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Abstract—Convex empirical risk minimization is a basic tool
in machine learning and statistics. We provide new algorithms
and matching lower bounds for differentially private convex
empirical risk minimization assuming only that each data point’s
contribution to the loss function is Lipschitz and that the
domain of optimization is bounded. We provide a separate set of
algorithms and matching lower bounds for the setting in which
the loss functions are known to also be strongly convex.

Our algorithms run in polynomial time, and in some cases
even match the optimal nonprivate running time (as measured
by oracle complexity). We give separate algorithms (and lower
bounds) for (¢,0)- and (e, §)-differential privacy; perhaps sur-
prisingly, the techniques used for designing optimal algorithms
in the two cases are completely different.

Our lower bounds apply even to very simple, smooth function
families, such as linear and quadratic functions. This implies
that algorithms from previous work can be used to obtain
optimal error rates, under the additional assumption that the
contributions of each data point to the loss function is smooth.
We show that simple approaches to smoothing arbitrary loss
functions (in order to apply previous techniques) do not yield
optimal error rates. In particular, optimal algorithms were not
previously known for problems such as training support vector
machines and the high-dimensional median.

I. INTRODUCTION

Convex optimization is one of the most basic and powerful
computational tools in statistics and machine learning. It is
most commonly used for empirical risk minimization (ERM):
the data set D = {dy,...,d,,} defines a convex loss function
L(+) which is minimized over a convex set C. When run
on sensitive data, however, the results of convex ERM can
leak sensitive information. For example, medians and support
vector machine parameters can, in many cases, leak entire
records in the clear (see “Motivation”, below).

In this paper, we provide new algorithms and matching
lower bounds for differentially private convex ERM assuming
only that each data point’s contribution to the loss function
is Lipschitz and that the domain of optimization is bounded.
This builds on a line of work started by Chaudhuri et al. [11].
Problem formulation. Given a data set D = {dy,...,d,}
drawn from a universe X, and a closed, convex set C, our
goal is to

n
minimize £(0; D) = 26(6; d;) over 0 € C
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The map ¢ defines, for each data point d, a loss function £(-; d)
on C. We will generally assume that ¢(-; d) is convex and L-
Lipschitz for all d € &X'. One obtains variants on this basic
problem by assuming additional restrictions, such as (i) that
£(+;d) is A-strongly convex for all d € X, and/or (ii) that
¢(+;d) is B-smooth for all d € X. Definitions of Lipschitz,
strong convexity and smoothness are provided at the end of
the introduction.

For example, given a collection of data points in RP, the
Euclidean 1-median is a point in R? that minimizes the
sum of the Euclidean distances to the data points. That is,
£(0;d;) = ||@ — d;||2, which is 1-Lipschitz in 6 for any choice
of d;. Another common example is the support vector machine
(SVM): given a data point d; = (z;,y;) € RP x {—1,1}, one
defines a loss function £(6;d;) = hinge(y; - (0, x;)), where
hinge(z) = (1 — z)4 (here (1 — 2)4 equals 1 — z for z < 1
and 0, otherwise). The loss is L-Lipshitz in 6 when ||z;||2 < L.

Our formulation also captures regularized ERM, in which
an additional (convex) function r(6) is added to the loss
function to penalize certain types of solutions; the loss function
is then 7(6) + >/, £(6; d;). One can fold the regularizer r(-)
into the data-dependent functions by replacing £(6;d;) with
0(0;d;) = £(0;d;) + Lr(6), so that L(6;D) = >, 4(6;d;).
This folding comes at some loss of generality (since it may
increase the Lipschitz constant), but it does not affect asymp-
totic results. Note that if r is An-strongly convex, then every
£ is A-strongly convex.

We measure the success of our algorithms by the worst-case
(over inputs) expected excess empirical risk, namely

E(L(6; D) — L(6%; D)), (1)

where 6 is the output of the algorithm, 6*
arg mingec £(0; D) is the true minimizer, and the expectation
is only over the coins of the algorithm. Expected risk
guarantees can be converted to high-probability guarantees
using standard techniques (see full version [3]).

Another important measure of performance is an algorithm’s
(excess) generalization error, where loss is measured with
respect to the average over an unknown distribution from
which the data are assumed to be drawn i.i.d.. Our upper
bounds on empirical risk imply upper bounds on generalization
error (via uniform convergence and similar ideas); the resulting
bounds are only known to be tight in certain ranges of
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parameters, however. Detailed statements may be found in full
version [3]. This proceedings version discusses only empirical
error.

Motivation. Convex ERM is used for fitting models from
simple least-squares regression to support vector machines,
and their use may have significant implications to privacy. As a
simple example, note that the Euclidean 1-median of a data set
will typically be an actual data point, since the gradient of the
loss function has discontinuities at each of the d;. (Thinking
about the one-dimensional median, where there is always a
data point that minimizes the loss, is helpful.) Thus, releasing
the median may well reveal one of the data points in the clear.
A more subtle example is the support vector machine (SVM).
The solution to an SVM program is often presented in its dual
form, whose coefficients typically consist of a set of p+1 exact
data points. [26] show how the results of many convex ERM
problems can be combined to carry out reconstruction attacks
in the spirit of [13].

Differential privacy is a rigorous notion of privacy that
emerged from a line of work in theoretical computer science
and cryptography [18, 7, 17]. We say two data sets D and
D’ of size n are neighbors if they differ in one entry (that
is, |DAD/| = 2). A randomized algorithm A is (€, 4)-
differentially private ([17, 16]) if, for all neighboring data sets
D and D’ and for all events S in the output space of A, we
have

Pr(A(D) € yES)+6.

Algorithms that satisfy differential privacy for ¢ < 1 and
d < 1/n provide meaningful privacy guarantees, even in
the presence of side information. In particular, they avoid the
problems mentioned in “Motivation” above. See [15, 27, 28]
for discussion of the “semantics” of differential privacy.

