
Private Empirical Risk Minimization: Efficient
Algorithms and Tight Error Bounds

Raef Bassily, Adam Smith

Computer Science and Engineering Department

The Pennsylvania State University

Email: {bassily, asmith}@psu.edu

Abhradeep Thakurta

Yahoo! Labs, Stanford University and Microsoft Research

Email: abhradeep@yahoo-inc.com

Abstract—Convex empirical risk minimization is a basic tool
in machine learning and statistics. We provide new algorithms
and matching lower bounds for differentially private convex
empirical risk minimization assuming only that each data point’s
contribution to the loss function is Lipschitz and that the
domain of optimization is bounded. We provide a separate set of
algorithms and matching lower bounds for the setting in which
the loss functions are known to also be strongly convex.

Our algorithms run in polynomial time, and in some cases
even match the optimal nonprivate running time (as measured
by oracle complexity). We give separate algorithms (and lower
bounds) for (ε, 0)- and (ε, δ)-differential privacy; perhaps sur-
prisingly, the techniques used for designing optimal algorithms
in the two cases are completely different.

Our lower bounds apply even to very simple, smooth function
families, such as linear and quadratic functions. This implies
that algorithms from previous work can be used to obtain
optimal error rates, under the additional assumption that the
contributions of each data point to the loss function is smooth.
We show that simple approaches to smoothing arbitrary loss
functions (in order to apply previous techniques) do not yield
optimal error rates. In particular, optimal algorithms were not
previously known for problems such as training support vector
machines and the high-dimensional median.

I. INTRODUCTION

Convex optimization is one of the most basic and powerful

computational tools in statistics and machine learning. It is

most commonly used for empirical risk minimization (ERM):

the data set D = {d1, ..., dn} defines a convex loss function

L(·) which is minimized over a convex set C. When run

on sensitive data, however, the results of convex ERM can

leak sensitive information. For example, medians and support

vector machine parameters can, in many cases, leak entire

records in the clear (see “Motivation”, below).

In this paper, we provide new algorithms and matching

lower bounds for differentially private convex ERM assuming

only that each data point’s contribution to the loss function

is Lipschitz and that the domain of optimization is bounded.

This builds on a line of work started by Chaudhuri et al. [11].

Problem formulation. Given a data set D = {d1, ..., dn}
drawn from a universe X , and a closed, convex set C, our

goal is to

minimize L(θ;D) =

n∑
i=1

�(θ; di) over θ ∈ C

The map � defines, for each data point d, a loss function �(·; d)
on C. We will generally assume that �(·; d) is convex and L-

Lipschitz for all d ∈ X . One obtains variants on this basic

problem by assuming additional restrictions, such as (i) that

�(·; d) is Δ-strongly convex for all d ∈ X , and/or (ii) that

�(·; d) is β-smooth for all d ∈ X . Definitions of Lipschitz,

strong convexity and smoothness are provided at the end of

the introduction.

For example, given a collection of data points in R
p, the

Euclidean 1-median is a point in R
p that minimizes the

sum of the Euclidean distances to the data points. That is,

�(θ; di) = ‖θ− di‖2, which is 1-Lipschitz in θ for any choice

of di. Another common example is the support vector machine

(SVM): given a data point di = (xi, yi) ∈ R
p × {−1, 1}, one

defines a loss function �(θ; di) = hinge(yi · 〈θ, xi〉), where

hinge(z) = (1 − z)+ (here (1 − z)+ equals 1 − z for z ≤ 1
and 0, otherwise). The loss is L-Lipshitz in θ when ‖xi‖2 ≤ L.

Our formulation also captures regularized ERM, in which

an additional (convex) function r(θ) is added to the loss

function to penalize certain types of solutions; the loss function

is then r(θ)+
∑n

i=1 �(θ; di). One can fold the regularizer r(·)
into the data-dependent functions by replacing �(θ; di) with

�̃(θ; di) = �(θ; di) +
1
nr(θ), so that L(θ;D) =

∑
i �̃(θ; di).

This folding comes at some loss of generality (since it may

increase the Lipschitz constant), but it does not affect asymp-

totic results. Note that if r is Δn-strongly convex, then every

�̃ is Δ-strongly convex.

We measure the success of our algorithms by the worst-case

(over inputs) expected excess empirical risk, namely

E(L(θ̂;D)− L(θ∗;D)), (1)

where θ̂ is the output of the algorithm, θ∗ =
argminθ∈C L(θ;D) is the true minimizer, and the expectation

is only over the coins of the algorithm. Expected risk

guarantees can be converted to high-probability guarantees

using standard techniques (see full version [3]).

Another important measure of performance is an algorithm’s

(excess) generalization error, where loss is measured with

respect to the average over an unknown distribution from

which the data are assumed to be drawn i.i.d.. Our upper

bounds on empirical risk imply upper bounds on generalization

error (via uniform convergence and similar ideas); the resulting

bounds are only known to be tight in certain ranges of

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.56

464

2014 IEEE Annual Symposium on Foundations of Computer Science

0272-5428/14 $31.00 © 2014 IEEE

DOI 10.1109/FOCS.2014.56

464

parameters, however. Detailed statements may be found in full

version [3]. This proceedings version discusses only empirical

error.

Motivation. Convex ERM is used for fitting models from

simple least-squares regression to support vector machines,

and their use may have significant implications to privacy. As a

simple example, note that the Euclidean 1-median of a data set

will typically be an actual data point, since the gradient of the

loss function has discontinuities at each of the di. (Thinking

about the one-dimensional median, where there is always a

data point that minimizes the loss, is helpful.) Thus, releasing

the median may well reveal one of the data points in the clear.

A more subtle example is the support vector machine (SVM).

The solution to an SVM program is often presented in its dual

form, whose coefficients typically consist of a set of p+1 exact

data points. [26] show how the results of many convex ERM

problems can be combined to carry out reconstruction attacks

in the spirit of [13].

Differential privacy is a rigorous notion of privacy that

emerged from a line of work in theoretical computer science

and cryptography [18, 7, 17]. We say two data sets D and

D′ of size n are neighbors if they differ in one entry (that

is, |D�D′| = 2). A randomized algorithm A is (ε, δ)-
differentially private ([17, 16]) if, for all neighboring data sets

D and D′ and for all events S in the output space of A, we

have

Pr(A(D) ∈ S) ≤ eε Pr(A(D′) ∈ S) + δ .

Algorithms that satisfy differential privacy for ε < 1 and

δ � 1/n provide meaningful privacy guarantees, even in

the presence of side information. In particular, they avoid the

problems mentioned in “Motivation” above. See [15, 27, 28]

for discussion of the “semantics” of differential privacy.

Setting Parameters. We will aim to quantify the role of

several basic parameters on the excess risk of differentially

private algorithms: the size of the data set n, the dimension p
of the parameter space C, the Lipschitz constant L of the loss

functions, the diameter ‖C‖2 of the constraint set and, when

applicable, the strong convexity Δ.

We may take L and ‖C‖2 to be 1 without loss of generality:

We can set ‖C‖2 = 1 by rescaling θ (replacing by θ with

θ · ‖C‖2); we can then set L = 1 by rescaling the loss function

L (replacing L by L/L). These two transformations change

the excess risk by L‖C‖2. The parameter Δ cannot similarly

be rescaled while keeping L and ‖C‖2 the same. However, we

always have Δ ≤ 2L/‖C‖2.

