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Abstract

Unlike its cousin 3SAT, the NAE-3SAT (not-all-equal-3SAT)

problem has the property that spectral/SDP algorithms

can efficiently refute random instances when the constraint

density is a large constant (with high probability). But do

these methods work immediately above the “satisfiability

threshold”, or is there still a range of constraint densities

for which random NAE-3SAT instances are unsatisfiable but

hard to refute?

We show that the latter situation prevails, at least in

the context of random regular instances and SDP-based

refutation. More precisely, whereas a random d-regular

instance of NAE-3SAT is easily shown to be unsatisfiable

(whp) once d ≥ 8, we establish the following sharp threshold

result regarding efficient refutation: If d < 13.5 then the

basic SDP, even augmented with triangle inequalities, fails

to refute satisfiability (whp); if d > 13.5 then even the most

basic spectral algorithm refutes satisfiability (whp).

1 Introduction

A randomly chosen n-variable constraint satisfaction
problem (CSP) will typically be unsatisfiable once the
constraint density α (ratio of constraints to variables)
is a sufficiently large constant. Taking 3SAT as an ex-
ample, the conjectural satisfiability threshold [MPZ02,
MMZ06] is αc ≈ 4.2667, and the trivial first moment
method already establishes unsatisfiability (whp) once
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α > log7/8(1/2) ≈ 5.19. Despite this, there is no known
efficient algorithm that can refute random 3SAT in-
stances (whp) for any large constant α. The best known
algorithms [FGK05, GL03, CGL07, FO07, FKO06],
all of which use spectral or semidefinite-programming
(SDP) techniques, work only once α '

√
n. Indeed,

there are lower bounds [Sch10, Tul09, KMOW17] show-
ing that any polynomial-time algorithm based on such
techniques — more generally, based on the constant-
degree “Sum of Squares” method — will fail to re-
fute unless α '

√
n. The most general of these re-

sults [KMOW17] applies to any CSP for which the con-
straint predicate supports a pairwise-uniform probabil-
ity distribution.1

On the other hand, for any CSP whose predicate
does not support a pairwise-uniform probability distri-
bution, it has been shown [AOW15] that there is an
efficient SDP-based algorithm for refuting random in-
stances once the constraint density α is a sufficiently
large constant.2 For such CSPs, where “all of the ac-
tion” is in the sparse regime of O(n) constraints, it is
more plausible to hope for an efficient refutation algo-
rithm that works just above the satisfiability threshold
— or at least to identify sharp thresholds for when effi-
cient refutation algorithms succeed.

Perhaps the simplest and most natural NP-complete
CSP of this type is NAE-3SAT. This is the variant of
3SAT in which a clause is considered “satisfied” if and
only if it has at least one true literal and one false literal;
i.e., the literals’ truth values are Not All Equal. (The
further variant wherein all literals appear positively is
equivalent to the problem of 2-coloring a 3-uniform hy-
pergraph.) Being a more symmetric — and in some
sense, simpler — variant of 3SAT, the NAE-3SAT prob-
lem has received a great deal of attention in the study of
random CSPs; see, e.g., [AS93, ACIM01, AM02, GJ03,

1That is, there is a distribution D over satisfying assignments
x to the predicate, with the property that the order 1 and 2

moments of D are identical to those of the uniform distribution.
2In [AOW15], it is stated that α = nk/2−1polylogn suffices

when no k-wise uniform distribution is supported; however, in

the particular case of k = 2 one can show that the polylogn is

unnecessary, using the (worst-case) strong refutation algorithm
for 2XOR-SAT [CW04].
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CNRZ03, DRZ08, DKR15, DSS16]. In particular, by
2003 Goerdt and Jurdziński [GJ03] had already proven
that SDP methods could refute random NAE-3SAT in-
stances at sufficiently high constant constraint density.
NAE-3SAT is also closely related to the Max-Cut and
2XOR-SAT CSPs and has a natural basic SDP relax-
ation; for this reason, the problem has also been well-
studied from the point of view of worst-case approxima-
tion algorithms [KLP96, AE98, Zwi98, Zwi99].

This paper is motivated by the question of whether
efficient algorithms might be able to refute unsatisfiabil-
ity of random NAE-3SAT instances at densities all the
way down to the satisfiability threshold — or whether
there is still a range of constant densities where random
instances are unsatisfiable, but this is hard for efficient
algorithms to certify. The latter case seems to prevail
for 3SAT, and one would likely pessimistically guess the
same is true for NAE-3SAT. However one may need a
finer analysis for NAE-3SAT; the range of presumably-
hard densities for refuting 3SAT is between a constant
and

√
n, whereas for NAE-3SAT it is between two uni-

versal constants.
One way to give evidence for the existence of hard

densities for NAE-3SAT refutation would be to study
the SDP-satisfiability threshold for random instances;
i.e., the largest density for which the basic SDP algo-
rithm fails to refute satisfiability. The goal would be to
give a lower-bound for the SDP-satisfiability threshold
that exceeds the actual NAE-3SAT satisfiability thresh-
old. In fact, the main result of this paper is a determina-
tion of the exact SDP-satisfiability threshold of random
NAE-3SAT instances, in the setting of random regular
instances. This threshold provably exceeds the actual
satisfiability threshold, thus establishing a range of de-
grees for which random regular NAE-3SAT refutation
is hard for SDP algorithms.

1.1 Our results For technical simplicity, we work
in the setting of random regular instances of NAE-
3SAT, where every variable participates in the same
number, d, of 3NAE-constraints. (This is in contrast
to the “Erdős–Rényi” setting with clause density α,
in which the degree of each variable is like a Poisson
random variable with mean 3α.) We also use the
“random lift” model for d-regular instances, rather than,
say, the “configuration” model. For precise details see
Section 3.3, but in brief, our random d-regular instances
are chosen as follows:

i Start with the bipartite graph Kd,3.

ii Choose a uniformly random n-lift H, a bipartite
graph with dn vertices of degree 3 in one part and
3n vertices of degree d in the other part.

iii Treat the degree-d vertices as CSP variables and
the degree-3 vertices as 3NAE constraints on the
adjacent variables

iv In each constraint, randomly replace each variable-
appearance with its negation, uniformly and inde-
pendently.

Notice that for any (3, d)-biregular graph H and any
truth assignment to the variables, the randomness from
the negations alone gives us that each constraint is
independently satisfied with probability 3/4. Thus the
first moment method implies the following:

Fact 1.1. For d > log 4
3
8 ≈ 7.228 (i.e., for d ≥

8) a random d-regular NAE-3SAT instance will be
unsatisfiable with high probability (indeed, in any model
with random negations).3

Our main theorem is the following sharp threshold
for SDP-satisfiability:

Theorem 1.1. Let I be a random d-regular instance
of NAE-3SAT. Then with high probability (meaning
probability 1− on→∞(1)):

• For d < 13.5, the natural SDP relaxation will not
refute satisfiability of I.

• For d > 13.5, the natural SDP relaxation will refute
satisfiability of I.

Of course, since d is always an integer we could have
phrased the two cases as d ≤ 13 and d ≥ 14. However,
as will be seen below, there is a sense in which the
precise non-integer 13.5 is the sharp threshold. In any
case, these results show that for d = 8, 9, 10, 11, 12, 13
(and likely also d = 7), a random d-regular NAE-3SAT
instance is unsatisfiable, yet this cannot be efficiently
refuted using the basic SDP relaxation.