S) < e Pr(A(D'

Setting Parameters. We will aim to quantify the role of
several basic parameters on the excess risk of differentially
private algorithms: the size of the data set n, the dimension p
of the parameter space C, the Lipschitz constant L of the loss
functions, the diameter ||C||2 of the constraint set and, when
applicable, the strong convexity A.

We may take L and ||C||2 to be 1 without loss of generality:
We can set ||C|l2 = 1 by rescaling 6 (replacing by 6 with
6-]|C||2); we can then set L = 1 by rescaling the loss function
L (replacing £ by L£/L). These two transformations change
the excess risk by L||C||2. The parameter A cannot similarly
be rescaled while keeping L and ||C||» the same. However, we
always have A < 2L/||C||2.

In the sequel, we thus focus on the setting where L =
ICll2 = 1 and A € [0,2]. To convert excess risk bounds for
L = ||C||2 = 1 to the general setting, one can multiply the
risk bounds by L||C||2, and replace A by AHCHZ

A. Contributions

We give algorithms that significantly improve on the state
of the art for optimizing non-smooth loss functions — for both
the general case and strongly convex functions, we improve
the excess risk bounds by a factor of /n, asymptotically. The
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algorithms we give for (¢,0)- and (e, §)-differential privacy
work on very different principles. We group the algorithms
below by technique: gradient descent, exponential sampling,
and localization.

For the purposes of this section, O(-) notation hides factors
polynomial in logn and log(1/0). Detailed bounds are stated
in Table I.

Gradient descent-based algorithms. For (e,d)-differential
privacy, we show that a noisy version of gradient descent
achieves excess risk O(\/ﬁ /€). This matches our lower bound,

Q(min(n, /p/e€)), up to logarithmic factors. (Note that every
0 € C has excess risk at most n, so a lower bound of n
can always be matched.) For A- strongly convex functions, a
variant of our algorlthm has risk O( ), which matches the
lower bound Q(-2;) when A is bounded below by a constant
(recall that A < "3 since L = (ICll2 = 1).

Previously, the best known risk bounds were (,/pn/e)
for general convex functions and € AE2) for A-strongly
convex functions (achievable via several different techniques
([11, 29, 21, 14])). Under the restriction that each data
point’s contribution to the loss function is sufficiently smooth,
objective perturbation [11, 29] also has risk O(\/ﬁ/ €) (which
is tight, since the lower bounds apply to smooth functions).
However, smooth functions do not include important special
cases such as medians and support vector machines. [11]
suggest applying their technique to support vector machines
by smoothing (“huberizing”) the loss function. We show in the
full version [3]that this approach still yields expected excess
risk Q(,/pn/e).

Although straightforward noisy gradient descent would
work well in our setting, we present a faster variant based
on stochastic gradient descent: At each step ¢, the algorithm
samples a random point d; from the data set, computes a noisy
version of d;’s contribution to the gradient of £ at the current
estimate 6, and then uses that noisy measurement to update
the parameter estimate. The algorithm is similar to algorithms
that have appeared previously ([41] first investigated gradient
descent with noisy updates; stochastic variants were studied
by [21, 14, 39]). The novelty of our analysis lies in taking
advantage of the randomness in the choice of d; (following
[25]) to run the algorithm for many steps without a signif-
icant cost to privacy. Running the algorithm for 7' = n?
steps, gives the desired expected excess risk bound. Even
nonprivate first-order algorithms—i.e., those based on gradient
measurements—must learn information about the gradient at
(n?) points to get risk bounds that are independent of n (this
follows from “oracle complexity” bounds showing that 1/ VT
convergence rate is optimal [32, 1]).

The gradient descent approach does not, to our knowl-
edge, allow one to get optimal excess risk bounds for (e, 0)-
differential privacy. The main obstacle is that “strong com-
position” of (e, d)-privacy [19] appears necessary to allow a
first-order method to run for sufficiently many steps.

Exponential Sampling-based Algorithms.
differential privacy, we observe that a

For (€,0)-
straightforward



(¢,0)-DP (¢,6)-DP
Previous [11] This work Previous [29] This work
Assumptions Upper Bd Upper Bd [ Lower Bd Upper Bd Upper Bd [ Lower Bd
VP nlog(1/8 log?(n/s
| Lipschitz and [ Cl> = 1 pvn p p p-nlog(1/9) /Plog®(n/s) VP
€ € € : 6(1 5 € \Ef
o
... and O(p)-smooth d P vplog(1/0) vP
€ € € €
2 log (s p? log(1/6 log®(n/s) |
1-Lipschitz and A-strongly L 5 og(n) . p—Q p—2 plog( /2) og”(n/9) . % %
convex and [|Cl2 = 1 vnle A ne ne VvnlAe A ne ne
(implies A < 2)
2 2
P P plog(1/6) P
... and O(p)-smooth —_ — —_— —
() nAe? ne2 nAe? ne2
TABLE I

UPPER AND LOWER BOUNDS FOR EXCESS RISK OF DIFFERENTIALLY-PRIVATE CONVEX ERM. BOUNDS IGNORE LEADING MULTIPLICATIVE CONSTANTS,
AND THE VALUES IN THE TABLE GIVE THE BOUND WHEN IT IS BELOW n. THAT IS, UPPER BOUNDS SHOULD BE READ AS O(min(n, ...)) AND LOWER
BOUNDS, AS Q(min(n, ...))). HERE ||C||2 IS THE DIAMETER OF C. THE BOUNDS ARE STATED FOR THE SETTING WHERE L = [|C||2 = 1, WHICH CAN BE

ENFORCED BY RESCALING; TO GET GENERAL STATEMENTS, MULTIPLY THE RISK BOUNDS BY L||C||2, AND REPLACE A BY

%‘ WE ASSUME

§ < 1/n TO SIMPLIFY THE BOUNDS.

use of the exponential mechanism — sampling from an
appropriately-sized net of points in C, where each point 6 has
probability proportional to exp(—eL(#; D)) — has excess risk
O(p/e) on general Lipschitz functions, nearly matching the
lower bound of Q(p/e¢). (The bound would not be optimal for
(€, )-privacy because it scales as p, not /p). This mechanism
is inefficient in general since it requires construction of a net
and an appropriate sampling mechanism.

