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Problem Definition

Many datasets can be represented by graphs,
where nodes correspond to individuals and
edges capture relationships between them. On
one hand, such datasets contain potentially
sensitive information about individuals; on the
other hand, there are significant public benefits
from allowing access to aggregate information
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about the data. Thus, analysts working with
such graphs are faced with two conflicting
goals: protecting privacy of individuals and
publishing accurate aggregate statistics. This
article describes algorithms for releasing accurate
graph statistics while preserving a rigorous
notion of privacy, called differential privacy.

Differential privacy was introduced by Dwork
et al. [6]. It puts a restriction on the algorithm that
processes sensitive data and publishes the output.
Intuitively, differential privacy requires that, for
every individual, the output distribution of the
algorithm is roughly the same whether or not this
individual’s data is present in the dataset. Next,
we give a formal definition of differential privacy,
specialized to datasets represented by graphs.

Two graphs are called neighbors if one can be
obtained from the other by removing a node and
its adjacent edges. Given a parameter € > 0, an
algorithm A is €-node differentially private if for
all neighbor graphs G and G’ and for all sets S of
possible outputs produced by A:

Pt{A(G) C S] < e - Pi{[A(G) C S].

This variant of differential privacy is called
node-differential privacy because neighbor
graphs are defined with respect to node removals.
Analogously, we can define edge differential
privacy by letting graphs be neighbors if
they differ in exactly one edge. Intuitively,
edge differential privacy protects edges (which
represent connections between people), while
node-differential privacy protects nodes together
with their adjacent edges (i.e., all information
pertaining to individuals). Node-differential
privacy is a stronger privacy definition, but it
is much harder to attain because it requires the
output distribution of the algorithm to hide much
larger differences in the input graph.

We would like to design differentially pri-
vate algorithms (preferably, node-differentially
private) that compute accurate graph statistics
on a large family of realistic graphs. Typically,
graphs that contain sensitive information, such
as friendships, sexual relationships, and com-
munication patterns, are sparse. Some examples
of graph statistics we would like to compute
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on these graphs are the number of edges, small
subgraph counts, and the degree distribution.

Most work on the topic considers an analyst
who wants to evaluate a real-valued function f
on the private input graph G (e.g., the number
of triangles or the number of connected com-
ponents in G). The goal is to release as good
an approximation as possible to the true value
f(G). Differentially private algorithms must be
randomized, so we try to minimize the expecta-
tion of the random variable error4 (G) = |A(G)—
f(G)|. We will also discuss work on algorithms
that release higher-dimensional summaries (i.e.,
output a real vector).

Bibliographical Notes

Edge privacy was first studied by Nissim
et al. [16], and the distinction between node and
edge privacy was laid out by Hay et al. [9]. Edge
differentially private algorithms for a variety of
tasks have been widely investigated. Examples
include subgraph counts, degree distributions,
and parameters of generative statistical models.
Gehrke et al. [7] investigated a notion whose
strength lies between edge and node privacy:
node privacy for bounded-degree graphs. (The
focus of their work is a generalization of
differential privacy, called zero-knowledge
privacy.)

Until recently, no node-differentially private
algorithms (where privacy guarantees hold with
respect to all graphs) were known that compute
accurate graph statistics on realistic (namely,
sparse) graphs. The first such algorithms were
designed independently by Blocki et al. [3],
Kasiviswanathan et al. [11], and Chen and
Zhou [5]. Those algorithms look at releasing
one real-valued statistic at a time. Two more
recent works focus on higher-dimensional node-
private releases: Raskhodnikova and Smith [17]
and Borgs et al. [4].