In fact, our results are somewhat stronger than
what is stated in Theorem 1.1. Let us define

f(d) =
9

8
− 3

8
·
(√

d− 1−
√
2
)2

d
,

a quantity that decreases on [3,∞), with f(13.5) = 1
and limd→∞ f(d) = 3/4. We show:

3In fact, the unsatisfiability threshold is more likely to be

lower, specifically d ≥ 7, based on heuristics from statistical
physics. The “1RSB” prediction for the unsatisfiability threshold

of random NAE-3SAT — which was rigorously verified for NAE-

kSAT, k ≥ k0, in [DSS16] — was determined to be at average
degree 3 · 2.105 = 6.315 in the Erdős–Rényi case [CNRZ03], and

at degree at most 7 in the regular case [DRZ08] (albeit these

predictions were for the “coloring” version of NAE-3SAT without
negations).
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• (See Theorem 5.4 and Theorem 5.5 for details.)
Even when augmented with the triangle inequal-
ities, the SDP “thinks” that a random d-regular
NAE-3SAT instance has a solution satisfying at
least an f(d) − ǫ fraction of the constraints; in
particular, it thinks the instance is satisfiable if
d < 13.5. Indeed this holds for any d-regular NAE-
3SAT instance of sufficiently large constant girth.

• (See Theorem 4.8 for details.) Even the basic
“eigenvalue bound” (a special case of the SDP
method) shows that a random d-regular NAE-
3SAT instance has no solution satisfying at least an
f(d)+ ǫ fraction of the constraints; in particular, it
refutes satisfiability if d > 13.5.

2 Strategy and related work

2.1 2XOR-SAT and semidefinite programming
One reason that semidefinite programming algorithms
are particularly natural for NAE-3SAT is that the CSP
is essentially a form of 2XOR-SAT. Recall that the
2XOR-SAT CSP has constraints on pairs of literals,
with the constraint being satisfied if the literals are
assigned unequal truth values. Now for literals ℓ1, ℓ2, ℓ3:

NAE(ℓ1, ℓ2, ℓ3) satisfied ⇐⇒ exactly 2 of

XOR(ℓ1, ℓ2), XOR(ℓ2, ℓ3), XOR(ℓ3, ℓ1) satisfied;

NAE(ℓ1, ℓ2, ℓ3) unsatisfied ⇐⇒ exactly 0 of

XOR(ℓ1, ℓ2), XOR(ℓ2, ℓ3), XOR(ℓ3, ℓ1) satisfied.

(In case all the literals are variables appearing positively,
the resulting 2XOR-SAT instance is in fact a “Max-
Cut” instance.) If we convert an NAE-3SAT CSP with
m constraints to a 2XOR-SAT CSP with 3m constraints
in the above way, every truth assignment satisfying a
β fraction of NAE-3SAT constraints satisfies a (2/3)β
fraction of 2XOR-SAT constraints.

Indeed, the standard SDP relaxation for NAE-
3SAT, first studied by Kann, Lagergren, and Pan-
conesi [KLP96], is nothing more than 3/2 times the
basic Goemans–Williamson [GW95] SDP for the asso-
ciated 2XOR-SAT instance. We recall here the basic
definitions:

Definition 2.1. Let I be an instance of 2XOR-SAT
with m constraints on n variables, to be assigned values
in {±1}. We identify the instance with its (multi)set
of constraints. Each constraint is a triple (u, v, ξ) for
u, v ∈ [n] distinct and ξ ∈ {±1}; this is thought of as
the constraint xuxv = −ξ. The SDP relaxation value is
defined to be

SDP(I) = sup







1

m

∑

(u,v,ξ)∈I

(

1

2
− 1

2
ξ〈Xu, Xv〉

)







∈ [0, 1],

where the sup is over all choices of vectors (Xv)v∈[n]

satisfying 〈Xv, Xv〉 = 1 for all v. Equivalently, in-
stead of vectors, the Xv’s may be jointly (centered)
Gaussian random variables, with 〈Xu, Xv〉 interpreted
as E[XuXv]. The quantity SDP(I) always upper-bounds
OPT(I), the maximum fraction of simultaneously sat-
isfiable 2XOR-SAT constraints, since for any truth as-
signment x ∈ {±1}n we may take the joint Gaussians
Xu = xuZ, where Z is a standard Gaussian. The ad-
vantage of SDP(I) is that while computing OPT(I) is
NP-hard, one can compute SDP(I) (to additive accuracy
2−n) in polynomial time.

Definition 2.2. A common algorithmic technique is to
also enforce the triangle inequalities, meaning to only
take the sup over Xv’s satisfying

〈Xu, Xv〉+ 〈Xv, Xw〉+ 〈Xw, Xu〉 ≥ −1,

〈Xu, Xv〉 − 〈Xv, Xw〉 − 〈Xw, Xu〉 ≥ −1.

The resulting value, SDP△(I), is a tighter relaxation:
OPT(I) ≤ SDP△(I) ≤ SDP(I).

Definition 2.3. A related quantity is the Lovász theta
function [Lov79]; for a graph G, the Lovász theta
function (of its complement), ϑ(G), is the least k
such that there are centered joint Gaussians (Xu) with
〈Xu, Xu〉 = 1 for all vertices u and 〈Xu, Xv〉 = − 1

k−1
for all edges (u, v). In particular, if G is thought of as
a Max-Cut instance, then SDP(G) ≥ 1

2 + 1
2

1
ϑ(G)−1

.

Definition 2.4. The SDP for 2XOR-SAT is also
known to have a dual characterization [DP93]:

SDP(I) = inf
w∈❘n

∑
u wu=0

{ n

4m
· λmax(LI + diag(w))

}

,

where LI denotes the Laplacian matrix for I (defined in
Section 3.2), and λmax denotes the largest eigenvalue.
Note that by taking w = 0 we get an upper bound
on SDP(I); we refer to this as the eigenvalue bound,

EIG(I) =
n

4m
· λmax(LI) =

1

2d
· λmax(LI),

the latter equality holding in case I is d-regular. The
certificate OPT(I) ≤ EIG(I) is easy to see; it is a
consequence of the definitions that OPT(I) = n

4m ·
max{x⊤LIx : x ∈ {± 1√

n
}n}, and λmax(LI) allows

taking the max over all unit vectors.

2.2 Methodology To prove Theorem 1.1, we con-
vert our random NAE3-SAT instances into random
2XOR-SAT instances, and then try to analyze whether
or not the SDP-value of these instances is as large as 2

3 .
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(Recall that this corresponds to the SDP-value of the
NAE3-SAT instances being as large as 1.) There are
a number of prior works on analyzing the Goemans–
Williamson SDP on random graphs (see below); how-
ever, our situation is a bit different. The main difference
is that the graphs underlying our random 2XOR-SAT
instances are not uniformly random 2d-regular graphs,
but rather have a peculiar “triangle-structure”. Recall
that they are generated by first choosing a large ran-
dom (3, d)-biregular graph (by randomly lifting Kd,3),
then replacing each 3-regular vertex on the left with a
triangle on the right. Thus, locally, the resulting graphs
look like the graph on the right in Figure 2 (for d = 4).
An additional small complication is that these random
“triangle-graphs” effectively get random edge-signings
when the random literal-negations are taken into ac-
count, converting the Max-Cut instance to a 2XOR-
SAT instance. Finally, in the remainder of the paper
we will focus on the generalized problem in which tri-
angles are replaced by c-cliques, for c ≥ 3. This gener-
alization does not correspond to any well-known CSP,
but analyzing general c turns out to be no harder than
analyzing the c = 3 special case.