We give a polynomial time algorithm that achieves the opti-
mal excess risk, namely O(p/¢). Note that the achieved excess
risk does not have any logarithmic factors which is shown to
be the case using a “peeling-"type argument that is specific
to convex functions. The idea of our algorithm is to sample
efficiently from the continuous distribution on all points in C
with density P () oc e~“*(). Although the distribution we
hope to sample from is log-concave, standard techniques do
not work for our purposes: existing methods converge only
in statistical difference, whereas we require a multiplicative
convergence guarantee to provide (e, 0)-differential privacy.
Previous solutions to this issue ([20]) worked for the uniform
distribution, but not for log-concave distributions.

The problem comes from the combination of an arbitrary
convex set and an arbitrary (Lipschitz) loss function defining
‘P. We circumvent this issue by giving an algorithm that
samples from an appropriately defined distribution P on a cube
containing C, such that P (i) outputs a point in C with constant
probability, and (ii) conditioned on sampling from C, is within
multiplicative distance O(e) from the correct distribution. We
use, as a subroutine, the random walk on grid points of the
cube of [2].

Localization: Optimal Algorithms for Strongly Convex
Functions. The exponential-sampling-based technique dis-
cussed above does not take advantage of strong convexity of
the loss function. We show, however, that a novel combina-
tion of two standard techniques—the exponential mechanism
and Laplace-noise-based output perturbation—does yield an
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optimal algorithm. [11] and [34] showed that strongly convex
functions have low-sensitivity minimizers, and hence that one
can release the minimum of a strongly convex function with
Laplace noise (with total Euclidean length about p = <2 if
each loss function is A-strongly convex). Simply using this
first estimate as a candidate output does not yield optimal

utility in general; instead it gives a risk bound of roughly -.

The main insight is that this first estimate defines us a small
neighborhood Cy C C, of radius about p, that contains the true
minimizer. Running the exponential mechanism in this small
set improves the excess risk bound by a factor of about p over
running the same mechanism on all of C. The final risk bound
is then O(p2) O(ﬁzn), which matches the lower bound of
Q(%) when A = Q(1). This simple “localization” idea is not
needed for (e, d)-privacy, since the gradient descent method
can already take advantage of strong convexity to converge
more quickly.

Lower bounds. We use techniques developed to bound the
accuracy of releasing 1-way marginals (due to [20] for (e,0)—
and [9] for (e, d)-privacy) to show that our algorithms have
essentially optimal risk bounds. The instances that arise in
our lower bounds are simple: the functions can be linear (or
quadratic, for the case of strong convexity) and the constraint
set C can be either the unit ball or the hypercube. In particular,
our lower bounds apply to special case of smooth functions,
demonstrating the optimality of objective perturbation [11, 29]
in that setting. The reduction to lower-bounds for 1-way
marginals is not quite black-box; we exploit specific properties
of the instances used by [20, 9].

Finally, we provide a much stronger lower bound on the
utility of a specific algorithm, the Huberization-based algo-
rithm proposed by [11] for support vector machines. In order
to apply their algorithm to nonsmooth loss functions, they
proposed smoothing the loss function by Huberization, and
then running their algorithm (which requires smoothness for
the privacy analysis) on the resulting, modified loss functions.



We show that for any setting of the Huerization parameters,
there are simple, one-dimensional nonsmooth loss functions
for which the algorithm has error ©(n). This bound justifies
the effort we put into designing new algorithms for nonsmooth
loss functions.

B. Other Related Work

In addition to the previous work mentioned above, we
mention several closely related works. A rich line of work
seeks to characterize the optimal error of differentially private
algorithms for learning and optimization [25, 4, 10, 5, 6].
In particular, our results on (e, 0)-differential privacy imply
nearly-tight bounds on the “representation dimension” [6] of
convex Lipschitz functions.

[23] gave dimension-independent expected excess risk
bounds for the special case of “generalized linear models”
with a strongly convex regularizer, assuming that C = RP
(that is, unconstrained optimization). [29, 37] considered pa-
rameter convergence for high-dimensional sparse regression
(where p > n). Efficient implementations of the exponential
mechanism over infinite domains were discussed by [20], [12]
and [24]. The latter two works were specific to sampling (ap-
proximately) singular vectors of a matrix, and their techniques
do not obviously apply here.

Differentially private convex learning in different models
has also been studied: for example, [21, 14, 38] study online
optimization, [22] study an interactive model tailored to high-
dimensional kernel learning.

C. Additional Definitions

For completeness, we state a few additional definitions
related to convex sets and functions.

e {:C — R is L-Lipschitz (in the Euclidean norm) if, for
all pairs x,y € C, we have |[¢(x) —£(y)| < L||lx —y||2- A
subgradient of a convex ¢ function at x, denoted 04(zx),
is the set of vectors z such that for all y € C, {(y) >
Ux) + (z,y — ).

¢ is A-strongly convex on C if, for all x € C, for all
subgradients z at z, and for all y € C, we have £(y) >
U(z) + (z,y — ) + 5y — 2|3 (.., £ is bounded below
by a quadratic function tangent at x).

