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ABSTRACT

In settings with incomplete information, players can find
it difficult to coordinate to find states with good social wel-
fare. For instance, one of the main reasons behind the recent
financial crisis was found to be the lack of market trans-
parency, which made it difficult for financial firms to accu-
rately measure the risks and returns of their investments.
Although regulators may have access to firms’ investment
decisions, directly reporting all firms’ actions raises confiden-
tiality concerns for both individuals and institutions. The
natural question, therefore, is whether it is possible for the
regulatory agencies to publish some information that, on
one hand, helps the financial firms understand the risks of
their investments better, and, at the same time, preserves
the privacy of their investment decisions. More generally,
when can the publication of privacy-preserving information
about the state of the game improve overall outcomes such
as social welfare?

In this paper, we explore this question in a sequential
resource-sharing game where the value gained by a player on
choosing a resource depends on the number of other players
who have chosen that resource in the past. Without any
knowledge of the actions of the past players, the social wel-
fare attained in this game can be arbitrarily bad. We show,
however, that it is possible for the players to achieve good
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social welfare with the help of privacy-preserving, publicly-
announced information. We model the behavior of players
in this imperfect information setting in two ways — greedy
and undominated strategic behaviours, and we prove guar-
antees about the social welfare that certain kinds of privacy-
preserving information can help attain. To achieve the so-
cial welfare guarantees, we design a counter with improved
privacy guarantees under continual observation. In addi-
tion to the resource-sharing game, we study the main ques-
tion for other games including sequential versions of the
cut, machine-scheduling and cost-sharing games, and games
where the value attained by a player on a particular action
is not only a function of the actions of the past players but
also of the actions of the future players.

Categories and Subject Descriptors

F.m [Theory of Computation]: Miscellaneous

Keywords
Privacy; Game Theory

1. INTRODUCTION

Multi-agent settings that are non-transparent (where play-
ers cannot see the current state of the system) have the
potential to lead to disastrous outcomes. For example, in
examining causes of the recent financial crisis and subse-
quent recession, the Financial Crisis Inquiry Commission
[4, p. 352] concluded that “The OTC derivatives market’s
lack of transparency and of effective price discovery exacer-
bated the collateral disputes of AIG and Goldman Sachs and
similar disputes between other derivatives counterparties.”
Even though regulators have access to detailed confidential
information about financial institutions and (indirectly) in-
dividuals, current statistics and indices are based only on
public data, since disclosures based on confidential informa-
tion are restricted. However, forecasts based on confidential
data can be much more accurate!, prompting regulators to

1For example, Oet et al. [12] compared an index based on
both public and confidential data with an analogous index
based only on publicly available data. The former index
would have been a significantly more accurate predictor of
financial stress during the recent financial crisis (see Oet
et al. [11, Figure 4]). See Flood et al. [5] for further discus-
sion.



ask whether aggregate statistics can be economically useful
while also providing rigorous privacy guarantees [5].

In this work, we show that such privacy-preserving public
information, in an interesting class of sequential decision-
making games, can achieve (nearly) the best of both worlds.
In particular, the goal is to produce information about ac-
tions taken by previous agents that can be posted publicly,
preserves all agents’ (differential) privacy, and can signifi-
cantly improve worst-case social-welfare. While our models
do not directly speak to the highly complex issues involved in
real-world financial decision-making, they do indicate that
in settings involving contention for resources and first-mover
advantages, privacy-preserving public information can be a
significant help in improving social welfare. In the following
sections, we describe the game setting and the information
model.

1.1 Game Model

Consider a setting in which there are m resources and n
players. The players arrive online, in an adversarial order,
one at a time?. Each player i has some set A; of resources she
is interested in and that is known only to herself. An action
a; of player i is of the form (as1,...,aim), where a;,» > 0
represents the amount that player ¢ invests in resource r, and
moreover, Zje[m] a;,; = 1. For simplicity, we assume that
all a;, are in {0,1} i.e, the unit-demand setting (we study
the continuous version where a;,»’s can be fractional, but still
sum to 1, in the full version of this paper). Furthermore, we
do not make the assumption that players have knowledge
of their position in the sequence, that is, a player need not
know how many players have acted before her.

Each resource r has some non-increasing function V, :
Zt — RT indicating the value, or utility, of this resource
to the kth player who chooses it. Therefore, the utility of
player i is wi(ai,a1,..i-1) = >, @irVr(@ir), where z;, =
23;11 aj,» for each r. In this resource sharing setting, the
utility for a player of choosing a certain resource is a function
of the resource and (importantly) the number of players who
have invested in the resource before her (and not after her)?.

Hllustrative Example.