For the part of our main theorem showing that the
simple eigenvalue bound succeeds as d becomes large,
we need to show tight bounds on the eigenvalues of
the random “triangle-graphs” (more generally, c-clique
graphs) that arise in our model. If we simply had
random d-regular graphs, Friedman’s famous almost-
Ramanujan theorem [Fri08] would have sufficed. In-
stead, we relate the eigenvalues of our random graphs
to those of a randomly lifted (c, d)-biregular bipartite
graph. We then use Bordenave’s recent reproof [Bor17]
of Friedman’s theorem (revised to also include random
edge-signings), as well as the Ihara–Bass formula, to
show that with high probability the nontrivial spec-
trum of such random bipartite graphs is contained in
±[

√
d− 1 −

√
c− 1,

√
d− 1 +

√
c− 1]. Inspiration for

these computations comes from [FM16].
For the part of our main theorem showing that

large-value SDP solutions exist, the tools we use come
from a fairly recent line of work concerning “Gaus-
sian waves” in infinite regular graphs [Elo09, CGHV15,
HV15]. This work can be seen as giving a way to
convert eigenfunctions on the infinite regular tree (and
other vertex-transitive infinite graphs) into Goemans–
Williamson SDP solutions — in fact, Lovász theta
function solutions. These may be converted to such
solutions on high-girth finite graphs that locally re-
semble the infinite graphs. Several works in this
area [CGHV15, HV15, Csó16, Lyo17] used this method
to show, e.g., that high-girth 3-regular graphs must
contain large independent sets, using techniques resem-

bling the randomized rounding of independent-set SDPs
(cf. [KMS98]) and also local improvement techniques ap-
plicable to cubic graphs (cf. [HLZ04]). These techniques
were also used to show limits on the performance of
SDP for Max-Cut, Min-Bisection, and community de-
tection problems in, e.g., [MS16, FM16]. See [BKM17]
for similar approaches in the context of graph-coloring,
and [JMR16] for more on phase transitions for SDPs in
the context of community detection.

3 Preliminaries: graphs, lifts, and eigenvalues

3.1 Graphs, hypergraphs, and edge-labeled
graphs We begin with some general notation.

H will typically denote a simple (c, d)-biregular
bipartite graph with c, d ≥ 2. The setting of most
interest to us is d ≥ c = 3. Sometimes we will refer
to the vertices on the c-regular side as constraints and
the vertices on the d-regular side as variables. Figure 1
shows an example, K4,3, with the variables depicted as
circles and the constraints depicted as squares.

Figure 1: H = K4,3

We may also think of H as a c-uniform d-regular hy-
pergraph, with the variables as vertices and constraints
as hyperedges. X will denote an edge-signed version of
H (thought of as a bipartite graph, not a hypergraph);
i.e., one in which each edge of H is labeled with ±1.
(In the unsigned case, we think of all edges as being la-
beled +1.) We say that X is a “random signing” of H
if it is formed by independently labeling each edge of H
with ±1, uniformly at random.

Given H, we will write G = GH for the (loopless
multi-)graph formed by first thinking of H as a hyper-
graph and then replacing each hyperedge by a c-clique.
As a result, G is a (c − 1)d-regular graph, called the
primal graph for H. Given an edge-signed version X of
H, we will write I = IX for the primal graph of X, an
edge-signed version of G defined as follows: whenever
constraint a is adjacent to variables i, j with edge-signs
ξai, ξaj ∈ {±1}, we place the sign ξaiξaj on the resulting
{i, j} edge of G. We may think of I as a 2XOR-SAT
instance, where the vertices are to be assigned values
xi ∈ {±1}, and an edge {i, j} with label ξ corresponds
to the constraint xixj = −ξ.

In the special case of c = 3, we can think of X as
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a NAE-3SAT instance, where the variables are to be
assigned values xi ∈ {±1}, and a constraint a adjacent
to variables i, j, k with labels ξai, ξaj , ξak corresponds
to the constraint that ξaixi, ξajxj , ξakxk are not all
equal. In this case there is a precise relationship
between the NAE-3SAT instance X and the 2XOR-SAT
instance I; any assignment to the vertices satisfying
exactly a β fraction of the NAE-3SAT constraints will
necessarily satisfy exactly a 2

3β fraction of the 2XOR-
SAT constraints.

3.2 Associated matrices Given any of Y ∈
{H,X,G, I}, we will write AY for the adjacency matrix.
More precisely, AY [i, j] is the sum of the (positive and
negative) edge-labels on all edges connecting i and j.

We will write DY for the diagonal degree matrix
of Y , whose entry DY [i, i] equals the degree of vertex i.
(Both signed and unsigned edges count 1 toward the
degree.) We write LY = DY − AY for the Laplacian
matrix of Y ; we also write LY (u) = (1−u2)✶+u2DY −
uAY for the “deformed Laplacian”, parameterized by
u ∈ ❘, which reduces to the basic Laplacian when
u = 1. (Here ✶ denotes the identity operator.)

Finally, we will write BY for the non-backtracking
matrix of Y . Recall that this matrix is formed as
follows: First, each undirected edge in Y is converted
to two directed edges (both having the same sign, in
case Y is edge-signed). Then BY is the square (non-
symmetric) matrix indexed by the directed edges, in
which BY [(i, j), (k, ℓ)] entry is nonzero if and only if
j = k and i 6= ℓ, in which case it equals the sign-label
of (i, j).

3.3 Lifts Suppose now that Y = (V,E) denotes any
undirected (multi-)graph. For n ∈ ❩+, an n-lift of Y
is a graph Yn whose vertex set is V × [n] and whose
edges consist of a perfect matching between {u} × [n]
and {v} × [n] for each edge {u, v} ∈ E. When the
|E| perfect matchings are chosen independently and
uniformly at random, we call Yn a random n-lift of Y .
Note that if Y is a d-regular graph, then so is Yn, and if
Y is a (c, d)-biregular bipartite graph, then so is Yn.
If B (respectively, Bn) denotes the non-backtracking
matrix of Y (respectively, Yn), it is known that the
multiset of Bn’s eigenvalues contains the multiset of Y ’s
eigenvalues. The remaining eigenvalues are referred to
as the “new” eigenvalues of Bn.

3.4 Eigenvalues Given an N -dimensional matrix
M , we write spec(M) ⊂ ❈ for its spectrum, the
cardinality-N multiset of roots of its characteristic poly-
nomial. We also write ρ(M) for its spectral radius,
max{|λ| : λ ∈ spec(M)}. The adjacency matrix of a

(possibly edge-signed) graph is symmetric, and hence its
spectrum is real; the Laplacian is furthermore positive
semidefinite, and hence its spectrum is nonnegative. A
non-backtracking matrix, however, will in general have
complex spectrum.

We are particularly interested in bipartite graphs,
so we record some facts concerning them here. Suppose
X is a possibly edge-signed bipartite graph, with vertex
parts of size m ≥ n. Then it is well known that

spec(AX) ={0 : with multiplicity m− n}
∪ {±λ : λ ∈ PS(AX)}

for some multiset PS(AX) ⊂ ❘≥0.4 Further, if X
is (c, d)-biregular, we’ll have PS(A) ⊂ [0,

√
cd]. The

set ±PS(AX) may be called the “nontrivial” part of
AX ’s spectrum. A warning, though: ±PS(AX) is not
the same as the “nonzero” part of AX ’s spectrum,
since PS(AX) may contain 0 with positive multiplicity.
Indeed, this happens in one of the simplest cases, as is
well known:

Fact 3.1. Let H = Kd,c, the complete bipartite graph
with vertex parts of size d ≥ c. Then PS(AH) consists
of c− 1 copies of 0 and 1 copy of

√
cd.

We also record below the spectrum of the non-
backtracking matrix of Kd,c, which we’ll derive in Sec-
tion 4.1 using the Ihara–Bass formula. But first, some
notation we’ll use heavily in this paper:

Notation 3.1. For c, d ≥ 2, we write

sc =
√
c− 1, sd =

√
d− 1, ρ1 = scsd, λ = sd + sc,

λ = |sd − sc|, κ = (c− 1)d = ρ21 + s2c .

We will often assume d ≥ c, in which case λ = sd − sc.

Proposition 3.1. Let B be the non-backtracking ma-
trix of Kd,c, where d ≥ c ≥ 2, d 6= 2. Let i be the fourth
primitive root of unity. Then

spec(B) =



















±1 with multiplicity (c− 1)(d− 1) each;

±isc with multiplicity (d− 1) each;

±isd with multiplicity (c− 1) each;

±scsd with multiplicity 1 each;

and hence, ρ(B) = scsd = ρ1.

