) = 2

π3/2 · �
( 3
4

)2
.

These numbers indeed coincide with G(1/2) and G ′(1/2), respectively, since the

value G(1/2) = 1
2π3/2 �

( 1
4

)2
is classically known, [1, p. 11] and the evaluation

G ′(1/2) = 2
π3/2 �

( 3
4

)2
is similarly easy to obtain using standard identities (specif-

ically, the differential equation dK (k)
dk = E(k)

k(1−k2)
− K (k)

k and Legendre’s relation

K (k)E(k′) + E(k)K (k′) − K (k)K (k′) = π/2, where k′ = √
1 − k2, and E(k)

denotes the complete elliptic integral of the second kind). ��
We are now ready to prove Theorem 3. Let t and x be related by x = G(1−t)/G(t).

Then making use of (7), (8) and (13) we have that

√
G(t) = θ3

(
G(1 − t)

G(t)

)
= θ3(x) =

√
2√

1 + x
σ3

(
1 − x

1 + x

)

= √
2

√
G(t)√

G(t) + G(1 − t)
σ3

(
G(t) − G(1 − t)

G(t) + G(1 − t)

)

= √
2

√
G(t)√

G(t) + G(1 − t)
· θ3(1)

∞∑

n=0

d(n)

(2n)!�
n
(
G(t) − G(1 − t)

G(t) + G(1 − t)

)2n

,

or, equivalently,

√
G(t) + G(1 − t) = √

2 · θ3(1)
∞∑

n=0

d(n)

(2n)!�
n
(
G(t) − G(1 − t)

G(t) + G(1 − t)

)2n

. (16)

But now note that from (14), we have that

G(t) − G(1 − t) = 4

π3/2�
( 3
4

)2
P(t − 1/2)

= 4

π3/2�
( 3
4

)2
(t − 1/2) · 2F1( 34 , 3

4 ; 3
2 ; 4(t − 1/2)2),

G(t) + G(1 − t) = 1

π3/2�
( 1
4

)2
Q(t − 1/2)

= 1

π3/2�
( 1
4

)2
2F1(

1
4 ,

1
4 ; 1

2 ; 4(t − 1/2)2),
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so that, denoting s = (t − 1/2)2, we can rewrite (16) as

1

π3/4�
( 1
4

) √
2F1(

1
4 ,

1
4 ; 1

2 ; 4s)

= √
2 θ3(1)

∞∑

n=0

d(n)

(2n)!�
n

(
4�

( 3
4

)2

�
( 1
4

)2

)2n

sn
(

2F1(
3
4 ,

3
4 ; 3

2 ; 4s)
2F1(

1
4 ,

1
4 ; 1

2 ; 4s)

)2n

.

Equivalently, referring to (9)–(10), we have that

V (s) = C1

∞∑

n=0

d(n)

2n(2n)!C
n
2 s

nU (s)2n,

where we define constants

C1 =
√
2π3/4 θ3(1)

�
( 1
4

) , C2 = 2�

(
4�

( 3
4

)2

�
( 1
4

)2

)2

.

Now, referring to (3) we see that C1 = 1. Similarly, recalling the standard relation
�

( 1
4

)
�

( 3
4

) = √
2π , one can easily check that C2 = 1. This finishes the proof of

(11). ��

3 A recurrence relation for d(n)

We now reformulate the generating function identity (11) as an explicit recurrence
relation for d(n).

Lemma 5 The Taylor expansion of U (t) (defined in (9)) around t = 0 is given by

U (t) =
∞∑

n=0

u(n)

(2n + 1)! t
n,

where (u(n))∞n=0 = 1, 6, 256, 28560, . . . is a sequence of integers which satisfy for
n ≥ 1 the recurrence relation

u(n) =
(
3 ·7 ·11 · · · (4n−1)

)2 −
n−1∑

m=0

(
2n + 1

2m + 1

)(
1 ·5 ·9 · · · (4(n−m)−3)

)2
u(m).