For each resource, suppose V,(k) = V;.(0)/k, where V;.(0)
is the initial value of resource r. The value of each resource
r drops rapidly as a function of the number of players who
have chosen it so far. If each player ¢ has perfect information
about the investment choices made by the players before her,
the optimal action for player i is to greedily select the action
in A; of highest utility based on the number of players who
have selected each resource so far. As shown in Section 3,
the resulting social welfare of this behavior is within a fac-
tor of 4 of the optimal. In the case where each player has
no information about other players’ behaviors, some partic-
ularly disastrous sequences of actions might reasonably oc-
cur, leading to very low social welfare. For example, if each
player i has access to a public resource r where V,.(0) = 1
and a private resource r; where V;., (0) = 1 — ¢, each might
reasonably choose greedily according to V.(0), selecting the

2For ease of exposition, we rename players such that player
¢ is the ith to arrive.

3In Section 5, we consider a generalization where the utility
to a player of investing in a particular resource is a function
of the total number of players who have chosen that resource,
including those who have invested after her.
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resource of highest initial value (in this case, r). This would
give social welfare of In(n), whereas the optimal assignment
would give n(1 — €). Without information about the game

state, therefore, the players may achieve only a O (%)

fraction of the possible welfare.

1.2 Information Model

In resource sharing games, players’ decisions about their
actions will be best when they know how many players have
chosen each resource when they arrive. The mechanisms we
consider, therefore, will publicly announce some estimate of
these counts. We consider the trade-off between the pri-
vacy lost by publishing these estimates and the accuracy of
the counters in terms of social welfare. We consider three
categories of counters for publicly posting the estimate of
resource usage: perfect, private and empty counters.

Perfect Counters: At all points, the counters display
the exact usage of each resource.

Privacy-preserving public counters: At all points,
the counters display an approximate usage of the resources
while maintaining privacy for each player. We define the
privacy guarantee in Section 2.

Empty Counters: At all points, every counter displays
the value 0.

1.3 Players’ Behavior

Each player is a utility-maximizing agent and will choose
the resource that, given their beliefs about actions taken by
previous players and the publicly displayed counters, gives
them maximum value. We analyze the game play under two
classes of strategies — greedy and undominated strategies.

1. Greedy strategy: Under the greedy strategy, a player
has no outside belief about the actions of previous
players and chooses the resource that maximizes her
utility given the currently displayed (or announced)
values of the counters. Greedy is a natural choice of
strategy to consider since it is the utility-maximizing
strategy when the usage counts posted are perfect.

2. Undominated Strategy(UD): Under undominated
strategies, we allow players to have any beliefs about
the actions of the previous players that are consistent
with the displayed value of the counters®, and they
are allowed to play any undominated strategy a; under
this belief. A strategy a; is undominated under a belief,
if no other a} get a strictly higher utility. °

4As will become clear in Section 2, we work with privacy-
preserving public counters that display values that can be
off from the true usage only in a bounded range. Hence with
these counters, a player’s belief is consistent as long as the
belief implies the usage of the resource to be a number that is
within the bounded range of the displayed value. Moreover,
with empty counters, any belief about the actions of previous
players is a consistent belief.

5For each counter mechanism we consider, there exists at
least one undominated strategy. For example, with perfect
counters, the only consistent belief is that the true value is
equal to the displayed value and here the greedy strategy
is always undominated; moreover, if the counter mechanism
has a nonzero probability of outputting the true value, then
again the greedy strategy is undominated under the belief
that the displayed value is the true value; if the counter
mechanism can display values that are arbitrarily off from
the true value, then for equal initial values every strategy is
undominated.



We analyze the social welfare SW(a) = >, ui(a) gener-
ated by an announcement mechanism M for a set of strate-
gies D and compare it to the optimal social welfare OPT.
For a game setting g, constituted of a collection of players
[n] and their allowable actions A; (as defined in Section 1.1),
OPT(g) is defined as the optimal social welfare that can
be achieved by any allocation of resources to the players,
where the space of feasible allocations is determined by the
setting g. In the unit-demand setting, OPT(g) is the maxi-
mum weight matching in the bipartite graph G = (UUV, E)
where U is the set of the n players, V' has n vertices for each
resource r, one of value V;.(k) for each k € [n], and there is
an edge between player ¢ and all vertices corresponding to
resource r if and only if r € A; (Note that the weights are on
the vertices in V). The object of our study is CRp(g, M),
the worst case competitive ratio of the optimal social welfare
to the welfare achieved under strategy D and counter mech-
anism M. As mentioned earlier, D will either be the greedy
(GREEDY) or the undominated (UNDOM) strategy, and M
will be either the perfect (M run), the privacy-preserving or
the empty (My) counter. When M uses internal random
coins, our results will either be worst-case over all possible
throws of the random coins, or will indicate the probability
with which the social welfare guarantee holds.