As described in Section 3.1, we will often con-
sider forming the primal graph G of a (c, d)-biregular
graph H. It is simple to work out the relationship be-
tween the eigenvalues of H and the eigenvalues of G;
this is done in, e.g., [LS96, Section 4.1]. The analysis is
unchanged for the edge-signed variant, and it yields:

4We chose “PS” to stand for Positive Spectrum, notwithstand-
ing our warning that it may contain 0.
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Proposition 3.2. Let X be an edge-signed (c, d)-
biregular graph, and let I = IX be the corresponding
edge-signed primal graph. Then

spec(AI) = {λ2 − d : λ ∈ PS(AX)}.

Since I is κ-regular, where κ = cd − d, we can also
conclude that

spec(LI) = {cd− λ2 : λ ∈ PS(AX)}.

3.5 The infinite biregular tree and distance-
regular graph Since a large random (c, d)-biregular
graph looks locally like a tree, we will want to study the
infinite (c, d)-biregular tree, which we denoted by Td,c.
More to the point, we will want to study its (infinite)
primal graph, which we denote by Gd,c. Fragments of
these graphs, in the case c = 3, d = 4, are pictured in
Figure 2.

Figure 2: Fragments of the infinite biregular tree T4,3,
and its primal graph G4,3

As shown by Ivanov [Iva83], the graphs Gd,c are
precisely the infinite graphs G that are distance-regular,
meaning that there exist constants phj,k such that for
every pair u, v ∈ V (G) with distG(u, v) = h, the
number of vertices w ∈ V (G) having distG(w, u) = j
and distG(w, v) = k is equal to phj,k. It is elementary
to compute these quantities for Gd,c, and the results

appears below. Only the cases h = 0, 1 are truly
essential for the paper, and the reader might like to
verify them while referring to Figure 2.

Proposition 3.3. In the distance-regular graph Gd,c,
recalling the notation

s2c − 1 = c− 2, ρ21 = (c− 1)(d− 1),

ρ21 + s2c = κ = (c− 1)d, ρ21 − s2c = (c− 1)(d− 2),

we have

p0ℓ,ℓ =

{

1 if ℓ = 0

(ρ21 + s2c)ρ
2(ℓ−1)
1 if ℓ ≥ 1;

and, for h ≥ 1, 0 ≤ t ≤ h,

if h and t have the same parity:

phℓ,ℓ+t = phℓ+t,ℓ =























0 if ℓ < h−t
2

1 if ℓ = h−t
2

ρ2ℓ1 if ℓ > h−t
2 and t = h

(ρ21 − s2c)ρ
2(ℓ−(h−t+2

2 ))
1 if ℓ > h−t

2 and t 6= h;

if h and t have opposite parity:

phℓ,ℓ+t = phℓ+t,ℓ =

{

0 if ℓ < h−t+1
2

(s2c − 1)ρ
2(ℓ−h−t+1

2 )
1 if ℓ ≥ h−t+1

2 ;

and finally, phj,k = 0 otherwise.

The spectrum of the adjacency “matrix” (operator)
of Gd,c — and indeed, the whole “spectral measure”
— has been known since the early ’80s. (There are
appropriate definitions for these terms, generalizing the
definitions in the finitary case. We will not give them
here since, strictly speaking, this paper does not rely on
them.) In particular,
(3.1)

spec(ATd,c
) = {0}∪±[λ, λ], spec(AGd,c

) = [λ2−d, λ
2−d];

(the latter holding under the assumption d ≥ c; if
d < c then also −d ∈ spec(AGd,c

)). The history
of these results can be found in [MW89, Section 7E]
and [GM88, Section 5.2], the latter of which also
shows that the spectral measures of large random (c, d)-
biregular graphs converge to a measure with support
spec(ATd,c

) (and similarly for their primal graphs and
spec(AGd,c

)).

4 Eigenvalues of random lifts and signings

Generalizing Friedman’s celebrated characterization of
the spectrum of random d-regular random graphs
[Fri08], Bordenave recently proved the following theo-
rem:
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Theorem 4.1. ([Bor17, Theorem 20].) Let Y be a
connected multigraph (with more edges than vertices)
having non-backtracking matrix B. Fix ǫ > 0. Let
Y n be a random n-lift of Y , and let Bn be its non-
backtracking matrix. Then

Pr[Bn has a new eigenvalue of magnitude ≥
√

ρ(B) + ǫ]

= on→∞(1).

We will need a variant of this theorem in which the
graph is randomly lifted and then randomly signed. The
statement and proof are actually a little bit simpler.

Theorem 4.2. Let Y be a connected graph (with more
edges than vertices) having non-backtracking matrix B.
Fix ǫ > 0. Let Xn be a random signing of a random
n-lift Y n of Y , and let Bn denote the non-backtracking
matrix of Xn. Then

Pr[ρ(Bn) ≥
√

ρ(B) + ǫ] = on→∞(1).

The proof follows that of [Bor17, Theorem 20].
We will also quote some basic results about the

scarcity of cycles in randomly lifted graphs:

Theorem 4.3. (Greenhill–Janson–Ruciński [GJR10,
Lemma 5.1].) Let Y n be as in Theorem 4.1 or The-
orem 4.2, and write Zk for the number of length-k
cycles in Y n. Let P 2,P 3, . . . be independent Poisson
random variables with P k of mean wk/(2k), where
wk = tr(Bk) is the number of closed non-backtracking
walks in Y . Then for any g ∈ ◆+, the random variables
(Z2,Z3, . . . ,Zg) converge jointly in distribution to
(P 2,P 3, . . . ,P g). In particular, for a fixed g and n suf-
ficiently large, there is a positive probability (depending
only on g and Y ) that Y n has girth exceeding g.

Theorem 4.4. (Easily extracted from the proof of
[Bor17, Lemma 24].) Let Y n be as in Theorem 4.1 or
Theorem 4.2 and write d for the maximum degree of Y .
Call a vertex of Y n g-bad if its distance-g neighborhood
contains a cycle. Then the expected number of g-bad
vertices in Y n is O((d+ 1)g).

4.1 The Ihara–Bass formula The Ihara–Bass for-
mula relates the eigenvalues of a graph’s adjacency ma-
trix and its non-backtracking matrix. Originally proved
by Ihara [Iha66] for regular graphs, it was subsequently
generalized to irregular graphs [Has92, Bas92, ST96,
KS00], vertex-weighted graphs [Kem16], and most gen-
erally, edge-weighted graphs [WF09, FM16]. We will
need the last of these, but only in the special case that
all edge-weights are ±1. In this case, the resulting for-
mula looks identical to the usual (irregular, unweighted)
Ihara–Bass formula:

Theorem 4.5. ([WF09, Theorem 2], specialized to all
edge-weights ±1.) Let X be a edge-signed graph, having
adjacency matrix A, non-backtracking matrix B, and
deformed Laplacian L(u) = (1−u2)✶+u2D−uA. Then
for all real u 6= ±1,

det(✶− uB) = det(L(u)) · (1− u2)#E(X)−#V (X).

In the special case when X is (c, d)-biregular, one can
use this formula to work out a very explicit mapping
between the eigenvalues of A and the eigenvalues of B.
The computations appear in [Kem16, Section 4.2]; that
paper only considered unsigned edges, but the result is
the same because the Ihara–Bass formula is identical.
Recalling the notation from Section 3.4:

Theorem 4.6. (Follows from [Kem16, Theorem 6] us-
ing Theorem 4.5.) Let X be an edge-signed (c, d)-
biregular graph, with m vertices on the c-regular side
and n vertices on the d-regular side, so e = cm = dn is
the number of edges. Let A denote the adjacency matrix
of X. Then B, the non-backtracking matrix of X, has
the following 2e eigenvalues:

• e− (m+ n) copies each of ±1.

• m− n copies each of ±isc.

• 4n “nontrivial” eigenvalues, all roots of pλ(u) =
u4 + (s2c + s2d − λ2)u2 + ρ21 for λ ∈ PS(A).

We would now like to understand the location of
the 4 roots of pλ(u) in ❈ as λ varies in [0,

√
cd]. To do

this, write

sc =
λ− λ

2
, sd =

λ+ λ

2
, α =

λ2 − λ2

2
,

β =
λ2 − λ

2

2
, U = u2.