(17)

Proof The relation (17) is immediate from the definition of u(n) upon rewriting (9) in
the form

U (t)2F1(
1
4 ,

1
4 ; 1

2 ; 4t) = 2F1(
3
4 ,

3
4 ; 3

2 ; 4t) (18)

and equating the Taylor coefficients on both sides. The recurrence then implies that
u(n) is an integer. ��
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Lemma 6 The Taylor expansion of V (t) around t = 0 is given by

V (t) =
∞∑

n=0

v(n)

2n(2n)! t
n, (19)

where (v(n))∞n=0 = 1, 1, 47, 7395, 2453425, . . . are integers which satisfy for n ≥ 1
the recurrence relation

v(n) = 2n−1
(
1 · 5 · 9 · · · (4n − 3)

)2 − 1

2

n−1∑

m=1

(
2n

2m

)
v(m)v(n − m). (20)

Proof To prove (20), rewrite (9) in the form

V (t)2 = 2F1(
1
4 ,

1
4 ; 1

2 ; 4t)

and equate coefficients. It is also not difficult to see that v(n) is an integer, by exploiting
symmetry to rewrite (20) in the form

v(n) = 2n−1
(
1 · 5 · 9 · · · (4n − 3)

)2 −
∑

1≤m<� n
2 	

(
2n

2m

)
v(m)v(n − m)

− 1

2
χ{n even}

(
2n

n

)
v(n/2)2 (21)

(where χ{n even} = 1 if n is even, 0 otherwise) and noting that
(2n
n

)
is always an even

integer. ��
Theorem 7 (Recurrence relation for d(n)) The numbers (d(n))∞n=0 satisfy the recur-
rence relation

d(n) = v(n) −
n−1∑

k=1

r(n, k)d(k) (n ≥ 1), (22)

where (r(n, k))1≤k≤n is a triangular array of integers defined by

r(n, k) = 2n−k (2n)!
(2k)! [t

n−k]U (t)2k (1 ≤ k ≤ n). (23)

(Here, [t j ] f (t) refers as usual to the j th coefficient c j in a power series f (t) =∑∞
m=0 cmt

m.)

Proof Thinking of (23) as also defining r(n, k)when k = 0, by comparing coefficients
of like powers of t in (11) and (19) we get that the equation

v(n) =
n∑

k=0

r(n, k)d(k)

123

Author's personal copy



D. Romik

holds. Observing that r(n, 0) = 0 (if n ≥ 1) and r(n, n) = 1 gives (22).
It remains to prove that r(n, k) is an integer for all 1 ≤ k ≤ n. This is a consequence

of the exponential formula from combinatorics [9, Ch. 5], which gives a combinatorial
interpretation for the coefficients bn,k in the power series expansion

exp

⎛

⎝t
∞∑

j=1

a j

j ! x
j

⎞

⎠ =
∞∑

n,k=0

bn,k

n! xntk,

and in particular implies that if all the a j ’s are integers then so are the bn,k’s. Further-
more, bn,k is given explicitly by

bn,k = n!
k! [x

n]
⎛

⎝
∞∑

j=1

a j

j ! x
j

⎞

⎠
k

. (24)

To see why this is precisely what we need, observe that (23) can be rewritten as

r(n, k) = 2n−k (2n)!
(2k)! [t

n]
⎛

⎝
∞∑

j=0

u( j)

(2 j + 1)! t
j+1/2

⎞

⎠
2k

= 2n−k (2n)!
(2k)! [s

2n]
⎛

⎝
∞∑

j=0

u( j)

(2 j + 1)! s
2 j+1

⎞

⎠
2k

,

which coincides with 2n−kb2n,2k in (24) if the coefficient sequence (a j )
∞
j=1 is defined

by a2 j = 0, a2 j+1 = u( j). ��

Corollary 8 d(n) is an integer for all n ≥ 0.

Here are the first few entries in the array of numbers (r(n, k))1≤k≤n (formatted in
matrix notation as the lower triangular part of an infinite matrix):

(r(n, k))1≤k≤n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
48 1

7584 240 1
2515468 97664 672 1

1432498176 63221760 560448 1440 1
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The formulas in this section are implemented in a Maple software package written
by Zeilberger [16].
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4 Proof of Theorem 1

First, note that for any integer n ≥ 0, we have the generating function identity

(1 − 4u)−(4n+1)/2 = (2n)!
(4n)!

∞∑

m=2n

(2m)!
m!(m − 2n)!u

m−2n (|u| < 1/4)

(apply the binomial theorem, or start with the the case n = 0, which is the standard
generating function identity

∑∞
m=0

(2m
m

)
um = 1√

1−4u
, and differentiate 2n times).

