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Abstract

Many previous Sum-of-Squares (SOS) lower bounds for CSPs had two deficiencies related to

global constraints. First, they were not able to support a “cardinality constraint”, as in, say, the

Min-Bisection problem. Second, while the pseudoexpectation of the objective function was shown

to have some value β, it did not necessarily actually “satisfy” the constraint “objective = β”. In

this paper we show how to remedy both deficiencies in the case of random CSPs, by translating

global constraints into local constraints. Using these ideas, we also show that degree-Ω(
√

n)

SOS does not provide a ( 4
3 − ε)-approximation for Min-Bisection, and degree-Ω(n) SOS does not

provide a ( 11
12 +ε)-approximation for Max-Bisection or a ( 5

4 −ε)-approximation for Min-Bisection.

No prior SOS lower bounds for these problems were known.
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49:2 SOS Lower Bounds with Hard Constraints

1 Introduction

Consider the task of refuting a random 3SAT instance with n variables and 50n clauses; i.e.,

certifying that it’s unsatisfiable (which it is, with very high probability). There is no known

2o(n)-time algorithm for this problem. An oft-cited piece of evidence for the exponential

difficulty is the fact [9, 19] that the very powerful Sum-of-Squares (SOS) SDP hierarchy fails

to refute such random 3SAT instances in 2o(n) time. Colloquially, degree-Ω(n) SOS “thinks”

that the random 3SAT instance is satisfiable (with high probability).

But consider the following method of refuting satisfiability of a random 50n-clause CNF φ:

For all k ∈ {0, 1, 2, . . . , n},

refute “φ is satisfiable by an assignment of Hamming weight k”.

Could it be that O(1)-degree SOS succeeds in refuting random 3SAT instances in this manner?

It seems highly unlikely, but prior to this work the possibility could not be ruled out.

SOS lower bounds with Hamming weight constraints

Recall that the known SOS lower bounds for random 3SAT are actually stronger: they show

degree-Ω(n) SOS thinks that random 3SAT instances are satisfiable even as as 3XOR (i.e.,

with every clause having an odd number of true literals). Hamming weight calculations are

quite natural in the context of random 3XOR; indeed Grigoriev, Hirsch, and Pasechnik [10]

showed that the dynamic degree-5 SOS proof system can refute random 3XOR instances

by using integer counting techniques. Thus the above “refute solutions at each Hamming

weight” strategy seems quite natural in the context of random CSPs.

In 2012, Yuan Zhou raised the question of proving strong SOS lower bounds for random

3XOR instances together with a global cardinality constraint such as
∑

i xi = n
2 . This

would rule out the above refutation strategy. It is also a natural SOS challenge, seemingly

combining the two strong SOS results known prior to 2012 – the bound for random 3XOR

due to Grigoriev and Schoenebeck [9, 19] and the bound for Knapsack due to Grigoriev [8].

One may ask why the Grigoriev–Schoenebeck SOS lower bound doesn’t already satisfy∑
i xi = n

2 . The difficulty is connected to the meaning of the word “satisfy”. One should

think of the SOS Method as trying to find not just a satisfying assignment to a CSP, but

more generally a distribution on satisfying assignments. The SOS algorithm finds a “degree-d

pseudodistribution” on satisfying assignments in nO(d) time, provided one exists; roughly

speaking, this means an object that “looks like” a distribution on satisfying assignment to all

tests that are squared polynomials of degree at most d. For a random 3XOR instance with n

variables and O(n) constraints, the Grigoriev–Schoenebeck degree-Ω(n) pseudodistribution

indeed claims to have 100% of its probability mass on satisfying assignments. Furthermore,

its assignments claim to give probability 50% to each of xi = 0 and xi = 1 for all i; in other

words, the “pseudoexpectation” of xi is 1
2 , so the pseudoexpectation of

∑
i xi is n

2 . However,

this doesn’t mean that the pseudodistribution “satisfies” the hard constraint
∑

i xi = n
2 . To

actually “satisfy” this constraint, the expression
∑

i xi must have pseudovariance zero; i.e.,

SOS must not only “think” it knows a distribution on 3XOR-satisfying assignments which

has
∑

i xi = n
2 on average, it must think that all of these satisfying assignments have

∑
i xi

exactly n
2 .

In this work we show how to upgrade any SOS lower bound for random CSPs based

on t-wise uniformity so as to include the hard cardinality constraint
∑

i xi = n
2 (or indeed
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∑
i xi = n

2 + k for any |k| = O(
√

n)).3 The idea is conceptually simple: just add a matching

of 2XOR constraints, x2i−1 6= x2i for all 1 6 i 6 n
2 .

SOS lower bounds with exact objective constraints

A random 3AND CSP with n variables and m = αn constraints (each an AND of 3 random

literals) will have objective value 1
8 + ε with high probability, for ε arbitrarily small as

a function of α; i.e., the best assignment will satisfy at most ( 1
8 + ε)m constraints. On

the other hand, it’s not too hard to show that the Grigoriev–Schoenebeck degree-Ω(n)

pseudodistribution will give the objective function a pseudoexpectation of 1
4 ± o(1). (Roughly

speaking, for almost all 3AND constraints, the SOS pseudodistribution will think it can

obtain probability 1
4 on each of the 3XOR-satisfying assignments, and one of these, namely

(1, 1, 1), satisfies 3AND.) Thus it would appear that degree-Ω(n) SOS has an integrality gap

of factor 2 − ε on random 3AND instances.

But is this misleading? Suppose we solved the SOS SDP and it reported a solution with

pseudoexpectation 1
4 . We might then “double-check” by re-running the SDP, together with an

additional “equality constraint” specifying that the number of satisfied 3AND constraints is

indeed 1
4 m.4 As far as we know now, this run could return “infeasible”, actually refuting the

possibility of 1
4 m constraints being satisfiable! Again, the issue is that under the Grigoriev–

Schoenebeck SOS pseudodistribution, the objective function will have a pseudoexpectation

like 1
4 , but will also have nonzero pseudovariance.

We show how to fix this issue – i.e., have the objective constraint be exactly SOS-satisfied

– in the context of any SOS lower bound for random CSPs based on t-wise uniformity. Here

we briefly express the idea of our solution, in the specific case of 3AND: We show that one

can design a probability distribution θ on r × 3 Boolean matrices such that two properties

hold: (i) θ is 2-wise uniform; (ii) for every outcome in the support of θ, exactly a 1
4 − εr

fraction of the r rows satisfy 3AND, where εr is an explicit positive constant depending on r

that tends to 0 as r grows. We then use recent work [14] on constructing SOS lower bounds

from t-wise uniform distributions to show that degree-Ω(n) SOS thinks it can “weakly satisfy”

a random “distributional CSP” in which each constraint specifies that a random 4r-tuple of

variables should be distributed according to θ. By “weak satisfaction”, we mean that SOS

will at least think it can get a local distribution on each 4r-tuple whose support is contained

within θ’s support (and therefore always having exactly a 1
4 − εr fraction of rows satisfying

3AND). Now viewing each such tuple as the conjunction of r (random) 3AND constraints,

we get that the SOS solution thinks it satisfies exactly a 1
4 − εr fraction of these constraints.

Further consequences

Via our first result – satisfying global cardinality constraints – we open up the possibility

of establishing SOS lower bounds for natural problems like Min- and Max-Bisection (by

performing reductions within SOS, as in [21]). Previously, no such SOS integrality gaps were

known (Guruswami, Sinop, and Zhou [11] had given an SOS integrality gap approaching 11
10

for the Balanced-Separator problem, which is like Min-Bisection but without a hard bisection

constraint.) Under assumptions like NP 6⊆ ⋂
ε>0 TIME(2nε

), some hardness results were

3 We also show in the full version that this is not too far from tight, in the sense that it is easier to refute

XOR with Hamming weight constraints that are too imbalanced (if k = ω(n1/4)).
4 Actually, it was recently observed that it is not clear we can definitely solve the associated SDP

exactly [16, 18]. This does not affect the status of our lower bounds.