£ is -smooth on C if, for all = € C, for all subgradients
z at x and for all y € C, we have {(y) < {(z) +
(z,y — ) + By — |3 (e, £ is bounded above by
a quadratic function tangent at x). Smoothness implies
differentiability, so the subgradient at x is unique.
Given a convex set C, we denote its diameter by ||C||2.
We denote the projection of any vector § € RP to the
convex set C by Il¢(0) = arggleig 10 — z||2-

II. GRADIENT DESCENT AND OPTIMAL
(€,0)-DIFFERENTIALLY PRIVATE OPTIMIZATION

In this section we provide an algorithm Anoise—Gp (Algo-
rithm 1) for computing 8P"*" using a noisy stochastic variant
of the classic gradient descent algorithm from the optimization

467

literature [8]. Our algorithm (and the utility analysis) was
inspired by the approach of [41] for logistic regression.

All the excess risk bounds (1) in this section and the rest of
this paper, are presented in expectation over the randomness
of the algorithm. In the full version [3]we provide a generic
tool to translate the expectation bounds into high probability
bound albeit at a loss of extra logarithmic factor in the inverse
of the failure probability.

Note(1): The results in this section do not require the loss
function ¢ to be differentiable. Although we present Algorithm
Anoise—cp (and its analysis) using the gradient of the loss
function ¢(6;d) at 6, the same guarantees hold if instead of
the gradient, the algorithm is run with any sub-gradient of ¢
at 6.

Note(2): Instead of using the stochastic variant in Algorithm
1, one can use the complete gradient (i.e., s7£(6; D)) in Step
5 and still have the same utility guarantee as Theorem I1.4.
However, the running time goes up by a factor of n.

Algorithm 1 Apngise_gp: Differentially Private Gradient De-

scent

Input: Data set: D = {dy,---,d,}, loss function ¢ (with
Lipschitz constant L), privacy parameters (e,d), convex

set C, and the learning rate function 7 : [n?] — R.
32L2n2%log(n/8) log(1/6)
€2 :

: Set noise variance o2
. 6, : Choose any point from C.
cfort=1ton?—1do

Pick d ~,, D with replacement.

Or1 =1lc (9t —n(t) |n 7 £(0;d) + th,
where by ~ N (O,]Ip02 .

6: Output 9PV =0,

oo e =

Theorem II.1 (Privacy guarantee). Algorithm Anoise—GD (Al-
gorithm 1) is (e, §)-differentially private.

Proof: At any time step ¢ € [n?] in Algorithm Angise—GD>
fix the randomness due to sampling in Line 4. Let X;(D) =
n 7 £(0;;d) + by be a random variable defined over the
randomness of b; and conditioned on 6; (see Line 5 for a
definition), where d € D is the data point picked in Line 4.
Denote iy, (py(y) to be the measure of the random variable
X:(D) induced on y € R. For any two neighboring data sets
D and D', define the Qri%acy loss random variable [19] to
be W, ‘log 75;‘((3)(( X:((D)))) .
arguments for Gaussian noise addition (see [29, 33]) will
ensure that with probability 1 — g (over the randomness of
the random variables b;’s and conditioned on the randomness
due to sampling), W; < W for all ¢ € [n?]. Now using
: : ! €
the following lemma (Lemma II.2 with € = s /5) and
~ = 1/n) we ensure that over the randomness of b;’s and the
randomness due to sampling in Line 4 , w.p. at least 1 — g,
Wy < for all ¢ € [n?]. While using Lemma 11.2,

= n/los(1/0)
V/1os(1/0) ——<— <1 is satisfied.
2+/log(1/8)

Standard differential privacy

we ensure that the condition



Lemma IL2 (Privacy amplification via sampling. Lemma 4
in [4]). Over a domain of data sets T", if an algorithm A is
€ < 1 differentially private, then for any data set D € T",
executing A on uniformly random ~yn entries of D ensures
2~€'-differential privacy.

To conclude the proof, we apply “strong composition”
(Lemma I1.3) from [19]. With probability at least 1 — §, the
2

n
privacy loss W = > W; is at most e. This concludes the
=1
proof.
Lemma IL3 (Strong composition [19]). Let ¢,6’ > 0. The
class of e-differentially private algorithms satisfies (€',9)-
differential privacy under T-fold adaptive composition for

€ =+/2T1n(1/¢")e + Te(ef — 1).
|
In Theorem II.4 we provide the utility guarantees for
Algorithm Apeise_gp under two different settings, namely,
when the function ¢ is Lipschitz, and when the function
¢ is Lipschitz and strongly convex. (For a proof, seefull
version [3].) In Section V we argue that these excess risk
bounds are essentially tight.

Note: In the full version [3], we show that one can plug in
the empirical risk bounds into standard results from learning
theory [35], to obtain excess generalization error (excess risk)
bounds. The main crux of our results is that we obtain the same
dependence on the number of samples (n), when compared to
the non-private bounds. However, the private bounds have an
explicit dependence on the dimensionality (p).

Theorem 114  (Utility guarantee). Let o2 =
2,2

oL 1og(n€/25)1og(1/5) and let EmpRisk(0) =

E[L(0;D) — L(6*;D)]. For 0P output by Algorithm

Anoise—GD We have the following. (The expectation is over
the randomness of the algorithm.)

1) Lipschitz fuantions: If we set the learning rate function
_ Cll2 R

ne(t) = AL e then we have the following excess

risk bound. Here L is the Lipscthiz constant of the loss

Sfunction {.

2) Lipschitz and strongly convex functions: If we set the
learning rate function n.(t) = ﬁ, then we have the
following excess risk bound. Here L is the Lipscthiz
constant of the loss function £ and A is the strong
convexity parameter.

Proof: Let G, n <7 £(0y;d) + b, in Line 5 of
Algorithm 1. First notice that over the randomness of the
sampling of the data entry d from D, and the randomness of

L|Cll21og®"*(n/8)/plog(1/9)

€

EmpRisk(67"**) = O <

L?log*(n/8)plog(1/6)
nAe?

EmpRisk(97""") = O (
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be, E[Gy] = VL(6y; D). Additionally, we have the following
bound on E[||G¢]|3].

