Taylor & Francis
Taylor & Francis Group

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: https://www.tandfonline.com/loi/lagh20

Morphism spaces in stable categories of Frobenius
algebras

You Qi

To cite this article: You Qi (2019): Morphism spaces in stable categories of Frobenius algebras,
Communications in Algebra, DOI: 10.1080/00927872.2018.1555835

To link to this article: https://doi.org/10.1080/00927872.2018.1555835

. Published online: 11 Feb 2019.

- Submit your article to this journal Il

- Article views: 7

O View Crossmark datalill

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=lagh20


https://www.tandfonline.com/action/journalInformation?journalCode=lagb20
https://www.tandfonline.com/loi/lagb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2018.1555835
https://doi.org/10.1080/00927872.2018.1555835
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2018.1555835&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2018.1555835&domain=pdf&date_stamp=2019-02-11

COMMUNICATIONS IN ALGEBRA® Taylor & Francis
https://doi.org/10.1080/00927872.2018.1555835 Taylor &Francis Group

‘ W) Check for updates ‘

Morphism spaces in stable categories of Frobenius algebras

You Qi

Department of Mathematics, California Institute of Technology, Pasadena, California, USA

ABSTRACT ARTICLE HISTORY
We present an explicit formula computing morphism spaces in the stable Received 6 June 2018
category of a Frobenius algebra. \%)mmunlcated by Quanshui
u
KEYWORDS

Frobenius algebras;
morphism spaces;
stable categories

MATHEMATICS SUBJECT
CLASSIFICATION

Primary 16A36; Secondary
16A62; 18G05

1. Introduction

The stable categories of self-injective algebras are among the first appearances of triangulated cat-
egories besides the usual homotopy or derived categories. Their study has played fundamental
roles in representation theory (finite group schemes) and algebraic geometry (singularity theory,
matrix factorizations, etc.). We refer the reader to the beautiful books [2, 11] for an introduction
and interesting applications.

Motivated by some recent application of stable categories of finite-dimensional Hopf algebras
in categorification (see, e.g., [5, 9, 10], for motivations and some applications), one would like to
have a better understanding of morphism spaces in stable categories. After all, the understanding
of a category should be focused on its morphism spaces rather than only on objects. As an
important class of examples, finite-dimensional Hopf algebras are Frobenius by a classical result
of Larson and Sweedler [7], and thus are self-injective. In [9], a formula describing the morphism
spaces in the stable category of finite-dimensional Hopf algebras is given, utilizing the Hopf alge-
bra action on morphism spaces between arbitrary modules. It is therefore a natural question to
ask whether one can generalize the formula to arbitrary self-injective algebras. In this note, we
provide an answer to this question when the self-injective algebra is Frobenius.

In a bit more detail, recall that for a self-injective algebra A, its stable module category, denoted
A-mod, is the quotient of the abelian A-modules by the ideal of morphisms that factor through project-
ive-injective modules. A classical result that goes back to Heller [3] tells us that A-mod is triangulated.

Also recall that (see, e.g., [4]) a Frobenius A over a ground field k is characterized by a linear
algebraic system (e, {a;|i € I}, {b;|i € I}) which we refer to as a Frobenius system. Here € : A — I
is a non-degenerate trace function and {a;}, {b;} are dual bases of A under the trace pairing.
Frobenius algebras are self-injective. In terms of the Frobenius datum for A, we call an A-module
map between two modules M and N to be null-homotopic' if there is a k-linear map h: M — N

CONTACT You Qi @ yougi@caltech.edu @ Department of Mathematics, California Institute of Technology, Pasadena,
California 91125, USA.
© 2018 Taylor & Francis Group, LLC


http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2018.1555835&domain=pdf
https://doi.org./10.1080/00927872.2018.1555835
http://www.tandfonline.com

2Y.QI

such that
f(m)=>_"ah(bm), (1.1)
icl
for any m € M. Our main result (Theorem 3.5) states that, for any two A-modules M and N:

Hom s-moa (M, N) = —HomaM.N) (1.2)
meENT {null—homotopic maps}

By comparison with the usual homotopy formula for chain complexes, this formulation of the
morphism space appears quite pleasing and fundamental in nature. The result might possibly be
known to experts in the field (one can see implicit shadows of the formula from, e.g., [I,
Definition 1.6] or [8, Section 3]), nevertheless, the author could not find it explicitly stated in
references, and thus would like to record the formula in this note. As a straightforward applica-
tion, we provide a simple proof of Broué’s Theorem characterizing the stable center [I,
Proposition 3.13], even when the Frobenius algebra is non-symmetric.

