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—— Abstract

Many previous Sum-of-Squares (SOS) lower bounds for CSPs had two deficiencies related to
global constraints. First, they were not able to support a “cardinality constraint”, as in, say, the
Min-Bisection problem. Second, while the pseudoexpectation of the objective function was shown
to have some value f, it did not necessarily actually “satisfy” the constraint “objective = 7. In
this paper we show how to remedy both deficiencies in the case of random CSPs, by translating
global constraints into local constraints. Using these ideas, we also show that degree-Q(y/n)
SOS does not provide a (% — g)-approximation for Min-Bisection, and degree-Q(n) SOS does not
provide a % +¢)-approximation for Max-Bisection or a (% —¢)-approximation for Min-Bisection.
No prior SOS lower bounds for these problems were known.
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1 Introduction

Consider the task of refuting a random 3SAT instance with n variables and 50n clauses; i.e.,
certifying that it’s unsatisfiable (which it is, with very high probability). There is no known
2°(")_time algorithm for this problem. An oft-cited piece of evidence for the exponential
difficulty is the fact [9, 19] that the very powerful Sum-of-Squares (SOS) SDP hierarchy fails
to refute such random 3SAT instances in 2°(") time. Colloquially, degree-Q(n) SOS “thinks”
that the random 3SAT instance is satisfiable (with high probability).

But consider the following method of refuting satisfiability of a random 50n-clause CNF ¢:

For all k € {0,1,2,...,n},
refute “¢ is satisfiable by an assignment of Hamming weight k”.

Could it be that O(1)-degree SOS succeeds in refuting random 3SAT instances in this manner?
It seems highly unlikely, but prior to this work the possibility could not be ruled out.

SOS lower bounds with Hamming weight constraints

Recall that the known SOS lower bounds for random 3SAT are actually stronger: they show
degree-Q2(n) SOS thinks that random 3SAT instances are satisfiable even as as 3XOR (i.e.,
with every clause having an odd number of true literals). Hamming weight calculations are
quite natural in the context of random 3XOR; indeed Grigoriev, Hirsch, and Pasechnik [10]
showed that the dynamic degree-5 SOS proof system can refute random 3XOR instances
by using integer counting techniques. Thus the above “refute solutions at each Hamming
weight” strategy seems quite natural in the context of random CSPs.

In 2012, Yuan Zhou raised the question of proving strong SOS lower bounds for random
3XOR instances together with a global cardinality constraint such as ), 2; = 5. This
would rule out the above refutation strategy. It is also a natural SOS challenge, seemingly
combining the two strong SOS results known prior to 2012 — the bound for random 3XOR
due to Grigoriev and Schoenebeck [9, 19] and the bound for Knapsack due to Grigoriev [8].

One may ask why the Grigoriev—Schoenebeck SOS lower bound doesn’t already satisfy
> ;i = 5. The difficulty is connected to the meaning of the word “satisfy”. One should
think of the SOS Method as trying to find not just a satisfying assignment to a CSP, but
more generally a distribution on satisfying assignments. The SOS algorithm finds a “degree-d
pseudodistribution” on satisfying assignments in n°@ time, provided one exists; roughly
speaking, this means an object that “looks like” a distribution on satisfying assignment to all
tests that are squared polynomials of degree at most d. For a random 3XOR instance with n
variables and O(n) constraints, the Grigoriev—Schoenebeck degree-Q2(n) pseudodistribution
indeed claims to have 100% of its probability mass on satisfying assignments. Furthermore,
its assignments claim to give probability 50% to each of x; = 0 and z; = 1 for all 7; in other
words, the “pseudoexpectation” of x; is %, so the pseudoexpectation of ) . x; is 5. However,
this doesn’t mean that the pseudodistribution “satisfies” the hard constraint ), x; = %. To
actually “satisfy” this constraint, the expression ) ., x; must have pseudovariance zero; i.e.,
SOS must not only “think” it knows a distribution on 3XOR-satisfying assignments which
has ), x; = % on average, it must think that all of these satisfying assignments have }_, x;
exactly 3.

In this work we show how to upgrade any SOS lower bound for random CSPs based
on t-wise uniformity so as to include the hard cardinality constraint ), z; = & (or indeed
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>, @i =% +k for any |k| = O(y/n)).* The idea is conceptually simple: just add a matching
of 2XOR constraints, wg; 1 # wo; for all 1 < < 3.

SOS lower bounds with exact objective constraints

A random 3AND CSP with n variables and m = an constraints (each an AND of 3 random
literals) will have objective value % + ¢ with high probability, for € arbitrarily small as
a function of a; i.e., the best assignment will satisfy at most (é + €)m constraints. On
the other hand, it’s not too hard to show that the Grigoriev—Schoenebeck degree-Q2(n)
pseudodistribution will give the objective function a pseudoexpectation of  £o(1). (Roughly
speaking, for almost all 3AND constraints, the SOS pseudodistribution will think it can
obtain probability % on each of the 3XOR-satisfying assignments, and one of these, namely
(1,1,1), satisfies 3AND.) Thus it would appear that degree-Q(n) SOS has an integrality gap
of factor 2 — £ on random 3AND instances.

But is this misleading? Suppose we solved the SOS SDP and it reported a solution with
pseudoexpectation i. We might then “double-check” by re-running the SDP, together with an
additional “equality constraint” specifying that the number of satisfied 3AND constraints is
indeed %m.‘l As far as we know now, this run could return “infeasible”, actually refuting the
possibility of im constraints being satisfiable! Again, the issue is that under the Grigoriev—
Schoenebeck SOS pseudodistribution, the objective function will have a pseudoexpectation
like i, but will also have nonzero pseudovariance.

We show how to fix this issue — i.e., have the objective constraint be ezactly SOS-satisfied
— in the context of any SOS lower bound for random CSPs based on t-wise uniformity. Here
we briefly express the idea of our solution, in the specific case of 3AND: We show that one
can design a probability distribution 6 on r x 3 Boolean matrices such that two properties
hold: (i) 6 is 2-wise uniform; (i) for every outcome in the support of 6, ezactly a ; — &,
fraction of the r rows satisfy 3AND, where ¢, is an explicit positive constant depending on r
that tends to 0 as r grows. We then use recent work [14] on constructing SOS lower bounds
from t-wise uniform distributions to show that degree-Q2(n) SOS thinks it can “weakly satisfy”
a random “distributional CSP” in which each constraint specifies that a random 4r-tuple of
variables should be distributed according to 6. By “weak satisfaction”, we mean that SOS
will at least think it can get a local distribution on each 4r-tuple whose support is contained
within 6’s support (and therefore always having exactly a i — g, fraction of rows satisfying
3AND). Now viewing each such tuple as the conjunction of r (random) 3AND constraints,
we get that the SOS solution thinks it satisfies exactly a % — g, fraction of these constraints.