E[[|G:lI5] = n*E]| v 0(0; d)]I3]+
2nE[(€(0y; d), be)] + E[[|be][3]

<n?L?+ pa2 2)

In the above expression we have used the fact that since @
is independent of b, so E[(/£4(0:;d), b:)] = 0. Also, we have
EJ[||b¢]|3] = po?. We can now directly use Lemma IL.5 to obtain

the required error guarantee for Lipschitz convex functions,
and Lemma II.6 for Lipschitz and strongly convex functions.

Lemma IL5 (Theorem 2 from [36]). Let F(0) (for 0 € C)
be a convex function and let 0* = arg Igléél F(0). Let 01 be
any arbitrary point from C. Consider the stochastic gradi-
ent descent algorithm 0.1 = ¢ [0, — n(t)G(6;)], where
E[Gi(0:)] = VF(6,), E[|G:||3] < G? and the learning rate
Sunction n(t) = % Then for any T > 1, the following is
true. >

Using the bound from (2) in Lemma IL5 (i.e., set G =
\/n2L2 4 po?), and setting T = n? and the learning rate
function n,(¢) as in Lemma IL5, gives us the required excess
risk bound for Lipschitz convex functions. For Lipschitz and
strongly convex functions we use the following result by [36].

Lemma IL.6 (Theorem 1 from [36]). Let F'(6) (for 6 € C) be
a A-strongly convex function and let 6* = arg 1;11%1 F(0). Let
€

IC||2G log T

EEWﬂ—FWH:O< =

01 be any arbitrary point from C. Consider the stochastic gra-
dient descent algorithm 0y, = Il¢ [0 — n(t)Gt(6:)], where
E[Gi(0:)] = VF(8,), E[|G:||3] < G? and the learning rate
function n(t) = <. Then for any T > 1, the following is true.

G? 10gT)

AT
Using the bound from (2) in Lemma IL.6 (i.e., set G =
/n2L2 4 po?), A = nA, and setting T' = n? and the learning
rate function 7;(¢) as in Lemma IL.6, gives us the required
excess risk bound for Lipschitz and strongly convex convex
functions. |

EﬁWﬂ—Fwn:O(

Note: Algorithm Aneise_gp has a running time of O(pn?),
assuming that the gradient computation for ¢ takes time O(p).

III. EXPONENTIAL SAMPLING AND OPTIMAL
(€,0)-PRIVATE OPTIMIZATION

In this section, we focus on the case of pure e-differential
privacy and provide an optimal efficient algorithm for em-
pirical risk minimization for the general class of convex and
Lipschitz loss functions. The main building block of this
section is the well-known exponential mechanism [31].

First, we show that a variant of the exponential mechanism
is optimal. A major technical contribution of this section is



| ro T3 T4,
Convex set: C

Fig. 1. Differential cone 2 inside the convex set C

to make the exponential mechanism computationally efficient
which is discussed in Section III-B.

A. Exponential Mechanism for Lipschitz Convex Loss

In this section, we only deal with loss functions which
are Lipschitz. We provide an e-differentially private algorithm
(Algorithm 2) which achieves the optimal excess risk for
arbitrary convex bounded sets.

Algorithm 2 A, s,mp: Exponential sampling based convex
optimization

Input: Data set of size n: D, loss function ¢, privacy param-
eter ¢ and convex set C.

1. L(6;D) = > £(0;d;).
i=1 ,
2: Sample a point """ from the convex set C w.p. propor-

tional to exp ( L(6; D)) and output.

___e
2L[IC]l2

Theorem III.1 (Privacy guarantee). Algorithm 2 is e-
differentially private.

Proof: Note that the distribution in step 2 will remain
the same if we used exp (—m (L(0; D) — L(by; D))) for
some arbitrary point 6y € C. The proof then follows from the
fact that the sensitivity of £(0; D)—L(6p; D) is at most L||C||2
and the analysis of the exponential mechanism by [31]. [ |

Theorem II1.2 (Utility guarantee). Let 67" be the output of
Aexp—samp (Algorithm 2 above). Then, we have the following
guarantee on the expected excess risk. (The expectation is over
the randomness of the algorithm.)

Proof: Consider a differential cone {2 centered at 8* (see

Figure 1). We will bound the expected excess risk of 7" by
O ( BLlCl:
€

pLIIC]2

€

E [L(67"; D) — L(6*;D)] = O (

) conditioned on 677" ¢ QNC for every differential
cone. This immediately implies the above theorem by the
properties of conditional expectation.

Let I' be a fixed threshold (to be set later) and let R(f) =
L(0P7%; D) — L(0*; D) for the purposes of brevity. Let the
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marked sets A;’s in Figure 1 be defined as
A;i={0eQnC:(i—1I'<R(O) <i-T}.

Instead of directly computing the probability of #7"* being
outside Ay, we will analyze the probabilities for being in each
of the A;’s individually. This form of “peeling” arguments
have been used for risk analysis of convex loss in the machine
learning literature (e.g., see [40]) and will allow us to get rid of
the extra logarithmic factor that would have otherwise shown
up in the excess risk if we use the standard analysis of the
exponential mechanism in [31].

Since the  is a differential cone and since R(¢) is contin-
uous on C, it follows that within QN C, R(f) only depends on
|6 — 6*||2. Therefore, let 71,72, -+ be the distance of the set
boundaries of A, Ay, -- from 6*. (See Figure 1.) One can
equivalently write each A; as follows:

Ai={0e€QnC :ri_1 <]|0—0%2 <1}

The following claim (which is proved in the full version [3])
is the key part of the proof.