The main result (Theorem 3.5) is presented in Section 3 after some basic notions are recalled in
Section 2. In the last Section 4, we point out a few straightforward applications. Theorem 3.5 general-
izes readily to super and/or graded Frobenius algebras. It also adapts itself to the more relative situ-
ation of Frobenius ring extensions as in [4, Chapter 1] without essential changes. We expect that the
characterization of stable morphism spaces in this note will prove useful in further applications.

2. Basic definitions
2.1. Notation

In this paper, we will let k denote a fixed ground field once and for all. Unadorned tensor prod-
uct “®” stands for tensor product over k, and likewise Hom stands for the space of k-linear
homomorphisms. For any k-algebra, we will denote by A° := A ® AP be the enveloping algebra,
so that a left A°-module is non other than an (A, A)-bimodule.

2.2, Stable categories of self-injective algebras

Let A be a self-injective algebra over a field I. The stable category of A-modules, denoted by
A-mod, is the categorical quotient of A-mod by the class of projective-injective objects. More pre-
cisely, for any two A-modules M, N, let us denote the space of morphisms in A-mod factoring
through projective injective H-modules by I(M,N). It is readily seen that, the collection of
I(M,N)’s ranging over all M,N € A-mod constitutes an ideal in A-mod. Then A-mod has the
same objects as that of A-mod, while the morphism space between two objects M, N € A-mod is
by definition the quotient
Hom - pog (M, N) := m&&—‘w 2.1)
A classical Theorem of Heller states that A-mod is triangulated. The shift functor [1] on
A-mod is defined as follows. For any M € A-mod, choose an injective envelope I; for M in
A-mod and let M’ be the cokernel of the natural injection:

0—-M—Iy—M —0.

"Here the analogy is taken from the Frobenius algebra k[x]/(x?) when char(k) = 2. The dual bases are {1,x} and {x,1}
respectively, so that “null-homotopic” maps of the form f = xh+hx, agreeing with the usual notion of null-homotopies.
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Then MJ1] := M’. The inverse functor [—1] can be defined similarly by taking a projective
cover and the corresponding kernel of the natural surjection map. We refer the reader to the
references [2, 11] for more details on this fundamental construction.

The main goal of this note is to point out an explicit description of the morphism space when
the self-injective algebra arises as a Frobenius algebra.

2.3. Frobenius algebras
Let us recall the definition and basic properties of Frobenius algebras, following [4].

Definition 2.1. A k-algebra A is called Frobenius if A is equipped with a k-linear trace function
€:A—k
and dually-paired bases {a;[i = 1, ...,dim(A)} {bi]i = 1,...,dim(A)} satisfying

Zuie(bia) =qg= Z €(aa;)b;
for any a € A.
We will refer to the datum of (e, {a;}, {b;}) for A as a Frobenius system.

Remark 2.2.

i. One can easily show that the definition above is equivalent to the more classical def-
inition of requiring that e to be non-degenerate, in the sense that for any a €A,
there exists b€ A such that e(ab) = 1. Alternatively, this is equivalent to requiring
the map

A— A", an—>(a -€: be(ba),Vb € A)
(resp. A — A*, a—(e-a:b—elab),¥be A),)
to be an isomorphism of left (resp. right) A-modules.

ii. Frobenius systems for A constitute a torsor under the group action of (multiplicative)
invertible elements of A. More precisely, if (e, {a;},{b;}) is Frobenius system for A and d €
A is invertible, then (d-e,{aid '},{b;}) (or (¢-d,{a;},{d 'b;})) are other Frobenius sys-
tems for A. The correspondence is a one-one bijection ([4, Theorem 1.6]).

iii. From the definition, it is clear that, if A, B are Frobenius, then so are A%’ and A ® B. In

particular, A° = A ® A° is Frobenius. It is easy to see that a Frobenius system for A° can be
taken to be (e ® ¢, {a; ® b}, {b; ® aj}).