In the sequel, we thus focus on the setting where L =
‖C‖2 = 1 and Δ ∈ [0, 2]. To convert excess risk bounds for

L = ‖C‖2 = 1 to the general setting, one can multiply the

risk bounds by L‖C‖2, and replace Δ by
Δ‖C‖2

L .

A. Contributions

We give algorithms that significantly improve on the state

of the art for optimizing non-smooth loss functions — for both

the general case and strongly convex functions, we improve

the excess risk bounds by a factor of
√
n, asymptotically. The

algorithms we give for (ε, 0)- and (ε, δ)-differential privacy

work on very different principles. We group the algorithms

below by technique: gradient descent, exponential sampling,

and localization.

For the purposes of this section, Õ(·) notation hides factors

polynomial in log n and log(1/δ). Detailed bounds are stated

in Table I.

Gradient descent-based algorithms. For (ε, δ)-differential

privacy, we show that a noisy version of gradient descent

achieves excess risk Õ(
√
p/ε). This matches our lower bound,

Ω(min(n,
√
p/ε)), up to logarithmic factors. (Note that every

θ ∈ C has excess risk at most n, so a lower bound of n
can always be matched.) For Δ-strongly convex functions, a

variant of our algorithm has risk Õ(p
Δnε2), which matches the

lower bound Ω(p
nε2) when Δ is bounded below by a constant

(recall that Δ ≤ 2 since L = ‖C‖2 = 1).

Previously, the best known risk bounds were Ω(
√
pn/ε)

for general convex functions and Ω(p√
nΔε2

) for Δ-strongly

convex functions (achievable via several different techniques

([11, 29, 21, 14])). Under the restriction that each data

point’s contribution to the loss function is sufficiently smooth,

objective perturbation [11, 29] also has risk Õ(
√
p/ε) (which

is tight, since the lower bounds apply to smooth functions).

However, smooth functions do not include important special

cases such as medians and support vector machines. [11]

suggest applying their technique to support vector machines

by smoothing (“huberizing”) the loss function. We show in the

full version [3]that this approach still yields expected excess

risk Ω(
√
pn/ε).

Although straightforward noisy gradient descent would

work well in our setting, we present a faster variant based

on stochastic gradient descent: At each step t, the algorithm

samples a random point di from the data set, computes a noisy

version of di’s contribution to the gradient of L at the current

estimate θ̃t, and then uses that noisy measurement to update

the parameter estimate. The algorithm is similar to algorithms

that have appeared previously ([41] first investigated gradient

descent with noisy updates; stochastic variants were studied

by [21, 14, 39]). The novelty of our analysis lies in taking

advantage of the randomness in the choice of di (following

[25]) to run the algorithm for many steps without a signif-

icant cost to privacy. Running the algorithm for T = n2

steps, gives the desired expected excess risk bound. Even

nonprivate first-order algorithms—i.e., those based on gradient

measurements—must learn information about the gradient at

Ω(n2) points to get risk bounds that are independent of n (this

follows from “oracle complexity” bounds showing that 1/
√
T

convergence rate is optimal [32, 1]).

The gradient descent approach does not, to our knowl-

edge, allow one to get optimal excess risk bounds for (ε, 0)-
differential privacy. The main obstacle is that “strong com-

position” of (ε, δ)-privacy [19] appears necessary to allow a

first-order method to run for sufficiently many steps.

Exponential Sampling-based Algorithms. For (ε, 0)-
differential privacy, we observe that a straightforward

465465

(ε, 0)-DP (ε, δ)-DP
Previous [11] This work Previous [29] This work

Assumptions Upper Bd Upper Bd Lower Bd Upper Bd Upper Bd Lower Bd

1-Lipschitz and ‖C‖2 = 1
p
√
n

ε

p

ε

p

ε

√
p · n log(1/δ)

ε

√
p log2(n/δ)

ε

√
p

ε

... and O(p)-smooth
p

ε

p

ε

√
p log(1/δ)

ε

√
p

ε

1-Lipschitz and Δ-strongly
convex and ‖C‖2 = 1
(implies Δ ≤ 2)

p2√
nΔε2

log(n)

Δ
· p2

nε2
p2

nε2
p log(1/δ)√

nΔε2
log3(n/δ)

Δ
· p

nε2
p

nε2

... and O(p)-smooth
p2

nΔε2
p2

nε2
p log(1/δ)

nΔε2
p

nε2

TABLE I
UPPER AND LOWER BOUNDS FOR EXCESS RISK OF DIFFERENTIALLY-PRIVATE CONVEX ERM. BOUNDS IGNORE LEADING MULTIPLICATIVE CONSTANTS,

AND THE VALUES IN THE TABLE GIVE THE BOUND WHEN IT IS BELOW n. THAT IS, UPPER BOUNDS SHOULD BE READ AS O(min(n, ...)) AND LOWER

BOUNDS, AS Ω(min(n, ...))). HERE ‖C‖2 IS THE DIAMETER OF C . THE BOUNDS ARE STATED FOR THE SETTING WHERE L = ‖C‖2 = 1, WHICH CAN BE

ENFORCED BY RESCALING; TO GET GENERAL STATEMENTS, MULTIPLY THE RISK BOUNDS BY L‖C‖2 , AND REPLACE Δ BY
Δ‖C‖2

L
. WE ASSUME

δ < 1/n TO SIMPLIFY THE BOUNDS.

use of the exponential mechanism — sampling from an

appropriately-sized net of points in C, where each point θ has

probability proportional to exp(−εL(θ;D)) — has excess risk

Õ(p/ε) on general Lipschitz functions, nearly matching the

lower bound of Ω(p/ε). (The bound would not be optimal for

(ε, δ)-privacy because it scales as p, not
√
p). This mechanism

is inefficient in general since it requires construction of a net

and an appropriate sampling mechanism.

We give a polynomial time algorithm that achieves the opti-

mal excess risk, namely O(p/ε). Note that the achieved excess

risk does not have any logarithmic factors which is shown to

be the case using a “peeling-”type argument that is specific

to convex functions. The idea of our algorithm is to sample

efficiently from the continuous distribution on all points in C
with density P(θ) ∝ e−εL(θ). Although the distribution we

hope to sample from is log-concave, standard techniques do

not work for our purposes: existing methods converge only

in statistical difference, whereas we require a multiplicative
convergence guarantee to provide (ε, 0)-differential privacy.

Previous solutions to this issue ([20]) worked for the uniform

distribution, but not for log-concave distributions.

The problem comes from the combination of an arbitrary

convex set and an arbitrary (Lipschitz) loss function defining

P . We circumvent this issue by giving an algorithm that

samples from an appropriately defined distribution P̃ on a cube

containing C, such that P̃ (i) outputs a point in C with constant

probability, and (ii) conditioned on sampling from C, is within

multiplicative distance O(ε) from the correct distribution. We

use, as a subroutine, the random walk on grid points of the

cube of [2].

