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ABSTRACT

We give efficient protocols and matching accuracy lower bounds
for frequency estimation in the local model for differential privacy.
In this model, individual users randomize their data themselves,
sending differentially private reports to an untrusted server that ag-
gregates them.

We study protocols that produce a succinct histogram represen-
tation of the data. A succinct histogram is a list of the most frequent
items in the data (often called “heavy hitters”’) along with estimates
of their frequencies; the frequency of all other items is implicitly
estimated as 0.

If there are n users whose items come from a universe of size d,
our protocols run in time polynomial in n and log(d). With high
probability, they estimate the accuracy of every item up to error
O(4/log(d)/(€?n)). Moreover, we show that this much error is
necessary, regardless of computational efficiency, and even for the
simple setting where only one item appears with significant fre-
quency in the data set.

Previous protocols (Mishra and Sandler, 2006; Hsu, Khanna and
Roth, 2012) for this task either ran in time Q(d) or had much worse
error (about {/log(d)/(e?n)), and the only known lower bound on
error was Q(1/y/n).

We also adapt a result of McGregor et al (2010) to the local set-
ting. In a model with public coins, we show that each user need
only send 1 bit to the server. For all known local protocols (includ-
ing ours), the transformation preserves computational efficiency.

1. INTRODUCTION

Consider a software producer that wishes to gather statistics on
how people use its software. If the software handles sensitive infor-
mation —for example, a browser for anonymous web surfing or a
financial management software—users may not want to share their
data with the producer. A producer may not want to collect the
raw data either, lest they be subject to subpoena. How can the pro-
ducer collect high-quality aggregate information about users while
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providing guarantees to its users (and itself!) that it isn’t storing
user-specific information?

In the local model for private data analysis (also called the ran-
domized response model'), each individual user randomizes her
data herself using a randomizer (); to obtain a report (or “signal”)
z; which she sends to an untrusted server to be aggregated in to a
summary s that can be used to answer queries about the data (Fig-
ure 1). The server may provide public coins visible to all parties,
but privacy guarantees depend only on the randomness of the user’s
local coins. The local model has been studied extensively because
control of private data remains in users’ hands.
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Figure 1: The local model for private data analysis.

We focus on protocols that provide differential privacy [6] (or,
equivalently in the local model, ~y-amplification [10] or FRAPP
[1D.

DEFINITION 1.1. We say that an algorithm Q : V — Zis
(€,0 )-local differentially private (or (¢,0 )-LDP), if for any pair
v,v" € V and any (measurable) subset S C Z, we have

Pr[Q(v) € §] < e Pr[Q(v') € S| +4.
The special case with 6 = 0 is called pure e-LDP.

We describe new protocols and lower bounds for frequency esti-
mation and finding heavy hitters in the local privacy model. Local
differentially private protocols for frequency estimation are used in
the Chrome web browser (Erlingsson et al. [9], Fanti et al. [11]),
and can be used as the basis of other estimation tasks (see Mishra
and Sandler [21], Dwork and Nissim [5]).

We also show a generic result for LDP protocols: in the public-
coin setting, each user only needs to send 1 bit to the server.

Suppose that there are n users, and each user ¢ holds a value v;
in a universe of size d (labeled by integers in [d] = {1, ...,d}). We
wish to enable an analyst to estimate frequencies: f(v) = %#{z :
V4 v} . Following Hsu et al. [14], we look at summaries that
provide two types of functionality:

'The term “randomized response” may refer either to the model or
a specific protocol; we use “local model” to avoid ambiguity.



o A frequency oracle, denoted FO, is a data structure together
with an algorithm A that, for any v € V), allows computing
an estimate f(v) = A(FO, v) of the frequency f(v).

The error of the oracle FO is the maximum over items v
of |f(v) — f(v)|. That is, we measure the £, error of the
histogram estimate implicitly defined by f . A protocol for
generating frequency oracles has error (1,3 ) if for all data
sets, it produces an oracle with error 1 with probability at
least 1 — 3.

A succinct histogram, denoted S-Hist, is a data structure
that provides a (short) list of items 01, ..., U, called the heavy
hitters, together with estimated frequencies (f(9;) : j €
[k]). The frequencies of the items not in the list are implicitly
estimated as f (v) = 0. As with the frequency oracle, we
measure the error of S-Hist by the /., distance between the

estimated and true frequencies, max,¢[q | fw) = f)|.

If a data structure aims to provide error 7, the list need never
contain more than O(1/7) items (since items with estimated
frequencies below 7 may be omitted from the list, at the price
of at most doubling the error).

If we ignore computation, these two functionalities are equiva-
lent since a succinct histogram defines a frequency oracle directly
and an analyst with a frequency oracle FO can query the oracle on
all possible items and retain only those with estimated frequencies
above a threshold 7 (increasing the error by at most n). However,
when the universe size d is large (for example, if a user’s input is
their browser’s home page or a financial summary), succinct his-
tograms are much more useful.

We say a protocol is efficient if it has computation time, com-
munication and storage polynomial in n and log(d) (the users’ in-
put length). Prior to this work, efficient protocols for both tasks
satisfied only (e,0 )-LDP for § > 0. Efficient protocols for fre-
quency oracles [21, 14] were known with worst-case expected er-

ror O(4/ W), while the only protocols for succinct his-

tograms [14] had much worse error — about y/ w. Very

recently, Fanti et al. [11] proposed a heuristic construction for which
worst-case bounds are not known. None of these protocols matched
the best lower bound on accuracy, 2(1/+/n) [14].

1.1 Our Results

Efficient Local Protocols for Succinct Histograms with Optimal
Error. We provide the first polynomial time local (¢, 0)-differentially
private protocol for succinct histograms that has worst-case error

O( log(d)

€2TL
(regardless of computation time). Furthermore, in the public coin
model, each participant sends only 1 bit to the server.