Then

pλ(u) = U2 − (α+ β)U +

(

α− β

2

)2

,

which has roots

U =
1

2

(√
α±

√

β
)2

.

If λ2 ≤ λ2 ≤ λ
2
then β ≤ 0 ≤ α and

|U | = 1

2

(√
α
2
+
√

−β
2
)

=
α− β

2
=

λ
2 − λ2

4
= scsd = ρ1.

On the other hand, if λ2 6∈
[

λ2, λ
2
]

, then α and β have

the same sign and

|U | = 1

2
(|α|+ |β| ± 2|α| · |β|),

the larger of which exceeds
λ
2 − λ2

4
= ρ1.
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We conclude:

Proposition 4.1. For real λ, the roots of pλ(u) simul-
taneously have magnitude at most

√
ρ1 if and only if

λ2 ∈
[

λ2, λ
2
]

(i.e., λ ∈ ±
[

λ, λ
]

).

Also, when λ = 0 we have pλ(u) = u4 + (s2c +
s2d)u

2 + s2cs
2
d, and when λ =

√
cd we have pλ(u) =

u4 − (ρ21 + 1)u2 + ρ21. Thus we can directly verify:

Proposition 4.2. For λ = 0, the 4 roots of pλ(u) are
±isc, ±isd. And, for λ =

√
cd, the 4 roots of pλ(u) are

±ρ1, ±1.

At this point, we can combine Theorem 4.6, Fact 3.1,
and Proposition 4.2 to obtain Proposition 3.1 as stated
in Section 3.4. We may furthermore put together all the
results in this section:

Theorem 4.7. Let d ≥ c ≥ 2, d 6= 2. Fix ǫ > 0.
Let Xn be a random signing of a random n-lift of the
complete bipartite graph Kd,c, and let An denote its
adjacency matrix. Then

Pr
[

PS(An) 6⊂ [λ− ǫ, λ+ ǫ]
]

= on→∞(1).

Proof. We apply Theorem 4.2 with Y = Kd,c and
some sufficiently small ǫ′ = ǫ′(ǫ, c, d) > 0. The non-
backtracking matrix B of Y has spectral radius ρ1, by
Proposition 3.1. Thus if Bn is the non-backtracking
matrix of the randomly signed random lift Xn of Y , we
get

Pr
[

ρ(Bn) ≥
√
ρ1 + ǫ′

]

= on→∞(1),

Thus with probability 1−o(1) we have ρ(Bn) <
√
ρ1+ǫ′.

In this case, taking ǫ′ sufficiently small and using the
fact that the roots of a polynomial are continuous in
its coefficients, Proposition 4.1 and Theorem 4.6 imply
that PS(An) ⊂ [λ− ǫ, λ+ ǫ]. The proof is complete.

Remark 4.1. This theorem is “to be expected” in light
of the Godsil–Mohar work on spectral convergence men-
tioned at the end of Section 3.5. But of course one needs
the hard work of Bordenave’s Theorem to show that ran-
dom (c, d)-biregular graphs typically do not any eigen-
values outside the spectral bulk. In fact, to emphasize
that care is needed, we remark that the random signing
in Theorem 4.7 is essential; without it, it’s not hard to
show that PS(An) will contain 0 with probability 1.

Corollary 4.1. Let d ≥ c ≥ 2, d 6= 2. Fix ǫ > 0.
Let Xn be a random signing of a random n-lift of the
complete bipartite graph Kd,c, let In be the associated
2XOR-SAT instance (as in Section 3.1), and let Ln be
its Laplacian matrix. Then

Pr
[

Ln has an eigenvalue outside [(1− ρ1)
2 − ǫ, (1 + ρ1)

2 + ǫ]
]

= on→∞(1).

Proof. This follows from Proposition 3.2, cd − λ
2

=
(1− ρ1)

2, and cd− λ2 = (1 + ρ1)
2.

Corollary 4.1 now directly implies the following:

Theorem 4.8. Let d ≥ c ≥ 2, d 6= 2. Fix ǫ > 0. Let In

be a random 2XOR-SAT instance as in Corollary 4.1,
so In is κ-regular (κ = (c− 1)d) with cn variables and
(

c
2

)

dn constraints. Then

Pr

[

EIG(In) ≥
(1 + ρ1)

2

2κ
+ ǫ

]

= on→∞(1),

where ρ1 =
√
c− 1

√
d− 1.

In case c = 3, if we view In as a random d-regular
NAE-3SAT instance on 3n variables (chosen according
to the random lift/sign model), we have

Pr

[

EIG(In) ≥
9

8
− 3

8
·
(√

d− 1−
√
2
)2

d
+ ǫ

]

= on→∞(1),

As mentioned in Section 1.1, the quantity 9
8 − 3

8 ·
(
√
d−1−

√
2)

2

d decreases from 9
8 to 3

4 on [3,∞) and takes
value 1 at d = 13.5. Thus the above theorem shows that
the basic eigenvalue bound refutes a random d-regular
instance of NAE-3SAT (whp) provided d > 13.5.

5 SDP solutions for random instances

As a guide for our construction, let us imagine SDP
solutions for the Max-Cut problem on the infinite
graph Gd,c. (As these imaginings are only for intu-
ition’s sake, we will not be completely formal.) To
lower bound SDP(Gd,c), it is necessary and sufficient
to construct jointly standard Gaussian random vari-
ables (Xv)v∈V (Gd,c) for which the correlation E[XuXv]
— “on average”, over all edges {u, v} ∈ E(Gd,c) — is
very negative. It’s simpler, and stronger, to look for
such a Gaussian process in which E[XuXv] = ̺ for ev-
ery edge {u, v}, with ̺ as negative as possible. Such so-
lutions would give an upper bound for the Lovász theta
value, ϑ(Gd,c) ≤ 1−1/̺, while still giving an SDP lower
bound of SDP(Gd,c) ≥ 1

2 − 1
2̺. In turn, we would have

such a Gaussian process provided it satisfied

(5.2)
1

κ

∑

u∼v

Xu = ̺Xv for all v ∈ V (Gd,c),

where, as before, κ = (c − 1)d is the degree of each v.
This is the “eigenvalue equation” for AGd,c

for λ = κ̺.
Thus one may suspect that Equation (5.2) is possible
whenever λ = κ̺ ∈ spec(AGd,c

). Given spec(AGd,c
) as

in Equation (3.1), we may therefore hope to obtain the
desired Gaussian process for any
(5.3)

̺ ∈
[

λ2 − d

κ
,
λ
2 − d

κ

]

=

[

1− (1 + ρ1)
2

κ
, 1− (1− ρ1)

2

κ

]

;
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in particular, for the most negative such value,

(5.4) ̺∗ = 1− (1 + ρ1)
2

κ
.

This would lead to the lower bound

SDP(Gd,c) ≥
1

2
− 1

2
̺∗ =

(1 + ρ1)
2

2κ
.

In fact, since Gd,c is a vertex-transitive graph, it follows
from a theorem of Harangi and Virág that such Gaus-
sian processes do exist, and they can be constructed in
a simple fashion as “linear block factors of IIDs”:

Theorem 5.1. ([HV15, Theorem 4].) Let G be an infi-
nite vertex-transitive graph with adjacency operator AG.
Then for each λ ∈ spec(AG), there is an Aut(G)-
invariant standard Gaussian process (Xv)v∈V (G) for
which

∑

u∼v Xu = λXv holds for all v ∈ V (G). Fur-
thermore, the process can be approximated (in distribu-
tion) by a “linear block factor of IID process”, meaning
one that is constructed as follows: (Zv)v∈V (G) are cho-
sen as IID standard Gaussians, and then Xv is set to
be a fixed linear function f of those Zu’s which have
distG(u, v) ≤ L, where L is a finite “radius”.