Localization: Optimal Algorithms for Strongly Convex
Functions. The exponential-sampling-based technique dis-

cussed above does not take advantage of strong convexity of

the loss function. We show, however, that a novel combina-

tion of two standard techniques—the exponential mechanism

and Laplace-noise-based output perturbation—does yield an

optimal algorithm. [11] and [34] showed that strongly convex

functions have low-sensitivity minimizers, and hence that one

can release the minimum of a strongly convex function with

Laplace noise (with total Euclidean length about ρ = p
Δεn if

each loss function is Δ-strongly convex). Simply using this

first estimate as a candidate output does not yield optimal

utility in general; instead it gives a risk bound of roughly p
Δε .

The main insight is that this first estimate defines us a small

neighborhood C0 ⊆ C, of radius about ρ, that contains the true

minimizer. Running the exponential mechanism in this small

set improves the excess risk bound by a factor of about ρ over

running the same mechanism on all of C. The final risk bound

is then Õ(ρ p
εn) = Õ(p2

Δε2n), which matches the lower bound of

Ω(p2

ε2n) when Δ = Ω(1). This simple “localization” idea is not

needed for (ε, δ)-privacy, since the gradient descent method

can already take advantage of strong convexity to converge

more quickly.

Lower bounds. We use techniques developed to bound the

accuracy of releasing 1-way marginals (due to [20] for (ε, 0)−
and [9] for (ε, δ)-privacy) to show that our algorithms have

essentially optimal risk bounds. The instances that arise in

our lower bounds are simple: the functions can be linear (or

quadratic, for the case of strong convexity) and the constraint

set C can be either the unit ball or the hypercube. In particular,

our lower bounds apply to special case of smooth functions,

demonstrating the optimality of objective perturbation [11, 29]

in that setting. The reduction to lower-bounds for 1-way

marginals is not quite black-box; we exploit specific properties

of the instances used by [20, 9].

Finally, we provide a much stronger lower bound on the

utility of a specific algorithm, the Huberization-based algo-

rithm proposed by [11] for support vector machines. In order

to apply their algorithm to nonsmooth loss functions, they

proposed smoothing the loss function by Huberization, and

then running their algorithm (which requires smoothness for

the privacy analysis) on the resulting, modified loss functions.

466466

We show that for any setting of the Huerization parameters,

there are simple, one-dimensional nonsmooth loss functions

for which the algorithm has error Ω(n). This bound justifies

the effort we put into designing new algorithms for nonsmooth

loss functions.

B. Other Related Work

In addition to the previous work mentioned above, we

mention several closely related works. A rich line of work

seeks to characterize the optimal error of differentially private

algorithms for learning and optimization [25, 4, 10, 5, 6].

In particular, our results on (ε, 0)-differential privacy imply

nearly-tight bounds on the “representation dimension” [6] of

convex Lipschitz functions.

[23] gave dimension-independent expected excess risk

bounds for the special case of “generalized linear models”

with a strongly convex regularizer, assuming that C = R
p

(that is, unconstrained optimization). [29, 37] considered pa-

rameter convergence for high-dimensional sparse regression

(where p � n). Efficient implementations of the exponential

mechanism over infinite domains were discussed by [20], [12]

and [24]. The latter two works were specific to sampling (ap-

proximately) singular vectors of a matrix, and their techniques

do not obviously apply here.

Differentially private convex learning in different models

has also been studied: for example, [21, 14, 38] study online

optimization, [22] study an interactive model tailored to high-

dimensional kernel learning.

C. Additional Definitions

For completeness, we state a few additional definitions

related to convex sets and functions.

• � : C → R is L-Lipschitz (in the Euclidean norm) if, for

all pairs x, y ∈ C, we have |�(x)− �(y)| ≤ L‖x− y‖2. A

subgradient of a convex � function at x, denoted ∂�(x),
is the set of vectors z such that for all y ∈ C, �(y) ≥
�(x) + 〈z, y − x〉.

• � is Δ-strongly convex on C if, for all x ∈ C, for all

subgradients z at x, and for all y ∈ C, we have �(y) ≥
�(x) + 〈z, y − x〉+ Δ

2 ‖y − x‖22 (i.e., � is bounded below
by a quadratic function tangent at x).

• � is β-smooth on C if, for all x ∈ C, for all subgradients

z at x and for all y ∈ C, we have �(y) ≤ �(x) +
〈z, y − x〉 + β

2 ‖y − x‖22 (i.e., � is bounded above by

a quadratic function tangent at x). Smoothness implies

differentiability, so the subgradient at x is unique.

• Given a convex set C, we denote its diameter by ‖C‖2.

We denote the projection of any vector θ ∈ R
p to the

convex set C by ΠC(θ) = argmin
x∈C

‖θ − x‖2.

II. GRADIENT DESCENT AND OPTIMAL

(ε, δ)-DIFFERENTIALLY PRIVATE OPTIMIZATION

In this section we provide an algorithm ANoise−GD (Algo-

rithm 1) for computing θpriv using a noisy stochastic variant
of the classic gradient descent algorithm from the optimization

literature [8]. Our algorithm (and the utility analysis) was

inspired by the approach of [41] for logistic regression.

All the excess risk bounds (1) in this section and the rest of

this paper, are presented in expectation over the randomness

of the algorithm. In the full version [3]we provide a generic

tool to translate the expectation bounds into high probability

bound albeit at a loss of extra logarithmic factor in the inverse

of the failure probability.

Note(1): The results in this section do not require the loss

function � to be differentiable. Although we present Algorithm

ANoise−GD (and its analysis) using the gradient of the loss

function �(θ; d) at θ, the same guarantees hold if instead of

the gradient, the algorithm is run with any sub-gradient of �
at θ.

Note(2): Instead of using the stochastic variant in Algorithm

1, one can use the complete gradient (i.e., �L(θ;D)) in Step

5 and still have the same utility guarantee as Theorem II.4.

However, the running time goes up by a factor of n.

Algorithm 1 ANoise−GD: Differentially Private Gradient De-

scent

Input: Data set: D = {d1, · · · , dn}, loss function � (with

Lipschitz constant L), privacy parameters (ε, δ), convex

set C, and the learning rate function η : [n2] → R.

1: Set noise variance σ2 ← 32L2n2 log(n/δ) log(1/δ)
ε2 .

2: θ̃1 : Choose any point from C.

3: for t = 1 to n2 − 1 do
4: Pick d ∼u D with replacement.

5: θ̃t+1 = ΠC
(
θ̃t − η(t)

[
n� �(θ̃t; d) + bt

])
,

where bt ∼ N
(
0, Ipσ

2
)
.

6: Output θpriv = θ̃n2 .

Theorem II.1 (Privacy guarantee). Algorithm ANoise−GD (Al-
gorithm 1) is (ε, δ)-differentially private.

Proof: At any time step t ∈ [n2] in Algorithm ANoise−GD,

fix the randomness due to sampling in Line 4. Let Xt(D) =
n � �(θ̃t; d) + bt be a random variable defined over the

randomness of bt and conditioned on θ̃t (see Line 5 for a

definition), where d ∈ D is the data point picked in Line 4.