Now, still working with the expansion (7) as our definition of the sequence
(d(n))∞n=0, we apply (8) to get that

θ3(x)

θ3(1)
=

√
2√

1 + x

∞∑

n=0

d(n)

(2n)!�
n
(
1 − x

1 + x

)2n

=
√
2√

1 + x

∞∑

n=0

d(n)

(2n)!
(

�

4

)n (
1 − x

2

)2n (
1 + x

2

)−2n

=
∞∑

n=0

4nd(n)

(2n)! �n
(
1 − x

8

)2n (
1 + x

2

)−(4n+1)/2

=
∞∑

n=0

4nd(n)

(4n)! �n
(
1 − x

8

)2n ∞∑

m=2n

(2m)!
m!(m − 2n)!

(
1 − x

8

)m−2n

=
∞∑

n=0

4nd(n)

(4n)! �n
∞∑

m=2n

2m!
m!(m − 2n)!

(
1 − x

8

)m

=
∞∑

m=0

(−1)m

8mm!

⎛

⎝
�m/2	∑

n=0

4n(2m)!
(4n)!(m − 2n)!d(n)�n

⎞

⎠ (x − 1)m .

Equating the coefficient of (x − 1)m in the last expression to
θ

(m)
3 (1)

θ3(1)m! gives (4). Since
we already proved in the previous section that the d(n)’s are integers, this completes
the proof of Theorem 1. ��

5 Some infinite sums

In this section we apply our results to prove explicit formulas for several interesting
infinite series.

Proposition 9 For any integer k ≥ 0 we have

∞∑

n=−∞
n2ke−πn2 = π1/4

�
( 3
4

) · 1

(4π)k

�k/2	∑

j=0

(2k)!
2k−2 j (4 j)!(k − 2 j)!d( j)� j (25)
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(with the convention that 00 = 1 being used to interpret the term n = 0 on the left-hand
side in the case k = 0).

Proof This is simply a reformulation of (4), expressing the derivative θ
(n)
3 (1) explicitly

as an infinite sum and moving the factor (−π)k from the differentiation of e−πn2x to
the right-hand side. ��

By replacing the monomial n2k on the left-hand side of (25) with a Hermite poly-
nomial, the right-hand side is simplified considerably.

Proposition 10 Let

Hm(x) = (−1)nex
2 dm

dxm
e−x2

denote the mth Hermite polynomial. Then we have the identity

∞∑

n=−∞
e−πn2H2k(

√
2πn) =

{
θ3(1)4k�k/2d(k/2) k even,

0 k odd,
(k ≥ 0). (26)

Proof Combining (1), (5), and (7) gives that the expression on the right-hand side of
(26) is equal to

∞∑

n=−∞

dk

dzk
∣∣z=0

[
1√
1 + z

exp

(
−πn2

1 − z

1 + z

)]
.

So we see that proving (26) reduces to showing that

dk

dzk
∣∣z=0

[
1√
1 + z

exp

(
−X

1 − z

1 + z

)]
= 4−ke−X H2k(

√
2X),

where X > 0 is a parameter. It is easy to see that this is equivalent to the bivariate
generating function identity

1√
1 + z

exp

(
2zX

1 + z

)
=

∞∑

m=0

1

m!H2m(
√
2X)

( z
4

)m
. (27)

This in turn is a (trivial rescaling of a) known identity; see, e.g., [14, Eq. (3.5)]. ��

Note that (26) gives another way to evaluate the d(n)’s numerically.
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6 A differential equation for �3(z)

Jacobi found that θ3(x) satisfies the ordinary differential equation

(
y2y′′′ − 15y y′ y′′ + 30(y′)3

)2 + 32
(
y y′′ − 3(y′)2

)3 = π2y10
(
y y′′ − 3(y′)2

)2
,

(28)

a nonlinear, third-order equation [7]. As a possible alternative approach to studying
the Taylor coefficients d(n), we use this to derive an ordinary differential equation
satisfied by the associated function σ3(z). Interestingly, the equation σ3(z) satisfies is
almost identical to (28).

Theorem 11 The function σ3(z) satisfies the ordinary differential equation

(
y2y′′′ − 15y y′ y′′ + 30(y′)3

)2 + 32
(
y y′′ − 3(y′)2

)3 = 4π2y10
(
y y′′ − 3(y′)2

)2
.

(29)

Proof This is a mechanical calculation: substitute y = θ3(x) =
√
2√

1+x
σ3

(
1+x
1−x

)
into

(28) and compute both sides, then simplify algebraically. The details are left to the
reader. ��

It is useful to rewrite (29) as an equation satisfied by the rescaled version of σ3(z)
defined by

σ̂3(z) = 1

θ(1)
σ3

(
z√
�

)
=

∑

n=0

d(n)

(2n)! z
2n (|z| ≤ √

�),

since σ̂3(z) is a purely combinatorial generating function whose Taylor expansion
contains no transcendental constants. A simple rescaling of (29) yields the following
result.