Claim IIL3. Convexity of R(8) for all 6 € C implies that
T —Ti—1 S Ti—1 — Ti—2 fOV all Z Z 3

Now, the volume of the set A; is given by Vol(A4;)

% [ rP~ldr for some fixed constant x. Hence,
Ti—1
VO|(AZ) ) (Tz‘/’f‘ifl)p —1 < ’r‘g),l
Vol(As) (ro/r1)p —1 — ¥
where the last two inequalities follows from Claim II1.3. Let

Pr[orm Ve U Ay
i=4

p
T

< (i —1)P.
5 <(i-1)

V= Thrgrrea,] Hence, v can be bounded as
oo
Vol(Ai)  _e(i-3) 5L
< . 3LCT
T ; Vol(4) € 2
[e%s} e L
. P €3LNCTS
< S 1 e ¢ T

— eI
1 — 2Pe~ €2LICT2

where we use the fact that (: — 1)?» < 3P .
for ¢+ > 4 in the last inequality which holds when
I' is sufficiently large. Hence, for every ¢ > 0, if
we choose T’ %((p+1)1n3+t), we get v <
e~t. Thus, conditioned on 6P"™ € C N , we have
Pr[R(6P™) > % ((p+1)In3+¢)] < e~*. Since this is
true for every ¢ > 0, we have our required bound as a corollary.

|

(2=’

B. Efficient Implementation of Algorithm 2

In this section, we give a high-level description of a compu-
tationally efficient construction of Algorithm 2. Our algorithm
runs in polynomial time in n,p and outputs a sample 6 € C
from a distribution that is arbitrarily close (in the multiplicative
sense) to the distribution of the output of Algorithm 2.

Since we are interested in an efficient pure e-differentially
private algorithm, we need an efficient sampler with a mul-
tiplicative distance guarantee. In fact, if we were interested



in (e,d) algorithms, efficient sampling with a total variation
guarantee would have sufficed which would have made our
task a lot easier as we could have used one of the exisiting
algorithms, e.g., [30]. In [20], it was shown how to sample
efficiently with a multiplicative guarantee from the unifrom
distribution over a convex bounded set. However, what we
want to achieve here is more general, that is, to sample
efficiently from any given logconcave distribution defined over
a convex bounded set. To the best of our knowledge, this
task has not been explicitly worked out before, nevertheless,
all the ingredients needed to accomplish it are present in the
literature, mainly [2].

We highlight here the main ideas of our constrution, how-
ever, due to space constraints and since such construction is
not specific to our privacy problem, we provide the details
of such construction and the proof of our main result in this
section (Theorem III.4 below) in the full version [3].

Theorem IIL.4. There is an efficient version of Algorithm 2
that has the following guarantees.

1) Privacy: The algorithm is € -differentially private.
2) Utility: The output 6P™"Y € C of the algorithm satisfies

pL|Cll2
. .

3) Running time: Assuming C is in isotropic position, the
algorithm runs in time'

O (|[Cl3p°n® max {plog([[C]l2pn), €]|C]l2n}) -

E [L(6P""; D) — L(6*;D)] = O (

In fact, the running time of our algorithm depends on ||C||
rather than ||C||2. Namely, all the ||C||2 terms in the running
time can be replaced with ||C||.o, however, we chose to write
it in this less conservative way since all the bounds in this
paper are expressed in terms of ||C||2.

Before describing our construction, we first introduce some
useful notation and discuss some preliminaries.

For any two probability measures p, v defined with respect
to the same sample space @ C RP, the relative (multiplicative)
distance between  and v, denoted as Disto (11, v) is defined
as

, du(q)
Distoo (1, v) = sup |log .
qeQ dv (Q)
where %4(4) (resp., aw(4) ) denotes the ratio of the two mea-

dv(q) T du(q) . L
sures (more precisely, the Radon-Nikodym derivative).

Assumptions: We assume that we can efficiently test whether
a given point § € RP lies in C using a membership oracle.
We also assume that we can efficienly optimize an efficiently
computable convex function over a convex set. To do this,
it suffices to have a projection oracle. We do not take into
account the extra polynomial factor in the running time which
is required to perform such operations since this factor is
highly dependent on the specific structure of the set C.

'If C is not in isotropic position, the running time will pick up an extra
factor of O(max (p?, polylog (2)) where r is the diameter of the largest
ball we can fit inside C. See the full version [3]for details.
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C. Our construction

Let 7 denote the L., diameter of C. The Minkowski’s
norm of § € RP with respect to C, denoted as (6),
is defined as 1(0) inf{r > 0 : 6 € rC}. We de-
fine 1, (0) = o - max{0,(0) — 1} for a > 0. Note that
¥ (0) > 0 if and only if § ¢ C. Moreover, it is not hard
to verify that 1, is o-Lipschitz.

We use the grid-walk algorithm of [2] for sampling from
a logconcave distribution defined over a cube as a building
block. Our construction is described as follows:

1) Enclose the set C with a cube A with edges of length 7.
2) Obtain a convex Lipschitz extension £(.;D) of the loss
function £(.;D) over A. This can be done efficiently
using a projection oracle. -

Define F(0) £ e omiers “0P)=%e®) g A for a
specific choice of a = O(ﬁ) (See full version [3]
for details).

Run the grid-walk algorithm of [2] with F' as the input
weight function and A as the input cube, and output
a sample 6 whose distribution is close, with respect to
Disto, to the distribution induced by F' on A which is
given by F(6)

3)

4)

Let’s denote the aove efficient procedure by Acube—samp-
We then argue that due to the choices made for the values
of the parameters above, Acipe—samp OUtpUts a sample in C
with probability at least % That is, the algorithm succeeds
to output a sample from a distribution close to the right
distribution on C with probability at least 1/2. Hence, we can
amplify the probability of success by repeating Acube—samp
sufficiently many times where fresh random coins are used by
Acube—samp 11 every time (specifically, O(n) iterations would
suffice). If Acube—samp returns a sample § € C in one of
those iterations, then our algorithm terminates outputting 6.
Otherwise, it outputs a uniformly random sample 6+ from
the unit ball B (Note that B C C since C is assumed to be
in isotropic position). We finally show that this termination
condition can only change the distribution of the output sample
by a constant factor sufficiently close to 1. Hence, we obtain
our efficient algorithm referred to in Theorem IIL.4.