As mentioned in Section 2.2, results of this nature
date back at least to the work of Elon [Elo09], who
constructed such “Gaussian waves” on the infinite d-
regular tree Td. An important aspect of Theorem 5.1
is the “block” aspect, meaning that each Xv is defined
just from a “local”, finite number of Zu’s. Thus we can
hope to use the construction for (primal graphs of) large
but finite (c, d)-biregular graphs with large girth, which
locally look tree-like.

That said, we cannot quite use the Theorem 5.1 as
a black box for our purposes, for a few reasons. One
reason is that we want to apply it to large random
biregular graphs, which will not strictly speaking have
low girth, but will merely have “few”, “far apart”
short cycles. Second, we will be constructing SDP
solutions for edge-signed graphs, a slight generalization
of Theorem 5.1’s framework. Finally, it will be nice for
us to reason about E[XuXv] not just for adjacent u, v.

On the other hand, the construction of the linear
block factor of IID process for Gd,c is a fairly straight-
forward generalization of earlier concrete constructions
for Td such as the one in [CGHV15]. We present it in
the next section.

5.1 Linear factors of IIDs Here we essentially
prove Theorem 5.1 in the special case of Gd,c. The proof
closely follows [CGHV15, Section 3].

Theorem 5.2. Let c, d ≥ 2 and let λ ∈ spec(AGd,c
)◦ =

(λ2 − d, λ
2 − d). Then there exist L ∈ ◆ and re-

als a0, a1, . . . , aL such that the following holds: When
(Zv)v∈V (Gd,c) are IID standard Gaussians, and the ran-
dom variables (Xv)v∈V (Gd,c) are formed via

(5.5) Xv =

L
∑

ℓ=0

∑

w∈V (Gd,c)
dist(w,v)=ℓ

aℓZw,

then we have E[X2
v] = 1 for all v (so that the Xv’s are

jointly standard Gaussians), and E[XuXv] =
λ
κ for all

{u, v} ∈ E(Gd,c). In other words (cf. Equation (5.3)):

for any 1− (1 + ρ1)
2

κ
< ̺ < 1− (1− ρ1)

2

κ
(5.6)

we can achieve E[XuXv] = ̺ ∀{u, v} ∈ E(Gd,c).

Proof. Let us temporarily relax the requirement that L
be finite. To that end, we will consider defining

(5.7) Xv = γ ·
∞
∑

ℓ=0

∑

w∈V (Gd,c)
dist(w,v)=ℓ

rℓZw,

for constants γ ∈ ❘+, r ∈ ❘. It follows that for two
vertices u, v ∈ V (Gd,c) with dist(u, v) = h, we have

(5.8) E[XuXv] = γ2 ·
∞
∑

j,k=0

phj,kr
j+k.

In this proof we focus only on h = 0, 1, saving h > 1 for
Theorem 5.3. By Proposition 3.3 we have

#{w : dist(w, v) = ℓ} = p0ℓ,ℓ =

{

1 if ℓ = 0,

(ρ21 + s2c) · ρ
2(ℓ−1)
1 if ℓ > 0,

where recall ρ21 + s2c = (c− 1)d and ρ21 = (c− 1)(d− 1).
Thus

E[X2
v] = Var[Xv] =

(5.9)

γ2 ·
(

1 +
∞
∑

ℓ=1

(ρ21 + s2c) · ρ
2(ℓ−1)
1 · r2ℓ

)

= γ2 · 1 + (scr)
2

1− (ρ1r)2
,

(5.10)

provided |r| < ρ−1
1 .

(5.11)

By choosing γ such that

γ2 =
1− (ρ1r)

2

1 + (scr)2
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we get Var[Xv] = 1. On the other hand, for fixed u, v
with dist(u, v) = 1 we have

#{w : dist(u,w) = ℓ1, dist(v, w) = ℓ2} = p1ℓ1,ℓ2

=



















(s2c − 1) · ρ2(ℓ−1)
1 if ℓ1 = ℓ2 > 0,

ρ2ℓ11 if ℓ2 = ℓ1 + 1,

ρ2ℓ21 if ℓ1 = ℓ2 + 1,

0 else,

where recall s2c − 1 = c− 2. Thus

E[XuXv] =

(5.12)

γ2 ·
( ∞
∑

ℓ=1

(s2c − 1) · ρ2(ℓ−1)
1 · r2ℓ +

∞
∑

ℓ=0

2 · ρ2ℓ1 · r2ℓ+1

)

(5.13)

= γ2 · 1 + (scr)
2 − (1− r)2

1− (ρ1r)2
,

(5.14)

and so by our choice of γ we conclude

E[XuXv] = 1− (1− r)2

1 + (scr)2
.

Calculus shows that the expression on the right is in-
creasing for r in the range [−s−2

c , 1], which is a superset
of the range that Equation (5.9) allows us for r, namely
(−ρ−1

1 , ρ−1
1 ). This establishes Equation (5.6); the only

catch is that we haven’t used a finite L. But this can
be achieved by truncating the sum in Equation (5.7)
to ℓ ≤ L for L sufficiently large. This truncation only
changes Equations (5.9) and (5.12) by a quantity that
decays like (ρ1r)

L. Thus the change in E[XuXv] from
truncation can be made arbitrarily small, and this is ac-
ceptable for the conclusion Equation (5.6) because the
desired interval of ̺’s is open.

Corollary 5.1. Theorem 5.2 also holds for the primal
graph I of any edge-signed version X of Td,c (as defined
in Section 3.1), in the sense of having E[XuXv] = ξuv̺
for all {u, v} ∈ E(I), where ξuv denotes the sign of edge
{u, v}.

Proof. Assume we have signs ξav ∈ {±1} for each
constaint/variable edge {a, v} in X, and therefore signs
ξuv = ξauξav for each edge {u, v} in I. It’s clear that for
any closed walk in the tree X, the product of the edge-
signs along the walk is 1; by construction, it follows
that the same is true in I. Thus for any u, v ∈ V (I)
(not necessarily adjacent) we can unambiguously define
ξ[u ↔ v] as the product of edge-signs along any uv-path

in I. We now alter the construction in Equation (5.7)
as follows:

Xv = γ ·
∞
∑

ℓ=0

∑

w∈V (Gd,c)
dist(w,v)=ℓ

ξ[w ↔ v]rℓZw,

Clearly Var[Xv] is unchanged. As for E[XuXv], the
contribution from each Zw now yields an additional
factor of ξ[w ↔ u]ξ[w ↔ v] = ξ[u ↔ v] = ξuv. Thus
each E[XuXv] changes by a factor of ξuv, as desired.
The rest of the proof is the same.

Theorem 5.3. In the L = ∞ setting of Theorem 5.2,
we in fact obtain, for all r ∈ (−ρ−1

1 , ρ−1
1 ) and all

u, v ∈ V (Gd,c),

E[XuXv] = rh
(

1 +
h(1− r)(1 + s2cr)

1 + (scr)2

)

,

where h = dist(u, v).

(The r = 0 case is of course trivial, with Xv = Zv.)

Proof. Allowing L to be infinite and returning to Equa-
tion (5.8): for u, v ∈ V (Gd,c) with dist(u, v) = h, one
can use Proposition 3.3 to show (calculations omitted)
that

E[XuXv] = γ2 · r
h(1 + (scr)

2 + h(1− r)(1 + s2cr))

1− (ρ1r)2

provided |r| < ρ−1
1 . The result follows.

Remark 5.1. One can show that the expression in
Theorem 5.3 has the property that its absolute value
is a strictly decreasing function of h for every r 6= 0.
(Indeed, it decreases exponentially.) This is the key
takeaway of the theorem, implying that in the setting
of Corollary 5.1, |E[XuXv]| ≤ |̺| for all distinct pairs
u, v ∈ I (with equality when {u, v} ∈ E(Gd,c)).