1.4 Statement of Main Results

For sequential resource-sharing games, we prove that for
all nonincreasing value curves, the greedy strategy following
privacy-preserving counters has a competitive ratio polylog-
arithmic in the number of players (Theorem 5). This should
be contrasted with the competitive ratio of 4 achieved by
greedy w.r.t. perfect counters (Theorem 1) and the nearly-
linear (in the number of players) competitive ratio of greedy
with empty counters (as shown in the illustrative example in
Section 1.1). For the case of undominated strategies, when
the marginal values of resources drop slowly, (for example, at
a polynomial rate, V;.(k) = V;.(0)/k? for constant p > 0), we
bound the competitive ratio (w.r.t. privacy-preserving coun-
ters) (Theorem 7). With empty counters, the competitive
ratio for undominated strategies is unbounded (Theorem 2)
for arbitrary curves and is at least quadratic (in the number
of players) if the value curve drops slowly (Theorem 3). We
note here that for many of our positive results for privacy
preserving counters state the competitive ratio in terms of
parameters of the counter vector a and 3 (as detailed in Sec-
tion 2) and for a particular implementation of the counter
vectors, the values of o and 8 are mentioned in Section 4.

The key privacy tool we use is the differentially private
counter under continual observation [3], which we use to
publish estimates of the usage of each resource. We improve
upon the existing error guarantees of differentially private
counters and design a new differentially private counter in
Section 4. The new counter provides a tighter additive guar-
antee at the price of introducing a constant multiplicative
error.

In Section 5, we consider other classes of games — specif-
ically, we analyze Unrelated Machine Scheduling, Cut, and
Cost Sharing games. The work of Leme et al. [10] showed
these games have improved sequential price of anarchy over
the simultaneous price of anarchy. For these games, we ask
the question: if players do not have perfect information to
make decisions, but instead have only noisy approximations
(due to privacy considerations), does sequentiality still im-
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prove the quality of play? We prove that the answer is af-
firmative in many cases.

1.5 Related Work

A great deal of work has been done at the intersection of
mechanism design and privacy; Pai and Roth [13] have an
extensive survey. Our work is similar to much of the previ-
ous work in that it considers maintaining differential privacy
to be a constraint. The focus of our work however is on how
useful information can be provided to players in games of
imperfect information to help achieve a good social objec-
tive while respecting the privacy constraint of the players.
The work of Kearns et al. [9] is close in spirit to ours. Kearns
et al. [9] consider games where players have incomplete in-
formation about other players’ types and behaviors. They
construct a privacy-preserving mechanism which collects in-
formation from players, computes an approximate correlated
equilibria, and then advises players to play according to
this equilibrium. The mechanism is approximately incentive
compatible for the players to participate in the mechanism
and to follow its suggestions. Several later papers [14, 7] pri-
vately compute approximate equillibria in different settings.
Our main privacy primitive is the differentially private coun-
ters under continual observation [3, 2], also used in much of
the related work on private equilibrium computation.

Our investigation of cut games, unrelated machine schedul-
ing, and cost-sharing (Section 5) is inspired by work of Leme
et al. [10]. Their work focuses on the improvement in social
welfare of equilibria in the sequential versus the simultaneous
versions of certain games. We ask a related question: when
we consider sequential versions of games, and only private,
approzimate information about the state of play (as opposed
to perfect) is given to players, how much worse can social
welfare be?

As mentioned in Section 1.3, one class of player behavior
for which we analyze the games is greedy. Our analysis of
greedy behavior is in part inspired by the work of Balcan
et al. [1], who study best response dynamics with respect
to noisy cost functions for potential games. An important
distinction between their setting and ours is that the noisy
estimates we consider are estimates of state, not value, and
may for natural value curves be quite far from correct in
terms of the wvalues of the actions.

2. PRIVACY-PRESERVING PUBLIC COUN-
TERS

We design announcement mechanisms M; which give ap-
proximate information about actions made by the previous
players to player ¢. Let A,, denote the action space for
each player (the m-dimensional simplex A,, = {a € [0,1]™ |
lali < 1}). Mechanism M; : (An)"' x R = A, de-
pends upon the actions taken before ¢ (specifically, the us-
age of each resource by each player), and on internal ran-
dom coins R. When player ¢ arrives, m;(a1,...,ai—1) ~
Mi(aq,...,a;—1) is publicly announced. Player i plays ac-
cording to some strategy d; : A,, — A;, that is a; =
di(mi,...,mi(a1,...,a;-1)), a random variable which is a
function of this announcement. When it is clear from con-
text, we denote m; (a1, ...,a;—1) by m;. Formally, the coun-
ters used in this paper satisfy the following notion of privacy.



DEFINITION 1. An announcement mechanism M is (e, )-
differentially private under adaptive® continual observation
in the strategies of players if, for each d, for each player i,
each pair of strategies d;,d;, and every S C (An,)"™:

P[(m1,...,mn) € S] < eP{(my,..
ami)f mj ~

aa;'—l)
/
;™M)

where a; = dj(mi,...,m;), aj = dj(ma,...
Mj(ar,...,a5-1), mj ~ M;(a,..
and for all j > i, aj = dj(ma,. ..