Previous constructions were either inefficient [21, 14] (taking
time polynomial in d rather than logd), or had much worse er-
(legay/e

). As we show, this error is optimal for local protocols

ror guarantees’—at least Q) . Furthermore, constructions
with communication sublinear in d satisfied only (€, ) privacy for
0> 0.

Our construction consists of two main pieces. Our first protocol
efficiently recovers a heavy hitter from the input, given a promise

*Mishra and Sandler [21] state error bounds for a single query to
the frequency oracle, assuming the query is determined before the
protocol is executed. Known frequency oracle constructions (both

previous work and ours) achieve error O(1/log(1/8)/n) in that

error model.
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that the heavy hitter is unique: that is, all players either have a par-
ticular value v (initially unknown to the server) or a default value
1. The idea is to have each player send a highly noisy version of
an error-correcting encoding of their input; the server can then re-
cover (the codeword for) v by averaging all the received reports and
decoding the resulting vector.

Our full protocol, which works for all inputs, uses ideas from the
literature on low-space algorithms and compressive sensing, e.g.,
[12]. Specifically, using random hashing, we can partition the uni-
verse of possible items into bins in which there is likely to be only a
single heavy hitter. Running many copies of the protocol for unique
heavy hitters in parallel, we can recover the list of heavy hitters.
A careful analysis shows that the cost to privacy is essentially the
same as running only a single copy of the underlying protocol.

Along the way, we provide simpler and more private frequency-
oracle protocols. Specifically, we show that the “JL” protocol of
Hsu et al. [14] can be made (e, 0)-differentially private, and can be
simplified to use computations in much smaller dimension (roughly,
O(n) instead of Q(n*log d)).

Lower Bounds on Error. We show that, regardless of computa-
tion time and communication, every local (e,d )-DP protocol for
log(d)

627L
d < 1/n. This shows that our efficient protocols have optimal
error.

The instances that give rise to this lower bound are simple: one
particular item v (unknown to the algorithm) appears with frequency
7, while the remaining inputs are chosen uniformly at random from
[d] \ {v}. The structure of these instances has several implications.
First, our lower bounds apply equally well to worst-case error (over
data sets), and “minimax error’”’ (worst-case error over distributions
in estimating the underlying distribution on data).

Second, the accuracy of frequency estimation protocols must de-
pend on the universe size d in the local model, even if one item
appears much more frequently than all others. In contrast, in a cen-
tralized model, there are (e, )-differentially private protocols that
achieve error independent of the universe size, assuming only that
there is a small gap (about W) between the frequencies of the
heaviest and second-heaviest hitters.

The proof of our lower bounds adapts (and simplifies) a frame-
work developed by Duchi et al. [4] for translating lower bounds
on statistical estimation to the local privacy model. We make their
framework more modular, and show that it can be used to prove
lower bounds for (¢,d )-differentially private protocols for 0 < ¢ <
1/n (in its original instantiation, it applied only for § = 0). One
lemma, possibly of independent interest, states that the mutual in-
formation between the input and output of a local protocol is at
most O(e* + £ log(de/d)). In particular, the relaxation with § >
0 does not allow one to circumvent information-theoretic lower
bounds unless J is very large.

frequency estimation has worst-case error Q( )) as long as

1-bit Protocols Suffice for Local Privacy. We show that a slight
modification to the compression technique of McGregor et al. [20,
Theorem 14] yields the following: in a public coin model (where
the server and players have access to a common random string),
every (¢€,0)-DP local protocol can be transformed so that each user
sends only a single bit to the server. Moreover, the transformation
is efficient under the assumption that one can efficiently compute
conditional probabilities Q(y|z) for the randomizers in the proto-
col. To our knowledge, all the local protocols in the literature (in
particular, our efficient protocol for heavy hitters) satisfy this extra
computability condition.

The randomness of the public coins affects utility but not privacy
in the transformed protocol; in particular, the coins may be gener-



ated by the untrusted server, by applying a pseudorandom function
to the user’s ID (if it is available), or by expanding a short seed sent
by the user using a pseudorandom generator.

The transformation, following [20], is based on rejection sam-
pling: the public coins are used to select a random sample from
a fixed distribution, and a player uses his input to decide whether
or not the sample should be kept (and used by the server) or ig-
nored. This decision is transmitted as 1 bit to the server. Local
privacy ensures that the rejection sampling procedure accepts with
sufficiently large probability (and leaks little information about the
input).

1.2 Other Related Work

In addition to the works mentioned so far on frequency estima-
tion [21, 14, 9, 11], many papers have studied the complexity of
local private protocols for specific tasks.

Most relevant here are the results of [15, 4] on learning and sta-
tistical estimation in the local model. Kasiviswanathan et al. [15]
showed that when data are drawn i.i.d. from a distribution, then
every LDP learning algorithm can be simulated in the statistical
queries model [16]. In particular, they showed that learning parity
and related functions requires an exponential amount of data. Their
simulation technique is the inspiration for our communication re-
duction result.

Recently, Duchi et al. [4] studied a class of convex statistical esti-
mation problems, giving tight (minimax-optimal) error guarantees.
One of the local randomizers developed in [4] was the basis for
the “basic randomizer” which is a building block for our protocols.
Moreover, our lower bounds are based on the information-theoretic
framework they establish.

Finally, our efficient protocols are based on ideas from the large
literature on streaming algorithms and compressive sensing (as were
the efficient protocols of Hsu et al. [14]). For example, the use of
hashing to isolate unique “heavy” items appears in the context of
sparse approximations to a vector’s Fourier representation [12] (and
arguably that idea has roots in learning algorithms for Fourier co-
efficients such as [18]). This provides further evidence of the close
relationship between low-space algorithms and differential privacy
(see, e.g., [8,7,3,17,22]).