We recall the following definition from [4, Corollary 1.5].

Definition 2.3. Let A be a Frobenius algebra with Frobenius system (e, {a;}, {b;}). The Frobenius
element for A is defined to be

gA ::Zai(g)biEA@Aop.
i

Lemma 2.4. The Frobenius element satisfies
Zaai@)bi = Za,-@bia
i i

for all a € A. Consequently, the map
A= A% a—éua=al,

is an isomorphism of (A, A)-bimodules.
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Proof. See [4, Corollary 1.5]. |

3. Morphism spaces

If M is any A-module, let us denote by M, the underline k-vector space of M. Likewise, if f :
M — N is an A-linear map, we will denote by fy: My — Ny the corresponding lk-vector
space map.

Lemma 3.1. Let A be a Frobenius algebra with its Frobenius system (e,{a;},{b;}). If M is any A-
module, there is a canonical embedding of left A-modules

¢M2M—>A®M0, mHZai@)bim.

Proof. This follows from the fact that the Frobenius element &, = >, a; ® b; satisfies aly = &,a
for all a € A. The map is an injection since, by Definition 2.1, there is a k-linear splitting map
A ® My — M defined by a ® m—e(a)m:

Z a; ® bim—e(a;)bim = m. O

Despite the fact that the above embedding is usually larger than the injective envelope of
M, the apparent functoriality in the above construction makes computing the morphism
space in A-mod a lot easier than in, say, that of an arbitrary non-Frobenius self-inject-
ive algebra.

Lemma 3.2. Let A be a Frobenius algebra, and f : M — N be a left A-module homomorphism.
Then f factors through a projective-injective A-module if and only if f is equal to the composition of
A-module maps

7 MA@ My,

where h is some A-linear homomorphism.

Proof. It suffices to prove the lemma when N is a projective-injective A-module. Consider the
commutative diagram

M N

W

A® My 2L A N,

where ¢,,; and ¢y are the canonical maps as in the previous Lemma. Since N is injective, the
canonical injection ¢, admits a section g : A ® Ng — N. Therefore f factors through as

FiM -2 A M2l Ao Ny —2> N,
The result follows. O

Let M, N be two A-modules. The space of k-linear maps Hom(M, N) has a natural (A, A)-
bimodule structure by declaring, for an a® b € A° = A ® A°?, ¢ € Hom(M, N) and m € M, that
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((a®b) - ¢)(m) := ap(bm). (3.1)
In particular, we can apply the Frobenius element to any linear map in Hom(M, N).

Lemma 3.3. For any linear map ¢ € Hom(M, N),
(Ca @) = Z (a; ® b;) - ¢ € Homa(M,N).

1

Proof. By Lemma 3.1, > .aa; ® b; = ), a; ® b;a for any a € A. Applying this equation to ¢, we

obtain that the equality
(Z aa,¢<bim>) =" (@ (bam))

1

holds for all m € M. The result follows. O

Proposition 3.4. Let A be a Frobenius algebra as above. An A-module map f : M — N factors
through the canonical A-module map ¢, : M — A @ My if and only if there is a k-linear map ¢ :
My — Ny such that, for any m € M,

f(m) = Zﬂid)(bim)

Proof. First off, suppose f : M — N factors through ¢,, as
7:M%A 0 M N

for some A-linear map . Setting ¢ to be the k-linear map |, . : My — N, we have

flm) = o yy(m) = w(Z 4@ bim> =Y ap (L@ bm) =Y a(bim).

i i

Here in the third equality, we have used that \ is A-linear.
Conversely, if f arises as f(m) := ), a;¢(bym) for some ¢ : My — Ny, then fis A-linear by the
previous Lemma. Define