/
'7ai*13ai7ai+l7' ..

/
,mifl,mi,miﬁ_l, e

This definition requires that two worlds which differ in a
single player changing her strategy from d; to d; have sta-
tistically close joint distributions over all players’ announce-
ments (and thus their joint distributions over actions). Note
that the distribution of j > 4’s announcement can change
slightly, causing j’s distribution over actions to change slightly,
necessitating the cascaded m/;, a’; for j > ¢ in our definition.
The mechanisms we use maintain approximate use counters
for each resource. The values of the counters are publicly
announced throughout the game play. We now define the
notion of accuracy used to describe these counters.

DEFINITION 2 ((a, 3,7)-ACCURATE COUNTER VECTOR).
A set of counters yir is defined to be («a, B8,v)-accurate if
with probability at least 1 — ~y, at all points of time, the dis-
played value of every counter y; , lies in the range [%
B, axir + B] where x; , is the true count for resource i, and

is monotonically increasing in the true count.

We refer to a set of («, 3,0)-accurate counters as («, 3)-
counters for brevity. It is possible to achieve v = 0 (which
is necessary for undominated strategies, which assumes the
multiplicative and additive bounds on y are worst-case), tak-
ing an appropriate loss in the privacy guarantees for the
counter (Proposition 1). Counters satisfying Definitions 1
and 2 with & = 1 and 8 = O(log® n) were given in Dwork
et al. [3], Chan et al. [2]; we give a different implementation
in Section 4 which gives a tighter bound on «f by taking
«a to be a small constant larger than 1. Furthermore, the
counters in Section 4 are monotonic (i.e., the displayed val-
ues can only increase as the game proceeds) and we use
monotonicity of the counters in some of our results.

In some settings we require counters we a more specific
utility guarantee:

DEFINITION 3 ((«, 3,7)-ACCURATE UNDERESTIMATOR).
A set of counters y; r is defined to be («a, B8,v)-accurate un-
derestimator if with probability at least 1 — v, at all points
of time, the displayed value of every counter y; , lies in the

i .
range [ -8, xi,r] where x; r is the true count for resource

e
1.

The following observation states that a counter vector can
be converted to an undercounter with small loss in accuracy.

OBSERVATION 1. We can convert a («, B)-counter to an
(a2, %)-underestimatmg counter vector.

ProOOF. We can shift the counter, éx —-f<y<azr+p
implies v’ = % <zand Sz — % <y. O

6 Adaptivity is needed in this case because the announce-
ments are arguments to the actions of players: when a par-
ticular action changes, this modifies the distribution over
the future announcements, which in turn changes the distri-
bution over future selected actions.

My Mgy ..y my) € S]+6,
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3. RESOURCE SHARING

In this section, we consider resource sharing games — the
utility to a player is completely determined by the resource
she chooses and the number of players who have chosen that
resource before her. This section considers the case where
players’ actions are discrete: a; € {0,1}™ for all 4,a; € A;.
We defer the analysis of the case where players’ actions are
continuous to the full version of this paper.

3.1 Perfect counters and empty counters

Before delving into our main results, we point out that,
with perfect counters, greedy is the only undominated strat-
egy, and the competitive ratio of greedy is a constant.

THEOREM 1. With perfect counters, greedy behavior is dominant-
strategy and all other behavior is dominated for any sequen-
tial resource-sharing game g; and C Rareeoy (M Fpuu, g) < 4.

The proof of this Theorem follows from the connection be-
tween future-independent resource-sharing and online vertex-
weighted matching, which we mention below.

OBSERVATION 2. In the setting where ||ail|l1 = 1 for all
a; € A, for all i, full-information, discrete resource-sharing
reduces to online, vertex-weighted bipartite matching.

PRrOOF. Construct the following bipartite graph G = (U, V, E)
as an instance of online vertex-weighted matching from an
instance of the future-independent resource sharing game.
For each resource r, create n vertices in V, one with weight
Vi (t) for each ¢ € [n]. As players arrive online, they will
correspond to vertices in u; € U. For each a; € A; corre-
sponding to a set of resources S, u; is allowed to take any
subset of V' with a single copy of each r € S. [

The proof of the social welfare is quite similar to the one-
to-one, online vertex-weighted matching proof of [8], with
the necessary extension for many-to-one matchings (losing
a factor of 1/2 in the process).

ProoOr OF THEOREM 1. Consider any instance of G =
(U,V, E), a vertex-weighted bipartite graph. Let u be the
optimal many-to-one matching, which can be applied to
nodes in both U and V' (where u € U has potentially mul-
tiple neighbors in V). Consider u’, the greedy many-to-one
matching for a particular sequence of arrivals o.