2. BUILDING BLOCKS

2.1 The Basic Randomizer

We describe a basic randomizer (Algorithm 1) that will be used
in our constructions as a tool to ensure that each user generates an
e-differentially private report. This randomizer is a more concise
version of one of the randomizers in Duchi et al. [4].

Our basic randomizer R takes as input either an m-bit string rep-
resented by one of the vertices of the hypercube {— ﬁ, ﬁ}m,
or a special symbol represented by the all-zero m-length vector 0.
The randomizer R picks a bit z; at random from the input string
x (where j is the index of the chosen bit), then it randomizes and
scales x; to generate a bit z; € { —¢c\/m, cey/m} (for some fixed
ce = O(1/¢)). Finally, R outputs the pair (7, z;). As will be-
come clear later in our constructions, the m-bit input of R will be
a unique encoding of one of the items in V whereas the special
symbol O will serve notational purposes to describe a special situ-
ation in our constructions when a user sends no information about
its item.

129

Algorithm 1 R: e-Basic Randomizer

1 1
m’ \/m

Input: m-bit string x € {
parameter €.
1: Sample j + [m] uniformly at random.
2: if x # 0 then
3:  Randomize j-th bit z; of the input x € {
follows:

}™ U {0}, and the privacy

€

e
o CeMXj W.p. Py
J —CeMITj Ww.p. L

1
— 4l _ (1
where ¢ = <1 =0 (1),
4: else
5:  Generate a uniform bit: z; < { —cc/m, cey/m}.

6: return z = (0,...,0,2;,0,...,0) € { €cv/m,ccy/m}™
where z; is in the j-th position of z. (This output can be repre-
sented concisely by the pair (j, z;) using [logm] + 1 bits).

THEOREM 2.1. R has the following properties:

1. R is e-LDP, for every choice of the index j (that is, privacy
depends only on the randomness in Step 3).

2. Foreveryx € { 7%, \/—%}m U {0}, R(x) is an unbiased
estimator of x. That is, E[R(x)] = x.

3. R is computationally efficient (i.e., R runs in O (m) time).

As noted in Step 6 of the algorithm, we view the output of R as a
vector z € R™ of the same length as the input vector x. However,
the output can be represented concisely by only [logm] + 1 bits
(required to describe the index j and z;).

In some settings, we may compress this output to just 1 bit. This
comes from the fact that the privacy of R holds no matter how the
index j is chosen in Step 1, so long as it is independent of the input.
(The randomness of j is important for utility since it helps ensure
that E [R(x)] = x.) In particular, the randomness in the choice
of 7 may come from outside the randomizer: it could be sent by
the server, available as public coins, or generated pseudorandomly
from other information. In such situations, the server receives j
through other channels and we may represent the output using the
single bit describing z;.

2.2 A Private Frequency Oracle

We give an efficient private frequency oracle that follows almost
the same lines of the construction of [14]. Our protocol differs from
[14] in three respects. First, we use the construction only to pro-
vide a frequency oracle as opposed to identifying and estimating
the frequency of heavy hitters. For that purpose, the construction
is computationally efficient. The second difference is in the lo-
cal randomization step at each user. Here, each user i € [n] uses
an independent copy of the basic randomizer R; given by Algo-
rithm 1 (as opposed to adding noise as in [14]). This gives us pure
e-differential privacy guarantee (as opposed to (¢, ) in [14]). The
third difference is that computations are carried out in much smaller
dimension, namely O(n) as opposed to (n* log(d)) in [14].

The description of our frequency oracle construction protocol is
given in the full version [2]. We refer to such protocol as PROT-
FO. This protocol outputs a frequency oracle FO which is com-
posed of two objects; a succinct description of a binary matrix
® whose columns represent encodings of each item in V, and, an
aggregate measurement of users reports z. Given our private fre-
quency oracle, there is a simple efficient algorithm Ao (see the



full version [2] for a complete description) that, for any given in-
put v € V, uses the frequency oracle to obtain a private estimate
f (v) of the frequency f(v) of the item v by simply computing the
inner product between the encoding of v under ¢ and an aggregate
measurement z, which is the average of users’ reports.

In protocol PROT-FO, the length of encoding of an item under
® is O(n), the report length of each user is O(log(n)), and the to-
tal amount of randomness required to generate ® is O(n?) random
bits. Also, each basic randomizer is efficient, i.e., runs in O(n)
steps (Part 3 of Theorem 2.1). Hence, the construction is compu-
tationally efficient. Also, generating an estimate f (v) for a given
item v using Aro takes only O(n) time.

The privacy and utility guarantees of the frequency oracle con-
structed by PROT-FO are given in the following theorems.

THEOREM 2.2. The construction of the frequency oracle FO
given by Protocol PROT-FO is e-differentially private.

THEOREM 2.3. Lete > 0. For any set of users items {vl, ...,vn}
and any B > 0, the error due to FO constructed by Protocol
PROT-FO is bounded as

; 1 [log(d/B)

ERR (f; FO) £ - =0|(=
RR (f; FO) = max |f(v) — f(v)| (6 -
with probability at least 1 — 3 over the randomness of the projection
D and the basic randomizers R;,i € [n], where f(v) denote the

output of Procedure Aro on an input v.

The above upper bound is asymptotically tight (Section 5). The
theorem’s proof relies on the concentration of the inner product
between the aggregate z and the encoding of any given item under
the encoding matrix ®. See the full version [2] for details.

3. EFFICIENT CONSTRUCTION
WITH OPTIMAL ERROR

In this section, our goal is to construct an efficient private suc-
cinct histogram using the private frequency oracle given in the pre-
vious subsection together with other tools. In Section 3.1, we first
give a construction for a simpler problem that we call the unique
heavy hitter problem. Then, in Section 3.2, we give a reduction
from this problem to the general problem.