Denote μXt(D)(y) to be the measure of the random variable

Xt(D) induced on y ∈ R. For any two neighboring data sets

D and D′, define the privacy loss random variable [19] to

be Wt =
∣∣∣log μXt(D)(Xt(D))

μXt(D′)(Xt(D))

∣∣∣. Standard differential privacy

arguments for Gaussian noise addition (see [29, 33]) will

ensure that with probability 1 − δ
2 (over the randomness of

the random variables bt’s and conditioned on the randomness

due to sampling), Wt ≤ ε

2
√

log(1/δ)
for all t ∈ [n2]. Now using

the following lemma (Lemma II.2 with ε′ = ε

2
√

log(1/δ)
and

γ = 1/n) we ensure that over the randomness of bt’s and the

randomness due to sampling in Line 4 , w.p. at least 1 − δ
2 ,

Wt ≤ ε

n
√

log(1/δ)
for all t ∈ [n2]. While using Lemma II.2,

we ensure that the condition ε

2
√

log(1/δ)
≤ 1 is satisfied.

467467

Lemma II.2 (Privacy amplification via sampling. Lemma 4

in [4]). Over a domain of data sets T n, if an algorithm A is
ε′ ≤ 1 differentially private, then for any data set D ∈ T n,
executing A on uniformly random γn entries of D ensures
2γε′-differential privacy.

To conclude the proof, we apply “strong composition”

(Lemma II.3) from [19]. With probability at least 1 − δ, the

privacy loss W =
n2∑
t=1

Wt is at most ε. This concludes the

proof.

Lemma II.3 (Strong composition [19]). Let ε, δ′ ≥ 0. The
class of ε-differentially private algorithms satisfies (ε′, δ′)-
differential privacy under T -fold adaptive composition for
ε′ =

√
2T ln(1/δ′)ε+ Tε(eε − 1).

In Theorem II.4 we provide the utility guarantees for

Algorithm ANoise−GD under two different settings, namely,

when the function � is Lipschitz, and when the function

� is Lipschitz and strongly convex. (For a proof, seefull

version [3].) In Section V we argue that these excess risk

bounds are essentially tight.

Note: In the full version [3], we show that one can plug in

the empirical risk bounds into standard results from learning

theory [35], to obtain excess generalization error (excess risk)

bounds. The main crux of our results is that we obtain the same

dependence on the number of samples (n), when compared to

the non-private bounds. However, the private bounds have an

explicit dependence on the dimensionality (p).

Theorem II.4 (Utility guarantee). Let σ2 =

O
(

L2n2 log(n/δ) log(1/δ)
ε2

)
and let EmpRisk(θ) =

E [L(θ;D)− L(θ∗;D)]. For θpriv output by Algorithm
ANoise−GD we have the following. (The expectation is over
the randomness of the algorithm.)

1) Lipschitz functions: If we set the learning rate function
ηt(t) =

‖C‖2√
t(n2L2+pσ2)

, then we have the following excess

risk bound. Here L is the Lipscthiz constant of the loss
function �.

EmpRisk(θpriv) = O

(
L‖C‖2 log3/2(n/δ)

√
p log(1/δ)

ε

)
.

2) Lipschitz and strongly convex functions: If we set the
learning rate function ηt(t) = 1

Δnt , then we have the
following excess risk bound. Here L is the Lipscthiz
constant of the loss function � and Δ is the strong
convexity parameter.

EmpRisk(θpriv) = O

(
L2 log2(n/δ)p log(1/δ)

nΔε2

)
.

Proof: Let Gt = n � �(θ̃t; d) + bt in Line 5 of

Algorithm 1. First notice that over the randomness of the

sampling of the data entry d from D, and the randomness of

bt, E [Gt] = �L(θ̃t;D). Additionally, we have the following

bound on E[‖Gt‖22].

E[‖Gt‖22] = n2
E[‖ � �(θ̃t; d)‖22]+

2nE[〈��(θ̃t; d), bt〉] + E[‖bt‖22]
≤ n2L2 + pσ2 (2)

In the above expression we have used the fact that since θ̃t
is independent of bt, so E[〈��(θ̃t; d), bt〉] = 0. Also, we have

E[‖bt‖22] = pσ2. We can now directly use Lemma II.5 to obtain

the required error guarantee for Lipschitz convex functions,

and Lemma II.6 for Lipschitz and strongly convex functions.

Lemma II.5 (Theorem 2 from [36]). Let F (θ) (for θ ∈ C)
be a convex function and let θ∗ = argmin

θ∈C
F (θ). Let θ1 be

any arbitrary point from C. Consider the stochastic gradi-
ent descent algorithm θt+1 = ΠC [θt − η(t)Gt(θt)], where
E[Gt(θt)] = �F (θt), E[‖Gt‖22] ≤ G2 and the learning rate
function η(t) = ‖C‖2

G
√
t
. Then for any T > 1, the following is

true.
E [F (θT)− F (θ∗)] = O

(‖C‖2G log T√
T

)
.

Using the bound from (2) in Lemma II.5 (i.e., set G =√
n2L2 + pσ2), and setting T = n2 and the learning rate

function ηt(t) as in Lemma II.5, gives us the required excess

risk bound for Lipschitz convex functions. For Lipschitz and

strongly convex functions we use the following result by [36].

Lemma II.6 (Theorem 1 from [36]). Let F (θ) (for θ ∈ C) be
a λ-strongly convex function and let θ∗ = argmin

θ∈C
F (θ). Let

θ1 be any arbitrary point from C. Consider the stochastic gra-
dient descent algorithm θt+1 = ΠC [θt − η(t)Gt(θt)], where
E[Gt(θt)] = �F (θt), E[‖Gt‖22] ≤ G2 and the learning rate
function η(t) = 1

λt . Then for any T > 1, the following is true.

E [F (θT)− F (θ∗)] = O

(
G2 log T

λT

)
.

Using the bound from (2) in Lemma II.6 (i.e., set G =√
n2L2 + pσ2), λ = nΔ, and setting T = n2 and the learning

rate function ηt(t) as in Lemma II.6, gives us the required

excess risk bound for Lipschitz and strongly convex convex

functions.

Note: Algorithm ANoise−GD has a running time of O(pn2),
assuming that the gradient computation for � takes time O(p).

III. EXPONENTIAL SAMPLING AND OPTIMAL

(ε, 0)-PRIVATE OPTIMIZATION

In this section, we focus on the case of pure ε-differential

privacy and provide an optimal efficient algorithm for em-

pirical risk minimization for the general class of convex and

Lipschitz loss functions. The main building block of this

section is the well-known exponential mechanism [31].

First, we show that a variant of the exponential mechanism

is optimal. A major technical contribution of this section is

468468

θ∗

Convex set: C

A1

A2

A3
A4

r1 r2 r3 r4

Differential cone: Ω

Fig. 1. Differential cone Ω inside the convex set C

to make the exponential mechanism computationally efficient

which is discussed in Section III-B.

A. Exponential Mechanism for Lipschitz Convex Loss

In this section, we only deal with loss functions which

are Lipschitz. We provide an ε-differentially private algorithm

(Algorithm 2) which achieves the optimal excess risk for

arbitrary convex bounded sets.

Algorithm 2 Aexp−samp: Exponential sampling based convex

optimization

Input: Data set of size n: D, loss function �, privacy param-

eter ε and convex set C.

1: L(θ;D) =
n∑

i=1

�(θ; di).