Consider a particular u € U, and the time it arrives o(u)
as p/ progresses. If at least 1/2 the value of p(u) is avail-
able at that time, then w(p'(u)) > 2w(u(u)) (since u can
be matched to any subset of p(u), by the downward closed
assumption). If not, then w(p'(1(u))) > sw(p(u)) (at least
half the value was taken by others). Thus, we know that,
for all wu,

w(p' () +wp' () > Sw(p(u)

summing up over all u, we get

1
2

> wl (W) +wi (k)

u

20(') > 2 3 w(p(w) = Ju(p)

Rearranging shows that w(u') > w(p).

Finally, the utility to a player is clearly greatest when they
are greedy, so that is a dominant strategy (thus implying any
non-greedy strategy is dominated). [



Recall, from our example in the introduction, that both
greedy and undominated strategies can perform poorly with
respect to empty counters. We defer the proof of the follow-
ing results to the full version of the paper. Recall that My
refers to the empty counter mechanism.

THEOREM 2. There exist games g such that C Ruxpou(Myp, g)

cannot be bounded by any function of n.

THEOREM 3. There exists g such that C Ruxpon (Mg, g) >

Q) when Vi (t) = =@,

log(n)
3.2 Privacy-Preserving Counters and Greedy
Behavior

THEOREM 4. With («a, 8)-accurate underestimator counter
mechanism M, CRcreeov(M,g) = O(apB) for all resource-
sharing games g.

Before we prove Theorem 4, we need a way to compare
players’ utilities with the utility they think they get from
choosing resources greedily with respect to approximate coun-
ters. Let a player’s perceived value be V,.(y;,») where r is the
resource she chose (the value of a resource if the counter was
correct, which may or may not be the actual value of the
resource).

LEMMA 1. Suppose players choose greedily according to a
(a, B)-underestimator. Then, the sum of their actual values
-fraction of the sum of their perceived values.

1
2ap

PROOF. Suppose k players chose a given resource r. For
ease of notation, let these be players 1 through k. We wish
to bound the ratio

S Vi)
Z§:1 Vi(e)

We start by “grouping” the counter values: it cannot take
on values that are small for more than a certain number of
steps. In particular, if ; , > Taf, for some T € N,

Tap B
@

~p=(T-1)p
Now, we bound the ratio from above using this fact.
S5 Valyi) _ 208552 V(T - 1))
R SN AR
_ 208557 V(T - B)
D YA AR

where the first inequality came from the fact that the value
curves are non-increasing and the lower bound on the counter
values from above, and the second because all terms are non-
negative. [

1
Yir 2= Tip — B>
(6%

< 2af

ProoOr OF THEOREM 4. The optimal value of the resource-

sharing game g, denoted by O PT'(g), is the maximum weight
matching in the bipartite graph G = (U UV, E) where U is
the set of the n players and V has n vertices for each re-
source r, one of value V;.(k) for each k € [n]. There is an
edge between player ¢ and all vertices corresponding to re-
source r if and only if r € A;. Note that the weights are on
the vertices in V.
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We now define a complete bipartite graph G’ which has
the same set of nodes but whose node weights differ for some
nodes in GG. Consider some resource r, and the collection of
players who chose r in g. If there were tx players i who
chose resource r when y; , = k, make t; of the nodes corre-
sponding to r have weight V;.(k). Finally, if there were Fy
players who chose resource r, let the remaining n — Fj, nodes
corresponding to r have weight V.(Fy + 1).

We first claim that the perceived utility of players choosing
greedily according to the counters is identical to the weight
of the greedy matching in G’ (where nodes arrive in the same
order). We prove, in fact, that the corresponding matching
will be identical by induction. Since the counters are mono-
tone, earlier copies of a resource appear more valuable. So,
when the first player arrives in G’, the most valuable node
she has access to is exactly the first node corresponding to
the resource she took according to the counters. Now, as-
sume that prior to player ¢, all players have chosen nodes
corresponding to the resource they chose according to the
counters. By our induction hypothesis and monotonicity
of the counters and value curves, there is a node n; corre-
sponding to i’s selection r according to counters of weight
Vi (yi,r), and no heavier node corresponding to r. Likewise,
for all other resources 7/, all nodes corresponding to r’ have
weight more than V,/(y;,s). Thus, ¢ will take n; for value
Vi(yir). Thus, the weight of the greedy matching in G’
equals the perceived utility of greedy play according to the
counters.

Let GREEDY counrers denote the set of actions players make
playing greedily with respect to the counters. By Lemma 1,
the social welfare of GREEDY counters 1S @ j—fraction of the
perceived social welfare. By our previous argument, the per-
ceived social welfare of greedy play according to the coun-
ters is the same as the weight of the greedy matching in
G’. By Theorem 1, the greedy matching in G’ is a 4-
approximation to the max-weight matching in G’. Finally,
since the counters are underestimators, the weight of the
max-weight matching in G’ is at least as large as OPT(g).
Thus, that the social welfare of greedy play with respect to
counters is a w fraction of the optimal welfare of g. []

THEOREM 5. There exists (e, 0)-privacy-preserving mech-

log n log *5*

€ €

anism M such that
) mlognloglog :
CRGI{HH])Y(M79) < min <O ( ) , O < 9

for all resource-sharing games g.