3.1 The Unique Heavy Hitter Problem

In the unique heavy hitter problem, we are given the promise
that at least an 7 fraction of the n users hold the same item v*
for some v* € V unknown to the server (here 7 is a parameter
of the promise), and that all other users hold a special symbol L,
representing ‘“no item”.

Our goal is to obtain an efficient construction of a private suc-
cinct histogram under this promise, for as small a value 1 as possi-

ble. We will take 7 to be at least % \/ @ for a universal constant
C > 0. Our protocol is differentially private on all inputs. Under
the promise, with high probability, it outputs the correct v™ together
with an estimate f(v*) of the frequency f(v*).

The main idea of the protocol is to first encode user’s items with
an error-correcting code and randomize the resulting codeword be-
fore sending it to the server. The redundancy in the code allows the
server learn the unknown item v™* from the noisy reports.

We require an efficiently encodable and decodable binary (d, m,C )-

code (of d codewords, block length m, and relative distance ()
where m = O(log(d)) with constant rate (so that m = O(log(d)))
and constant relative minimum distance ¢ € (0,1/2), say ¢ = 1/4.

(We do not require the rate % or relative distance ¢ to be opti-

mal; these quantities will affect the constants in the error of our
construction but not the asymptotic behavior.) There are several
known constructions of such codes in the literature (see [13] for
examples). Fix one such code, denoted code(d, m,¢ ), with associ-
ated encoder ¢ and decoder Dec. The code is part of the protocol
and so is known to all parties. For convenience, we represent code-
words as points in the unit-radius hypercube {fﬁ, \/%}m

Each user 7 first encodes its item v; to obtain x; = c¢(v;) €
{- \/%, ﬁ}m, then runs the basic randomizer R; (given by Al-
gorithm 1) on x; to obtain the report z;. Users that have no item,
i.e., users with input L, feed the zero vector x; = O to the basic
randomizer.

The server aggregates the reports by computing z = % > 2
and then decodes z to obtain the encoding x of v*. One may
not be able to feed z directly to the decoding algorithm Dec of
code(d, m,( ) since z will not, in general, be a vertex of the hy-
percube {——, ——}". Instead, the server first rounds the ag-
gregated signal z to the nearest point y in the hypercube before
running Dec. We argue that the combination of noise from random-
ization and the rounding step produces a vector y that is sufficiently
close to x with high probability.

Algorithm 2 precisely describes our construction for the promise
problem. The protocol is computationally efficient, i.e., the to-
tal computational cost is poly(log(d),n) since code(d,m,) =
(c, Dec) runs in time poly(log(d)) and each basic randomizer R;
runs in time O (log(d)). In fact, the computational cost at each user
does not depend on n. Also, we note that the users’ reports are
succinct, namely, the report length is O (log (log(d))) bits.

Algorithm 2 PROT"P-S-Histpp: e-LDP Succinct Histogram Pro-

tocol under the Promise

Input: Users’ inputs {v; € VU {L }: ¢ € [n]}, the privacy
parameter ¢, and the confidence parameter 5 > 0.

: for Usersi = 1tondo

If v; # L, then user 7 encodes its item: x; = c(v;). Else,

user ¢ sets x; = 0.

3 User ¢ computes its private report: z; = R; (X, €).

4:  User i sends z; to the server.

5

6

N =

. 7 — 1 n .
: Server computes zZ = - " | Zi.

. egto -l _Lm :
: Server computes y by rounding Z to { NG \/ﬁ} . That is,
foreachj =1,...,m,
1 . —
— ifz; >0, and
yj = \/El = where z; denotes the j-th
~Tm otherwise,
entry of z.
7: Server decodes y into an estimate for the common item v =
Dec(y)

and computes a frequency estimate f(0) = (c(?), z).

8: return (13, f(@))

THEOREM 3.1. The construction of the succinct histogram S-Histpp

given by Algorithm 2 is e-differentially private.

PROOF. Privacy follows directly from the e-differential privacy
of the basic randomizers R;, 4 € [n] (Part 1 of Theorem 2.1). []

To analyze utility, we first isolate the guarantee provided by the
rounding step. Let S,, = {w € R™ : ||w|2 = 1} denote the
m-dimensional unit sphere.

LEMMA 3.2. Let z € S,, be such that there is a codeword of
code(d,m,C), x € C, with (z,x) > 1 — (/4. Let'y be vector in



the hypercube {_Tlmv ﬁ}m obtained by rounding each entry z;

of z to sign(z;)//m. Then the Hamming distance between'y and
x is less than m(/2, i.e., 377 1(y; # x;) < m( 2.

PROOF. Since z and x are unit vectors, the distance ||z — x||2
satisfies

llz — x[I3 = ||zI|3 + [|x]|3 — 2(z, x) < ¢/2.

The vectors x and y disagree in coordinate j only if |z; — x;| >
L There can be at most m(/2 such coordinates, since each

ﬁ.
contributes at least - to ||z — x||3. Thus, the Hamming distance
between y and x is >3, 1(y; # x;) < m( 2 completing the
proof. [J

THEOREM 3.3. Let € > 0. Suppose that the conditions in the
above promise are true for some common item v* € V. For any

B > 0, there is a setting of n = O (% w in the

promise such that, with probability at least 1— 8, Protocol PROTPP-
S-Histpp publishes the right item v* and the frequency estimation
error is bounded by
1
0 (
€

PROOF. Consider the conditions of the promise. Let v* € V be
the unique heavy hitter (occurring with frequency at least n). Let
[ > 0. Given Lemma 3.2, to show that the protocol above recovers
the correct item v* with probability at least 1 — 3/2, it suffices to
show that, with probability at least 1 — 3/2, we have

(e(v), W> >1-¢/4.

max |f(v) - f(v)| =

veEV n

1og<1//3)> .