Corollary 12 The function σ̂3(z) satisfies the ordinary differential equation

(
y2y′′′ − 15y y′ y′′ + 30(y′)3

)2 + 32
(
y y′′ − 3(y′)2

)3 = 32y10
(
y y′′ − 3(y′)2

)2
.

(30)

7 Conjectural congruence relations for the d(n)’s

Even a casual observation of the sequence (d(n))∞n=0 reveals that it has interesting
arithmetic properties. For example, the congruence relation d(n) ≡ (−1)n−1 (mod 5)
is immediately apparent (as an empirical observation). Upon a bit of further inspection,
we were led to the following conjectures.
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Conjecture 13 For a finite sequence (c1, . . . , ck), denote by (c1, . . . , ck) its periodic
extension, and denote (c1, . . . , ck)∗ the sequence (c1, . . . , ck) appended by a infinite
sequence of zeros.

(a) The sequence (d(n))∞n=1 satisfies the following congruences:

(d(n) mod 5)∞n=1 = (1, 4),

(d(n) mod 13)∞n=1 = (1, 12, 12, 4, 9, 9, 3, 10, 10, 12, 1, 1, 9, 4, 4, 10, 3, 3),

(d(n) mod 17)∞n=1 = (1, 16, 0, 16, 15, 2, 0, 2, 4, 13, 0, 13,

9, 8, 0, 8, 16, 1, 0, 1, 2, 15, 0, 15, 13, 4, 0, 4, 8, 9, 0, 9),

(d(n) mod 3)∞n=0 = (1, 1, 2)∗,
(d(n) mod 7)∞n=0 = (1, 1, 6, 2, 2, 2, 1, 0, 3, 0, 6, 0, 6)∗,
(d(n) mod 11)∞n=0 = (1, 1, 10, 7, 2, 3, 10, 7, 1, 1, 2, 0, 6, 2, 0, 1, 5, 0,

9, 9, 0, 1, 0, 0, 1, 0, 0, 8, 0, 0, 10)∗.

(b) More generally, for any prime p of the form 4k+1, the sequence (d(n) mod p)∞n=1
is periodic, and for any prime p of the form 4k + 3, the sequence has only finitely
many nonzero terms.

Note that in the congruences modulo primes p = 4k + 1 described above, the term
d(0) = 1 is excluded as it does not follow the periodical pattern of the congruence.

8 Open problems

We conclude with a few open problems.

1. Prove Conjecture 13.
2. Extend Conjecture 13 further, for example by studying the period of the sequence

(d(n) mod p)∞n=1 of residues for primes p = 4k + 1, and congruences modulo
higher powers of primes.

3. Study integer sequences arising from the Taylor coefficient sequences of other
modular forms. Develop a general theory of when such sequences arise and find
connections between them and other problems in number theory.

4. Find a combinatorial interpretation for the sequence (d(n))∞n=0 (the possible exis-
tence of such an interpretation is suggested by the use of the combinatorial formula
in the proof of Theorem 7).

5. What can be said about the sequence of signs of d(n)?
6. The function θ3(x) is intimately connected to the theory of the Riemann zeta

function via the classical relation

π−s/2�(s/2)ζ(s) = 1

2

∫ ∞

0
(θ3(x) − 1)xs/2−1 dx .
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By a change of variables t = (1 − x)/(1 + x) this can be rewritten as

π−s/2�(s/2)ζ(s) =
∫ 1

−1

(
σ3(t) − 1√

1 + t

)
(1 − t)s/2−1(1 + t)(1−s)/2−1 dt .

Can this identity, combined with the Taylor expansion and additional observations
about the coefficient sequence (d(n))∞n=0, be used to deduce new facts about the
Riemann zeta function?
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Appendix: a table of the values (d(n))20n=0

Table 1 The initial values of the
sequence (d(n))∞n=0

n d(n)

0 1

1 1

2 −1

3 51

4 849

5 −26199

6 1341999

7 82018251

8 18703396449

9 −993278479599

10 −78795859032801

11 38711746282537251

12 −923351332174412751

13 4688204953344642495801

14 501271295036889289819599

15 −89944302490128540556106949

16 −104694993963067299023875442751

17 63396004159664562363095882996001

18 −10788308985765935467659682700676801

19 8534133600987639916144760846045541651

20 16747176493521483129100021404620455570449
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