PRrROOF. In Section 4, we prove Corollary 2 that says that
we can achieve an (e, d)-differentially private counter vector
achieving the better of (1, O(M))—accurfmy and

(o, On (w)) -accuracy for any constant a > 1.

This along with Theorem 4 proves the result. [

Observation 3 (whose proof can be found in the full ver-
sion) states that players acting greedily according to any
estimate that is deterministically more accurate than the
values provided by the private counters also achieve simi-
lar or better social welfare guarantees. Moreover, we show
that if the estimates used by the players are more accurate
only in expectation, as opposed to deterministically, then we
cannot make a similar claim (Observation 4).



OBSERVATION 3. Suppose that M is a (o, 3,7) underes-
timator, giving estimates y;r. Furthermore, assume each
player i is playing greedily with respect to a revised estimate
zi,r such that, for each r,i, and value of z;r is always in the
range [Yi,r, Tir|. Then, for g, a discrete resource-sharing
game, with probability 1 — ~y, the ratio of the optimal to the
achieved social welfare is O(af).

PRrROOF. The proof follows from the proof of Theorem 4,
along with the following observation. Since z;,’s is deter-
ministically more accurate than the COUNTERS, we have for
each ¢ that the value gained by greedily choosing according
to the estimates z;, is at least as much as the value gained
by greedily choosing using y; . Therefore, summing over all
the players, the achieved social welfare is at least as much
as it would be if everyone had played greedily according to

yi;,u D

OBSERVATION 4. There exists a resource-sharing game g,
such that if the players play greedily according to estimates
zi,r that are more accurate than the displayed value only
in expectation — specifically for each r,i, and value of x; r,
Plzi,r < zir] > 1/2 and also E||zi» — zir|] = 1, then the
ratio of the optimal to the achieved social welfare can be as

bad as Q (v/n).

PROOF. Let there be n + /n resources, with resources
,,,, = having V.. (0) = H, Viu,(t) = 0 for all ¢t > 0,
and resource r; such that Vi, (t) = H — € for all t. Player
¢ has access to all resources r*; and r;. Then, OPT =
Hyn+ (H — )(n — ) = Hn — (n— v/n)e.

Consider the counter vector which is exactly correct with
probability 1 — ﬁ and undercounts by +/n with probability
v
with probability 1). Then, greedy behavior with respect to
this counter will (in expectation) have y/n players choose rx
for each f, achieving welfare /nH. Thus, the competitive
ratio is Q(yv/n) as € — 0, as desired. [

(note that the expected error is just 1 and it undercounts

3.3 Privacy-Preserving Counters and Undom-
inated behavior

We begin with an illustration of how undominated strate-
gies can perform poorly for arbitrary value curves, as moti-
vation for the restricted class of value curves we consider in
Theorem 7. In the case of greedy players, we were able to
avoid the problem of players undervaluing resources rather
easily, by forcing the counters to only underestimate x; ,.
This won’t work for undominated strategies: players who
know the counts are shaded downward can compensate for
that fact.

THEOREM 6. For an (e, 0)—differentially private announce-
ment mechanism M, there exist games g for which

CRUNDOM(Q,M) =0 (%) .

PROOF. Suppose there are two players 1 and 2, and re-
sources r,7’. Let r have V;.(0) = 1, V».(1) = 0, and V,/ (k) =
p, for all k > 0. Furthermore, let player 1 have access only to
resource r’ but player 2 has access to both r and 7’. Player 1
will choose r’. Let player 2’s strategy be d2, such that if she
determines there was nonzero chance that player 1 chose r
according to her signal maz, she will choose resource r’. This
is undominated: if 1 did choose r, ' will be more valuable
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for 2. Thus, if 2 sees any signal that can occur when 7 is cho-
sen by 1, she will choose r’. The collection of signals 2 can
see if 1 chooses r has probability 1 in total. So, because ms
is (e, d)-differentially private in player 1’s action, the set of
signals reserved for the case when 1 chooses r’ (that cannot
occur when r is chosen by 1) may occur with probability at
most § (they can occur with probability 0 if 1 chose 7, imply-
ing they can occur with probability at most é when 1 chooses
r"). Thus, with this probability 1 — 4, player 2 will choose
r’, implying E[SW] < (1 —8)2p+ (1 +p) =6+ (2 —6)p,
which for p sufficiently small approaches §, while 14 p is the
optimal social welfare. [

Given the above example, we cannot hope to have a the-
orem as general as Theorem 4 when analyzing undominated
strategies with privacy-preserving counters. Instead, we show
that, for a class of well-behaved value curves, we can bound
the competitive ratio of undominated strategies (Theorem 7).