Note that the rounding step (Step 6 in Algorithm 2) would produce
the same output whether it was run with z or its normalized coun-
terpart z/||z]|2.

By the promise, we have

n

=Y a= SR - S R0)

i=1 €T i€\ T

NI

where 7 denotes the set of users having the item v™.
=7 =n.

First, we consider ||Z||2. Since for every i € [n], R; is unbiased
(Part 2 of Theorem 2.1), we have ||E[z]||2 = f(v"). Using the tri-
angle inequality, we get ||Z]|2 < f(v") + ||z — E [Z] ||2. Next, we
obtain an upper bound on ||z — E [Z] ||2. Note that z;,¢ = 1,..,n,

(Note that

are independent and that for every ¢ € [n], ||zi]2 = O (@) with
probability 1. Applying McDiarmid’s inequality [19], with proba-

bility at least 1—3/4, we have ||z—E [z] |2 < O (%\/ M%W)

Thus, with probability at least 1 — 3/4, ||z||2 is bounded by
m 1og(1/5>>

n
Next, we consider (c(v*), z). Observe that (c(v*),z) =

Il < f(") +0 (1 1)
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By the tail properties of the distribution of the second and third
terms above®, we can show that with probability at least 1 — /3 /4,
we have

NI

{c(v), @

'> fo) - O <1 log(l/ﬂ))

Putting (1) and (2) together, then, with probability at least 1 — 3/2,

we have
_of1, /s
5 n 0(4/ n )
>
77+0(l /mlog(l/s))

where we use the fact that n < f(v*) and assume that the numera-
tor in the right-hand side is positive.
Since m = O(log(d)), then there is a constant e that depends

L/ e @1oell/B) hen the above

ratio is greater than 1 — (/4. This proves that there is a setting

ofn =0 (%\/w) such that construction PROTP-

S-Histpp outputs & = v with probability at least 1 — 3/2.

Now, conditioned on correct decoding, for all v # v*, the es-
timate f (v) is implicitly assumed to be zero (which is perfectly
accurate in this case). Thus, it remains to inspect f(v*). Observe
that

on ¢ such that if we set n = «

F07) = 707 = (o), ) = F(v°)
<[ 3 ew), Ralew) = )|+ |- ST (e(o”), Ri(0))
ieT i€n]\T

Again, by the tail properties of the sums above, with probability at

least1—§,weconcludethat|f(v*)—f(v*)| <O <%\/%>.

Therefore, with probability at least 1 — 3, protocol PROTPP-
S-Histpp recovers the correct common item v* and the estimation

error that is bounded by O <% M) . g

n

3.2 Efficient Construction for the General
Problem

In this section, we provide an efficient construction of private
succinct histograms with optimal error for the general setting of the
problem using the two protocols discussed in the previous sections
as sub-protocols.

In the promise (unique heavy hitter) problem, the main advan-
tage was the lack of interference from the users who do not hold
the heavy hitter v™ in question. The main idea here is to obtain a
reduction in which we create the conditions of the promise problem
separately for each heavy hitter v* € V such that the extra compu-
tational cost is at most a small poly(n) factor. To do this, we hash
each item v € V into one of K separate parallel channels such
that users holding the same item will transmit their reports in the
same channel. Each user, in the remaining K — 1 channels, will
simulate an “idle” user with item _L as in the promise problem. By
choosing K sufficiently large, and repeating the protocol in paral-
lel for T times*, we can guarantee that, with high probability, every

*Such tail bounds follow from the properties of the basic randomiz-
ers R; and a straightforward application of Hoeffding’s inequality.
“That is, the total number of parallel channels is KT In each group
of K channels, a fresh hash seed is used.



heavy hitter v* € V gets assigned to an interference-free chan-
nel. Hence, by using an error-optimal construction for the promise
problem like S-Histpp in each one of these channels, we eventually
obtain a list of at most KT items such that, with high probability,
all the heavy hitters will be on that list. However, this list may also
contain other erroneously decoded items due to hash collisions and
we do not know which items on the list are the heavy hitters. To
overcome this, in a separate parallel channel of the protocol, we
run a frequency oracle protocol (like PROT-FO) and use the re-
sulting frequency oracle to estimate the frequencies of all the items
on that list, then output all the items whose estimated frequencies
are above 7) together with their estimated frequencies.

For the purpose of this construction, it suffices to use a pairwise
independent hash function Hash : {0, 1} x V — [K] whose first
input is a random seed s € {0, 1}¢. Choices of £ and K are given
in the protocol description (Algorithm 3). All users and the server
are assumed to have access to Hash. We use a source of public
randomness RndGen that, on an input integer ¢ > 0, generates a
seed for Hash, which is a random uniform string from {0, 1}* that
is seen by everyone’.

Algorithm 3 PROT-S-Hist: e-LDP Efficient Protocol for Suc-

cinct Histograms

Input: Users’ inputs {v; € VU {L }: ¢ € [n]}, the privacy
parameter ¢, and the confidence parameter 3 > 0.

1: LIST « () (initialize list of heavy hitters to the empty set.)

2: £+ 2max (log(d), log(n)) ; K + n%/2.

3: T+ [log(3/8)]

4: for t =1to 1 do

5:  s¢ < RndGen(¥).

6:  for Channels k =1to K do

7: for Users¢ = 1ton do

8: If Hash(st, vi) # k, setv; < L. Else, set v; < v;

9 &+ PROT™-S-Histop ({uf, ., 00} s 57573 ) i
run PROTPP-S-Histpp on the modified set of users’ items
to obtain an estimate © of the possibly unique item trans-
mitted in the k-th channel. }

10: If & ¢ LIST, then add © to LIST.