Further consequences

Via our first result — satisfying global cardinality constraints — we open up the possibility
of establishing SOS lower bounds for natural problems like Min- and Max-Bisection (by
performing reductions within SOS, as in [21]). Previously, no such SOS integrality gaps were
known (Guruswami, Sinop, and Zhou [11] had given an SOS integrality gap approaching %
for the Balanced-Separator problem, which is like Min-Bisection but without a hard bisection
constraint.) Under assumptions like NP Z (., TIME(2""), some hardness results were

3 We also show in the full version that this is not too far from tight, in the sense that it is easier to refute
XOR with Hamming weight constraints that are too imbalanced (if k = w(n!/4)).

4 Actually, it was recently observed that it is not clear we can definitely solve the associated SDP
exactly [16, 18]. This does not affect the status of our lower bounds.
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previously known: no PTAS for Min-Bisection (due to Khot [13]) and factor 12 + ¢ hardness
for Max-Bisection (due to Holmerin and Khot [13], improving on the factor % +¢& NP-hardness
known for Max-Cut). However, in the context of SOS lower bounds, it makes sense to shoot
for more: namely, hardness factors that are known subject to Feige’s R3SAT Hypothesis [7]
(and similar hypotheses for random CSPs).

Feige himself [7] showed factor % — ¢ hardness for Min-Bisection under his hypothesis
(with a quadratic size blowup). Also, it’s possible to show factor % + ¢ hardness for Max-
Bisection (with linear size blowup) under Feige’s Hypothesis for 4XOR; this is arguably
“folklore”, via the gadget techniques of Trevisan et al. [20] (see also [12, 17]). We are able to
convert both of these results to SOS lower bounds, showing that degree-Q(y/n) SOS fails
to (3 — €)-approximate Min-Bisection, and degree-Q(n) SOS fails to (2 + ¢)-approximate
Min-Bisection. Our proof of the latter can also be modified to show that degree-Q(n) SOS
fails to (1 + ¢)-approximate Max-Bisection.

It is worth pointing out that the benefit of our second main result, the ability to enforce
objective equality constraints exactly, also arises in these SOS Bisection lower bounds. For
example, the (% — ¢)-hardness for Min-Bisection is a kind of gadget reduction from random
3AND CSPs; showing that the “good cut” in the completeness case is an exact bisection
relies on the “good assignment” in the 3AND instance satisfying exactly a i fraction of
constraints.

1.1 Statement of main theorems

Recent work [3, 14] has established a general framework for showing lower bounds for SOS on
random CSPs, using the idea of t-wise uniformity. The following is a fairly general example
of what’s known:

» Theorem 0 ([14]). Let P :{0,1}* — {0,1} be a predicate, and suppose there is a (t — 1)-
wise uniform distribution v on {0,1}* with E,[P] = B. Consider a random n-variable,
m = An-constraint instance of CSP(P¥), meaning that each constraint is P applied to k

randomly chosen literals. Then with high probability, there is a degree-Q) (m) SOS

pseuodexpectation IE[] with the following property:

Case 1: = 1. In this case, IE[] satisfies all the CSP constraints as identities.

Case 2: 3 < 1. In this case, E[OBJ(x)] = 8 % o(1), where OBJ(z) denotes the objective
value of the CSP.

For example, the case of random 3SAT described in the previous section corresponds to

P = ORg3, t = 3, v being the uniform distribution on triples satisfying XORg3, 8 = 1, and

A = 50; the case of random 3AND has the same ¢, v, and A, but P = AND3 and 8 = i.

Our main theorems are now as follows:

» Theorem 1. In the 3 =1 case of Theorem 0, one can additionally get the pseudodistri-
bution E to satisfy (with pseudovariance zero) the global bisection constraint Y. | x; = 5
(assuming n even). More generally, for any integer B € [§ — O(y/n), § 4+ O(y/n)], we can

ensure the pseudodistribution satisfies the global Hamming weight constraint ., x; = B.

» Theorem 2. In the 8 < 1 case of Theorem 0, there exists a sequence of positive constants
&, with &, — 0 such that for a random* n-variable, m = An-constraint instance of CSP(P¥),
m) SOS pseudodistribution E which
satisfies (with pseudovariance zero) the hard constraint “OBJ(x) = 8 — e, " Furthermore, we
can also obtain cardinality constraints as in Theorem 1.

with high probability there is a degree-S), (
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In the full version, we show that Theorem 1 is not too far from tight, by demonstrating that
random k-XOR instances become easier to refute when one imposes an imbalanced Hamming
weight constraint Y7, z; = 2 £ w(n!/4).?

» Remark. In the above theorem we have written “random™” with an asterisk because the
random instance is not drawn precisely in the standard way. Rather, it is obtained by
choosing m/r groups of random constraints, where in each group we fix a literal pattern and
then choose r nonoverlapping constraints with this pattern. This technicality is an artifact
of our proof; it seems likely that it is unnecessary. Indeed, it is possible that these two
distributions on random hypergraphs are simply o(1)-close in total variation distance, at least
when m = O(n).® In any case, by alternate means (including the techniques from Theorem 1)
we are able to show the following alternative result in Section 5.2: When m = o(n'%), with
high probability a purely random instance of CSP(P*) has an SOS pseudodistribution of
the stated degree that exactly satisfies OBJ(x) = 8 — € for some ¢ > 0 that can be made
arbitrarily small.

» Remark. Our proof of Theorem 2 only relies on the “Case 1, 8 = 1” part of [14]’s Theorem 0.

In fact, our Theorem 2 can actually be used to effectively deduce “Case 2, § < 1”7 from
“Case 1, 8 =17 in Theorem 0. This is of interest because [14]’s argument for Case 2 was not
a black-box reduction from Case 1, but instead involved verifying a more technical expansion
property in random graphs, as well as slightly reworking the proof of Case 2.

Finally, we obtain the following theorems concerning Bisection problems:

» Theorem 3. For the Max-Bisection problem in a graph on n vertices, for d = Q(n), the
degree-d Sum-of-Squares Method cannot obtain an approzimation factor better than % —¢€
for any constant € > 0.

For the Min-Bisection problem, for d = Q(y/n), the degree-d’ SOS Method cannot obtain
an approximation factor better than % —e¢, and for d = Q(n) the degree-d SOS Method cannot
obtain an approximation factor better than % — €.

The proofs are included in the full version.

Organization of this paper

In Section 2, we provide some preliminaries and technical context for the study of CSPs
and SOS. In Section 3, we extend the results of [14] to obtain lower bounds for CSPs with
global cardinality constraints, proving Theorem 1. Section 4 shows how to construct local
distributions over assignments to groups of disjoint predicates so that the number of satisfied
constraints is always exactly the same, and Section 5 shows how to use such distributions to

prove Theorem 2. In Section 5, one can also find a discussion of random vs. random* CSPs.

We wrap up with some concluding remarks and future directions in Section 6.

2 Preliminaries

CSPs

A constraint satisfaction problem (CSP) is defined by an alphabet Q (usually {0,1} or {£1}
in this paper) and a collection P of predicates, each predicate being some P : QF — {0,1}
(with different P’s possibly having different arities, k). An instance H consists of a set V' of

5 We conjecture that Theorem 1 is tight, and that Hamming weight constraints with imbalance w(nl/ 2)
already make k-XOR easier to refute.
6 Thanks to Svante Janson for some observations in the direction of showing this.
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n variables, as well as m constraints. Each constraint h consists of a scope S and a predicate
P € P, where S is a tuple of k distinct variables, k being the arity of P. An assignment gives
a value x; € Q to the ith variable; it satisfies constraint h = (S, P) if P(zg,,...,zs,) = 1.
We may sometimes write this as P(xzg) = 1 for brevity. The associated objective value is the
fraction of satisfied constraints,

OBJ(z) = h:(gvg)GH{P(xS)}.