5.2 SDP solutions for randomly lifted/signed
graphs In this section, let us fix d ≥ c ≥ 2, a small
ǫ > 0,

̺ = 1− (1 + ρ1)
2

κ
+ ǫ,

and an L = L(ǫ, c, d) such that Theorem 5.2 and
Corollary 5.1 hold. Since each Xv constructed therein
depends only on the Zv’s at distance at most L in Gd,c

(and hence distance at most 2L in Td,c), we see that the
exact same construction works equally well on any finite
primal graph constructed from a (c, d)-biregular graph
of girth exceeding 4L. Thus (using also Remark 5.1) we
immediately obtain:
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Theorem 5.4. Let H be any edge-signed (c, d)-
biregular graph of girth exceeding 4L and let I be its
associated primal graph, with edge signs ξuv, {u, v} ∈
E(I). Then one can assign joint standard Gaussians
Xv to the vertices v ∈ V (I) such that E[XuXv] =
ξuv̺ for each edge {u, v} ∈ E(I). Furthermore,
|E[XuXv]| ≤ |̺| for all distinct u, v ∈ V (I). As conse-
quences:

(i) If H is unsigned, ϑ(I) ≤ 1− 1/̺.

(ii) If we view I as a 2XOR-SAT instance, we have

SDP△(I) ≥ 1
2 − 1

2̺ = (1+ρ1)
2

2κ − ǫ.

(iii) If c = 3 and we view I as a d-regular NAE-
3SAT instance, we have SDP△(I) ≥ 1

3 − 1
3̺ =

9
8 − 3

8 · (
√
d−1−

√
2)

2

d − ǫ.

We have the following corollary:

Theorem 5.5. Let Y be a (c, d)-biregular bipartite
graph and let Y n be a random n-lift of Y . Let Hn

denote an arbitrary edge-signing of Y n, and In its as-
sociated primal graph. Then:

1. With positive probability (depending only on d
and ǫ), Items (i) to (iii) of Theorem 5.4 all hold.

2. With high probability, Items (ii) and (iii) of Theo-
rem 5.4 hold with an additive loss of O(1/n).

Proof. The first statement is an immediate consequence
of Theorem 4.3. As for the second statement, Theo-
rem 4.4 and Markov’s inequality imply that, with high
probability, only an O((d+1)2L+2)/n = O(1/n) fraction
of vertices in Y n are “(2L + 2)-bad” (i.e., have a cycle
within their distance-(2L+2) neighborhood). Assuming
this holds, we use the linear block factors of IID solution
from Theorem 5.2 and Corollary 5.1 but with a small
twist: For each vertex v that is 2L-bad in Y n, rather
than using Equation (5.5) we simply set Xv = Z

′
v,

where the random variables Z ′
v are new standard Gaus-

sians independent of all other random variables. Now
for the 1−O(1/n) fraction of “(2L+2)-good” vertices,
all their neighbors are still 2L-good and thus are using
the linear block factors of IID solution. We therefore
still have E[XuXv] = ξuv̺ for each edge {u, v} ∈ E(I)
where u or v is (2L + 2)-good. Furthermore, we still
have |E[XuXv]| ≤ |̺| for all distinct u, v ∈ V (I), since
E[XuXv] = 0 when one of u or v is 2L-bad. The second
statement in the theorem therefore follows.

6 Conclusions

In this work we have shown a sharp threshold for
the SDP-satisfiability of random d-regular NAE-3SAT

instances in the model of random lifts. Some open
questions that remain are the following:

• Can we show similar sharp threshold results in the
configuration model? The main challenge is prov-
ing Friedman-style bounds on the spectra of ran-
dom (c, d)-biregular bipartite graphs in this model.
An advantage to doing this would be the potential
to show similar sharp thresholds for 2-coloring ran-
dom d-regular 3-uniform hypergraphs (i.e., random
d-regular NAE-3SAT without negations).

• Can we show similar sharp threshold results in the
Erdős–Rényi random model?

• Can our analysis of the 2XOR-SAT SDP / Lovász
theta function for the infinite biregular tree Td,c,
and its primal graph Gd,c be extended to other
interesting classes of infinite graphs (say, vertex-
transitive)? Are there application to other finite
CSPs?

• A difficult but important open question: can we
analyze the performance higher-degree “Sum of
Squares” relaxations for refuting random sparse
CSPs (that do not support pairwise-uniform dis-
tributions)? Even analyzing the degree-4 Sum
of Squares relaxation for NAE-3SAT or graph 3-
colorability seems very challenging.
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A Bordenave’s Theorem for random signed
lifts

In this appendix we will prove the following theorem.

Theorem A.1. (Restatement of Theorem 4.2)
Let Y be a connected graph (with more edges than
vertices) having non-backtracking matrix B. Fix ǫ > 0.
Let Xn be a random signing of a random n-lift Y n of
Y , and let Bn denote the non-backtracking matrix of
Xn. Then

Pr[ρ(Bn) ≥
√

ρ(B) + ǫ] = on→∞(1).

Our theorem requires minor modifications to the trace-
method proof of [Bor17, Theorem 20], and we follow
it closely. The differences occur because [Bor17, The-
orem 20] pertains to the spectrum of unsigned lifts,
and for that reason the arguments therein must take
into account the uninteresting top eigenspace of the
non-backtracking matrix; this introduces some tech-
nical complications. Since we are working with ran-
domly signed edges, we need not worry about these
eigenspaces, and our arguments will be somewhat pared
down (though to our knowledge they cannot be ex-
tracted from [Bor17] in a black-box fashion).

A.1 Setup and notation We set the stage for the
proof by introducing some notation and definitions. Let
Y = (V,E) be an undirected graph, and let ~E be the
set of directed edges associated with E, so that

~E = {(u, v) : {u, v} ∈ E},

and | ~E| = 2|E|. To limit confusion, we will use plain,
bold letters e to denote edges in E and decorated bold
letters ~e to denote arcs in ~E. For an arc ~e = (u, v), we
let (~e)−1 = (v, u).
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Let n ∈ ❩+, let Yn = (Vn, En) be an n-lift of Y
as defined in Section 3.3, and let Xn = (Vn, En, ξn) be
random signing of Yn with signs ξn : En → ❘.5 In
the n-lift, each edge e ∈ En (arc ~e ∈ ~En) is associated

with an edge {u, v} ∈ E (arc (u, v) ∈ ~E), and with
a pair of labels i, j ∈ [n], so that e = {(u, i), (v, j)}
(~e = ((u, i), (v, j)). Again to limit confusion, we will
use non-bold, plain letters to denote edges e ∈ En and
decorated, non-bold letters to denote arcs ~e ∈ ~En. We
let SE

n be the set of tuples of |E| permutations on [n].
Each n-lift is associated with some σ = {σe}e∈E ∈ SE

n ,
so that En = {{(u, i), (v, σu,v(i))}} (where we take u to
proceed v lexicographically, in order to ensure that the
bijection between σ and lifts is unique).6 We sometimes
refer to the lift specified by σ ∈ SE

n as Yn(σ).
We also define Bn to be the weighted non-

backtracking matrix of Xn as in Section 3.2, so that
for directed edges (u, v), (x, y) ∈ ~En,

Bn[(u, v), (x, y)] = ξn({u, v}) · ✶[v = x] · ✶[u 6= y].

We will apply the trace method to Bn; that is, we
will relate ρ(Bn) to the expected trace of a power of Bn.

Fact A.1. If A ∈ ❈n×n is a random complex matrix,
m, ℓ ∈ ❩+, ǫ, c ∈ ❘+, and E[tr((Aℓ(Aℓ)∗)k)] ≤ R2mℓ,
then for ℓ ·m ≥ c

ǫR log n and ǫ < R/2,

Pr[ρ(A) ≥ R+ ǫ] ≤ n−c

Proof. This follows by noticing that ρ(A)ℓ ≤
supx∈❘n

‖Aℓx‖2

‖x‖2
= ‖Aℓ(Aℓ)∗‖1/2, and then applying

Markov’s inequality:

Pr[‖Aℓ(Aℓ)∗‖1/2ℓ ≥ t] ≤ E[tr((Aℓ(Aℓ)∗)m)]

t2mℓ
≤
(

R

t

)2mℓ

,

and choosing t = R+ ǫ with 2ǫ < R,

(

1

1 + ǫ/R

)2mℓ

≤
(

1− ǫ

2R

)2mℓ

≤ exp

(

−ǫmℓ

R

)

for ℓ ·m ≥ c
ǫR log n the conclusion follows.