11: FO + PROT-FO ({vl, e Un) s g 5/3) {ie, run
PROT-FO on the original set of users’ items to obtain the fre-
quency oracle FO. }

12: for © € LIST do

13:  f(9) < Aro (FO,?). {Aro is the frequency estimator

given in Section 2.2.}
14 If f(0) < 2LEL, log(d) lzg(l/ﬁ), remove 9 from LIST.
15: return {(v,f(v)) NS LIST}.

It is not hard to see that the rofal computational cost of this con-
struction is

0 (n3/2 log(1/B)costpp + costro + nCOStAFo)

where costpp, costro, and costa., are the computational costs
of the promise problem sub-protocol, the frequency oracle sub-
protocol, and the algorithm that computes a given frequency es-
timate, respectively. Hence, for our choice of the sub-protocols
above, one can easily verify the overall worst case cost of our con-
struction O(n®/?poly(log(d))log(1/3)).

*We may also think of RndGen as being run at the server which
then announces the resulting random string to all the users.
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The report length of each user is now scaled by KT' compared to
that of the promise problem, that is, O (n3/2 log(1/08) log (log(d))) .

In the next section, we will discuss an approach that gets it down to
1 bit at the expense of increasing the public coins.

THEOREM 3.4. Protocol PROT-S-Hist given by Algorithm 3 is
e-differentially private.

PROOF. First, observe that Protocol PROT-S-Hist runs Proto-
col PROTPP_S-Histpp over KT channels and runs Protocol PROT-
FO once over a separate channel. In the first KT" channels, for any
fixed sequence of the values of the seed of the hash function, the re-
ports of each user over these channels are independent. Moreover,
each user gets assigned to exactly 7' channels. Fix any user 7 and
any two items v;,v; € V. Using these observations, one can see
that, for any fixed sequence of values of the seed of the hash over
these KT channels, the distribution of the report of user ¢ when
its item is v; differs from the distribution when the user’s item is
v} in at most 2T channels, and in each of these channels, the ratio
between the two distributions is at most e 271 by the differential
privacy of PROT"P-S-Histpp (note that the input privacy parame-
ter to in Step 9 is eﬁ). Hence, by independence of the user’s
reports over separate channels, the corresponding ratio over all the
KT channels is at most e 2757 . In the separate channel for the fre-
quency oracle protocol, again by the differential privacy of PROT-
FO, this ratio is bounded by eIT Putting this together with the
argument in the previous paragraph completes the proof. [

THEOREM 3.5. Forany set of users’ items {v1, ..., vp, } and any

log? (1/8)  [log(d)

n

B > 0, there is a number n = O such that,

with probability at least 1 — (3, Protocol PROT-S-Hist outputs
{(v,f(v)) SRS LIST} where LIST = {v* € V : f(v*) > n}
(i.e., a list of all items whose frequencies are greater than n), and
the error in the frequency estimates satisfies
3
R log2(1/8) [log(d
max |f(0) - 1(0)] :0( 82175, los( )> .

vey

(As mentioned before, the frequency estimates of items v ¢ LIST
are implicitly zero.)

PROOF. Let U denote the set of the users’ items {v1, ..., vn }.
We first show that for the setting of K and 7" in Algorithm 3,
running PROTFP-S-Histpp over KT channels will isolate every
heavy hitter (i.e., every item occurring with frequency at least 7)
in at least one channel without interference from other items. Let
Heavhit = {v* € V : f(v") > n} denote the set of the heavy
hitters. Note that |Heavhit| < .

CLAIM 3.6. Ifn > 2T+L, [1o8@1080/B) “ypop vpith probabil-

ity at least 1 — 3 /3 (over the sequence of the seed values s1, ..., ST
of Hash), for every heavy hitter v* € Heavhit there is t € [T such
that Hash(sy, v*) # Hash(st,v) forallv € U\ {v"}.

First, we prove this claim. Fix v* € Heavhit. Let t € [T)]. Let
Colls, (v*) 2 |{i € [n] : Hash(s,v*) = Hash(s,vi),vi # v*}|
denote the number of collisions between v* and users’ items that
are different from v* when the hash seed is s;. First, we bound the
expected number of such collisions:

E[Colls, (v*)] < Z

vy FAv*

L
K

_ L
S Vn

<
- K



Hence, by Markov’s inequality, with probability at least 1 — ﬁ,
T
() =

Colls, (v* =) =
1 — B/3, for each v* € Heavhit, there exists ¢ € [T] such that
Colls, (v*) = 0, which proves the claim.

) = 0. Hence, with probability at least 1 — %

This implies that with probability at least 1 — 8/3, there is a set
W C [KT)] of “good” channels whose size is the same as the num-
ber of heavy hitters such that each heavy hitter v* € Heavhit is
hashed into one of these channels without collisions. Conditioned
on this event, let w € W and let v, denote the heavy hitter in chan-
nel w. By Theorem 3.3, running Protocol PROTPP-S-Histpp over
channel w yields the correct estimate of v;, with probability at least
1- 5 (Step 9 of Algorithm 3). Hence, with probability at least
1-— ,3/3, all estimates of PROTPP-S-Histpp in all channels in W
are correct. Hence, at this point, with probability at least 1 — %,
LIST contains all the heavy hitters in Heavhit among other possi-
bly unreliable estimates of PROTPP-S-Histpp for the channels in
[KT]\ W.

Now, conditioned on the event above, by the error guarantee of
FO given by Theorem 2.3, with probability at least 1 — 3/3, the
maximum error in the frequency estimates of all the items in LIST
(Step 13 of Algorithm 3), denoted by ERR (LIST), is

o <2T+ 1 log(d/ﬂ)> _0 <log(1/ﬂ) log(d/5)> .