Again, along the lines of the greedy case, we show that
any player who chooses any undominated resource r’ over
resource r gets a reasonable fraction of the utility she would
get from choosing r. Then, by the analysis of greedy play-
ers, we have an analogous argument implying the bound of
Theorem 7.

THEOREM 7. If each value curve V, has the property that
Y(a, B)Ve(z) > Vi((max{0, 25 — %})) and also V. ((o?x +
2a8)) > é(a, B)Vr(z), then an action profile a of undom-
inated strategies according to («, )-counter vector M has

CRUND()M(g; M) =0 (’(/)(Oé, ﬁ)¢(a, ﬂ))

In particular, Theorem 7 shows that, for games where
Vi(i) = Vi-(0)

gr(zir)’
tive ratio of undominated strategies degrades gracefully as

a function of the maximum degree of those polynomials.
A simple calculation implies the following corollary, whose
proof we relegate to the full version.

where g, is a polynomial, the competi-

COROLLARY 1. Suppose for a resource-sharing game g,
each resource r has a value curve of the form V.(x) = ‘q/:fg E
where g, is a monotonically increasing degree-d polynomial
and V;-(0) is some constant. Then, C Ruxpou(g, M) < O(2a°8)?

with M providing («, 8)—counters.

4. PRIVATE COUNTERS WITH SMALLER
ERROR AT SMALLER VALUES

In this section, we describe a counter for the model of dif-
ferential privacy under continual observation that has im-
proved guarantees when the value of the counter is small.
Recall the basic counter problem: given a stream
d = (a1, az,...,an) of numbers a; € [0,1], we wish to release
at every time step t the partial sum z; = ZEZI a;. We re-
quire a generalization, where one maintains a vector of m
counters. Each player’s update contribution is now a vector
ai € Ay, = {a € [0,1]™ | |la]js < 1}. That is, a player can
add non-negative values to all counters, but the total value
of her updates is at most 1. The partial sums z; then lie in
(R*)™ and have £1 norm at most ¢.

Given an algorithm M, we define the output stream
(Y1, ey Yn) = M(&) where yr = M(t, a1, ...,at—1) lies in R™.
We seek counters that are private (Definition 1) and sat-
isfy a mixed multiplicative and additive accuracy guarantee



(Definition 2). Proofs of all the results in this section can
be found in the full verison of this paper.

The original works on differentially private counters [3, 2]
concentrated on minimizing the additive error of the esti-
mated sums, that is, they sought to minimize ||z: — yt||co-
Both papers gave a binary tree-based mechanism, which we
dub “TreeSum”, with additive error approximately (log®n)/e.
Some of our algorithms use TreeSum, and others use a new
mechanism (FTSum, described below) which gets a better
additive error guarantee at the price of introducing a small
multiplicative error. Formally, they prove:

LEMMA 2. For every m € N and v € (0,1): Running m
independent copies of TreeSum [3, 2] is (e, 0)-differentially

. . log n log 2™
private and provides an (1, Ciree: ———1—

to partial vector sums, where Ciree > 0 is an absolute con-
stant.

Even for m = 1, = 1, this bound is slightly tighter than
those in Chan et al. [2] and Dwork et al. [3]; however, it
follows directly from the tail bound in Chan et al. [2].

Our new algorithm, FTSum (for Flag/Tree Sum), is de-
scribed in Algorithm 1. For small m (m = o(log(n))), it
provides lower additive error at the expense of introducing
an arbitrarily small constant multiplicative error.

LEMMA 3. For every m € N, a > 1 and v € (0,1), FT-
Sum (Algorithm 1) is (e, 0)-differentially private and
~ log 2 ~
(o, Oa(m Oeg ), 7v)-approzimates partial sums (where Oq(+)
hides polylogarithmic factors in its argument, and treats «
as constant).

~

FTSum proceeds in two phases. In the first phase, it in-
crements the reported output value only when the under-
lying counter value has increased significantly. Specifically,
the mechanism outputs a public signal, which we will call
a “flag”, roughly when the true counter achieves the values
logn, alogn, a?logn and so on, where « is the desired mul-
tiplicative approximation. The reported estimate is updated
each time a flag is raised (it starts at 0, and then increases
to logn, alogn, etc). The privacy analysis for this phase is
based on the “sparse vector” technique of Hardt and Roth-
blum [6], which shows that the cost to privacy is proportional
to the number of times a flag is raised (but not the number

of time steps between flags).

a log2 n
. ; ] (a—1)e
the algorithm switches to the second phase and simply uses

When the value of the counter becomes large (about

the TreeSum protocol, whose additive error (about @) is
low enough to provide an o multiplicative guarantee (with-
out need for the extra space given by the additive approxi-
mation).

If the mechanism were to raise a flag exactly when the
true counter achieved the values logn, alogn, a?logn, etc,
then the mechanism would provide a (a,logn,0) approxi-
mation during the first phase, and a («, 0,0) approximation
thereafter. The rigorous analysis is more complicated, since
flags are raised only near those thresholds.