ITCS 2019



49:4 SOS Lower Bounds with Hard Constraints

previously known: no PTAS for Min-Bisection (due to Khot [13]) and factor 15
16 + ε hardness

for Max-Bisection (due to Holmerin and Khot [13], improving on the factor 16
17 +ε NP-hardness

known for Max-Cut). However, in the context of SOS lower bounds, it makes sense to shoot

for more: namely, hardness factors that are known subject to Feige’s R3SAT Hypothesis [7]

(and similar hypotheses for random CSPs).

Feige himself [7] showed factor 4
3 − ε hardness for Min-Bisection under his hypothesis

(with a quadratic size blowup). Also, it’s possible to show factor 11
12 + ε hardness for Max-

Bisection (with linear size blowup) under Feige’s Hypothesis for 4XOR; this is arguably

“folklore”, via the gadget techniques of Trevisan et al. [20] (see also [12, 17]). We are able to

convert both of these results to SOS lower bounds, showing that degree-Ω(
√

n) SOS fails

to ( 4
3 − ε)-approximate Min-Bisection, and degree-Ω(n) SOS fails to (5

4 + ε)-approximate

Min-Bisection. Our proof of the latter can also be modified to show that degree-Ω(n) SOS

fails to ( 11
12 + ε)-approximate Max-Bisection.

It is worth pointing out that the benefit of our second main result, the ability to enforce

objective equality constraints exactly, also arises in these SOS Bisection lower bounds. For

example, the ( 4
3 − ε)-hardness for Min-Bisection is a kind of gadget reduction from random

3AND CSPs; showing that the “good cut” in the completeness case is an exact bisection

relies on the “good assignment” in the 3AND instance satisfying exactly a 1
4 fraction of

constraints.

1.1 Statement of main theorems

Recent work [3, 14] has established a general framework for showing lower bounds for SOS on

random CSPs, using the idea of t-wise uniformity. The following is a fairly general example

of what’s known:

◮ Theorem 0 ([14]). Let P : {0, 1}k → {0, 1} be a predicate, and suppose there is a (t − 1)-

wise uniform distribution ν on {0, 1}k with Eν [P ] = β. Consider a random n-variable,

m = ∆n-constraint instance of CSP(P ±), meaning that each constraint is P applied to k

randomly chosen literals. Then with high probability, there is a degree-Ω
(

n
∆2/(t−2) log ∆

)
SOS

pseuodexpectation Ẽ[·] with the following property:

Case 1: β = 1. In this case, Ẽ[·] satisfies all the CSP constraints as identities.

Case 2: β < 1. In this case, Ẽ[OBJ(x)] = β ± o(1), where OBJ(x) denotes the objective

value of the CSP.

For example, the case of random 3SAT described in the previous section corresponds to

P = OR3, t = 3, ν being the uniform distribution on triples satisfying XOR3, β = 1, and

∆ = 50; the case of random 3AND has the same t, ν, and ∆, but P = AND3 and β = 1
4 .

Our main theorems are now as follows:

◮ Theorem 1. In the β = 1 case of Theorem 0, one can additionally get the pseudodistri-

bution Ẽ to satisfy (with pseudovariance zero) the global bisection constraint
∑n

i=1 xi = n
2

(assuming n even). More generally, for any integer B ∈ [ n
2 − O(

√
n), n

2 + O(
√

n)], we can

ensure the pseudodistribution satisfies the global Hamming weight constraint
∑n

i=1 xi = B.

◮ Theorem 2. In the β < 1 case of Theorem 0, there exists a sequence of positive constants

εr with εr → 0 such that for a random* n-variable, m = ∆n-constraint instance of CSP(P ±),

with high probability there is a degree-Ωr

(
n

∆2/(t−2) log ∆

)
SOS pseudodistribution Ẽ which

satisfies (with pseudovariance zero) the hard constraint “OBJ(x) = β − εr”. Furthermore, we

can also obtain cardinality constraints as in Theorem 1.



P. Kothari, R. O’Donnell, and T. Schramm 49:5

In the full version, we show that Theorem 1 is not too far from tight, by demonstrating that

random k-XOR instances become easier to refute when one imposes an imbalanced Hamming

weight constraint
∑n

i=1 xi = n
2 ± ω(n1/4).5

◮ Remark. In the above theorem we have written “random*” with an asterisk because the

random instance is not drawn precisely in the standard way. Rather, it is obtained by

choosing m/r groups of random constraints, where in each group we fix a literal pattern and

then choose r nonoverlapping constraints with this pattern. This technicality is an artifact

of our proof; it seems likely that it is unnecessary. Indeed, it is possible that these two

distributions on random hypergraphs are simply o(1)-close in total variation distance, at least

when m = O(n).6 In any case, by alternate means (including the techniques from Theorem 1)

we are able to show the following alternative result in Section 5.2: When m = o(n1.5), with

high probability a purely random instance of CSP(P ±) has an SOS pseudodistribution of

the stated degree that exactly satisfies OBJ(x) = β − ε for some ε > 0 that can be made

arbitrarily small.

◮ Remark. Our proof of Theorem 2 only relies on the “Case 1, β = 1” part of [14]’s Theorem 0.

In fact, our Theorem 2 can actually be used to effectively deduce “Case 2, β < 1” from

“Case 1, β = 1” in Theorem 0. This is of interest because [14]’s argument for Case 2 was not

a black-box reduction from Case 1, but instead involved verifying a more technical expansion

property in random graphs, as well as slightly reworking the proof of Case 2.

Finally, we obtain the following theorems concerning Bisection problems:

◮ Theorem 3. For the Max-Bisection problem in a graph on n vertices, for d = Ω(n), the

degree-d Sum-of-Squares Method cannot obtain an approximation factor better than 11
12 − ε

for any constant ε > 0.

For the Min-Bisection problem, for d′ = Ω(
√

n), the degree-d′ SOS Method cannot obtain

an approximation factor better than 4
3 − ε, and for d = Ω(n) the degree-d SOS Method cannot

obtain an approximation factor better than 5
4 − ε.

The proofs are included in the full version.

Organization of this paper

In Section 2, we provide some preliminaries and technical context for the study of CSPs

and SOS. In Section 3, we extend the results of [14] to obtain lower bounds for CSPs with

global cardinality constraints, proving Theorem 1. Section 4 shows how to construct local

distributions over assignments to groups of disjoint predicates so that the number of satisfied

constraints is always exactly the same, and Section 5 shows how to use such distributions to

prove Theorem 2. In Section 5, one can also find a discussion of random vs. random* CSPs.

We wrap up with some concluding remarks and future directions in Section 6.

2 Preliminaries

CSPs

A constraint satisfaction problem (CSP) is defined by an alphabet Ω (usually {0, 1} or {±1}
in this paper) and a collection P of predicates, each predicate being some P : Ωk → {0, 1}
(with different P ’s possibly having different arities, k). An instance H consists of a set V of

5 We conjecture that Theorem 1 is tight, and that Hamming weight constraints with imbalance ω(n1/2)
already make k-XOR easier to refute.

6 Thanks to Svante Janson for some observations in the direction of showing this.

ITCS 2019



49:6 SOS Lower Bounds with Hard Constraints

n variables, as well as m constraints. Each constraint h consists of a scope S and a predicate

P ∈ P, where S is a tuple of k distinct variables, k being the arity of P . An assignment gives

a value xi ∈ Ω to the ith variable; it satisfies constraint h = (S, P ) if P (xS1
, . . . , xSk

) = 1.