IV. LOCALIZATION AND OPTIMAL PRIVATE ALGORITHMS
FOR STRONGLY CONVEX LOSS

It is unclear how to get a direct variant of Algorithm 2 in
Section III for Lipschitz and strongly convex losses that can
achieve optimal excess risk guarantees. The issue in extending
Algorithm 2 directly is that the convex set C over which the
exponential mechanism is defined is “too large” to provide
tight guarantees.

We show a generic e-differentially private algorithm for
minimizing Lipschitz strongly convex loss functions based
on a combination of a simple pre-processing step (called
the localization step) and any generic e-differentially private
algorithm for Lipschitz convex loss functions. We carry out
the localization step using a simple output perturbation algo-
rithm which ensures that the convex set over which the e-



differentially private algorithm (in the second step) is run has
diameter O(p/n).

Next, we instantiate the generic e-differentially private
algorithm in the second step with our efficient exponential
sampling (Algorithm 2) to obtain an algorithm with optimal
excess risk bound (Theorem 1V.3).

Details of the generic algorithm: We first give a simple
algorithm (Algorithm 3 below) that carries out the desired
localization step. The crux of the algorithm is the same as
to that of the output perturbation algorithm of [11].

Algorithm 3 AS

Convex Loss

Input: data set of size n: D, loss function ¢, strong convexity
parameter A, privacy parameter ¢, convex set C, and radius
parameter C <1

1. L(6;D) = Z £(0;d;).
Find 0* = arg mln L(9;D).

fec
0o = Tl (6* +b), where b is random noise vector with
density ée*%”b‘b (where « is a normalizing constant)
and II¢ is the projection on to the convex set C.

Output Co = {0 € C : [|§ — fol2 < (22}

Output Perturbation for Strongly

out— pert

Having Algorithm 3 in hand, we now give a generic -
differentially private algorithm for minimizing £ over C. Let
Agen—Lip denote any generic e-differentially private algorithm
for optimizing £ over some arbitrary convex set C Cc.
Algorithm 2 from Section III-A (or its efficient version from
Section III-B) is an example of AZ,, ;.. The algorithm we
present here (Algorlthm 4 below) makes a black-box call in

its first step to Aout pert (Algorithm 3 shown above), then, in

the second step, it feeds the output of Aout pert IO A2
and ouptut.

gen—Lip

Algorithm 4 Output-perturbation-based Generic Algorithm
Input: data set of size n: D, loss function ¢, strong convexity
parameter A, privacy parameter €, and convex set C.

1: Run A2, . (Algorithm 3) with input privacy parameter
€/2, radius parameter ¢ = 3log (n), and output Cy.

2: Run Agen Lip On inputs n, D, ¢, privacy parameter €/2,
and convex set Cy, and output 6P™*,

Theorem IV.1 (Privacy guarantee). Algorithm 4 is e-
differentially private.

Proof: The privacy guarantee follows directly from the

composition theorem together with the fact that Aout pert

is 5-differentially private (see [11]) and that .A is 5-
differentially private by assumption. |

In the following lemma (see the full version [3] for a
proof), we provide a generic expression for the excess risk
of Algorithm 4 in terms of the expected excess risk of any

given algorithm Agen—Lip-

gen—Lip
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Lemma IV.2 (Generic utility guarantee). Let ] denote the
output of Algorithm Agen Lip On inputs n,D,l,e,C (for an
arbitrary convex set C C C). Let 0 denote the minimizer of

L(.;D) over C. If
E[£(5:D) - £0:D)] < F (p.n.e,L,]C]12)

for some function F, then the output 0P of Algorithm 4
satisfies
)

Instantiation of Agen Lip With Algorithm 2: Next, we give
our optimal e-differentially private algorithm for Lipschitz
strongly convex loss functions. To do this, we instantiate
the generic Algorithm Age,_1jp in Algorithm 4 with our
exponential sampling algorithm from Section III-A (Algorithm
2), or its efficient version (Section III-B) to obtain the optimal
excess risk bound. We formally state the bound in Theorem
IV.3) below whose proof follows from Theorem III.2 and
Lemma IV.2 above.

Lplog(n)

E [L(6"";D) — L(0%;D)] =O | F L
(20 D) - £075D)] =0 (F (e, L2

* = arg min £(6; D).
where 0 dl“gIanelélﬁ(e, )

Theorem IV.3 (Utility guarantee). Suppose we replace
gen Lip I Algorithm 4 with Algorithm 2 (Section III-A).
Then, the output 97" satisfies

212
E [L(0P"; D) — L(6%;D)] = O (pALZ log(n)

. in £(6: D).
where 0* = arg min L(0;D)

V. LOWER BOUNDS ON EXCESS RISK

In this section, we complete the picture by deriving lower
bounds on the excess risk caused by differentially private
algorithm for risk minimization. In Section V-A, we con-
sider the case of convex Lipschitz loss functions, whereas in
Section V-B, we consider the case of strongly convex and
Lipschitz loss functions.

Before we state and prove our lower bounds, we first give
the following useful lemma which gives lower bounds on
the Ls-error incurred by e and (e,0d)-differentially private
algorithms for estimating the 1-way marginals of datasets over
{—%7 %}p . This lemma is based on the results of [20] and
[9]. We give a detailed proof of this lemma in the full version
of our paper [3].

Lemma V.1 (Lower bounds for 1-way marginals).

1) e-differential private algorithms: Let n,p € N and
€ > 0. There is a number M = Q (min (n,p/e)) such
that for every e-differentially private algorithm A, there
is a dataset D = {dy,...,d,} C {77 7}1’ with
| >oi, dill2 € [M —1, M +1] such that, with probability
at least 1/2 (taken over the algorithm random coins), we
have

|A(D) — q(D)]|2 =Q (min (1> %))



where q(D) = 137" | d;.