2: Sample a point θpriv from the convex set C w.p. propor-

tional to exp
(
− ε

2L‖C‖2
L(θ;D)

)
and output.

Theorem III.1 (Privacy guarantee). Algorithm 2 is ε-
differentially private.

Proof: Note that the distribution in step 2 will remain

the same if we used exp
(
− ε

L‖C‖2
(L(θ;D)− L(θ0;D))

)
for

some arbitrary point θ0 ∈ C. The proof then follows from the

fact that the sensitivity of L(θ;D)−L(θ0;D) is at most L‖C‖2
and the analysis of the exponential mechanism by [31].

Theorem III.2 (Utility guarantee). Let θpriv be the output of
Aexp−samp (Algorithm 2 above). Then, we have the following
guarantee on the expected excess risk. (The expectation is over
the randomness of the algorithm.)

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
pL‖C‖2

ε

)
.

Proof: Consider a differential cone Ω centered at θ∗ (see

Figure 1). We will bound the expected excess risk of θpriv by

O
(

pL‖C‖2

ε

)
conditioned on θpriv ∈ Ω∩C for every differential

cone. This immediately implies the above theorem by the

properties of conditional expectation.

Let Γ be a fixed threshold (to be set later) and let R(θ) =
L(θpriv;D) − L(θ∗;D) for the purposes of brevity. Let the

marked sets Ai’s in Figure 1 be defined as

Ai = {θ ∈ Ω ∩ C : (i− 1)Γ ≤ R(θ) ≤ i · Γ}.
Instead of directly computing the probability of θpriv being

outside A1, we will analyze the probabilities for being in each

of the Ai’s individually. This form of “peeling” arguments

have been used for risk analysis of convex loss in the machine

learning literature (e.g., see [40]) and will allow us to get rid of

the extra logarithmic factor that would have otherwise shown

up in the excess risk if we use the standard analysis of the

exponential mechanism in [31].

Since the Ω is a differential cone and since R(θ) is contin-

uous on C, it follows that within Ω∩C, R(θ) only depends on

‖θ− θ∗‖2. Therefore, let r1, r2, · · · be the distance of the set

boundaries of A1, A2, · · · from θ∗. (See Figure 1.) One can

equivalently write each Ai as follows:

Ai = {θ ∈ Ω ∩ C : ri−1 < ‖θ − θ∗‖2 ≤ ri}.
The following claim (which is proved in the full version [3])

is the key part of the proof.

Claim III.3. Convexity of R(θ) for all θ ∈ C implies that
ri − ri−1 ≤ ri−1 − ri−2 for all i ≥ 3.

Now, the volume of the set Ai is given by Vol(Ai) =

κ
ri∫

ri−1

rp−1dr for some fixed constant κ. Hence,

Vol(Ai)

Vol(A2)
=

rpi−1

rp1
· (ri/ri−1)

p − 1

(r2/r1)p − 1
≤ rpi−1

rp1
≤ (i− 1)p.

where the last two inequalities follows from Claim III.3. Let

γ =
Pr[θpriv∈

∞⋃

i=4
Ai]

Pr[θpriv∈A2]
. Hence, γ can be bounded as

γ ≤
∞∑
i=4

Vol(Ai)

Vol(A2)
· e−ε(i−3) Γ

2L‖C‖2

≤
∞∑
i=4

(i− 1)p · e−ε(i−3) Γ
2L‖C‖2 ≤ 3pe

−ε Γ
2L‖C‖2

1− 2pe
−ε Γ

2L‖C‖2

where we use the fact that (i − 1)p ≤ 3p ·
(
2i−4

)p
for i ≥ 4 in the last inequality which holds when

Γ is sufficiently large. Hence, for every t > 0, if

we choose Γ = 2L‖C‖2

ε ((p+ 1) ln 3 + t), we get γ ≤
e−t. Thus, conditioned on θpriv ∈ C ∩ Ω, we have

Pr[R(θpriv) ≥ 8L‖C‖2

ε ((p+ 1) ln 3 + t)] ≤ e−t. Since this is

true for every t > 0, we have our required bound as a corollary.

B. Efficient Implementation of Algorithm 2

In this section, we give a high-level description of a compu-

tationally efficient construction of Algorithm 2. Our algorithm

runs in polynomial time in n, p and outputs a sample θ ∈ C
from a distribution that is arbitrarily close (in the multiplicative

sense) to the distribution of the output of Algorithm 2.

Since we are interested in an efficient pure ε-differentially

private algorithm, we need an efficient sampler with a mul-

tiplicative distance guarantee. In fact, if we were interested

469469

in (ε, δ) algorithms, efficient sampling with a total variation

guarantee would have sufficed which would have made our

task a lot easier as we could have used one of the exisiting

algorithms, e.g., [30]. In [20], it was shown how to sample

efficiently with a multiplicative guarantee from the unifrom
distribution over a convex bounded set. However, what we

want to achieve here is more general, that is, to sample

efficiently from any given logconcave distribution defined over

a convex bounded set. To the best of our knowledge, this

task has not been explicitly worked out before, nevertheless,

all the ingredients needed to accomplish it are present in the

literature, mainly [2].

We highlight here the main ideas of our constrution, how-

ever, due to space constraints and since such construction is

not specific to our privacy problem, we provide the details

of such construction and the proof of our main result in this

section (Theorem III.4 below) in the full version [3].

Theorem III.4. There is an efficient version of Algorithm 2
that has the following guarantees.

1) Privacy: The algorithm is ε -differentially private.
2) Utility: The output θpriv ∈ C of the algorithm satisfies

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
pL‖C‖2

ε

)
.

3) Running time: Assuming C is in isotropic position, the
algorithm runs in time1

O
(
‖C‖22p3n3 max {p log(‖C‖2pn), ε‖C‖2n}

)
.

In fact, the running time of our algorithm depends on ‖C‖∞
rather than ‖C‖2. Namely, all the ‖C‖2 terms in the running

time can be replaced with ‖C‖∞, however, we chose to write

it in this less conservative way since all the bounds in this

paper are expressed in terms of ‖C‖2.

Before describing our construction, we first introduce some

useful notation and discuss some preliminaries.

For any two probability measures μ, ν defined with respect

to the same sample space Q ⊆ R
p, the relative (multiplicative)

distance between μ and ν, denoted as Dist∞(μ, ν) is defined

as

Dist∞(μ, ν) = sup
q∈Q

∣∣∣∣log dμ(q)

dν(q)

∣∣∣∣ .
where

dμ(q)
dν(q) (resp.,

dν(q)
dμ(q)) denotes the ratio of the two mea-

sures (more precisely, the Radon-Nikodym derivative).

Assumptions: We assume that we can efficiently test whether

a given point θ ∈ R
p lies in C using a membership oracle.

We also assume that we can efficienly optimize an efficiently

computable convex function over a convex set. To do this,

it suffices to have a projection oracle. We do not take into

account the extra polynomial factor in the running time which

is required to perform such operations since this factor is

highly dependent on the specific structure of the set C.

1If C is not in isotropic position, the running time will pick up an extra
factor of O(max

(
p2, polylog

(
1
r

))
where r is the diameter of the largest

ball we can fit inside C. See the full version [3]for details.