We may sometimes write this as P (xS) = 1 for brevity. The associated objective value is the

fraction of satisfied constraints,

OBJ(x) = avg
h=(S,P )∈H

{P (xS)}.

Sometimes we are concerned with CSPs of the following type: the alphabet Ω = {±1} is

Boolean, there is a single predicate P : Ωk → {0, 1} (e.g., P = OR3, the 3-ary Boolean OR

predicate), and the predicate set P consists of all 2k versions of P in which inputs may be

negated. We refer to this scenario as P -CSP with literals, denoted CSP(P ±). For example,

the case of P = OR3 is the classic “3SAT” CSP.

Distributional CSPs

A distributional CSP is one where, rather than having a predicate associated with each scope,

we have a probability distribution. More precisely, each distributional constraint h = (S, ν)

now consists of a scope S of some arity k, as well as a probability distribution ν on Ωk. The

optimization task involves finding a global probability distribution µ on assignments. We say

that µ satisfies constraint h = (S, ν) if the marginal µ|S of µ on S is equal to ν; we say the

distributional CSP is satisfiable if there is a µ satisfying all constraints.

We may also say that µ weakly satisfies h = (S, ν) if supp(µ|S) ⊆ supp(ν). A “usual”

(predicative, i.e., non-distributional) CSP can be viewed as a distributional CSP as follows:

For each predicate P , select any distribution νP whose support is exactly the satisfying

assignments to P ; then the existence of a global assignment in the predicative CSP of

objective value β is equivalent to the existence of a global probability distribution µ that

weakly satisfies a β fraction of constraints.

Random CSPs

We are frequently concerned with CSPs chosen uniformly at random. Given a predicate

set P, a random CSP with n variables and m constraints is chosen as follows: For each

constraint we first choose a random P ∈ P. Supposing it has arity k, we then choose a

uniformly random length-k scope S from the n variables, and impose the constraint (S, P ).

We can similarly define a random distributional CSP given a collection D of distributions ν.

We remark that our choice of having exactly m constraints is not really essential, and not

much would change if we had, e.g., a Poisson(m) number of random constraints, or if we

chose each possible constraint independently with probability such that m constraints are

expected.

SOS

The SOS Method [5] can be thought of as an algorithmic technique for finding upper bounds

on the best objective value achievable in a predicative or distributional CSP. For example,

in a random 3SAT instance with m = 50n, it is very likely that every assignment x has

OBJ(x) 6
7
8 + o(1); ideally, the SOS Method could certify this, or could at least certify

unsatisfiability, meaning an upper bound of OBJ(x) < 1 for all assignments. The SOS

Method has a tunable degree parameter d; increasing d increases the effectiveness of the

method, but also its run-time, which is essentially nO(d) (though see [16, 18] for a more
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precise discussion). In this work we are only concerned with showing negative results for

the power of SOS. Showing that degree-d SOS fails to certify a good upper bound on the

maximum objective value is equivalent to showing that a degree-d pseudodistribution exists

under which the objective function has a large pseudoexpectation. We define these terms now.

For simplicity we restrict attention to CSPs with Boolean alphabet (either Ω = {0, 1}
or Ω = {±1}), although it straightforward to extend the definitions for larger alphabets.7

The SOS method introduces indeterminates X1, . . . , Xn associated to the CSP variables;

intuitively, one thinks of them as standing for the outcome of a global assignment chosen from a

supposed probability distribution on assignments. An associated degree-d pseudoexpectation is

a real-valued linear map Ẽ on R6d[X1, . . . , Xn] (the space of formal polynomials in X1, . . . , Xn

of degree at most d) satisfying three properties:

1. Ẽ[multilin(Q(X))] = Ẽ[Q(X)]; here multilin(Q(X)) refers to the multilinearization of

Q(X), meaning the reduction mod X2
i = Xi (in case Ω = {0, 1}) or mod X2

i = 1 (in case

Ω = {±1}).

2. Ẽ[1] = 1;

3. Ẽ[Q(X)2] > 0 whenever deg(Q) 6 d/2.

We tend to think of the first condition (as well as the linearity of Ẽ) as being “syntactically”

enforced; i.e., given Ẽ’s values on the multilinear monomials, its value on all polynomials

is determined through multilinearization and linearity. It is not hard to show that every

pseudoexpectation Ẽ arises from a signed probability distribution µ; i.e., a (possibly negative)

function µ : Ωn → R with
∑

x µ(x) = 1. We call this the associated pseudodistribution.

Intuitively, we think of a degree-d pseudodistribution as a “supposed” distribution on global

assignments, which at least passes the tests in Item 3 above.

Given a CSP instance H, if there is a degree-d pseudodistribution with Ẽ[OBJ(X)] > β,

this means that the degree-d SOS Method fails to certify an upper bound of OBJ(x) < β for

the CSP. Informally, we say that degree-d SOS “thinks” that there is a distribution on assign-

ments under which the average objective value is at least β. Similarly, given a distributional

CSP H, if there is a degree-d pseudodistribution in which P̃[XS = (a1, . . . , ak)] = ν(a1, . . . , ak)

for all constraints h = (S, ν), we say that degree-d SOS “thinks” that H is fully satisfiable.

Here P̃[XS = (a1, . . . , ak)] means Ẽ[1XS=(a1,...,ak)], where 1XS=(a1,...,ak) denotes the natural

arithmetization of the 0-1 indicator as a degree-k multilinear polynomial.

Satisfaction of identities in SOS

Formally speaking, one says that a degree-d pseudodistribution satisfies an identity Q(X) = b

if Ẽ[(Q(X) − b)R(X)] = 0 for all polynomials R(X) of degree at most d − deg(Q). Note that

this is stronger than simply requiring Ẽ[Q(X)] = b (the R ≡ 1 case). A great deal of this

paper is concerned with precisely this distinction; it may be relatively easy to come up with

a degree-d pseudodistribution over {0, 1}n satisfying, say, Ẽ[
∑

i Xi] = n
2 , but much harder to

find one that “satisfies the identity
∑

i Xi = n
2 ”. The terminology here is a little unfortunate;

we will try to ameliorate things by introducing the following stronger phrase:

◮ Definition 4. We say that a degree-d pseudodistribution satisfies identity Q(X) = b with

pseudovariance zero if we have both Ẽ[Q(X)] = b and also

ṼAR[Q(X) − b] = Ẽ[Q(X)2] − b2 = 0.

7 Specifically, for each variable x and each alphabet element a ∈ Ω, one introduces an indeterminate
called 1x=a that is constrained as a {0, 1} value and is interpreted as the indicator of whether x is
assigned a.

ITCS 2019



49:8 SOS Lower Bounds with Hard Constraints

As is shown in [2, Lemma 3.5 (SOS Cauchy-Schwarz)], this condition is equivalent to the

pseudodistribution “satisfying the identity Q(X) = b” for Q of degree up to d/2.8

Intuitively, in this situation degree-d SOS not only “thinks” that it knows a distribution on

assignments x under which Q(x) has expectation b, it further thinks that every outcome x

in the support of its supposed assignment has Q(x) = b.

3 Random CSPs with Hamming weight constraints

In this section we will prove Theorem 1, which extends the known random CSP lower

bounds (as in Theorem 0) to CSPs with a hard Hamming weight constraint on the variable

assignment.