ViAG My — N, Yla®m) = ap(m)
This is clearly A-linear, and, for any m € M,

Yo du(m) =Y V(e @bm) = aip(bim) = f(m),

giving us the desired factorization of f. O
For any A°-module H, we define the space of A-invariants to be
H” := Homy: (A, H). (3.2)

Since Hom(M, N) is an A®-module (Equation (3.1)), the space of A-invariants in Hom(M, N)
equals

Hom(M, N)* := Homy. (A, Hom(M, N)). (3.3)

Any element of Homy:(A, Hom(M,N)) sends the central unit element 1, into some f €
Hom(M, N) satisfying, for any a € A, that fa = af, ie., f is an A-linear map. Conversely, any
A-linear f determines an (A, A)-bimodule map from A to Hom(M,N), sending a € A to
af (=) = f(a—) = fa(—). It follows that
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Hom (M, N)* = Homy. (A, Hom(M, N)) = Homy (M, N). (3.4)
By Lemma 3.3, it is clear that

¢4 -Hom(M,N) C Hom(M,N)A7

Homy (M,N)

%, Hom(M ] makes sense.

so that the quotient

Theorem 3.5. Let A be a Frobenius algebra with a Frobenius system (e,{a;},{b;}), and let M, N
be two left A-modules. Then there is an isomorphism of k-vector spaces

_, Homyu(M,N)
HomAmed (M N) = & om0, N)
> )

which is natural in M and N.

Proof. Lemma 3.3 shows that £, - Hom(M,N) C Homu (M, N), and the quotient on the right
hand side is well-defined.

By definition, the space of morphisms between M and N in the stable category A-mod is the
quotient of Homy (M, N) by the ideal I(M, N) consisting of morphisms that factor through pro-
jective-injective modules. Via Lemma 3.2, this ideal coincides with

IM,N)={flf =¥ ody, y:A® M, — N}.
Now Proposition 3.4 shows that I[(M,N) = ¢, - Hom(M, N).
Finally, if g : M’ — M is an A-module map, then
g" : Hom(M,N) — Hom(M',N)
is an (A, A)-bimodule homomorphism. Similar statements hold for an A-module map
h: N — N'. The naturality follows. O

We remark that Theorem 3.5 also gives a way to compute arbitrary Ext-spaces in A-mod, as
follows. Choose an injective embedding for N as in Lemma 3.1, so that the quotient is denoted
N

0—>N—-A®Ny— N —0.
Then
EXt)-pod (M, N) = Hom-moa (M, N[1]) = Hom-mea (M, N'). (3.5)

Continuing the process for N’ and iterating gives us all positive Ext-spaces between M and N.
Likewise, performing a similar construction for M gives rise to all negative Ext-spaces.

We can further compare the stable morphism space Homy-mod(M,N) with another stable
morphism space, but rather in the stable category of the enveloping algebra A°.

Corollary 3.6. Let A be a Frobenius algebra, and M, N be two A-modules. Then there is an iso-
morphism of Hom-spaces

Homy-mod (M, N) = Homye_mod (A, Hom(M, N)),

which is natural in M and N.

Proof. By Remark 2.2 (iii), The algebra A° is Frobenius with a Frobenius system
(e®e€, {a;®bj}, {bi® a;}). Therefore, by Theorem 3.5,
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Homy:(A,Hom(M, N))
¢pe - Hom(A, Hom(M, N)) "

Homy:_mod (A, Hom(M,N)) =

By the discussion prior to the proposition, the numerator in the above expression agrees with
Homy (M, N). Thus we are reduced to showing that the expression in the denominator agrees
with the space

¢4 -Hom(M,N) = {f(m) = Zuig(bim), g€ Hom(M7N)}. (3.6)