Sometimes we are concerned with CSPs of the following type: the alphabet Q = {£1} is
Boolean, there is a single predicate P : Q¥ — {0,1} (e.g., P = ORs, the 3-ary Boolean OR
predicate), and the predicate set P consists of all 2¥ versions of P in which inputs may be
negated. We refer to this scenario as P-CSP with literals, denoted CSP(P¥). For example,
the case of P = ORg is the classic “3SAT” CSP.

Distributional CSPs

A distributional CSP is one where, rather than having a predicate associated with each scope,
we have a probability distribution. More precisely, each distributional constraint h = (S,v)
now consists of a scope S of some arity k, as well as a probability distribution v on Q¥. The
optimization task involves finding a global probability distribution p on assignments. We say
that u satisfies constraint h = (S, v) if the marginal p|g of p on S is equal to v; we say the
distributional CSP is satisfiable if there is a u satisfying all constraints.

We may also say that p weakly satisfies h = (S,v) if supp(u|s) € supp(v). A “usual”
(predicative, i.e., non-distributional) CSP can be viewed as a distributional CSP as follows:
For each predicate P, select any distribution vp whose support is exactly the satisfying
assignments to P; then the existence of a global assignment in the predicative CSP of
objective value 3 is equivalent to the existence of a global probability distribution p that
weakly satisfies a B fraction of constraints.

Random CSPs

We are frequently concerned with CSPs chosen uniformly at random. Given a predicate
set P, a random CSP with n variables and m constraints is chosen as follows: For each
constraint we first choose a random P € P. Supposing it has arity k, we then choose a
uniformly random length-k scope S from the n variables, and impose the constraint (.S, P).
We can similarly define a random distributional CSP given a collection D of distributions v.
We remark that our choice of having exactly m constraints is not really essential, and not
much would change if we had, e.g., a Poisson(m) number of random constraints, or if we
chose each possible constraint independently with probability such that m constraints are
expected.

SOS

The SOS Method [5] can be thought of as an algorithmic technique for finding upper bounds
on the best objective value achievable in a predicative or distributional CSP. For example,
in a random 3SAT instance with m = 50n, it is very likely that every assignment z has
OBJ(z) < % 4 o(1); ideally, the SOS Method could certify this, or could at least certify
unsatisfiability, meaning an upper bound of OBJ(xz) < 1 for all assignments. The SOS
Method has a tunable degree parameter d; increasing d increases the effectiveness of the
method, but also its run-time, which is essentially n°(4 (though see [16, 18] for a more
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precise discussion). In this work we are only concerned with showing negative results for
the power of SOS. Showing that degree-d SOS fails to certify a good upper bound on the
maximum objective value is equivalent to showing that a degree-d pseudodistribution exists
under which the objective function has a large pseudoezpectation. We define these terms now.

For simplicity we restrict attention to CSPs with Boolean alphabet (either @ = {0,1}
or = {£1}), although it straightforward to extend the definitions for larger alphabets.”
The SOS method introduces indeterminates X1, ..., X, associated to the CSP variables;
intuitively, one thinks of them as standing for the outcome of a global assignment chosen from a
supposed probability distribution on assignments. An associated degree-d pseudoexpectation is
a real-valued linear map E on Reyi[Xa, ..., X,] (the space of formal polynomials in X4, ..., X,
of degree at most d) satisfying three properties:

1. E[multilin(Q(X))] = E[Q(X)]; here multilin(Q(X)) refers to the multilinearization of
Q(X), meaning the reduction mod X? = X; (in case Q = {0,1}) or mod X2 =1 (in case
Q= {£1}).

2. E[1] = 1;

3. E[Q(X)?] > 0 whenever deg(Q) < d/2.

”

We tend to think of the first condition (as well as the linearity of IE) as being “syntactically
enforced; i.e., given E’s values on the multilinear monomials, its value on all polynomials
is determined through multilinearization and linearity. It is not hard to show that every
pseudoexpectation E arises from a signed probability distribution p; i.e., a (possibly negative)
function p : Q" — R with Y~ u(z) = 1. We call this the associated pseudodistribution.
Intuitively, we think of a degree-d pseudodistribution as a “supposed” distribution on global
assignments, which at least passes the tests in Item 3 above.

Given a CSP instance H, if there is a degree-d pseudodistribution with IE[OBJ(X)] > 8,
this means that the degree-d SOS Method fails to certify an upper bound of OBJ(z) < 8 for
the CSP. Informally, we say that degree-d SOS “thinks” that there is a distribution on assign-
ments under which the average objective value is at least 5. Similarly, given a distributional
CSP H, if there is a degree-d pseudodistribution in which ]IND[XS = (ay,...,ax)] =v(ay,...,ax)
for all constraints h = (S, v), we say that degree-d SOS “thinks” that H is fully satisfiable.
Here IF’[XS = (ay,...,a;)] means ]E[IXS:(,I17,”7%)], where 1x,—(q,,....a;,) denotes the natural
arithmetization of the 0-1 indicator as a degree-k multilinear polynomial.

Satisfaction of identities in SOS

Formally speaking, one says that a degree-d pseudodistribution satisfies an identity Q(X) =b
if E[(Q(X) — b)R(X)] = 0 for all polynomials R(X) of degree at most d — deg(Q). Note that
this is stronger than simply requiring ]E[Q(X)] = b (the R =1 case). A great deal of this
paper is concerned with precisely this distinction; it may be relatively easy to come up with
a degree-d pseudodistribution over {0, 1}™ satisfying, say, IE[ZZ X;] = %, but much harder to
find one that “satisfies the identity >, X; = §”. The terminology here is a little unfortunate;
we will try to ameliorate things by introducing the following stronger phrase:

» Definition 4. We say that a degreg—d pseudodistribution satisfies identity Q(X) = b with
pseudovariance zero if we have both E[Q(X)] = b and also

VAR[Q(X) — b] = E[Q(X)?] — b = 0.
7 Specifically, for each variable z and each alphabet element a € €2, one introduces an indeterminate

called 15—, that is constrained as a {0, 1} value and is interpreted as the indicator of whether z is
assigned a.
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As is shown in [2, Lemma 3.5 (SOS Cauchy-Schwarz)], this condition is equivalent to the
pseudodistribution “satisfying the identity Q(X) = b” for Q of degree up to d/2.%

Intuitively, in this situation degree-d SOS not only “thinks” that it knows a distribution on
assignments x under which Q(z) has expectation b, it further thinks that every outcome x
in the support of its supposed assignment has Q(x) = b.

3 Random CSPs with Hamming weight constraints

In this section we will prove Theorem 1, which extends the known random CSP lower
bounds (as in Theorem 0) to CSPs with a hard Hamming weight constraint on the variable
assignment.