3.1 Hypergraph expansion and prior SOS lower bounds for random

CSPs

The paper [14] works in the general setting of distributional CSPs with an upper bound

of K on all constraint arities. An instance is thought of as a “factor graph” G: a bipartite

graph with n variable-vertices, m constraint-vertices, and edges joining a constraint-vertex to

the variable-vertices in its scope. More precisely, the neighborhood N(h) of each constraint-

vertex h is defined to be an ordered tuple of kh variable-vertices. We write νh for the local

probability distribution on ΩN(h) associated to constraint h. In [14], each νh is assumed

to be a (τ − 1)-wise uniform distribution, where τ is a global integer parameter satisfying

3 6 τ 6 K. Finally, the graph G is assumed to satisfy a certain high-expansion condition

(discussed in the full version) called the “Plausibility Assumption” involving two parameters

0 < ζ < 1 and 1 6 SMALL 6 n/2, assumed to satisfy K 6 ζ · SMALL. In this case, the main

theorem of [14] is that there is a SOS-pseudodistribution of degree 1
3 ζ · SMALL that weakly

satisfies all constraints.

In [14] it is assumed that all constraint distributions νh have the same level of uniformity,

namely (τ − 1)-wise uniformity, τ > 3. In this work, in order to incorporate Hamming

weight constraints on the assignment, we would like to consider the possibility that different

constraint distributions have different levels of uniformity. To that end, suppose that each νh

is (th − 1)-wise uniform, where the th’s are various integers. Slightly more broadly than [14],

we allow 1 6 th 6 kh + 1 for all h, and we allow the constraints to have arity kh as low as 1.

In the full version, we examine how these assumptions affect the proofs in [14]. The

upshot is Theorem 5 below. Before we give the theorem, we briefly introduce some notation

and comments: A “constraint-induced” subgraph H is a subgraph of the factor graph G

given by choosing some set of constraints C, as well as all edges and constraint-vertices

adjacent to C. We write c(H) for the number of constraints in H, e(H) for the number of

edges, v(H) for the number of variable-vertices, and T (H) =
∑

h∈cons(H) th. To reduce to

(3.1) in the following theorem, we use the observation in the full version that adding edges to

a subgraph to make it constraint-induced can only decrease “income”.

For notational simplicity we have also adjusted the parameters ζ and SMALL by factors of 2.

8 In this paper we are flexible when it comes to constant factors in the degree. For this reason we need
not worry about this factor-2 loss in the degree, as a degree-2d pseudoexpectation which satisfies an
identity with pseudovariance 0 automatically gives a degree-d pseudoexpectation which satisfies the
identity exactly.
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◮ Theorem 5 (Essentially from [14]). Let 0 < ζ < 1, SMALL 6 n and assume all constraint-

vertices in G have arity at most ζ · SMALL.

Suppose that for every set of nonempty constraint-induced subgraph H with c(H) 6 SMALL,

it holds that

v(H) > e(H) − T (H)

2
+ ζc(H). (3.1)

Then there is an SOS-pseudodistribution of degree 1
3 ζ · SMALL that weakly satisfies all con-

straints.

There are a lot of parameters in the above theorem, and our goal is not to derive the

most general possible quantitative result. Instead we’ll simply work out some of the basic

consequences.

A basic setting treated in [14], relevant for Theorem 0, is the following. For a fixed

small t we choose a random CSP with n variables and ∆n constraints, with each constraint

supporting a (t − 1)-wise uniform distribution. E.g., in random 3SAT, t = 3. Then if

∆ = const ·
( n

SMALL

) t
2 −1−ζ

for a sufficiently small positive constant, it is shown in [14] that the main condition (3.1)

indeed holds with high probability. Choosing, say, ζ = 1
log n and SMALL = polylog(n), we

see that, with high probability, we will have weakly satisfying pseudodistributions of degree

polylog(n) even when ∆ = Θ̃(nt/2−1).

In fact, it’s possible to show that we have such pseudoexpectations when there are,

simultaneously, n1.5/ polylog(n) 2-wise-supporting constraints, and n2/ polylog(n) 3-wise-

supporting constraints, and n2.5/ polylog(n) 4-wise-supporting constraints, . . . and also

n/ polylog(n) 1-wise-supporting constraints, and n.5/ polylog(n) 0-wise-supporting con-

straints.

3.2 Expansion in the presence of matching and unary constraints

However, if we want to impose a cardinality constraint by way of adding 1-wise independent

2-ary 6= constraints, then n/ polylog(n) such constraints will not suffice. Indeed, what we

would like to now show is that if the 1-wise-supporting constraints are carefully chosen to not

overlap, we can add a full, linear-sized “matching” of them without compromising the lower

bound. Then, when Ω = {0, 1}, we can impose the 1-wise-uniform constraints x1 ⊕ x2 = 1,

x3 ⊕ x4 = 1, . . . , xn−1 ⊕ xn = 1 and thereby force the pseudoexpectation to satisfy the global

constraint
∑

i xi = n
2 .

◮ Theorem 6. Fix a uniformity parameter 3 6 t 6 O(1), an arity k 6 O(1), a number

U = O(
√

n) of “unary” constraints, and a small failure probability 0 < p < 1/2. Assume also

that ζ 6 1/2.

Suppose we form a random factor graph with n variable-vertices and ∆n constraint-

vertices C of arity k; assume each constraint-vertex is equipped with an associated (t − 1)-wise

uniform distribution.

Furthermore, suppose we add in two sets M1, M2 of nonrandom, nonoverlapping con-

straints, whose associated variable vertices partition [n]. The “unary” constraints of M1

should satisfy |M1| 6 U and have an associated 0-wise uniform distribution; the “match-

ing” constraints of M2 should be of constant arity and have an associated 1-wise uniform

distribution.

ITCS 2019



49:10 SOS Lower Bounds with Hard Constraints

Then provided

∆ 6 const · p ·
( n

SMALL

) t
2 −1−ζ′

for a sufficiently small universal constant, and ζ ′ = (k + 1)ζ, the expansion condition in

Theorem 5 holds except with probability at most p.

The proof of Theorem 6, appearing in the full version, uses standard combinatorial tech-

niques for verifying the expansion of random graphs. Due to the fact that the unary and

matching constraints are deterministic, we must augment these standard techniques with

some straightforward case analysis. In fact, we only prove the theorem under the assumption

that the constraints of M2 have arity 2; the more general case of constant arity is a slight

elaboration that we omit.

3.3 Lower bound for CSPs with Hamming weight constraints

As in [14], we observe that for a given ∆ > 10, a good choice for ζ is 1
log ∆ . This yields the

following corollary, which we will show implies Theorem 1:

◮ Theorem 7. Let ν be a (t − 1)-wise uniform distribution on {0, 1}k. Consider a random

n-variable, m = ∆n-constraint k-ary distributional CSP, in which each constraint distribution

is ν up to a negation pattern in the k inputs. (All such “reorientations” are still (t − 1)-wise

uniform.) Suppose we also impose the following nonrandom distributional constraints:

The 0-wise uniform constraints x1 = b1, x2 = b2, . . . , xU = bU , for some string b ∈ {0, 1}U

with U = O(
√

n);

The 1-wise uniform constraint that (xU+1, xU+2) is uniform on {(0, 1), (1, 0)}, and simil-

arly for the pairs (xU+3, xU+4), . . . , (xn−1, xn).

Then with high probability, there is an SOS-pseudodistribution of degree D = Ω
(

n
∆2/(t−2) log ∆

)

that weakly satisfies all constraints.

Let us now see why this implies Theorem 1. In this “β = 1” scenario, we have a (t−1)-wise

uniform ν supported on the satisfying assignments for P . Whenever the random CSP(P ±)

instance has a P -constraint with a particular literal pattern, we impose the analogous ν-

constraint with equivalent negation pattern. Now the SOS-pseudodistribution Ẽ[·] promised

by Theorem 6 weakly satisfies all these ν-constraints, and hence satisfies all the P -constraints.