€ n € n

Hence, all those items in LIST with actual frequencies greater than

log(d) log(1/5)

1%m)

will be kept in LIST whereas all those items with frequency less
than 7 will be removed. Note that the frequency estimates that are
implicitly assumed to be zero of those items that are not on the list
cannot have error greater than 7 since their actual frequencies are
less than 7. This completes the proof. [

W 2T +1

€

:OC%Hum

+ ERR (LIST)

4. THE FULL PROTOCOL
4.1 Generic Protocol with 1-Bit Reports

In this section, we give a generic approach that transforms any
private protocol in the distributed setting (not necessarily for fre-
quency estimation or succinct histograms) to a private distributed
protocol where the report of each user is a single bit at the expense
of adding to the overall original public randomness a number of
bits that is O(n7) where 7 is the length of each user’s report in the
original protocol. As mentioned in the introduction, the transfor-
mation is a modification of the general compression technique of
McGregor et al. [20].

Let GenPROT be any private distributed protocol in which n
users are communicating with an untrusted server. GenPROT fol-
lows the following general steps. Each user ¢ € [v] has a data point
v; €V =1[d]. Let Q; : VU{L} — Z be any e-local randomizer
used by user ¢ € [n]. We assume, w.l.o.g., that Q; may also take
a special symbol L as an input. Each user runs its e-local random-
izer Q; on its data v; (and any public randomness in the protocol,
if any) and outputs a report z;. For simplicity, each report z; is as-
sumed to be a binary string of length 7. Let stat : V™ — C be some
statistic about the data that the server wishes to estimate where C
is some bounded subset of R* for some integer k > 0. The server
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collects the reports {z; : ¢ € [n]} and runs some algorithm Astat
on the reports (and the public randomness) and outputs an estimate
stat € C of stat (V1 vey Un).

We now give a generic construction 1-Bit-GenPROT (Algorithm
4) for GenPROT where each user’s report is one bit.

Algorithm 4 1-Bit-PROT: ¢-LDP Generic 1-Bit Protocol
Input: Users’ inputs {v; € V :
€ < In(2).
1: Generate n independent public strings y1 < Q1(L), ...
Q. (1).
: for Usersi = 1ton do
Compue .= 1185058

Sample a bit b; from Bernoulli(p;) and sends it to the server.

: Reports < (). {Server initialize the set of collected reports. }

: for i =1tondo

Server checks if b; = 1, add y; to Reports.

: stat < Astar (Reports) . {Run algorithm Ag,: on the collected
reports to obtain an estimate of the desired statistic as described
in the original protocol GenPROT.}

9: return stat.

i € [n]} and a privacy parameter

7y71<—

Note that the only additional computational cost in this generic
transformation is in Step 3. If computing these probabilities can
be done efficiently, then this transformation preserves the compu-
tational efficiency of the original protocol.

THEOREM 4.1. Protocol 1-Bit-PROT given by Algorithm 4 is
e-LDP.

PROOF. Consider the output bit b; of any user ¢ € [n]. First,
note that p; (in Step 3) is a valid probability since for any item
v; € V, the right-hand side of Step 3 is at most % by e-differential
privacy of Q;, and since € < In(2), p; < 1. For any v € V and
any public string y;, let p; (v, y;) denote the conditional probability

that b; = 1 given that Q;(L) = y; when the item of user 4 is v.
Let v,v’" € V be any two items. It is easy to see that % =
lf:[[gg(% which lies in [e™ €, €] by e-differential privacy of Q;.

1-pi(v.¥i) o140 lies i —e
— g5 1 mn
1=p, (v/,y,) SO 1CS [e

One can also verify that ,e]. O

One important feature in the construction above is that the condi-
tional distribution of the public string y; given that b; = 1 is exactly
the same as the distribution of Q;(v;), and hence, upon receiving
a bit b; = 1 from user ¢, the server’s view of y; is the same as its
view of an actual report z; < Q;(v;).

Note also that the probability that a user ¢ € [n] accepts (sets

b; = 1) taken over the randomness of y; is

Pr[Q;( vl _y] o1

Key statement: The two facts above show that our protocol is func-
tionally equivalent to: first, sampling a subset of the users where
each user is sampled independently with probability 1/2, then, run-
ning the original protocol GenPROT on the sample. Thus, if the
original protocol is resilient to sampling, i.e., its error performance
(with respect to some notion of error) is not essentially affected by
this sampling step, then the generic transformation given by Algo-
rithm 4 will have essentially the same error performance.

4.2 Efficient Construction with 1-Bit Reports

We now apply the generic transformation discussed above to
our efficient protocol PROT-S-Hist (Algorithm 3) to obtain an ef-

ficient private protocol for succinct histograms with 1-bit reports



and optimal error. The fact that such protocol has the same error
as PROT-S-Hist follows from the key statement above and the fact
that PROT-S-Hist is resilient to sampling.

THEOREM 4.2. The 1-Bit Protocol for succinct histograms is
e-differentially private.

THEOREM 4.3. The 1-Bit Protocol for succinct histograms pro-
vides the same guarantees of Protocol PROT-S-Hist given in The-
orem 3.2.