3.1 Hypergraph expansion and prior SOS lower bounds for random
CSPs

The paper [14] works in the general setting of distributional CSPs with an upper bound
of K on all constraint arities. An instance is thought of as a “factor graph” G: a bipartite
graph with n variable-vertices, m constraint-vertices, and edges joining a constraint-vertex to
the variable-vertices in its scope. More precisely, the neighborhood N (h) of each constraint-
vertex h is defined to be an ordered tuple of kj, variable-vertices. We write v, for the local
probability distribution on QN associated to constraint h. In [14], each vy, is assumed
to be a (7 — 1)-wise uniform distribution, where 7 is a global integer parameter satisfying
3 < 7 < K. Finally, the graph G is assumed to satisfy a certain high-expansion condition
(discussed in the full version) called the “Plausibility Assumption” involving two parameters
0< ¢ <1and 1< SMALL < n/2, assumed to satisfy K < ¢ - SMALL. In this case, the main
theorem of [14] is that there is a SOS-pseudodistribution of degree %C - SMALL that weakly
satisfies all constraints.

In [14] it is assumed that all constraint distributions vy, have the same level of uniformity,
namely (7 — 1)-wise uniformity, 7 > 3. In this work, in order to incorporate Hamming
weight constraints on the assignment, we would like to consider the possibility that different
constraint distributions have different levels of uniformity. To that end, suppose that each vy,
is (tp — 1)-wise uniform, where the ¢;,’s are various integers. Slightly more broadly than [14],
we allow 1 < t;, < kp + 1 for all A, and we allow the constraints to have arity kj as low as 1.

In the full version, we examine how these assumptions affect the proofs in [14]. The
upshot is Theorem 5 below. Before we give the theorem, we briefly introduce some notation
and comments: A “constraint-induced” subgraph H is a subgraph of the factor graph G
given by choosing some set of constraints C, as well as all edges and constraint-vertices
adjacent to C. We write ¢(H) for the number of constraints in H, e(H) for the number of
edges, v(H) for the number of variable-vertices, and T(H) = > ¢ ons(rr) th- To reduce to
(3.1) in the following theorem, we use the observation in the full version that adding edges to
a subgraph to make it constraint-induced can only decrease “income”.

For notational simplicity we have also adjusted the parameters ¢ and SMALL by factors of 2.

8 In this paper we are flexible when it comes to constant factors in the degree. For this reason we need
not worry about this factor-2 loss in the degree, as a degree-2d pseudoexpectation which satisfies an
identity with pseudovariance 0 automatically gives a degree-d pseudoexpectation which satisfies the
identity exactly.
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» Theorem 5 (Essentially from [14]). Let 0 < ¢ < 1, SMALL < n and assume all constraint-
vertices in G have arity at most ¢ - SMALL.

Suppose that for every set of nonempty constraint-induced subgraph H with ¢(H) < SMALL,
it holds that

T(H

v(H) 2 e(H) — % + Cc(H). (3.1)
Then there is an SOS-pseudodistribution of degree %C - SMALL that weakly satisfies all con-
straints.

There are a lot of parameters in the above theorem, and our goal is not to derive the
most general possible quantitative result. Instead we’ll simply work out some of the basic
consequences.

A basic setting treated in [14], relevant for Theorem 0, is the following. For a fixed
small ¢t we choose a random CSP with n variables and An constraints, with each constraint
supporting a (¢t — 1)-wise uniform distribution. E.g., in random 3SAT, ¢t = 3. Then if

n )%*1*4

A = const (SMALL

for a sufficiently small positive constant, it is shown in [14] that the main condition (3.1)
indeed holds with high probability. Choosing, say, ( = lo;;n and SMALL = polylog(n), we
see that, with high probability, we will have weakly satisfying pseudodistributions of degree
polylog(n) even when A = O(n!/271).

In fact, it’s possible to show that we have such pseudoexpectations when there are,
simultaneously, n!-®/ polylog(n) 2-wise-supporting constraints, and n?/ polylog(n) 3-wise-
supporting constraints, and n?®/polylog(n) 4-wise-supporting constraints, ...and also
n/ polylog(n) 1-wise-supporting constraints, and n'°/polylog(n) 0O-wise-supporting con-
straints.

3.2 Expansion in the presence of matching and unary constraints

However, if we want to impose a cardinality constraint by way of adding 1-wise independent
2-ary # constraints, then n/ polylog(n) such constraints will not suffice. Indeed, what we
would like to now show is that if the 1-wise-supporting constraints are carefully chosen to not
overlap, we can add a full, linear-sized “matching” of them without compromising the lower
bound. Then, when Q = {0,1}, we can impose the 1-wise-uniform constraints z7 @ o = 1,
T3@xgs=1,..., xn_1Px, =1 and thereby force the pseudoexpectation to satisfy the global
constraint ), x; = 3.

» Theorem 6. Fiz a uniformity parameter 3 < t < O(1), an arity k < O(1), a number
U = O(y/n) of “unary” constraints, and a small failure probability 0 < p < 1/2. Assume also
that ¢ < 1/2.

Suppose we form a random factor graph with n variable-vertices and An constraint-
vertices C of arity k; assume each constraint-vertex is equipped with an associated (t — 1)-wise
uniform distribution.

Furthermore, suppose we add in two sets M1, Mz of nonrandom, nonoverlapping con-
straints, whose associated variable vertices partition [n]. The “unary” constraints of My
should satisfy |Mi| < U and have an associated 0-wise uniform distribution; the “match-
ing” constraints of My should be of constant arity and have an associated 1-wise uniform
distribution.
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Then provided

n )%—1—4/

A S const-p- (SMALL

for a sufficiently small universal constant, and (' = (k + 1), the expansion condition in
Theorem 5 holds except with probability at most p.

The proof of Theorem 6, appearing in the full version, uses standard combinatorial tech-
niques for verifying the expansion of random graphs. Due to the fact that the unary and
matching constraints are deterministic, we must augment these standard techniques with
some straightforward case analysis. In fact, we only prove the theorem under the assumption
that the constraints of My have arity 2; the more general case of constant arity is a slight
elaboration that we omit.

3.3 Lower bound for CSPs with Hamming weight constraints

As in [14], we observe that for a given A > 10, a good choice for ¢ is @. This yields the
following corollary, which we will show implies Theorem 1:

» Theorem 7. Let v be a (t — 1)-wise uniform distribution on {0,1}*. Consider a random
n-variable, m = An-constraint k-ary distributional CSP, in which each constraint distribution
is v up to a negation pattern in the k inputs. (All such “reorientations” are still (t — 1)-wise
uniform.) Suppose we also impose the following nonrandom distributional constraints:

The 0-wise uniform constraints x1 = by, 9 = by, ..., xy = by, for some string b € {0, 1}V
with U = O(y/n);
The 1-wise uniform constraint that (vy+1, xu42) s uniform on {(0,1),(1,0)}, and simil-
arly for the pairs (xuy3,2u44), -+, (Tn—1,%n).

Then with high probability, there is an SOS-pseudodistribution of degree D = Q(m)

that weakly satisfies all constraints.