Furthermore, it also has Ẽ[xi] = bi ∈ {0, 1} for all i 6 U , and Ẽ[xi(1−xi+1)]+Ẽ[(1−xi)xi+1] =

1 for all pairs (i, i + 1) = (U + 1, U + 2), . . . , (n − 1, n), by weak satisfaction. Notice that the

latter implies

Ẽ[(xi + xi+1 − 1)2] = 1 − Ẽ[xi] − Ẽ[yi] + 2 Ẽ[xixi+1] = 0,

and hence the SOS solution satisfies xi + xi+1 = 1 with pseudovariance zero. Similarly (and

easier), it satisfies the identity xi = bi for all i 6 U . It now follows that the pseudodistribution

satisfies the identity
∑n

i=1 xi = n
2 + (|b| − U

2 ) with pseudovariance zero, and this completes

the proof of Theorem 1, because we can take any |b| ∈ {0, . . . , U}.

4 Exact Local Distributions on Composite Predicates

In this section and in Section 5 we will show how to satisfy the constraint OBJ(x) = β

exactly, with pseudovariance zero. Our strategy will be to group predicates together into

“composite” predicates, and then prove that there is a local (t − 1)-wise uniform distribution



P. Kothari, R. O’Donnell, and T. Schramm 49:11

which is moreover supported on variable assignments for which an exact β-fraction of the

predicates within the composite predicate are satisfied. We’ll then apply Theorem 6 to the

composite predicates.

We begin with an easier proof for the case when there is a pairwise-uniform distribution

over satisfying assignments to our predicate in Section 4.1, and later in Section 4.2 we handle

t-wise uniform distributions for larger t. While the pairwise-uniform theorem is less general,

the proof is simpler and it already suffices for all of our bisection applications.

4.1 Pairwise-uniform distributions over β-satisfying assignments

Recall our setting: we have a Boolean k-ary predicate P : {±1}k → {0, 1} and a pairwise-

uniform distribution ν over assignments x ∈ {±1}k such that E[P (x)] = β. The following

theorem states that we can extend ν into a distribution θ over assignments to groups of r

predicates at a time, {±1}r×k so that exactly (β − ε) · r of the r predicates are satisfied by

any assignment y ∼ θ.

◮ Theorem 8. Let P : {±1}k → {0, 1} be a k-ary Boolean predicate, and let ν be a

pairwise-uniform distribution over assigments {±1}k with the property that ν(x) is rational

for each x ∈ {±}k; that is, there exist a multiset S ⊆ {±1}k such that for each x ∈ {±1}k,

ν(x) = Ps∼S(s = x). Suppose also that Ex∼ν [P (x)] = β, and that this is more than the

expectation under the uniform distribution, so β > Ex∼{±1}k [P (x)].

Then for any constant ε > 0, there exists an integer r = Oε,k(|S|3) and a rational ε̃ 6 ε

so that there is a pairwise-uniform distribution θ over assigments to groups of r predicates,

{±1}r×k such that exactly (β − ε̃)r of the predicates are satisfied by any assigment y ∼ θ.

Throughout we’ll refer to the assignments in the support of θ as matrices, with each row

of the r × k matrix corresponding to the assignment for a single copy of the predicate.

Since we have assumed that the probability of seeing any string in the support of ν is

rational, without loss of generality we can assume that ν is uniform over some multiset

S ⊆ {±1}k. As a first guess at θ, one might try to take r = c · |S| for some positive integer

c, make c copies of the multiset S, and use a random permutation of the elements of this

multiset to fill the rows of an r ×k matrix. But this distribution is not quite pairwise uniform.

The issue is that because each individual bit is uniformly distributed, every column of the

matrix will always be perfectly balanced between ±1. Therefore the expected product of two

distinct bits in a given column is

1
(

c|S|
2

)
(( 1

2 c|S|
2

)
(−1)2 +

( 1
2 c|S|

2

)
(+1)2 +

(
1

2
c|S|

)2

(+1)(−1)

)
= − 1

c|S| − 1
6= 0.

So, the bits within a particular column have a slight negative correlation.

We’ll compensate for this shortcoming as follows: we will randomly choose an element s

in the support of ν to repeat multiple times. This may in turn alter the number of predicates

satisfied out of the r copies of P , whereas our express goal was to satisfy the exact same

number of predicates under every assignment. To adjust for this, we’ll mix in some rows

from the uniform distribution over {±1}k, where the number of rows we mix in will depend

on whether P (s) = 1 or 0.

Proof. Let S be a multiset of strings in {±1}k such that Ps∼S(s = a) = ν(a). We will

also require a multiset T ⊆ {±1}k which is a well-chosen mixture of ν and the uniform

distribution; the following claim shows that we can choose such a set. Here, we take some

care in choosing this combination; the exact choice of parameters will not matter until later.
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◮ Claim 9. For any constant ε > 0, there is a constant L = O(1/ε) and a constant

R > 1 so that there are multisets S′, T ⊆ {±1}k with the following properties: S′ is RL2k

copies of S, T has size |T | = |S′| = LR2k|S|, and Px∼T [P (x) = 1] = β − ε′, where

ε > ε′ def
= 1

L (β − Ex∼{±1}k [P (x)]).

Proof. Let s = |S|, and let U = {±1}k. Suppose that η2k of U ’s assignments satisfy P .

Define T to be the multiset given by 2k(L − 1)R copies of S and sR copies of U . We have

P
x∼T

[P (x) = 1] =
1

2kLRs

(
βs · 2k(L − 1)R + η2k · sR

)
= β − β − η

L
.

By choosing L large as a function of ε, we can make this probability as small as we want. ◭

For convenience, let ℓ = 2kLR|S|. Set the number of rows r = dℓ for an integer d = Oε(ℓ2)

to be specified later. We also let a, b1, b0, c1, c0 be integers which will specify the number of

rows from S′, T , and the repeated assignment set; we’ll set the integers later, but we will

require the property that

d = a + b1 + c1 = a + b0 + c0. (4.1)

We generate a sample from θ in the following fashion:

1. Sample s ∼ S, and fill the first aℓ rows with copies of s. Call these the A rows.

2. Set i = P (s), that is i = 1 if s satisfies P and i = 0 otherwise.

3. Fill the next biℓ rows with bi copies of each string in S′. Call these the B rows.

4. Fill the last ciℓ rows with ci copies of each string in T . Call these the C rows.

5. Randomly permute the rows of the matrix.

If δℓ assignments in T are satisfying and βℓ assignments in S′ are satisfying, to ensure that

the number of satisfying rows are always the same we enforce the constraint

aℓ + b1βℓ + c1δℓ = b0βℓ + c0δℓ, (4.2)

Now we handle uniformity. We will prove that all of the degree-1 and degree-2 moments

of the bits in the matrix are uniform under θ. First, we argue that the degree-1 moments are

zero, and that the correlation of any two bits in the same row is zero.

◮ Claim 10. The bits in a single row of M are pairwise uniform.

Proof. We can condition on the row type, A, B, or C. For each type of row, there is a

multiset U such that E[Mij ] = Ex∼U [xj ] = 0 by the pairwise uniformity of the uniform

distribution over U . The same argument proves the statement for the product of two bits in

a fixed row. ◭

Thus, it suffices to prove that the bits in each column are pairwise-uniform; this is because

the pairwise uniformity of rows implies that we can fix the values of any entire column, and

the remaining individual bits in other columns will remain uniformly distributed. So we turn

to proving that the columns are pairwise-uniform.

◮ Claim 11. If we choose a, b0, b1, c0, c1 so that

a(ℓ − 1) − β(b1 + c1) − (1 − β)(b0 + c0) = 0,

then the bits in a single row of M are pairwise uniform.
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Proof. We’ll prove this by computing the expected product of two distinct bits, x and y,

which both come from the ith column of M . We will compute the conditional expectation of

xy given the group of rows that x, y were sampled from.

We first notice that conditioned on x coming from one type of row and y coming from

another, x and y are independent of each other, and by the uniformity of individual bits in

each group, E[xy | x, y ∼ different groups] = 0.