2) (e, d)-differential private algorithms: Let n,p €
N, e > 0 and § o(L). There is a num-
ber M (mln( \f/e)) such that for every

(e,6)-differentially private algorithm A, there is a

data;et D = {d,...,d,} C {—%, %}p with
| >, dill2 € [M — 1, M + 1] such that, with probabil-

ity at least 1/3 (taken over the algorithm random coins),

we have

VP

Q (min <1,
en

IA(D) = q(D)]l2 =

Xt

A. Lower bounds for Lipschitz Convex Functions

where (D) = 1 d;.

n

We consider the case where the data points are drawn from
{—ﬁ, %}}p, the parameter set is the p-dimensional unit ball
B, and the loss function ¢ is given by

0;d) = —(0,d), 0B, d —,—F
(0;d) = —(0,d), 0¢€ €{- f f}
Clearly, ¢ is linear, hence convex, and 1-Lipschitz. Hence,
for any dataset D = {d;,...,d,} C {—— —}p, and any
0 € B, we have L(6;D) = — (0,7, d;).
Note that, whenever ||} d;|[2 > 0, 6* =
is the minimizer of L(.;

formally stated below.

d;

s
T dalle

D) over B. Our lower bounds are

Theorem V.2 (Lower bound for e-differentially private algo-
rithms). Let n,p € N and € > 0. For every e-differentially
private algorithm (whose output is denoted by 6P"""), there is
a dataset D = {dy,...,d,} C {—%, ﬁ}p such that, with
probability at least 1/2 (over the algorithm random coins), we
must have

£(6;D) — £(0"; D) = 9 (min (1, p/e))
where 0* = =7 % ;il\ is the minimizer of L(.; D) over B.

Proof: Let A be an e-differentially private algo-
rithm for minimizing £ and let 6P"* denote its out-
put. First, observe that for any # € B and dataset D,
L(0;D) — L(6*;D) = || Yi, dil|2 (1 — (6,6%)). Hence, we
have £(6;D) — L(0%;D) > 5| >0, dill2||0 — 6*||3. This is
due to the fact that ||§ — 6%||3 = HG*H2 +1|10]12 — 2(6,6%) and
the fact that 0*,0 € B.

Let M = Q (min (n,p/€)) be as in Part 1 of Lemma V.1.
Suppose for the sake of a contradiction, that for every dataset
C {—F5 P with | dilla € [M — 1, M + 1],
with probablllty more than 1/2, we have [|0P"" — 0%y #
Q(1). Let A be an e-differentially private algorithm that first
runs A on the data and then outputs £ 01’”” Note that
this implies that for every dataset D C { f}p with
>0, dills € [M —1,M + 1], with probablhty more than
1/2, | A(D) — q(D)]l2 7é Q (min (1, £)) which contradicts
Part 1 of Lemma V.1. Thus, there must exist a dataset D C
{—ﬁ, ﬁ}p with || Y7 | dil|2 = ©Q (min (n, p/e)) such that
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with probability at least 1/2, we have |77 — 0% ||y = Q (1).
Therefore, from the observation we made in the previ-
ous paragraph, we have, with probability at least 1/2,
L(0PT; D) — L(0*; D) = Q (min (n, p/e)) . [ |

Theorem V.3 (Lower bound for (e, d)- differentially private
algorithms). Let n,p € N, € > 0, and § = o(L). For every
(¢, 0)-differentially private algorithm (whose output is denoted
by 0P™%), there is a dataset D = {dy, . ..,d,} C {—— —}1’
such that, with probability at least 1/ 3 (over the algorlthm
random coins), we must have

£(6:D) — £(65D) = © (win (n, y/5/6))
where 0" = | % ;i” is the minimizer of L(.;D) over B.

Proof: We use Part 2 of Lemma V.1 and follow the same
lines of the proof of Theorem V.2. |

B. Lower bounds for Strongly Convex Functions

We consider the same data universe and parameter set
above. We choose our loss function here ¢(6; d) to be

- 7}7}
77
Note that ¢ is 1-Lipschitz and 1-strongly convex. Hence,
for a dataset D = {d,...,d,} C {—i\f —}p we have
L(8;D) = 3 35y 16— di3.

Notice that the minimizer of £(.; D) over Bis 6* = 1 3" d;
which is equal to ¢(D) in the terminology of Lemma V.1. Note
also that we can write the excess risk as

L(6;D) — L(7) =

1
£(0;d) = §H9*d|\§, 0eB, de{-

n TV

DL ()] )
Theorem V.4 (Lower bound for e-differentially private algo-
rithms). Let n € N and € > 0. For every e-_diﬁerentially private
algorithm (whose output is denoted by 0P ), there is a dataset
D={d,...,d,} C {—%ﬂ %}p such that, with probability
at least 1/2 (over the algorithm random coins), we must have

2
riv ., *, _ . D
L(6P™; D) — L(6%;D) = Q (mm (n, %))

where 0% = L 3" d; is the minimizer of L(.;D) over B.

Proof: The proof follows directly from (3) and Part 1 of
Lemma V.1. u

Theorem V.5 (Lower bound for (e,d)-differentially private
algorithms). Letn € N, € > 0, and 6 = o(). For every (e, §)-
differentially private algorithm (whose output is denoted by
OPTv), there is a dataset D = {dy,...,d,} C {,Lp %}p
such that, with probability at least 1/3 (over the algorithm

random coins), we must have
Q (min (n, ZL))
en

where 0* = %Zdz is the minimizer of L(.;D

L(6""; D) — L(6*;D) =

) over B.

Proof: The proof follows directly from (3) and Part 2 of
Lemma V.1. |



Note: In the full version [3], we provide a simple reduction
to transform our lower bounds above to the case of arbitrary
L,||C||2, and A.
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