Let us now see why this implies Theorem 1. In this “8 = 1” scenario, we have a (t—1)-wise
uniform v supported on the satisfying assignments for P. Whenever the random CSP(P*)
instance has a P-constraint with a particular literal pattern, we impose the analogous v-
constraint with equivalent negation pattern. Now the SOS-pseudodistribution IEH promised
by Theorem 6 weakly satisfies all these v-constraints, and hence satisfies all the P-constraints.
Furthermore, it also has E[z;] = b; € {0,1} for all i < U, and E[z;(1—241)|+E[(1—2;)2i41] =
1 for all pairs (i,i+1) = (U +1,U+2),...,(n— 1,n), by weak satisfaction. Notice that the
latter implies

E[(z; + zis1 — 1)%] = 1 — E[z;] — E[yi] + 2E[z;2i41] = 0,

and hence the SOS solution satisfies x; + x; 11 = 1 with pseudovariance zero. Similarly (and
easier), it satisfies the identity a; = b; for all i < U. It now follows that the pseudodistribution
satisfies the identity ! ; 2; = 2 + (|b| — %) with pseudovariance zero, and this completes
the proof of Theorem 1, because we can take any |b| € {0,...,U}.

4 Exact Local Distributions on Composite Predicates

In this section and in Section 5 we will show how to satisfy the constraint OBJ(z) =
exactly, with pseudovariance zero. Our strategy will be to group predicates together into
“composite” predicates, and then prove that there is a local (t — 1)-wise uniform distribution
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which is moreover supported on variable assignments for which an exact S-fraction of the
predicates within the composite predicate are satisfied. We’ll then apply Theorem 6 to the
composite predicates.

We begin with an easier proof for the case when there is a pairwise-uniform distribution
over satisfying assignments to our predicate in Section 4.1, and later in Section 4.2 we handle
t-wise uniform distributions for larger ¢. While the pairwise-uniform theorem is less general,
the proof is simpler and it already suffices for all of our bisection applications.

4.1 Pairwise-uniform distributions over 3-satisfying assignments

Recall our setting: we have a Boolean k-ary predicate P : {+1}¥ — {0,1} and a pairwise-
uniform distribution v over assignments = € {£1}* such that E[P(z)] = 8. The following
theorem states that we can extend v into a distribution 6 over assignments to groups of r
predicates at a time, {il}”k so that exactly (8 — ¢) - r of the r predicates are satisfied by
any assignment y ~ 6.

» Theorem 8. Let P : {+1}* — {0,1} be a k-ary Boolean predicate, and let v be a
pairwise-uniform distribution over assigments {£1}* with the property that v(x) is rational
for each x € {£}*; that is, there exist a multiset S C {+1}* such that for each x € {£1}¥,
v(z) = Psus(s = x). Suppose also that B, [P(x)] = B, and that this is more than the
expectation under the uniform distribution, so B > Eyry1yx[P()].

Then for any constant € > 0, there exists an integer r = O, (|S|®) and a rational £ < e
so that there is a pairwise-uniform distribution 6 over assigments to groups of r predicates,
{£1}* such that exactly (8 — &)r of the predicates are satisfied by any assigment y ~ 6.

Throughout we’ll refer to the assignments in the support of € as matrices, with each row
of the r x k matrix corresponding to the assignment for a single copy of the predicate.

Since we have assumed that the probability of seeing any string in the support of v is
rational, without loss of generality we can assume that v is uniform over some multiset
S C {+1}*. As a first guess at 6, one might try to take r = ¢ - |S| for some positive integer
¢, make ¢ copies of the multiset S, and use a random permutation of the elements of this
multiset to fill the rows of an r x k matrix. But this distribution is not quite pairwise uniform.
The issue is that because each individual bit is uniformly distributed, every column of the
matrix will always be perfectly balanced between £1. Therefore the expected product of two
distinct bits in a given column is

(d}l) <<§c2|sl)(1)2 + (%CQSI)<+1)2 + (;c|5|>2 (+1)(1)> - 7C|S‘%1 £0.

So, the bits within a particular column have a slight negative correlation.

We'll compensate for this shortcoming as follows: we will randomly choose an element s
in the support of v to repeat multiple times. This may in turn alter the number of predicates
satisfied out of the r copies of P, whereas our express goal was to satisfy the exact same
number of predicates under every assignment. To adjust for this, we’ll mix in some rows
from the uniform distribution over {+1}*, where the number of rows we mix in will depend
on whether P(s) =1 or 0.

Proof. Let S be a multiset of strings in {£1}* such that P,.5(s = a) = v(a). We will
also require a multiset 7 C {£1}* which is a well-chosen mixture of v and the uniform
distribution; the following claim shows that we can choose such a set. Here, we take some
care in choosing this combination; the exact choice of parameters will not matter until later.
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» Claim 9. For any constant ¢ > 0, there is a constant L = O(1/e) and a constant
R > 1 so that there are multisets S', T C {+1}* with the following properties: S’ is RL2*
copies of S, T has size |T| = |S"| = LR2*|S|, and Po7r[P(x) = 1] = B — €', where

e>e & 1 (B = Eqogaryr[P(2))).

Proof. Let s = |S|, and let U = {£1}*. Suppose that 72* of U’s assignments satisfy P.
Define T to be the multiset given by 2¥(L — 1)R copies of S and sR copies of U. We have

,3—77.

P [P(z)=1] = ! (Bs-28(L —1)R+n2" - sR) = 5 — -

a~T "~ 2¥LRs

By choosing L large as a function of €, we can make this probability as small as we want. <«

For convenience, let £ = 2 LR|S|. Set the number of rows r = d/ for an integer d = O, (¢?)
to be specified later. We also let a, by, by, c1, co be integers which will specify the number of
rows from S/, T, and the repeated assignment set; we’ll set the integers later, but we will
require the property that

d=a+by+c1=a+by+ . (41)

We generate a sample from 6 in the following fashion:

Sample s ~ S, and fill the first af rows with copies of s. Call these the A rows.
Set i = P(s), that is ¢ = 1 if s satisfies P and 4 = 0 otherwise.

Fill the next b;¢ rows with b; copies of each string in S’. Call these the B rows.
Fill the last ¢;¢ rows with ¢; copies of each string in T'. Call these the C rows.

il o\

5. Randomly permute the rows of the matrix.

If §¢ assignments in T are satisfying and B¢ assignments in S’ are satisfying, to ensure that
the number of satisfying rows are always the same we enforce the constraint

al + by Bl + c100 = boBL + codl, (4.2)

Now we handle uniformity. We will prove that all of the degree-1 and degree-2 moments
of the bits in the matrix are uniform under 0. First, we argue that the degree-1 moments are
zero, and that the correlation of any two bits in the same row is zero.

» Claim 10. The bits in a single row of M are pairwise uniform.

Proof. We can condition on the row type, A, B, or C. For each type of row, there is a
multiset U such that E[M;;] = E,y[z;] = 0 by the pairwise uniformity of the uniform
distribution over U. The same argument proves the statement for the product of two bits in
a fixed row. <

Thus, it suffices to prove that the bits in each column are pairwise-uniform; this is because
the pairwise uniformity of rows implies that we can fix the values of any entire column, and
the remaining individual bits in other columns will remain uniformly distributed. So we turn
to proving that the columns are pairwise-uniform.