Restricting our attention now to pairs of bits from within the same group, we compute

the conditional expectations. If both bits come from the A rows, they are perfectly correlated.

On the other hand, if both bits come from the B or C rows their correlation is as we computed

above, − 1
bℓ−1 or − 1

cℓ−1 respectively. Therefore we can simplify

E[xy]

= β · E[xy | P (a) = 1] + (1 − β) · E[xy | P (a) = 0]

= +β

((
aℓ
2

)
(

dℓ
2

) + E[xy|x, y ∼ B, P (a) = 1] ·

(
b1ℓ
2

)
(

dℓ
2

) + E[xy|x, y ∼ C, P (a) = 1] ·

(
c1ℓ
2

)
(

dℓ
2

)
)

+ (1 − β)

((
aℓ
2

)
(

dℓ
2

) + E[xy|x, y ∼ B, P (a) = 0] ·

(
b0ℓ
2

)
(

dℓ
2

) + E[xy|x, y ∼ C, P (a) = 0] ·

(
c0ℓ
2

)
(

dℓ
2

)
)

=
ℓ

2
(

dℓ
2

)
(

a(aℓ − 1) − β(b1 + c1) − (1 − β)(b0 + c0)

)
, (4.3)

where (4.3) gives us the condition of the claim. ◭

Finally, we are done given that we can find positive integers satisfying the constraints

d − a = b1 + c1 = b0 + c0 (from (4.1))

0 = a + β(b1 − b0) + δ(c1 − c0) (from (4.2))

0 = a(ℓ − 1) − β(b1 + c1) − (1 − β)(b0 + c0) (from (4.3))

The following can be verified to satisfy the constraints above:

a := 2(β − δ)ℓ; b1, c0 := ((β − δ)(ℓ − 1) − 1)ℓ;

b0, c1 := ((β − δ)(ℓ − 1) + 1)ℓ; d := 2(β − δ)ℓ2.

By our choice of ℓ = 2k|S|LR and since β − δ = β−E[P (x)]
L , we can choose R large enough

so that (β − δ)(ℓ − 1) > 1, and because βℓ and δℓ are integers, these are all also positive

integers, as required.

We compute the number of satisfied assigments as a function of the total, which is

β
b0

d
+ δ

c0

d
= β − ε′

2
+

1

ℓ

(
1 + ε′

2
− β

)
.

The conclusion thus holds, with ε̃
def
= ε′

2 − 1
ℓ

(
1+ε′

2 − β
)

. ◭

4.2 t − 1-wise uniform distributions over β-satisfying assignments

We now prove the generalization of the statement in the previous section to t-wise uniform

distributions over β-satisfying assignments.
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◮ Theorem 12. Let P : {±1}k → {0, 1} be a k-ary Boolean predicate, let t > 2 be an integer,

and let ν be a (t − 1)-wise uniform distribution over assigments {±1}k so that there exist a

multiset S ⊆ {±1}k such that for each x ∈ {±1}k, ν(x) = Ps∼S(s = x). Suppose also that

Ex∼ν [P (x)] = β > Ex∼{±1}k [P (x)].

Then for any constant ε > 0, there exists an integer r = Oε,k(|S|4) and a rational ε̃ 6 ε

so that there is a (t − 1)-wise uniform distribution θ over assigments to groups of r predicates,

{±1}r×k such that exactly (β − ε̃)r of the predicates are satisfied by any assigment y ∼ θ.

The proof will use a similar, though slightly more involved, construction of θ than in the

pairwise case. It may be helpful to note that the choice of t = 3 in Theorem 12 will not give

the same construction as in Theorem 8 (although of course one could set t = 3 and obtain a

result for pairwise-uniform ν). In particular, it will not be enough to choose one string to

repeat many times in order to improve the column-wise correlations. Instead, we will repair

the correlations in one column at a time, by sampling some subset of the bits in each column

from a bespoke distribution, designed to make the columns (t − 1)-wise independent. We will

have to be careful with the choice of distribution, so that we can still control the number of

satisfying assigmnets in M as a whole.

Proof. As in the proof of Theorem 8, we will require a well-chosen convex combination of ν

and the uniform distribution to ensure that the number of satisfying assingments is always

the same. We appeal to Claim 9, taking S′ and T to be as described there, with L = O(1/eps)

(to be set more precisely later) and R = 1. For convenience let’s let ℓ
def
= 2kL|S| and let’s let

δ = β − ε′.

We also call S′
i=1 and S′

i=−1 to be the sub-multisets of S′ which have the ith bit set to 1

and −1 respectively. We notice that a uniform sample from S′
i=1 is equivalent to a uniform

sample from ν conditioned on the ith bit being 1. Also by the (t − 1)-wise uniformity we

have |S′
i=1| = ℓ/2. Notice that since S′ is made up of 2kL copies of S, the discrepancy in the

number of satisfying assignments between Si=1 and Si=−1 is always an integer multiple of

2kL.

Set r, the number of rows, be an integer which we will specify later. We also choose the

integer a to represent the size of the correction rows, and bn, cn, the number of copies of

S′ and T for each n ∈ [akℓ/(2kL)] (where n2kL is the number of satisfying assignments in

the correction rows). To make sure the number of rows always adds up to r, we’ll need the

constraint,

r = akℓ + bnℓ + cnℓ ∀z ∈ {±1}k (4.4)

In order to make sure that the columns are (t−1)-wise independent, we require a “column

repair” distribution κ over {±1}aℓ. We will specify this distribution later; for now, we need

only that κ is symmetric and that the number of 1s in any z ∼ κ is a multiple of ℓ/2. The

latter property is because, when we choose some part of column i according to κ, we will

want to fix the rows with copies of Si=1 and Si=−1.

We generate a sample M ∈ {±1}r×k from θ in the following fashion:

1. For each i ∈ [k], independently sample a string zi ∼ κ. Add aℓ rows to M , where in the

ith column we put the bits of zi, and we set the remaining row bits so that if zi has

(a − a′)ℓ/2 entries of value 1 and a′ℓ/2 entries of value −1, then we end up with a′ copies

of S′
i=−1 and a − a′ copies of S′

i=1. Call these rows Ai.

2. Compute the integer n such that n · 2kL is the number of rows in ∪k
i=1Ai containing

satisfying assignments to P , given our choices of zi ∀i ∈ [k].
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3. Add bnℓ rows to M which contain bn copies of each string from S. Call these rows B.

4. Add cnℓ rows to M which contain cn copies of each string from T . Call these rows C.

5. Randomly permute the rows of M .

So that the number of satisfying assignments Λ is always the same, we require that

Λ = n2kL + bn · βℓ + cn · δℓ ∀n ∈ [akℓ/(2kL)] (4.5)

Now, we will derive the conditions under which (t − 1)-wise independence holds. As

above, we first consider bits that are all contained in a fixed row.

◮ Claim 13. The bits in a single row of M are (t − 1)-wise uniform.

Proof. We can condition on the row type, A1, . . . , Ak, B, or C. Sampling a uniform row

from B or C is equivalent to sampling from ν or γ, which are (t − 1)-wise uniform. Since κ

is symmetric, sampling a row from Ai is equivalent to sampling from ν as well, and we are

done. ◭

From the claim above, if we condition on the value in d < t − 2 columns, the remaining

t − 2 − d columns will remain identically distributed; this is because the rows are (t − 1)-wise

uniform, so after conditioning the distribution in each row will remain (t − 1 − d)-wise

uniform. Thus, proving that each column is (t − 1)-wise uniform suffices to prove (t − 1)-wise

uniformity on the whole.

The following lemma states that we may in fact choose κ so that this condition holds

exactly.