This encyclopedia entry focuses on node-
differentially private algorithms, since these
offer the strongest privacy guarantees. Progress,
however, continues on edge-private algorithms;
see Lin and Kifer [13], Karwa and Slavkovic [10],
Lu and Miklau [14], and Zhang et al. [18] for
recent results.
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Key Results

The main difficulty in the design of node-private
algorithms is that techniques based on /local
sensitivity of a function (which are the basis of
the best edge-private algorithms) yield node-
private algorithms whose error on “typical”
inputs swamps the statistic that one wants to
release. The local sensitivity of a function f
is a discrete analogue of the derivative of f
— it measures how much the value of f can
change when the input graph is replaced with its
neighbor. On sparse graphs, the local sensitivity
can be larger than the value of the function. Any
method whose error is proportional to the local
sensitivity will have large relative error.

Focus on a “Preferred Subset”

To get around the challenge of high local sensi-
tivity, two works [3, 11] independently designed
algorithms that are given a set S of “nice” graphs
that hopefully contains G (e.g., graphs with an
upper bound on the maximum degree). These
algorithms are private on all graphs and return an
accurate answer on graphs in S. What makes this
approach work is that S is selected so that the
sensitivity of f is small when restricted to inputs
inS.

Let G denote the set of all labeled, undirected
graphs. We will call S < G the “preferred”
subset. Define the Lipschitz constant (also called
the restricted sensitivity) of f on S to be

I/(G") = f(G)Ix
dnode(G’ G/) ’

Ar(S) = sup

G,G'eS

where dyoq. is the node distance between two
graphs — the number of vertex insertions and
deletions needed to go from G to G’. Blocki
et al. [3] and Kasiviswanathan et al. [11] give
methods for adding noise proportional to the
Lipschitz constant of f on S.

Theorem 1 ([3,11]) For every S C G, function
f S = R and € > 0, there exists an algorithm

As that is e-differentially private (for all inputs)
and such that, for all G € S,
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E[As(G) — f(G)| = O(As(f)/€?).

Moreover, for S = Gy (the set of D-bounded
graphs), the running time of A is the running time

for one evaluation of f plus a fixed polynomial in
the size of G.

The same works [3, 11] also give generic re-
ductions showing that given any algorithm that is
e-differentially private when restricted to graphs
in S, one can design an algorithm A that has simi-
lar behavior on graphs in S but is €’-differentially
private for all inputs, for €’ not too much larger
than €.

“Down” Sensitivity

Rather than focusing on a single “nice” subset,
some works [5, 17] sought to add noise propor-
tional to a quantity related to, but usually much
smaller than, the local sensitivity.

Define the down sensitivity (called empirical
global sensitivity when first defined by Chen
and Zhou [5]) of f at a graph G to be the
Lipschitz constant of f when restricted to the set
of induced subgraphs of G . Specifically, we write
G < H to denote that G is an induced subgraph
of H (i.e., G can be obtained by deleting a set of
vertices from H') and define the down sensitivity
to be

DSy (G) = max
H,H'neighbors, H<H’=<

o/ (G=/G)l.

By carefully (and privately) selecting the “pre-
ferred” subset based on the input, one can add
noise essentially proportional to the down sensi-
tivity.

Theorem 2 ([17]) For every monotone function
f :G — Rande > 0, there is an algorithm A ¢
that is e-differentially private and such that, for
all G € G,

Eldf(G) = f(G)]

DS/(G) + 1
_ D3O FT oglog max DS (G")).
6 7
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Moreover, Ay can be made efficient when f is
a generalized linear query (a class that includes
counting occurrences of a fixed subgraph).

The down sensitivity is low for many com-
monly studied statistics in graphs that satisfy a-
decay, a condition on the degree distribution that
is satisfied by known generative models (includ-
ing those that generate “scale-free”). (See [11] for
a definition of a-decay.)