» Claim 11. If we choose a, by, b1, co,c1 so that
a(t —1) = B(b1 +c1) = (1 = B)(bo + o) =0,

then the bits in a single row of M are pairwise uniform.



P. Kothari, R. O’'Donnell, and T. Schramm

Proof. We’ll prove this by computing the expected product of two distinct bits, x and v,
which both come from the ith column of M. We will compute the conditional expectation of
xy given the group of rows that x,y were sampled from.

We first notice that conditioned on x coming from one type of row and y coming from
another, x and y are independent of each other, and by the uniformity of individual bits in
each group, E[zy | 2,y ~ different groups] = 0.

Restricting our attention now to pairs of bits from within the same group, we compute
the conditional expectations. If both bits come from the A rows, they are perfectly correlated.
On the other hand, if both bits come from the B or C' rows their correlation is as we computed

L 7 respectively. Therefore we can simplify

or =1

above, —M%l

E[zy]
=p Elzy | P(a) =1+ (1 - 3)-E[zy | P(a) =0
("5
(%)

(")
(%)

al
=40 <(ZZ) + E[zy|z,y ~ B, P(a) =1] -

(%)
o

+ E[zy|z,y ~ C, P(a) = 0] -

L
oG <a(aé —1) = Blbr +er) — (1— B)(bo + )) (4.3)

2
where (4.3) gives us the condition of the claim. <

Finally, we are done given that we can find positive integers satisfying the constraints

d—a=b+c1=by+co (from (4.1))
0O=a+ B(bl - bo) + (5(01 — Co) (from (42))
0= a(@ - ].) - ﬂ(bl + Cl) - (1 - ﬁ)(bo + C()) (frorn (43))

The following can be verified to satisfy the constraints above:

a :

2(8 —0)¢; bi,co == ((B—-0)({ —1) = 1)
bo,c1:= ((B—0)(£ — 1)+ 1)¢; d:=2(3—0).

By our choice of ¢ = 2¥|S|LR and since f — § = %, we can choose R large enough
so that (8 —0)(¢ — 1) > 1, and because 8¢ and 6¢ are integers, these are all also positive
integers, as required.

We compute the number of satisfied assigments as a function of the total, which is

b() Co e’ 1 1+€/
batog="r m( > P)

The conclusion thus holds, with & def %/ — % (HTE/ — ﬂ). <

4.2 t — 1-wise uniform distributions over (3-satisfying assignments

We now prove the generalization of the statement in the previous section to ¢-wise uniform
distributions over (-satisfying assignments.
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» Theorem 12. Let P: {£1}* — {0,1} be a k-ary Boolean predicate, let t > 2 be an integer,
and let v be a (t — 1)-wise uniform distribution over assigments {+1}* so that there exist a
multiset S C {+1}* such that for each v € {£1}*, v(z) = Pyus(s = x). Suppose also that
Eonn[P(2)] = B > By g1y [P(2)].

Then for any constant € > 0, there exists an integer r = O, 1 (|S|*) and a rational & < e
so that there is a (t —1)-wise uniform distribution 6 over assigments to groups of r predicates,
{£1}7* such that exactly (8 — &)r of the predicates are satisfied by any assigment y ~ 6.

The proof will use a similar, though slightly more involved, construction of # than in the
pairwise case. It may be helpful to note that the choice of ¢t = 3 in Theorem 12 will not give
the same construction as in Theorem 8 (although of course one could set ¢ = 3 and obtain a
result for pairwise-uniform v). In particular, it will not be enough to choose one string to
repeat many times in order to improve the column-wise correlations. Instead, we will repair
the correlations in one column at a time, by sampling some subset of the bits in each column
from a bespoke distribution, designed to make the columns (¢t — 1)-wise independent. We will
have to be careful with the choice of distribution, so that we can still control the number of
satisfying assigmnets in M as a whole.

Proof. As in the proof of Theorem 8, we will require a well-chosen convex combination of v
and the uniform distribution to ensure that the number of satisfying assingments is always
the same. We appeal to Claim 9, taking S’ and T to be as described there, with L = O(1/eps)

(to be set more precisely later) and R = 1. For convenience let’s let ¢ e 2k L|S| and let’s let
d=p—-¢.

We also call S/_; and S/__; to be the sub-multisets of S” which have the ith bit set to 1
and —1 respectively. We notice that a uniform sample from S;_, is equivalent to a uniform
sample from v conditioned on the ith bit being 1. Also by the (¢ — 1)-wise uniformity we
have |S!_,| = ¢/2. Notice that since S’ is made up of 2¥ L copies of S, the discrepancy in the
number of satisfying assignments between S;—; and S;—_; is always an integer multiple of
2K L.

Set r, the number of rows, be an integer which we will specify later. We also choose the
integer a to represent the size of the correction rows, and b,, ¢,, the number of copies of
S’ and T for each n € [akl¢/(2FL)] (where n2F L is the number of satisfying assignments in
the correction rows). To make sure the number of rows always adds up to r, we’ll need the
constraint,

r=akl+ byl +c,l Vze {+1}F (4.4)

In order to make sure that the columns are (¢ — 1)-wise independent, we require a “column
repair” distribution x over {£1}%¢. We will specify this distribution later; for now, we need
only that k is symmetric and that the number of 1s in any z ~ k is a multiple of £/2. The
latter property is because, when we choose some part of column ¢ according to x, we will
want to fix the rows with copies of S;—; and S;—_1.

We generate a sample M € {£1}"** from @ in the following fashion:

1. For each ¢ € [k], independently sample a string z; ~ k. Add af rows to M, where in the
ith column we put the bits of z;, and we set the remaining row bits so that if z; has
(a — a’)¢/2 entries of value 1 and a’¢/2 entries of value —1, then we end up with a’ copies
of S!__, and a — a’ copies of S/_;. Call these rows A;.

2. Compute the integer n such that n - 2¥L is the number of rows in U¥_; A; containing
satisfying assignments to P, given our choices of z; Vi € [k].
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3. Add b, /¢ rows to M which contain b,, copies of each string from S. Call these rows B.
4. Add c¢,¢ rows to M which contain ¢, copies of each string from 7. Call these rows C.
5. Randomly permute the rows of M.

So that the number of satisfying assignments A is always the same, we require that
A=n2"L+b, Bl +c,-60 Vn€lakl/(2"L)] (4.5)

Now, we will derive the conditions under which (¢ — 1)-wise independence holds. As
above, we first consider bits that are all contained in a fixed row.

» Claim 13. The bits in a single row of M are (t — 1)-wise uniform.

Proof. We can condition on the row type, A1,..., Ag, B, or C. Sampling a uniform row
from B or C is equivalent to sampling from v or v, which are (¢ — 1)-wise uniform. Since &
is symmetric, sampling a row from A; is equivalent to sampling from v as well, and we are
done. <

From the claim above, if we condition on the value in d < ¢ — 2 columns, the remaining
t — 2 — d columns will remain identically distributed; this is because the rows are (t — 1)-wise
uniform, so after conditioning the distribution in each row will remain (¢t — 1 — d)-wise
uniform. Thus, proving that each column is (¢ — 1)-wise uniform suffices to prove (¢ — 1)-wise
uniformity on the whole.