Computational efficiency: To show that the protocol remains effi-
cient after this transformation, we argue that the probabilities in
Step 3 of Algorithm 4 can be computed efficiently in our case.
The overall e-local randomizer QF" at each user ¢ over all the
KT + 1 parallel channels in PROT-S-Hist is described in Algo-
rithm 5. Note that given the user’s item v; and the seed of the hash,
the KT + 1 components of Qf””(vi) are independent. Moreover,
note that (K — 1)T of these components have the same (uniform)
distribution since each user gets assigned by the hash function to
only 7" + 1 channels and in the remainder channels the user’s re-
port is uniformly random. Hence, to execute Step 3 of Algorithm 4,
each user in our case only needs to compute 7"+ 1 probabilities out
of the total K'T'+1 components. This is easy because of the way the
basic randomizer R works. To see this, first note that each y; (re-
ferring to the public string y; in Algorithm 4) is now a sequence of
(index, bit) pairs: (j1,b5,),- .., (jxr+1,bjx7,,). To compute
the probability corresponding to one of the 7" 4 1 item-dependent
components of QF""(v;), each user first locates in the public string
y; the pair (4, b) corresponding to this component. Then, it com-
pares the sign of the j-th bit of the encoding® of its item v; with the

sign of b. If signs are equal, then the desired probability is %,
otherwise it is H% Hence, the computational cost of this step (per

user) is O (1" log (mpp) + log (mro)) = O(log (log(d)) log(1/8)+

log(n)) where mpp is the length of the encoding c(v;) used in
the promise problem protocol PROTPP-S-Histpp and mro is the
length of the encoding ¢, used in the frequency oracle protocol
PROT-FO. Thus, at worst the overall computational cost of the
1-Bit protocol is the same as that of protocol PROT-S-Hist.

Algorithm 5 Q%" e-Local Randomizer of User 4 in PROT-S-Hist
(Algorithm3)
Input: itemv; € V, privacy parameter €, seeds of Hash sy, ...
1: for t =1to 7T do
2:  for Channels k = 1to K do
3: If Hash(st,vi) # k, set zgt‘k) = Ri(0,¢). Else, set
zl(-t’k) = Ri(c(vi),e). { z§t’k) denotes the report of
user ¢ in the k-th channel in the ¢-th group.}
4: Set zl(.f(’) =Ri (Pv;, €). {Pv, is the v;-th column of P the en-
coding matrix in the construction of the frequency oracle FO.}

5: return z; = (z“’k), zEfD) ct=1,...,T;k = 1,...,K>.

i

,ST.

5. TIGHT LOWER BOUND ON ERROR
We derive a matching lower bound on the error of (¢,6 )-LDP
frequency oracles and succinct histograms forall 6 = o (#g(n)) .

Our lower bound implies that there is no advantage of (e,0 ) algo-
rithms over pure e algorithms in terms of asymptotic error for all

®This encoding is either c(v;) or ¢, depending on whether we are
at Step 3 or Step 4 of Algorithm 5.
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the meaningful settings of §. Our approach is inspired by some of
the techniques in [4] used for lower bounds on multinomial esti-
mation error in the pure € local model. We make their framework
more modular, and show that it can be used to prove lower bounds
for (e,d )-local differentially private protocols. Our lower bound is
formally stated in the following theorem.

THEOREM 5.1. Foranye = O(1) and0 < § < o (#g(n))

For any sequence Q; : V — Z,i € [n] of (¢,0 )-LDP algorithms,
and for any algorithm B : Z™ — |0, l]d, there exists a distribution
P overV (from which v;, i € [n] are sampled in i.i.d. fashion) such
that the expected error with respect to such P satisfies

log(d) 7 1> > .

We discuss the main steps of our technique next. For more details
on the proof, we refer the reader to the full version [2].

E [max |f(v) — f(v)\:| =0 (min (1

ve(d]

5.1 Our Technique

In a scenario where the item of each user is drawn independently
from an unknown distribution on V, we first derive a lower bound
on the expected worst-case error (the minimax rate) in estimating
the right distribution. We then show using standard concentration
bounds that this implies a lower bound on the maximum error in
estimating the actual frequencies of all the items in V.

To obtain a lower bound on the minimax error, we first define
the notion of an n-degrading channel which is a noise operator that,
given a user’s item as input, outputs the same item with probability
1, and outputs a uniform random item from V otherwise. Formally,
for any n € [0,1], an n-degrading channel W : V — Visa
randomized mapping that is defined as follows: for every v € V,

with probability n

with probability 1 — n 3)

M) () — v
wow={
where U is a uniform random variable over V.

We compare two scenarios: in the first scenario, each user feeds
its item first to an n-degrading channel, then feeds its output into
its (€,0 ) local randomizer to generate a report, whereas the second
scenario is the normal scenario where the user feeds its item di-
rectly into its local randomizer. We then show that a lower bound
of (1) on the minimax error in the first scenario implies a lower
bound of ©2(n) in the second scenario.

Thus, to reach our result, it would suffice to show that a lower
bound of (1) is true in the first scenario with an n-degrading chan-

1 /log(d)

n

nel whenn = Q ( . To derive the ©2(1) lower bound in

the first scenario, we proceed as follows.

First, we derive the following upper bound on the mutual infor-
mation between a uniform random item V' from V and the output
of an (e,0 )-local randomizer with input V.

CLAIM 5.2. Let V' be uniformly distributed over V. Let Q :
V — Z be an (€,0 )-LDP algorithm and let Z denote Q(V').
Then, we have

I(V;Z)=0 (62 + g log(d) + g log(e/5)) .

Then, we prove that the application of an 7n-degrading channel
on a user’s item amplifies privacy, namely, scales down both € and

0 by n.



CLAIM 5.3. The composition Q (VV(") ()) of an n-degrading

channel W™ (defined in (3)) with an (e, )-LDP algorithm Q
yields a (O(ne), O(nd))-LDP algorithm.

This implies that in the first scenario above with an 7-degrading
channel, the mutual information between the users’ items and the
corresponding outputs of their (€,0 )-local randomizers is

I(vi,...,Un;21,...20) < E I(vi;2;) = O (1’L17262 + né log(de/é))
€
i=1

Fano’s inequality implies that the minimax error in this scenario is
bounded from below as

I(vi,...,vn; 21, ...
log(d)

Zn) + 1

MinMaxError,, > 1 —

log(d)
e2n

Hence, by an appropriate setting of n = €2 (min ( 1))

and for 6 = o é), our mutual information bound above
nlog(n)

together with Fano’s inequality implies that the error in the first
scenario is £2(1). This concludes the proof of our lower bound.
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