Lipschitz Extensions and
Higher-Dimensional Releases
The main technical tool in the down-sensitivity-
based results [5, 17] is the construction of
efficient (i.e., polynomial time computable)
Lipschitz extensions of the function f from
subsets S of graphs to the space of all graphs.
Kasiviswanathan et al. [11] and Chen and
Zhou [5] give efficient Lipschitz extensions of
several useful functions (including graph counts)
that return a single real value. Raskhodnikova and
Smith [17] give efficient Lipschitz extensions of
higher-dimensional functions, namely, the degree
distribution and adjacency matrix of a graph.
Borgs et al. [4] use the Lipschitz extension
technique together with the exponential
mechanism to provide the first node-differentially
private algorithms for fitting high-dimensional
statistical models to a given graph (specifically,
they consider stochastic block models and
generalizations thereof).

Applications

The algorithms discussed above address a real
problem: datasets containing sensitive informa-
tion about relationships among a collection of
individuals are often valuable sources of informa-
tion, but publishing useful summaries about such
data without leaking individual information is
difficult. Even when the graphs are “anonymized”
by removing all obviously identifying informa-
tion, such as names, addresses, birthdays, and zip
codes, they present a privacy risk. For example,
[1,15] give de-anonymization attacks based only
on unlabeled links. Node-differentially private
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algorithms offer a principled method for releasing
information about a network while providing rig-
orous privacy guarantees (though some authors
argue that even stronger notions may be needed
[7,12]).

Open Problems

Gupta et al. [8] and Blocki et al. [2] give edge
differentially private algorithms for releasing a
data structure that approximates the sizes of all
cuts in the input graph in the following sense: for
any cut, with high probability, the estimated cut
size is accurate (the first reference gives weaker
approximation guarantees with a stronger quanti-
fier order: with high probability, all cut sizes are
accurate). It is open whether a node-differentially
private algorithm can obtain similar results.

For datasets that do not contain information
about relationships, but only contain personal at-
tributes that come from a relatively small set, dif-
ferentially private algorithms can output a large
number of statistics at once (see » Query Re-
lease via Online Learning and » Geometric Ap-
proaches to Answering Queries cross-referenced
below). It is open how to do achieve similar
results for graph statistics, even with edge differ-
ential privacy.

Finally, all algorithms we discussed release
numerical graph statistics. The subject of differ-
entially private synthetic graphs is largely unex-
plored. See [10, 13] for initial results.
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Problem Definition

Notations

Let G = (V, E) be a plane geometric network,
whose vertex set V' is a finite set of point sites in
R?, connected by an edge set E of non-crossing
straight line segments with endpoints in V. For
two points p # g € V, let £g(p,q) denote a
shortest path from p to ¢ in G. Then

o(p.q) == % )
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is the detour one encounters when using network

G, in order to get from p to g, instead of walking

straight. Here, | . | denotes the Euclidean length.
The dilation of G is defined by

0(G) := maxp,-£geV o(p.q). (2

This value is also known as the spanning ratio
or the stretch factor of G. It should, however,
not be confused with the geometric dilation of a
network, where the points on the edges are also
being considered, in addition to the vertices.

Given a finite set S of points in the plane,
one would like to find a plane geometric network
G = (V,E) whose dilation ¢(G) is as small
as possible, such that S is contained in V. The
value of

3(S) : = inf{o(G); G = (V, E) finite plane
geometric network where S C V'}

is called the dilation of point set S. The problem
is in computing, or bounding, X (S) for a given
set S.

Related Work

If edge crossings were allowed, one could use
spanners whose stretch can be made arbitrarily
close to 1; see the monographs by Eppstein [6]
or Narasimhan and Smid [12]. Different types
of triangulations of S are known to have their
stretch factors bounded from above by small con-
stants, among them the Delaunay triangulation
of stretch <2.42; see Dobkin et al. [3], Keil and
Gutwin [10], and Das and Joseph [2]. Eppstein
[5] has characterized all triangulations 7" of dila-
tion o(7T) = 1; these triangulations are shown
in Fig. 1. Trivially, ¥(S§) = 1 holds for each
point set S contained in the vertex set of such a
triangulation 7.

Key Results

The previous remark’s converse also turns out to
be true.