The Frobenius element for A® equals
Cie=) ai®bjobeacA ®(A)" =AQAP QAP A.
ij
If h € Hom(A, Hom(M, N)), then, for any a € A and m € M, we have
(Each)(@)(m) =D ((a; @ by)h(baa;)) (m) =Y _ ai(h(biaa;)) (bjm).
ij i,j
Using Lemma 2.4, the last term can be identified with
Z ai(h(b,-aa] Z aa, b a] b m),
ij
which in turn shows that &,ch : A — Hom(M, A) is left A-linear. Taking a =1, we obtain
(Each)(1 Zah (biay) (bym) Za,ah —Za,-(z (ah(b)(bm))), (3.7)
j i
where we have used Lemma 2.4 again in the second equality.
Comparing the expressions in Equations (3.6) and (3.7), it suffices to show that any linear

map ¢ € Hom(M, N) arises as g = >, a;hg(b;) for some h, € Hom(A, Hom(M, N)). This can be
explicitly done by taking

for then we will have
Z a; h Z a;e(

Here we have used the defining property of a Frobenius system (Definition 2.1, taking a=1)
in the last equality. The proposition follows. O

Before we end this discussion, let us point that the above morphism space is an analog of the
classical (degree zero) Tate cohomology for a finite group G with coefficients in a G-module. To
do this, let us identify

&4 -Hom(M,N) = £4A°®s-Hom(M, N) =2 A®s-Hom(M, N),
the last equality following from Lemma 2.4. Thus we may identify

Homy: (A, Hom(M, N))
A®4-Hom(M,N)

Homy-mod (M, N) = (3.8)

This is an analog of the degree zero Tate cohomology group because, if A = kG is the group
algebra of a finite group G, then, with the embedding

kG = KGR LGP,  h—hY g@g !,
&g



8Y.QI

we have

A® :Hom(M,N) = {f : M — N|3h € Hom(M,N), f(m) =" gh(g"'m) }
g€G

Thus Theorem 3.5 recovers the degree zero Tate cohomology of the G-module Hom(M, N):

G

H M. N = Hom(M, N)” 3.9

OMyG—mod (M, )_Hom(M N (3.9)
IN)g

the space of invariant quotient its subspace of coinvariants.

4, Some applications
4.1. Finite-dimensional Hopf algebras

By a classical Theorem of Larson and Sweedler [7], finite-dimensional Hopf algebras are
Frobenius. In [9, Section 5], we have presented a morphism space formula for the stable category.
We now recall the formula and point out its the relationship with Theorem 3.5.

Consider a finite-dimensional Hopf algebra H. Denote its comultiplication by A: H — H ® H,
counit by € : H — k and antipode by S : H — HP. Given any h € H we will follow Sweedler and
write

A(h) = Zhl @ hy. (4.1)
h

The morphism space of any two H-modules M, N is equipped with a natural left H-module
structure: for any h € H, ¢ € Homy (M, N), the map h - ¢ is determined by the formula

(h-@)(m) =>> (S (h)m) (4.2)
h

for any m € M.
Let A € H be a non-zero left integral over ks, which is, up to rescaling, uniquely characterized
by the property

hA = e(h)A (4.3)

for any h € H. Then, given any H-modules M and N, we have exhibited, in [9, Corollary 5.7], the
morphism space formula in H—mod:
Hom (M, N)"
Hompy_mod (M, N) = A~Ho(m(’]VI,)I\])' (4.4)

This generalizes the identification of morphism spaces with the degree zero Tate cohomology
of finite groups (see the last part of the previous section) to arbitrary finite-dimensional
Hopf algebras.

In order to match this formula with Theorem 3.5, it suffices to note that, for a finite-dimen-
sional Hopf algebra, the datum (¢, {h,},{S '(h)}) constitutes a Frobenius system for H, where
t € H* is a left integral on H (i.e., an element of H* satisfying, for all g € H*, that gt = g(1g)¢).
This can be found, for instance, in [4, Proposition 6.4], or the reader may try to prove it directly
by definitions and axioms of Hopf algebras.