Enforcing Additional Guarantees.

Finally, we note that it is possible to enforce to additional
useful properties of the counter. First, we may insist that
the accuracy guarantees be satisfied with probability 1 (that
is, set v = 0), at the price of increasing the additive term &
in the privacy guarantee:

,7Y)-approzimation

)

)
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Algorithm 1: FTSum — A Private Counter with Low
Multiplicative Error

Input: Stream @ = (a1, ...,an) € ([0,1]™)", parameters
m,n €N, a>1and vy >0
Output: Noisy partial sums y1, ..., yn € R™

k 4 [loga (527 - Ciree - 2RO,
/* Ciree is the constant from Lemma 2 */
€ )
for r =1 to m do
flag, < 0;
Zo,r < 0;

7r < (logn) + Lap(2/€');
for i =1 ton do
for r =1 to m do
if flag, < k then (First phase still in progress
for counter r)
Tip < Ti—1,r + Qir;
@iy < wir + Lap(3);
if z;, > 7. then (Raise a new flag for
counter 7)
flag, < flag, + 1;
7 + (logn) - of®8r 4 Lap(2/€);
Release y; . = (logn) - of*8r=1
Ise (Second phase has been reached for counter

= 0
~

Release y; , = r-th counter output from
TreeSum(a, €/2));

PROPOSITION 1. If M is (e, §)-private and («, B,~)-accurate,

then one can modify M to obtain an algorithm M’ with
the same efficiency that is (€, + v)-private and (a, 3,0)-
accurate.

Second, as in [3], we may enforce the requirement that the
reported values be monotone, integral values that increase
at each time step by at most 1. The idea is to simply report
the nearest integral, monotone sequence to the noisy values
(starting at 0 and incrementing the reported counter only
when the noisy value exceeds the current counter).

PROPOSITION 2 ([3]). If M is (e, 8)-private and (o, 8,7)-
accurate, then one can modify M to obtain an algorithm M’
which reports monotone, integral values that increase by 0
or 1 at each time step, with the same privacy and accuracy
guarantees as M.

COROLLARY 2. Algorithm 1 is an (€, 0)-differentially pri-
vate vector counter algorithm providing a

1. (1,0(%),0)—appmmmation (using modi-
fied TreeSum); or

2. (a, Oa(%glogw), 0)-approzimation for any con-
stant o > 1 (using FTSum).

5. EXTENSIONS

In the full version of this paper, we also consider settings
where players’ utility when choosing a resource r depends
upon the total number of players choosing r, not just the
players who chose r before. In addition, we study several
other classes of games: namely, cut games, consensus games,



and unrelated machine scheduling, and consider whether or
not private synopses of the state of play is sufficient to im-
prove social welfare over simultaneous play, as perfect syn-
opses have been proven to be in Leme et al. [10].

6. DISCUSSION AND OPEN PROBLEMS

In this work, we considered how public dissemination of
information in sequential games can guarantee a good social
welfare while maintaining differential privacy of the players’
strategies. We considered two ‘extreme’ cases — the greedy
strategy and the class of all undominated strategies. While
analyzing the class of undominated strategies gives guaran-
tees that are robust, in many games that we considered,
the competitive ratios were significantly worse than greedy
strategies, and in some cases they were unbounded. It is
interesting to note that many of the examples in this paper
that show the poor performance with undominated strate-
gies also hold when the players know their position in the
sequence, an assumption we have not made for any of the
positive results in this work. It is an interesting direction for
future research to consider classes of strategies that more re-
stricted than undominated strategies yet are general enough
to be relevant for games where players play with imperfect
information.

As mentioned in the introduction, we note here that, while
players are making choices subject to approximate infor-
mation, our results are not a direct extension of the line
of thought that approximate information implies approxi-
mate optimization. In particular, for greedy strategies, while
there may be a bound on the error of the counters, that
does not imply, for arbitrary value curves, playing greedily
according to the counters will be approximately optimal for
each individual. In particular, consider one resource r with
value H for the first 10 investors, and value 0 for the re-
maining investors, and a second resource 7’ with value H/2
for all investors. With (a, 8,7), as many as § players might
have unbounded ratio between their value for r as r’, but
will pick 7 over r’. The analysis of greedy shows, despite this
anomaly, the total social welfare is still well-approximated
by this behavior.

All of our results relied on using differentially private coun-
ters for disseminating information. For the differentially-
private counter, a main open question is “what is the op-
timal trade-off between additive and multiplicative guaran-
tees?”. Furthermore, as part of future research, one can
consider other privacy techniques for announcing informa-
tion that can prove useful in helping players achieve a good
social welfare. And more generally, we want to understand
what features of games lend themselves to be amenable to
public dissemination of information that helps achieve good
welfare and simultaneously preserves privacy of the players’
strategies.
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