The following lemma states that we may in fact choose k so that this condition holds
exactly.

» Lemma 14. Let y € {£}"= be a perfectly balanced string. If al > hy - \/tr for a fized
constant hy and /7 > (t — 1)€2"2t for a fived constant hy, then there is a distribution k
over {£1}%*, supported on strings which have a number of 1s which is a multiple of £/2,
such that if x is sampled by choosing z ~ K, concatenating z with y and applying a random
permutation, then for any S C [r] with |S| <t — 1, E[z°] = 0.

Since each column is distributed as the string = described in the lemma statement, the lemma
suffices to give us (¢t — 1)-wise uniformity of the columns. We’ll prove the lemma below, but
first we conclude the proof of the theorem statement.

We now choose the parameters to satisfy our constraints. We have the requirements:

A =n2FL +b,80+ c,60 Vn € [akl/(2FL)] (from (4.5))
r—akl = byl + ol Vn € [akl/(2FL)] (from (4.4))
al > hy\Vtr (from Lemma 14)

VT > (t— 1)t (from Lemma 14)

where h; and hsy are universal constants. The below choice of integer parameters satisfies
these requirements, as well as the requirement of always being non-negative:

1 X
u= <ﬁ - mN{IEﬂ}g[P(m)]) 2k15); L =wu-max(1,[hy + ha]) - L_-‘ -k €=2FL|S|;
2
_ hat/241.] . _ | e e
a [hﬂ tﬂ : r {h%tJ 2
1/1 2k
bozz(gr—ak‘); an:bn——u ;
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11 L) - +2kL
Co—2 ET ar | ; Cn+1 = Cn w

Finally, we have that the fraction of satisfying rows in M is always exactly

A_ é(r—aké)ﬁ—l—é(r—aké)é:ﬂ_g’_O<aké>.

r r 2

r

The latter term is O(%)7 and we have chosen L large enough so that it is smaller than
e'/2. |

Proof of Lemma 14. For convenience, call m def. _ af. Recall that we take = to be sampled
by taking a balanced string y € {£1}™, sampling z ~ «, appending z to y and then applying
a uniform permutation to the coordinates.

We will solve for k with a linear program (LP) over the probability p, of each string
z € {£1}?. We have the program

VS e [m],|S] e{l,...,t —1}: Z E |2°
ze{*x1}*
/217 2

sz: p. 20
J

Since we can take any solution to this LP and scale the p, so that they sum to 1, the
feasibility of this program implies our conclusion. So suppose by way of contradiction that
this LP is infeasible. Then Farkas’ lemma implies that there exists a ¢ € R*~! such that

sz, Z E |z° Zx¢=sz ~ys > 0.
J i

SC[m] Jj€lal
IS|e{1,...t—1}

Zmi: Z zj| *p==0

j€lal]

l
Vz e {£1}% s.t. 3

Vz e {£1}% st ;

Without loss of generality, we scale ¢ so that >4 ¢% = 1. Moreover by the symmetry of the
expectation over subsets S, we can assume that gs = gr whenever |S| = |T'|. This implies
that the degree-t mean-zero polynomial

g@)= > qs-xs(x)
SC[m]
1<I8]<t-1

has positive expectation over every layer of the hypercube with |>, ;| = d such that d < al
and %\d. Furthermore, ¢ is a symmetric polynomial, which implies that it takes the same
value on all inputs of a fixed Hamming weight; this implies that it takes positive values on
every inputs z with |> z;| € [2a] - £.

The following fact will give us the contradiction we desire:

» Fact 15 (Tails of low-degree polynomials [6], see Theorem 4.1 in [1]). Let f: {0,1}"" = R
be a degree-t polynomial with mean zero and variance 1. Then, there exist universal constants
c1,02 > 0 such that Plp < —27t] > 272t

We will show that since ¢ takes positive value on every hypercube slice of discrepancy
g - [2a], this implies that it takes positive values on most hypercube slices with discrepancy
at most af. Because we have chosen af so that this comprises the bulk of the hypercube,
this in turn will contradict Fact 15.
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In fact, because ¢ is symmetric and of degree ¢t — 1 over the hypercube, we can equivalently
write ¢ as a degree-(¢t — 1) polynomial in the single variable 2’ := >, x;, ¢(z) = g(3_, z;) =

,,,,,

most t — 1 roots. Therefore we conclude that ¢ can only be non-positive on at most ¢t — 1

intervals of layers of discrepancy (i/2, (i +1)¢/2). So for at least 2af — (t — 1)£ slices of the

hypercube around 0, g takes positve value.

1

Each slice of the hypercube has probability mass at most . By our choice of

Z (m+af)
a,?,m and by a Chernoff bound,
(t—1)¢ e
Plg(x) >0) =P il <al | — ——— >1-—27"
which contradicts Fact 15. |

5 SOS lower bounds for CSPs with exact objective constraints

In this section we put things together and show how to extend Theorem 12 to prove Theorem 2.

As discussed briefly in Section 1.1, our random instance of the C.SP(P¥) will be sampled in
a somewhat non-standard way, which we will refer to as “batch-sampling.” This is because,
in order to apply Theorem 12 to a random instance ® of a Boolean CSP, we need to partition
®’s constraints into groups of r non-intersecting constraints for some integer r, while also
maintaining the expansion properties required by Theorem 5.

We first prove Theorem 2 as stated, for random CSPs sampled from a slightly different
distribution. Then in Section 5.2 we show that for a “standard” random CSP with m = o(n?/?)
constraints, we can still get a theorem along the lines of Theorem 2.

5.1 Exact objective constraints for batch-sampled random CSPs

Suppose that P is a k-ary predicate, and let r be some positive integer which divides m.

We'll “batch-sample” an n-variate random C'SP(P*) with m clauses as follows:
1. Choose independently m/r subsets each of r - k distinct variables uniformly at random
from [n], S1,...,5m
2. For each j € [m/r], S; = {xi1, ...,z }:
Choose a random signing of P, z; € {+1}*
To each block of k variables in S;, (
P with signing z;.

., T, ) for £ € [r], add the predicate

Lig_1y b1~

» Theorem 16 (Restatement of Theorem 2). Let P be a k-ary predicate, and let v be a
(t — 1)-wise uniform distribution over {+1}* under which E,[P] = B. Then for each constant
£ > 0 there is a choice of positive integer r such that for a random instance of CSP(P*) onn
variables with m = An constraints for sufficiently large A and r|m, sampled as detailed above,
there is a degree-Q(m) SOS pseudodistribution whch satisfies with pseudovariance
zero the constraint OBJ(z) = 8 — e, where e, < €. This is also true when cardinality
constraints are imposed as in Theorem 1.