4.2. Stable center

As a simple application, we reprove a Theorem of Broué characterizing the stable center of a
Frobenius algebra A, which is first established in [1] when A is symmetric. Recall that the stable
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center of A (see also [11, Definition 5.9.1]) equals
Z(A) = Ende—mod (A). (4.5)

We apply Theorem 3.5 to explicitly compute the stable center, for general Frobenius algebras
that are not necessarily symmetric. Let A be a Frobenius algebra with a Frobenius system
(e, {ai}, {b:}). Then

. Homy: (A, A)

Z(A) =

= om( ] (4.6)

The space Homy: (A, A) is isomorphic to the usual center Z(A) of A by sending any (A, A)-
bilinear map f : A — A to the element f(1).
Now, if h € Hom(A, A), we have

(Eac-h)(@) =D (a@b)h((bi @) -a) = > aih(biaay)b;.
ijel ijel
Such a map, when evaluated on a=1, equals
(6Ae . h)(l) = Z a,-h(b,-aj) bj = Z a]- (Z a,-h(b,-)) bj,
ijel j i

where we have used Lemma 2.4 in the last step. It is thus clear that, under the identification of
Homy: (A, A) = Z(A),

{Eae - h} = {Zj:a,- (Z a,~h(b,»)>bj} C {zj:ajabjm € A}.

We claim that the inclusion above is actually an identity. Indeed, it suffices to show that, for
any a € A, there exists an h, € Hom(A, A) such that ), a;h,(b;) = a. Take h, := €(—)a. Then,

we have
zi: aiha(b;) = (Z aie(bi)>a =a,

the last equality coming from Definition 2.1. The claim follows.

Denote by &, -a:= ). a;ab;, and similarly &, -A = {&, - ala € A}. Remark 2.2 (ii) shows
that this subspace is independent of choices of &4. In conclusion, we have established
the following.

Corollary 4.1 (Broué’s Theorem). There is an isomorphism of commutative algebras

~Z(A)
Ca A

Z(A)

Proof. By the above discussion, it only suffices to show that &, - A is an ideal of Z(A). This is
clear, since for any z € Z(A) and a € A, we have

z(z a,-ab,—) = Z a;(za)b; = Z a;(az)b; = (Z aiabi) z.

O
The result follows.

If A = kG is the group algebra of a finite group, then the Theorem implies that its stable cen-
ter equals the span of (conjugacy) class functions whose order of stabilizer group does not divide
the characteristic of the ground field.
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4.3. The stable category of l|x|/(x")

Let us consider this specific example when A = k[x]/(x"). The stable category A-mod is triangu-
lated equivalent to the category of matrix factorizations over k[x] with potential x". The latter
realization, when appropriately graded, is fundamental to the construction of Khovanov-Rozansky
homology groups of knots and links [6].

To apply the main theorem to this example, we use that A has the Frobenius trace

w={0 17

1 i=n—-1

and the ordered bases {1,x,....,x" '}, {x""1,x"2 ... 1} that are dual to each other under the
pairing. It follows that a morphism of A-modules f : M — N is null-homotopic (c.f. the footnote
of Introduction) if and only if there is a linear map h : M — N such that

f(m) = niixih(x”*lfim) (4.7)

for all m € M. Now any module in A-mod is a direct sum of indecomposables, the latter classi-
fied, up to isomorphism, by quotients of A of the form V;:=lk[x]/(x'*!),i=0,...,n—1. The
endomorphism algebra of V; in A-mod is a quotient of End,(V;) = k[x'™!] by the ideal of null-
homotopic morphisms. It is easy to identify this ideal using Equation (4.7), which equals (x" ')
if n—1—i <1, or 0 if n—1—i > i+ 1. Therefore, we obtain

K]/ (1) if i > (n—-1)/2,

K]/ (et ifi < (n—2)/2. (4.8)

EndA_m_od(Vi) o~ {
We next turn to identify the stable center of the category. Applying Theorem 4.1, we deduce

that the size of the stable center of A-mod depends on the characteristic of k as follows. A simple
computation shows that

n—1
E A= {inax"1i|a =ay+ax+---Fa,_x" e A} = {aonx"*l\ao € L}.
i=0

It follows that &, - A is trivial if and only if char(k)|n. We have thus established the following.

Corollary 4.2.
Jk[x]
. . 7M7 == char(k) /n,
20/ 6) =0 o= i char®) | .

(x7)

This example is also discussed in [11, Example 5.9.8] using more sophisticated methods.
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