C. Our construction

Let τ denote the L∞ diameter of C. The Minkowski’s

norm of θ ∈ R
p with respect to C, denoted as ψ(θ),

is defined as ψ(θ) = inf{r > 0 : θ ∈ rC}. We de-

fine ψ̄α(θ) � α ·max{0, ψ(θ)− 1} for α > 0. Note that

ψ̄α(θ) > 0 if and only if θ /∈ C. Moreover, it is not hard

to verify that ψ̄α is α-Lipschitz.

We use the grid-walk algorithm of [2] for sampling from

a logconcave distribution defined over a cube as a building

block. Our construction is described as follows:

1) Enclose the set C with a cube A with edges of length τ .

2) Obtain a convex Lipschitz extension L̄(.;D) of the loss

function L(.;D) over A. This can be done efficiently

using a projection oracle.

3) Define F (θ) � e
− ε

6L‖C‖2 L̄(θ;D)−ψ̄α(θ)
, θ ∈ A, for a

specific choice of α = O(εn
‖C‖2

) (See full version [3]

for details).

4) Run the grid-walk algorithm of [2] with F as the input

weight function and A as the input cube, and output

a sample θ whose distribution is close, with respect to

Dist∞, to the distribution induced by F on A which is

given by
F (θ)∫

v∈A

F (v)dv
, θ ∈ A.

Let’s denote the aove efficient procedure by Acube−samp.

We then argue that due to the choices made for the values

of the parameters above, Acube−samp outputs a sample in C
with probability at least 1

2 . That is, the algorithm succeeds

to output a sample from a distribution close to the right

distribution on C with probability at least 1/2. Hence, we can

amplify the probability of success by repeating Acube−samp

sufficiently many times where fresh random coins are used by

Acube−samp in every time (specifically, O(n) iterations would

suffice). If Acube−samp returns a sample θ ∈ C in one of

those iterations, then our algorithm terminates outputting θ.

Otherwise, it outputs a uniformly random sample θ⊥ from

the unit ball B (Note that B ⊆ C since C is assumed to be

in isotropic position). We finally show that this termination

condition can only change the distribution of the output sample

by a constant factor sufficiently close to 1. Hence, we obtain

our efficient algorithm referred to in Theorem III.4.

IV. LOCALIZATION AND OPTIMAL PRIVATE ALGORITHMS

FOR STRONGLY CONVEX LOSS

It is unclear how to get a direct variant of Algorithm 2 in

Section III for Lipschitz and strongly convex losses that can

achieve optimal excess risk guarantees. The issue in extending

Algorithm 2 directly is that the convex set C over which the

exponential mechanism is defined is “too large” to provide

tight guarantees.

We show a generic ε-differentially private algorithm for

minimizing Lipschitz strongly convex loss functions based

on a combination of a simple pre-processing step (called

the localization step) and any generic ε-differentially private

algorithm for Lipschitz convex loss functions. We carry out

the localization step using a simple output perturbation algo-

rithm which ensures that the convex set over which the ε-

470470

differentially private algorithm (in the second step) is run has

diameter Õ(p/n).
Next, we instantiate the generic ε-differentially private

algorithm in the second step with our efficient exponential

sampling (Algorithm 2) to obtain an algorithm with optimal

excess risk bound (Theorem IV.3).

Details of the generic algorithm: We first give a simple

algorithm (Algorithm 3 below) that carries out the desired

localization step. The crux of the algorithm is the same as

to that of the output perturbation algorithm of [11].

Algorithm 3 Aε
out−pert: Output Perturbation for Strongly

Convex Loss
Input: data set of size n: D, loss function �, strong convexity

parameter Δ, privacy parameter ε, convex set C, and radius

parameter ζ < 1.

1: L(θ;D) =
n∑

i=1

�(θ; di).

2: Find θ∗ = argmin
θ∈C

L(θ;D).

3: θ0 = ΠC (θ∗ + b), where b is random noise vector with

density 1
αe

−nΔε
2L ‖b‖2 (where α is a normalizing constant)

and ΠC is the projection on to the convex set C.

4: Output C0 = {θ ∈ C : ‖θ − θ0‖2 ≤ ζ 2Lp
Δεn}.

Having Algorithm 3 in hand, we now give a generic ε-
differentially private algorithm for minimizing L over C. Let

Aε
gen−Lip denote any generic ε-differentially private algorithm

for optimizing L over some arbitrary convex set C̃ ⊆ C.

Algorithm 2 from Section III-A (or its efficient version from

Section III-B) is an example of Aε
gen−Lip. The algorithm we

present here (Algorithm 4 below) makes a black-box call in

its first step to A
ε
2
out−pert (Algorithm 3 shown above), then, in

the second step, it feeds the output of A
ε
2
out−pert into A

ε
2

gen−Lip

and ouptut.

Algorithm 4 Output-perturbation-based Generic Algorithm

Input: data set of size n: D, loss function �, strong convexity

parameter Δ, privacy parameter ε, and convex set C.

1: Run A
ε
2
out−pert (Algorithm 3) with input privacy parameter

ε/2, radius parameter ζ = 3 log (n), and output C0.

2: Run A
ε
2

gen−Lip on inputs n,D, �, privacy parameter ε/2,

and convex set C0, and output θpriv .

Theorem IV.1 (Privacy guarantee). Algorithm 4 is ε-
differentially private.

Proof: The privacy guarantee follows directly from the

composition theorem together with the fact that A
ε
2
out−pert

is ε
2 -differentially private (see [11]) and that A

ε
2

gen−Lip is ε
2 -

differentially private by assumption.

In the following lemma (see the full version [3] for a

proof), we provide a generic expression for the excess risk

of Algorithm 4 in terms of the expected excess risk of any

given algorithm Agen−Lip.

Lemma IV.2 (Generic utility guarantee). Let θ̃ denote the
output of Algorithm Aε

gen−Lip on inputs n,D, �, ε, C̃ (for an
arbitrary convex set C̃ ⊆ C). Let θ̂ denote the minimizer of
L(.;D) over C̃. If

E

[
L(θ̃;D)− L(θ̂;D)

]
≤ F

(
p, n, ε, L, ‖C̃‖2

)
for some function F , then the output θpriv of Algorithm 4
satisfies

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
F

(
p, n, ε, L,

Lp log(n)

Δεn

))
,

where θ∗ = argmin
θ∈C

L(θ;D).

Instantiation of A
ε
2

gen−Lip with Algorithm 2: Next, we give

our optimal ε-differentially private algorithm for Lipschitz

strongly convex loss functions. To do this, we instantiate

the generic Algorithm Agen−Lip in Algorithm 4 with our

exponential sampling algorithm from Section III-A (Algorithm

2), or its efficient version (Section III-B) to obtain the optimal

excess risk bound. We formally state the bound in Theorem

IV.3) below whose proof follows from Theorem III.2 and

Lemma IV.2 above.

Theorem IV.3 (Utility guarantee). Suppose we replace
A

ε
2

gen−Lip in Algorithm 4 with Algorithm 2 (Section III-A).
Then, the output θpriv satisfies

E
[
L(θpriv;D)− L(θ∗;D)

]
= O

(
p2L2

nΔε2
log(n)

)
.

where θ∗ = argmin
θ∈C

L(θ;D).