◮ Lemma 14. Let y ∈ {±}r−aℓ be a perfectly balanced string. If aℓ > h1 ·
√

tr for a fixed

constant h1 and
√

r > (t − 1)ℓ2h2t for a fixed constant h2, then there is a distribution κ

over {±1}aℓ, supported on strings which have a number of 1s which is a multiple of ℓ/2,

such that if x is sampled by choosing z ∼ κ, concatenating z with y and applying a random

permutation, then for any S ⊂ [r] with |S| 6 t − 1, E[xS ] = 0.

Since each column is distributed as the string x described in the lemma statement, the lemma

suffices to give us (t − 1)-wise uniformity of the columns. We’ll prove the lemma below, but

first we conclude the proof of the theorem statement.

We now choose the parameters to satisfy our constraints. We have the requirements:

Λ = n2kL + bnβℓ + cnδℓ ∀n ∈ [akℓ/(2kL)] (from (4.5))

r − akℓ = bnℓ + cnℓ ∀n ∈ [akℓ/(2kL)] (from (4.4))

aℓ > h1

√
tr (from Lemma 14)

√
r > (t − 1)ℓ2h2t (from Lemma 14)

where h1 and h2 are universal constants. The below choice of integer parameters satisfies

these requirements, as well as the requirement of always being non-negative:

u =

(
β − E

x∼{±1}k
[P (x)]

)
2k|S|; L = u · max(1, ⌈h1 + h2⌉) ·

⌈
1

ε

⌉
· k; ℓ = 2kL|S|;

a =
⌈
h12h2t/2tk

⌉
; r =

⌊
a2

h2
1t

⌋
· ℓ2;

b0 =
1

2

(
1

ℓ
r − ak

)
; bn+1 = bn − 2kL

u
;
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c0 =
1

2

(
1

ℓ
r − ak

)
; cn+1 = cn +

2kL

u
.

Finally, we have that the fraction of satisfying rows in M is always exactly

Λ

r
=

1
2 (r − akℓ) β + 1

2 (r − akℓ) δ

r
= β − ε′

2
− O

(
akℓ

r

)
.

The latter term is O( 1
ℓ ), and we have chosen L large enough so that it is smaller than

ε′/2. ◭

Proof of Lemma 14. For convenience, call m
def
= r −aℓ. Recall that we take x to be sampled

by taking a balanced string y ∈ {±1}m, sampling z ∼ κ, appending z to y and then applying

a uniform permutation to the coordinates.

We will solve for κ with a linear program (LP) over the probability pz of each string

z ∈ {±1}aℓ. We have the program

∀S ∈ [m], |S| ∈ {1, . . . , t − 1} :
∑

z∈{±1}aℓ

(ℓ/2)|
∑

j
zj

E


xS

∣∣∣∣
∑

i

xi =
∑

j∈[aℓ]

zj


 · pz = 0

∀z ∈ {±1}aℓ s.t.
ℓ

2

∣∣∣∣
∑

j

zj : pz > 0

Since we can take any solution to this LP and scale the pz so that they sum to 1, the

feasibility of this program implies our conclusion. So suppose by way of contradiction that

this LP is infeasible. Then Farkas’ lemma implies that there exists a q ∈ Rt−1 such that

∀z ∈ {±1}aℓ s.t.
ℓ

2

∣∣∣∣
∑

j

zj ,
∑

S⊆[m]
|S|∈{1,...,t−1}

E


xS

∣∣∣∣
∑

i

xi =
∑

j∈[a]

zj


 · ys > 0.

Without loss of generality, we scale q so that
∑

S q2
S = 1. Moreover by the symmetry of the

expectation over subsets S, we can assume that qS = qT whenever |S| = |T |. This implies

that the degree-t mean-zero polynomial

q(x) =
∑

S⊆[m]
16|S|6t−1

qS · χS(x)

has positive expectation over every layer of the hypercube with |∑i xi| = d such that d 6 aℓ

and ℓ
2 |d. Furthermore, q is a symmetric polynomial, which implies that it takes the same

value on all inputs of a fixed Hamming weight; this implies that it takes positive values on

every inputs x with |∑xi| ∈ [2a] · ℓ
2 .

The following fact will give us the contradiction we desire:

◮ Fact 15 (Tails of low-degree polynomials [6], see Theorem 4.1 in [1]). Let f : {0, 1}m → R

be a degree-t polynomial with mean zero and variance 1. Then, there exist universal constants

c1, c2 > 0 such that P[p 6 −2−c1t] > 2−c2t.

We will show that since q takes positive value on every hypercube slice of discrepancy
ℓ
2 · [2a], this implies that it takes positive values on most hypercube slices with discrepancy

at most aℓ. Because we have chosen aℓ so that this comprises the bulk of the hypercube,

this in turn will contradict Fact 15.
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In fact, because q is symmetric and of degree t−1 over the hypercube, we can equivalently

write q as a degree-(t − 1) polynomial in the single variable x′ :=
∑

i xi, q(x) = g(
∑

i xi) =∑
s∈{0,...,t−1} gs · (

∑
i xi)

s
. Viewing g as a univariate polynomial over the reals, g has at

most t − 1 roots. Therefore we conclude that q can only be non-positive on at most t − 1

intervals of layers of discrepancy (iℓ/2, (i + 1)ℓ/2). So for at least 2aℓ − (t − 1) ℓ
2 slices of the

hypercube around 0, q takes positve value.

Each slice of the hypercube has probability mass at most 1√
π
2 (m+aℓ)

. By our choice of

a, ℓ, m and by a Chernoff bound,

P(q(x) > 0) > P

(∣∣∣∣∣
∑

i

xi

∣∣∣∣∣ 6 aℓ

)
− (t − 1)ℓ

2
√

m + aℓ
> 1 − 2−c2t,

which contradicts Fact 15. ◭

5 SOS lower bounds for CSPs with exact objective constraints

In this section we put things together and show how to extend Theorem 12 to prove Theorem 2.

As discussed briefly in Section 1.1, our random instance of the CSP (P ±) will be sampled in

a somewhat non-standard way, which we will refer to as “batch-sampling.” This is because,

in order to apply Theorem 12 to a random instance Φ of a Boolean CSP, we need to partition

Φ’s constraints into groups of r non-intersecting constraints for some integer r, while also

maintaining the expansion properties required by Theorem 5.

We first prove Theorem 2 as stated, for random CSPs sampled from a slightly different

distribution. Then in Section 5.2 we show that for a “standard” random CSP with m = o(n3/2)

constraints, we can still get a theorem along the lines of Theorem 2.

5.1 Exact objective constraints for batch-sampled random CSPs

Suppose that P is a k-ary predicate, and let r be some positive integer which divides m.

We’ll “batch-sample” an n-variate random CSP (P ±) with m clauses as follows:

1. Choose independently m/r subsets each of r · k distinct variables uniformly at random

from [n], S1, . . . , Sm

2. For each j ∈ [m/r], Sj = {xi1, . . . , xirk
}:

Choose a random signing of P , zj ∈ {±1}k

To each block of k variables in Sj , (xi(ℓ−1)·k+1
, . . . , xiℓk

) for ℓ ∈ [r], add the predicate

P with signing zj .

◮ Theorem 16 (Restatement of Theorem 2). Let P be a k-ary predicate, and let ν be a

(t − 1)-wise uniform distribution over {±1}k under which Eν [P ] = β. Then for each constant

ε > 0 there is a choice of positive integer r such that for a random instance of CSP (P ±) on n

variables with m = ∆n constraints for sufficiently large ∆ and r|m, sampled as detailed above,

there is a degree-Ω( n
∆2/(t−2) log ∆

) SOS pseudodistribution whch satisfies with pseudovariance

zero the constraint OBJ(x) = β − εr, where εr < ε. This is also true when cardinality

constraints are imposed as in Theorem 1.