Proof. This distribution over instances is equivalent to the standard notion of sampling a
random CSP with m/r constraints in the composite predicates from Theorem 12: a scope
is chosen independently and uniformly at random for each predicate. Therefore, if we
replace each collection of constraints corresponding to S; with the composite predicate from
Theorem 12, and modify v in accordance with the signing z;, we have a (¢t — 1)-wise uniform
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distribution over solutions to the composite predicates supported entirely on assignments
which satisfy exactly 8 — &, of the clauses. Combining this with the expansion theorem
(Theorem 6), we have our conclusion. <

5.2 Exact objective constraints for sparse random CSPs.

Though the batch-sampled distribution over CSPs for which Theorem 2 holds is slightly
non-standard, here we show that with minimal effort, we can prove a similar theorem for
sparse random instances sampled in the usual manner, when m = o(n®/?).

» Theorem 17. Let P be a k-ary predicate, let v be a (¢t — 1)-wise uniform distribution over
{£1}* such that E,[P] = B, and suppose we sample a random instance ® of a CSP(P¥)
in the usual way, by selecting m random signed P-constraints on n variables. Then if
m = An = o(n®/?) for sufficiently large A, with high probability over the choice of ®, for
each € > 0 there exists some constant e < € such that there is a degree—Qs(m)
pseudodistribution which satisfies with pseudovariance zero the constraint OBJ(z) = § — €
and a Hamming weight constraint 3, .\, xi = B for |B| = O(v/n).

Proof. Fix e, and let r be the corresponding constant required to achieve objective OBJ(x) =
B — ¢* under Theorem 12 for e* < /2.

We first couple the standard sampling procedure for a random P-CSP to a different
sampling procedure. For simplicity we at first ignore the possible signings of P, and assume we
work only with un-negated variables; later we explain how to modify the proof to accomodate
negative literals.

We sample a random CSP by independently and uniformly choosing m random scopes
Sy, Sm. For each £ € {0,1,...|m/r| — 1}, the probability that Sg.11,...,S41), have
non-intersecting scopes is at least

s T k . k
P[epS; = 0] = [[PIS: N (1y<s85) = 0| i 85 = 0] = [ (1 - zn> >1-0 (’") .
1=2

n
=2

So with high probability for all but O(%*) of the intervals of constraints j € [£-7+1, (£ +1)r],
the constraints will be non-intersecting. Call this the “non-intersecting configuration”.

Define a “collision configuration” to be a choice of scopes for which the above condition
does not hold; that is, a specific way in which S; intersects with one or more S;; when
5,7 €l-r+1,(¢+ 1)r]. Each of the ~ (QI:T) collision configurations has a fixed probability
of ocurring (which may be easily calculated), and the total sum of these probabilities is at
most O(r - k/n).

Let Df«m) be the multinomial distribution which describes the number of occurrences of
each configuration for a random CSP with m constraints (|m/r| configurations). We couple
the standard sampling procedure with the following alternative sampling procedure: we first
sample ¢ ~ Dﬁm) to determine how many configurations of each type there are. Then, for
each collision configuration specified by ¢, sample the scope (of size < k - r) for each of the
collision configurations independently and uniformly at random. Also, sample and additional
(m mod ) scopes of k variables for the “leftover copies” of P. Finally, sample the scopes of
the non-intersecting configurations specified by ¢ independently uniformly at random. The
coupling of the two processes is immediate.

Let C be the number of collision configurations plus (m mod r), the number of leftover
copies. As shown above, with high probability over ¢ ~ Sﬁm), the number of collision
configurations is at most O(m/n) = o(n'/?), so C' = o(n'/?) = o(m).
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From our alternate sampling procedure, we conclude that with high probability we can
meet the conditions of Theorem 6 by fixing an arbitrary variable assignment to any collision
configuration. That is, we could alternately first sample the collision configurations and
leftover copies, and then set all of the variables present inside be set to (say) False. We
take note of how many constraints in the P-CSP are and are not satisfied by this unary
assignment, and we correspondingly amend £* to €. Since with high probability at most
o(m) constraints are fixed, we retain the property that ¢ < &* 4+ 0(1) < e.

Now, if we wish to satisfy a Hamming weight constraint, we add arbitrary matching and
unary constraints to get the desired Hamming weight; at most O(C') unary constraints are
needed to compensate for the < Ckr variables we set to False.

Finally, we sample the remaining non-intersecting configurations independently; by
Theorem 6 when C' = o(nl/ 2), the expansion properties we require are met for the composite
predicates on the non-intersecting configurations. Since this occurs with high probability, we
are done.

To extend the argument to allow predicates on negative literals, we couple with a slightly
more elaborate sampling procedure: for each signing pattern z € {+1}*, we draw a separate
set of m, predicates (where m, may either be deterministic or sampled from a multinomial
distribution). For each signing separately we repeat the argument above, and then in the
final sampling procedure we sample counts c, for each signing z, add the leftover copies
and collision configurations separately for each signing, add the unary constraints, and then
sample the remaining non-intersecting copies. |

6 Conclusions

In this work we have shown that, in the context of random Boolean CSPs, the following
strategies do not give SOS any additional refutation power: (i) trying out all possible
Hamming weights for the solution; (ii) trying out all possible (exact) values for the objective
function. We also gave the first known SOS lower bounds for the Min- and Max-Bisection
problems.

We end by mentioning some open directions. There are two technical challenges arising
in our work that look approachable. The first is to extend our results from Section 4 on
“exactifying” distributions to the case of larger alphabets. The second is to prove (or disprove)
that the “random*” and “purely random” distributions discussed in Remark 1.1 are o(1)-close
(depending on m(n)).

Finally, we suggest investigating further strategies for handling hard constraints in the
context of SOS lower bounds. Sometimes this is not too difficult, especially when reducing

from linear predicates such as 3XOR, where there are perfectly satisfying SOS solutions.

Other times, it’s of moderate difficulty, perhaps as in this paper’s main Theorem 1 and
Theorem 2. In still other cases it appears to be very challenging.

One difficult case seems to be in the context of SOS lower bounds for refuting the existence
of large cliques in random graphs. In [4] it is shown that in a G(n,1/2) random graph, with
high probability degree-Q(logn) SOS thinks there is a clique of size w := n'/27¢. (Here ¢ > 0
can be any constant.) However, it’s merely the case that E[clique size] > w, and it is far
from clear how to upgrade the SOS solution so as to actually satisfy the constraint “clique
size = w” with pseudovariance zero. Besides being an improvement for its own sake, it would
be very desirable to have such an SOS solution for the purposes of further reductions; for
example, it would greatly simplify the recent proofs of SOS lower bounds for approximate
Nash welfare in [15]. It also seems it might be useful for tackling SOS lower bounds for
coloring and stochastic block models.
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Finally, we leave as open one more “hard constraint” challenge that arises even in

the simple context of random 3XOR or 3SAT. Suppose one tried to refute random m-
constraint 3XOR instances by trying to refute the following statement for all quadruples
(kom, ]{3010, klOO; klll) that sum to m:

“exactly k, constraints are satisfied with assignment a”, for each a € {001,010,100,111}.

As far as we know, constant-degree SOS may succeed with this strategy when m = O(n). It
is natural to believe that there is (whp) an Q(n)-degree SOS pseudodistribution that satisfies
all of the above constraints with pseudovariance zero when koo1 = ko10 = k100 = k111 = m/4,
but we do not know how to construct one.
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