V. LOWER BOUNDS ON EXCESS RISK

In this section, we complete the picture by deriving lower

bounds on the excess risk caused by differentially private

algorithm for risk minimization. In Section V-A, we con-

sider the case of convex Lipschitz loss functions, whereas in

Section V-B, we consider the case of strongly convex and

Lipschitz loss functions.

Before we state and prove our lower bounds, we first give

the following useful lemma which gives lower bounds on

the L2-error incurred by ε and (ε, δ)-differentially private

algorithms for estimating the 1-way marginals of datasets over

{− 1√
p ,

1√
p}p. This lemma is based on the results of [20] and

[9]. We give a detailed proof of this lemma in the full version

of our paper [3].

Lemma V.1 (Lower bounds for 1-way marginals).

1) ε-differential private algorithms: Let n, p ∈ N and
ε > 0. There is a number M = Ω(min (n, p/ε)) such
that for every ε-differentially private algorithm A, there
is a dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p with

‖∑n
i=1 di‖2 ∈ [M−1,M+1] such that, with probability

at least 1/2 (taken over the algorithm random coins), we
have

‖A(D)− q(D)‖2 = Ω
(
min

(
1,

p

εn

))

471471

where q(D) = 1
n

∑n
i=1 di.

2) (ε, δ)-differential private algorithms: Let n, p ∈
N, ε > 0, and δ = o(1n). There is a num-
ber M = Ω

(
min

(
n,

√
p/ε

))
such that for every

(ε, δ)-differentially private algorithm A, there is a
dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p with

‖∑n
i=1 di‖2 ∈ [M − 1,M + 1] such that, with probabil-

ity at least 1/3 (taken over the algorithm random coins),
we have

‖A(D)− q(D)‖2 = Ω

(
min

(
1,

√
p

εn

))
where q(D) = 1

n

∑n
i=1 di.

A. Lower bounds for Lipschitz Convex Functions

We consider the case where the data points are drawn from

{− 1√
p ,

1√
p}p, the parameter set is the p-dimensional unit ball

B, and the loss function � is given by

�(θ; d) = −〈θ, d〉, θ ∈ B, d ∈ {− 1√
p
,
1√
p
}p.

Clearly, � is linear, hence convex, and 1-Lipschitz. Hence,

for any dataset D = {d1, . . . , dn} ⊆ {− 1√
p ,

1√
p}p, and any

θ ∈ B, we have L(θ;D) = −〈θ,∑n
i=1 di〉.

Note that, whenever ‖∑n
i=1 di‖2 > 0, θ∗ =

∑n
i=1 di

‖∑n
i=1 di‖2

is the minimizer of L(.;D) over B. Our lower bounds are

formally stated below.

Theorem V.2 (Lower bound for ε-differentially private algo-

rithms). Let n, p ∈ N and ε > 0. For every ε-differentially
private algorithm (whose output is denoted by θpriv), there is
a dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p such that, with

probability at least 1/2 (over the algorithm random coins), we
must have

L(θ;D)− L(θ∗;D) = Ω (min (n, p/ε))

where θ∗ =
∑n

i=1 di

‖∑n
i=1 di‖2

is the minimizer of L(.;D) over B.

Proof: Let A be an ε-differentially private algo-

rithm for minimizing L and let θpriv denote its out-

put. First, observe that for any θ ∈ B and dataset D,

L(θ;D)− L(θ∗;D) = ‖∑n
i=1 di‖2 (1− 〈θ, θ∗〉). Hence, we

have L(θ;D)− L(θ∗;D) ≥ 1
2‖

∑n
i=1 di‖2‖θ − θ∗‖22. This is

due to the fact that ‖θ − θ∗‖22 = ‖θ∗‖22 + ‖θ‖22 − 2〈θ, θ∗〉 and

the fact that θ∗, θ ∈ B.

Let M = Ω(min (n, p/ε)) be as in Part 1 of Lemma V.1.

Suppose, for the sake of a contradiction, that for every dataset

D ⊆ {− 1√
p ,

1√
p}p with ‖∑n

i=1 di‖2 ∈ [M − 1,M + 1],

with probability more than 1/2, we have ‖θpriv − θ∗‖2 �=
Ω(1). Let Ã be an ε-differentially private algorithm that first

runs A on the data and then outputs M
n θpriv . Note that

this implies that for every dataset D ⊆ {− 1√
p ,

1√
p}p with

‖∑n
i=1 di‖2 ∈ [M − 1,M + 1], with probability more than

1/2, ‖Ã(D) − q(D)‖2 �= Ω
(
min

(
1, p

εn

))
which contradicts

Part 1 of Lemma V.1. Thus, there must exist a dataset D ⊆
{− 1√

p ,
1√
p}p with ‖∑n

i=1 di‖2 = Ω(min (n, p/ε)) such that

with probability at least 1/2, we have ‖θpriv − θ∗‖2 = Ω(1).
Therefore, from the observation we made in the previ-

ous paragraph, we have, with probability at least 1/2,

L(θpriv;D)− L(θ∗;D) = Ω (min (n, p/ε)) .

Theorem V.3 (Lower bound for (ε, δ)-differentially private

algorithms). Let n, p ∈ N, ε > 0, and δ = o(1n). For every
(ε, δ)-differentially private algorithm (whose output is denoted
by θpriv), there is a dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p

such that, with probability at least 1/3 (over the algorithm
random coins), we must have

L(θ;D)− L(θ∗;D) = Ω (min (n,
√
p/ε))

where θ∗ =
∑n

i=1 di

‖∑n
i=1 di‖2

is the minimizer of L(.;D) over B.

Proof: We use Part 2 of Lemma V.1 and follow the same

lines of the proof of Theorem V.2.

B. Lower bounds for Strongly Convex Functions

We consider the same data universe and parameter set

above. We choose our loss function here �(θ; d) to be

�(θ; d) =
1

2
‖θ − d‖22, θ ∈ B, d ∈ {− 1√

p
,
1√
p
}p.

Note that � is 1-Lipschitz and 1-strongly convex. Hence,

for a dataset D = {d1, . . . , dn} ⊆ {− 1√
p ,

1√
p}p, we have

L(θ;D) = 1
2

∑n
i=1 ‖θ − di‖22.

Notice that the minimizer of L(.;D) over B is θ∗ = 1
n

∑
di

which is equal to q(D) in the terminology of Lemma V.1. Note

also that we can write the excess risk as

L(θpriv;D)− L(θ∗) = n

2
‖θpriv − q(D)‖22. (3)

Theorem V.4 (Lower bound for ε-differentially private algo-

rithms). Let n ∈ N and ε > 0. For every ε-differentially private
algorithm (whose output is denoted by θpriv), there is a dataset
D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p such that, with probability

at least 1/2 (over the algorithm random coins), we must have

L(θpriv;D)− L(θ∗;D) = Ω

(
min

(
n,

p2

ε2n

))

where θ∗ = 1
n

∑
di is the minimizer of L(.;D) over B.

Proof: The proof follows directly from (3) and Part 1 of

Lemma V.1.