Proof. This distribution over instances is equivalent to the standard notion of sampling a

random CSP with m/r constraints in the composite predicates from Theorem 12: a scope

is chosen independently and uniformly at random for each predicate. Therefore, if we

replace each collection of constraints corresponding to Sj with the composite predicate from

Theorem 12, and modify ν in accordance with the signing zj , we have a (t − 1)-wise uniform
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distribution over solutions to the composite predicates supported entirely on assignments

which satisfy exactly β − εr of the clauses. Combining this with the expansion theorem

(Theorem 6), we have our conclusion. ◭

5.2 Exact objective constraints for sparse random CSPs.

Though the batch-sampled distribution over CSPs for which Theorem 2 holds is slightly

non-standard, here we show that with minimal effort, we can prove a similar theorem for

sparse random instances sampled in the usual manner, when m = o(n3/2).

◮ Theorem 17. Let P be a k-ary predicate, let ν be a (t − 1)-wise uniform distribution over

{±1}k such that Eν [P ] = β, and suppose we sample a random instance Φ of a CSP (P ±)

in the usual way, by selecting m random signed P -constraints on n variables. Then if

m = ∆n = o(n3/2) for sufficiently large ∆, with high probability over the choice of Φ, for

each ε > 0 there exists some constant εΦ 6 ε such that there is a degree-Ωε( n
∆2/(t−2) log ∆

)

pseudodistribution which satisfies with pseudovariance zero the constraint OBJ(x) = β − εΦ

and a Hamming weight constraint
∑

i∈[n] xi = B for |B| = O(
√

n).

Proof. Fix ε, and let r be the corresponding constant required to achieve objective OBJ(x) =

β − ε∗ under Theorem 12 for ε∗ < ε/2.

We first couple the standard sampling procedure for a random P -CSP to a different

sampling procedure. For simplicity we at first ignore the possible signings of P , and assume we

work only with un-negated variables; later we explain how to modify the proof to accomodate

negative literals.

We sample a random CSP by independently and uniformly choosing m random scopes

S1, . . . , Sm. For each ℓ ∈ {0, 1, . . . ⌊m/r⌋ − 1}, the probability that Sℓr+1, . . . , S(ℓ+1)r have

non-intersecting scopes is at least

P[∩j∈[r]Sj = ∅] =

r∏

i=2

P[Si ∩ (∩j<iSj) = ∅ | ∩j<i Sj = ∅] =

r∏

i=2

(
1 − i

k

n

)
> 1−O

(
r · k

n

)
.

So with high probability for all but O( m
n ) of the intervals of constraints j ∈ [ℓ · r + 1, (ℓ + 1)r],

the constraints will be non-intersecting. Call this the “non-intersecting configuration”.

Define a “collision configuration” to be a choice of scopes for which the above condition

does not hold; that is, a specific way in which Sj intersects with one or more Sj′ when

j, j′ ∈ [ℓ · r + 1, (ℓ + 1)r]. Each of the ≈
(

2kr
r

)
collision configurations has a fixed probability

of ocurring (which may be easily calculated), and the total sum of these probabilities is at

most O(r · k/n).

Let D(m)
r be the multinomial distribution which describes the number of occurrences of

each configuration for a random CSP with m constraints (⌊m/r⌋ configurations). We couple

the standard sampling procedure with the following alternative sampling procedure: we first

sample c ∼ D(m)
r to determine how many configurations of each type there are. Then, for

each collision configuration specified by c, sample the scope (of size < k · r) for each of the

collision configurations independently and uniformly at random. Also, sample and additional

(m mod r) scopes of k variables for the “leftover copies” of P . Finally, sample the scopes of

the non-intersecting configurations specified by c independently uniformly at random. The

coupling of the two processes is immediate.

Let C be the number of collision configurations plus (m mod r), the number of leftover

copies. As shown above, with high probability over c ∼ S(m)
r , the number of collision

configurations is at most O(m/n) = o(n1/2), so C = o(n1/2) = o(m).
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From our alternate sampling procedure, we conclude that with high probability we can

meet the conditions of Theorem 6 by fixing an arbitrary variable assignment to any collision

configuration. That is, we could alternately first sample the collision configurations and

leftover copies, and then set all of the variables present inside be set to (say) False. We

take note of how many constraints in the P -CSP are and are not satisfied by this unary

assignment, and we correspondingly amend ε∗ to εΦ. Since with high probability at most

o(m) constraints are fixed, we retain the property that εΦ 6 ε∗ + o(1) 6 ε.

Now, if we wish to satisfy a Hamming weight constraint, we add arbitrary matching and

unary constraints to get the desired Hamming weight; at most O(C) unary constraints are

needed to compensate for the 6 Ckr variables we set to False.

Finally, we sample the remaining non-intersecting configurations independently; by

Theorem 6 when C = o(n1/2), the expansion properties we require are met for the composite

predicates on the non-intersecting configurations. Since this occurs with high probability, we

are done.

To extend the argument to allow predicates on negative literals, we couple with a slightly

more elaborate sampling procedure: for each signing pattern z ∈ {±1}k, we draw a separate

set of mz predicates (where mz may either be deterministic or sampled from a multinomial

distribution). For each signing separately we repeat the argument above, and then in the

final sampling procedure we sample counts cz for each signing z, add the leftover copies

and collision configurations separately for each signing, add the unary constraints, and then

sample the remaining non-intersecting copies. ◭

6 Conclusions

In this work we have shown that, in the context of random Boolean CSPs, the following

strategies do not give SOS any additional refutation power: (i) trying out all possible

Hamming weights for the solution; (ii) trying out all possible (exact) values for the objective

function. We also gave the first known SOS lower bounds for the Min- and Max-Bisection

problems.

We end by mentioning some open directions. There are two technical challenges arising

in our work that look approachable. The first is to extend our results from Section 4 on

“exactifying” distributions to the case of larger alphabets. The second is to prove (or disprove)

that the “random*” and “purely random” distributions discussed in Remark 1.1 are o(1)-close

(depending on m(n)).

Finally, we suggest investigating further strategies for handling hard constraints in the

context of SOS lower bounds. Sometimes this is not too difficult, especially when reducing

from linear predicates such as 3XOR, where there are perfectly satisfying SOS solutions.

Other times, it’s of moderate difficulty, perhaps as in this paper’s main Theorem 1 and

Theorem 2. In still other cases it appears to be very challenging.

One difficult case seems to be in the context of SOS lower bounds for refuting the existence

of large cliques in random graphs. In [4] it is shown that in a G(n, 1/2) random graph, with

high probability degree-Ω(log n) SOS thinks there is a clique of size ω := n1/2−ε. (Here ε > 0

can be any constant.) However, it’s merely the case that Ẽ[clique size] > ω, and it is far

from clear how to upgrade the SOS solution so as to actually satisfy the constraint “clique

size = ω” with pseudovariance zero. Besides being an improvement for its own sake, it would

be very desirable to have such an SOS solution for the purposes of further reductions; for

example, it would greatly simplify the recent proofs of SOS lower bounds for approximate

Nash welfare in [15]. It also seems it might be useful for tackling SOS lower bounds for

coloring and stochastic block models.
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Finally, we leave as open one more “hard constraint” challenge that arises even in

the simple context of random 3XOR or 3SAT. Suppose one tried to refute random m-

constraint 3XOR instances by trying to refute the following statement for all quadruples

(k001, k010, k100, k111) that sum to m:

“exactly ka constraints are satisfied with assignment a”, for each a ∈ {001, 010, 100, 111}.

As far as we know, constant-degree SOS may succeed with this strategy when m = O(n). It

is natural to believe that there is (whp) an Ω(n)-degree SOS pseudodistribution that satisfies

all of the above constraints with pseudovariance zero when k001 = k010 = k100 = k111 = m/4,

but we do not know how to construct one.
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