Theorem V.5 (Lower bound for (ε, δ)-differentially private

algorithms). Let n ∈ N, ε > 0, and δ = o(1n). For every (ε, δ)-
differentially private algorithm (whose output is denoted by
θpriv), there is a dataset D = {d1, . . . , dn} ⊆ {− 1√

p ,
1√
p}p

such that, with probability at least 1/3 (over the algorithm
random coins), we must have

L(θpriv;D)− L(θ∗;D) = Ω
(
min

(
n,

p

ε2n

))
where θ∗ = 1

n

∑
di is the minimizer of L(.;D) over B.

Proof: The proof follows directly from (3) and Part 2 of

Lemma V.1.

472472

Note: In the full version [3], we provide a simple reduction

to transform our lower bounds above to the case of arbitrary

L, ‖C‖2, and Δ.

ACKNOWLEDGMENTS

We are grateful to Santosh Vempala and Ravi Kannan

for discussions about efficient sampling algorithms for log-

concave distributions over convex bodies. In particular, Ravi

suggested the idea of using a penalty term to reduce from

sampling over C to sampling over the cube.

R.B. and A.S. were supported in part by NSF awards

#0747294 and #0941553. A.S. was also partly supported by

Boston University’s Hariri Institute for Computing and Center

for RISCS, as well as by the Harvard Center for Research on

Computation and Society, through a Simons Investigator grant

to Salil Vadhan. A.T. was supported in part by an award from

the Sloan Foundation.

REFERENCES

[1] A. Agarwal, P. L. Bartlett, P. D. Ravikumar, and M. J. Wain-
wright. Information-theoretic lower bounds on the oracle com-
plexity of stochastic convex optimization. IEEE Transactions
on Information Theory, 58(5):3235–3249, 2012.

[2] D. Applegate and R. Kannan. Sampling and integration of near
log-concave functions. In STOC, 1991.

[3] R. Bassily, A. Smith, and A. Thakurta. Private empirical
risk minimization: Efficient algorithms and tight error bounds.
CoRR, arXiv:1405.7085 [cs.LG], 2014.

[4] A. Beimel, H. Brenner, S. P. Kasiviswanathan, and K. Nissim.
Bounds on the sample complexity for private learning and
private data release. Machine learning, 94(3), 2014.

[5] A. Beimel, K. Nissim, and U. Stemmer. Characterizing the
sample complexity of private learners. CoRR, abs/1402.2224,
2014.

[6] A. Beimel, K. Nissim, and U. Stemmer. Private learning and
sanitization: Pure vs. approximate differential privacy. CoRR,
abs/1407.2674, 2014.

[7] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical
privacy: The SuLQ framework. In PODS, pages 128–138.
ACM, 2005.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[9] M. Bun, J. Ullman, and S. Vadhan. Fingerprinting codes and
the price of approximate differential privacy. In STOC, 2014.

[10] K. Chaudhuri and D. Hsu. Sample complexity bounds for
differentially private learning. In S. M. Kakade and U. von
Luxburg, editors, COLT, volume 19 of JMLR Proceedings,
pages 155–186. JMLR.org, 2011.

[11] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially
private empirical risk minimization. JMLR, 12:1069–1109,
2011.

[12] K. Chaudhuri, A. D. Sarwate, and K. Sinha. A near-optimal al-
gorithm for differentially-private principal components. Journal
of Machine Learning Research, 14(1):2905–2943, 2013.

[13] I. Dinur and K. Nissim. Revealing information while preserving
privacy. In PODS, pages 202–210. ACM, 2003.

[14] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy
and statistical minimax rates. In IEEE Symp. on Foundations
of Computer Science (FOCS), 2013.

[15] C. Dwork. Differential privacy. In ICALP, LNCS, pages 1–12,
2006.

[16] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In EUROCRYPT, pages 486–503, 2006.

[17] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of
Cryptography Conference, pages 265–284. Springer, 2006.

[18] C. Dwork and K. Nissim. Privacy-preserving datamining on
vertically partitioned databases. In CRYPTO, LNCS, pages 528–
544. Springer, 2004.

[19] C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and
differential privacy. In FOCS, 2010.

[20] M. Hardt and K. Talwar. On the geometry of differential privacy.
In STOC, 2010.

[21] P. Jain, P. Kothari, and A. Thakurta. Differentially private online
learning. In Conference on Learning Theory, pages 24.1–24.34,
2012.

[22] P. Jain and A. Thakurta. Differentially private learning with
kernels. In ICML (3), volume 28 of JMLR Proceedings, pages
118–126. JMLR.org, 2013.

[23] P. Jain and A. Thakurta. (near) dimension independent risk
bounds for differentially private learning. In International
Conference on Machine Learning (ICML), 2014.

[24] M. Kapralov and K. Talwar. On differentially private low rank
approximation. In S. Khanna, editor, SODA, pages 1395–1414.
SIAM, 2013.

[25] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova,
and A. Smith. What can we learn privately? In FOCS, 2008.

[26] S. P. Kasiviswanathan, M. Rudelson, and A. Smith. The power
of linear reconstruction attacks. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2013.

[27] S. P. Kasiviswanathan and A. Smith. A note on differential
privacy: Defining resistance to arbitrary side information. CoRR,
arXiv:0803.39461 [cs.CR], 2008.

[28] D. Kifer and A. Machanavajjhala. A rigorous and customizable
framework for privacy. In PODS, pages 77–88, 2012.

[29] D. Kifer, A. Smith, and A. Thakurta. Private convex empirical
risk minimization and high-dimensional regression. In Confer-
ence on Learning Theory, pages 25.1–25.40, 2012.

[30] L. Lovász and S. Vempala. The geometry of logconcave
functions and sampling algorithms. Random Struct. Algorithms,
30(3):307–358, 2007.

[31] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In FOCS, pages 94–103, 2007.

[32] A. S. Nemirovski and D. B. Yudin. Problem Complexity and
Method Efficiency in Optimization. John Wiley & Sons, 1983.

[33] A. Nikolov, K. Talwar, and L. Zhang. The geometry of
differential privacy: The sparse and approximate cases. In
STOC, 2013.

[34] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft. Learn-
ing in a large function space: Privacy-preserving mechanisms
for svm learning. CoRR, abs/0911.5708, 2009.

[35] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan.
Stochastic Convex Optimization. In COLT, 2009.

[36] O. Shamir and T. Zhang. Stochastic gradient descent for non-
smooth optimization: Convergence results and optimal averag-
ing schemes. In ICML, pages 71–79, 2013.

[37] A. Smith and A. Thakurta. Differentially private feature
selection via stability arguments, and the robustness of the lasso.
In Conference on Learning Theory (COLT), 2013.

[38] A. Smith and A. Thakurta. (nearly) optimal algorithms for
private online learning in full-information and bandit settings.
In Neural Information Processing Systems (NIPS), 2013.

[39] S. Song, K. Chaudhuri, and A. Sarwate. Stochastic gradient
descent with differentially private updates. In Proc. of the
Global Conference on Signal and Information Processing, pages
245–248, December 2013.

[40] K. Sridharan, S. Shalev-shwartz, and N. Srebro. Fast rates for
regularized objectives. In NIPS, 2008.

[41] O. Williams and F. McSherry. Probabilistic inference and
differential privacy. In NIPS, 2010.

473473