In our computations, we will bound the contribu-
tion of sequences of half-edges (so as to be consistent
with [Bor17]).

Definition A.1. (half-edge) A half-edge γ is given

by an arc (u, v) ∈ ~E, and an index i ∈ [n] corresponding
to the index of u. We think of γ = ((u, v), i) as an

5In our setting, we will choose ξn(e) ∈ {±1} independently

and uniformly for each e ∈ En.
6Again, in our setting we will choose each σe uniformly at

random in Sn.

arc leaving the ith copy of u in the lift, and going to
vertex v at some unspecified index; colloquially, γ =
((u, i), (v, ?)).

We call the set of all possible half-edges Π. In the
interest of promoting clarity, we point out that Π does
not depend on the specific choice of lift, σ.

Definition A.2. (valid sequence of half-edges)
We will say that a sequence of half-edges (γ1, . . . , γ2k)
is valid if it satisfies the following constraints:

1. Admissibility of pairs: consecutive pairs of half-
edges correspond to the same edge in Y . Formally,
for each t ∈ [k] with γ2t−1 = (~e2t−1, i2t−1) and
γ2t = (~e2t, i2t), we have that ~e2t−1 = (~e2t)

−1.

2. Consistency: if two half-edges are paired once, they
remain paired for the remainder of the sequence.
Formally, if there exists t∗ such that the half-edge
g = γ2t∗−1 is succeeded by the half-edge h = γ2t∗ ,
then for all t such that γ2t−1 = g, we must also
have γ2t = h. Similarly, for all t with γ2t = g, we
must also have γ2t−1 = h.

3. Consecutiveness: the sequence of half-edges, when
glued together, must correspond to a valid walk.
Formally, for every t, if we have γ2t =
((u2t, v2t), i2t) and γ2t+1 = ((v2t+1, u2t+1), i2t+1),
then we must have v2t+1 = v2t and i2t+1 = i2t.

Colloquially, if two half-edges γ = (e, i), γ′ =
((e)−1, j) appear consecutively in a sequence with γ
in an odd position and γ′ in an even position, we
will say that they are glued together to give the edge
{(e1, i), (e2, j)} (where e1, e2 are the first and second
endpoints of e, respectively).

Definition A.3. (non-backtracking sequence)
A sequence of half-edges (γ1, . . . , γk) is called non-
backtracking if it does not define a walk that back-
tracks; that is, for each t ∈ [k], if γ2t = (e2t, i2t) and
γ2t+1 = (e2t+1, i2t+1), we require that e2t 6= e2t+1.

We define Γ2k to be the set of all valid, non-
backtracking sequences of 2k half-edges.

A.2 Walk decomposition For e = {u, v} ∈ E,
define Me to be the n × n signed permutation matrix
which encodes σe, so that (Me)ij = ξ({(u, i), (v, j)}) if
and only if σe(i) = j. Further, for two half edges γ =

(~e, i), γ′ = (~f , j), we let Mγ,γ′ = ✶[~e = (~f)−1] ·✶[σe(i) =
j] · ξ((e1, i), (e2, j)) (where e is the undirected version
of ~e

For two arcs ~e, ~f ∈ ~En, let Γ2k
~e,~f

be the set of

all valid, non-backtracking sequences of 2k half-edges
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(γ1, . . . , γ2k), such that γ1, γ2 form e when glued to-
gether, with the direction of ~e specified by γ1, and such
that γ2k−1, γ2k form ~f when glued together, with the

direction of ~f specified by γ2k−1. We have by definition
that

(Bk
n)ef =

∑

γ∈Γ2k+2

~e,~f

k
∏

s=1

Mγ2s−1γ2s
,(A.1)

since if a sequence γ is not valid or non-backtracking, it
will have value 0.

We now define tangles, which are undesirable, low-
probability walk structures (we will be able to discard
their contribution to Equation (A.1)).

Definition A.4. (tangle-free) For a positive inte-
ger ℓ, a graph G is ℓ-tangle free if it contains at most
one cycle in every neighborhood of radius at most ℓ. A
valid sequence γ ∈ Γ2k is ℓ-tangle free if the graph given
by the edges and vertices visited by γ does not contain
more than one cycle in any neighborhood of radius at
most ℓ.

The following lemma from [Bor17] proves that with
high probability, Yn is ℓ-tangle free.

Lemma A.1. ([Bor17, Lemma 24]) If ℓ ≤ κ logd−1 n
with κ ∈ [0, 1/4] and d the maximum degree of a vertex
in Y , then with high probability Yn is tangle-free.

Finally, we will require the following definition.

Definition A.5. A valid sequence γ is even if the
walk it induces contains every undirected edge with even
multiplicity.

A.3 Bounding the expectation of a single walk
Now, we bound the expectation of the product of entries
along a walk.

For a sequence γ = (γ1, . . . , γ2ℓ) of length 2ℓ, with
γt = ((ut, vt), it), let Eγ be the set of lifted edges in γ,

Eγ = {{(u2t−1, i2t−1), (v2t−1, i2t)} | t ∈ [k]}.

Proposition A.1. Suppose that γ is a valid sequence
of length 2k ≪ √

n. Let ℓ < 1
4 logd−1 n. Then we have

E
σ,ξ

[

k
∏

s=1

Mγ2s−1γ2s

]

≤ ✶[γ even] · (1 + on(1)) ·
(

1

n

)|Eγ |
.

Proof. Consider some valid sequence of half-edges γ =
(γ1, . . . , γ2k), and let γt = ((ut, vt), it) and ~et = (ut, vt),

et = {ut, vt} for convenience. We have that

E
σ,ξ

[

k
∏

s=1

Mγ2s−1γ2s

]

= E
σ,ξ









∏

e∈γ

∏

t∈[k]
e2t−1=e

Mγ2t−1γ2t









(A.2)

=
∏

e∈γ

E
σ,ξ









∏

t∈[k]
e2t−1=e

Mγ2t−1γ2t









,(A.3)

since for e 6= e
′, σe and σe

′ are independent, and by
the independence of ξn. Expanding the entries of M
according to M ’s definition,

eq. (A.3) =
∏

e∈γ

E
σ,ξ

[

∏

t∈[k]
e2t−1=e

✶[σe2t−1(i2t−1) = i2t]×

ξ((u2t−1, i2t−1), (v2t−1, i2t))
]

.(A.4)

By the independence of the signing ξ, we have that the
expectation of any sequence in which any (undirected)
edge is visited an odd number of times is 0. Assimilating
this fact,

eq. (A.4) = ✶[γ even] ·
∏

e∈γ

E
σ









∏

t∈[k]
e2t−1=e

✶[σe2t−1
(i2t−1) = i2t]









.

(A.5)

Now, suppose that ke distinct lifted copies of the edge
e ∈ E appear in γ. Since γ is consistent, and because we
may assume every edge appears with even multiplicity,
the term within the expectation just corresponds to
fixing ke edges of a permutation on n elements. Thus
we simplify,

eq. (A.5) = ✶[γ even] ·
∏

e∈γ

(n− ke)!

n!
(A.6)

≤ ✶[γ even] ·
∏

e∈γ

(

1

n

(

1 +
2ke
n

))ke

,(A.7)

where to obtain the last inequality we have used that
for i ≤ ke ≪ √

n,

1

n− i
≤ 1

n

(

1 +
2i

n

)

≤ 1

n

(

1 +
2ke
n

)

.

And now since
∑

e∈γ ke = |Eγ | is the number of distinct
lifted edges in γ, and the number of base edges is at most
the number of lifted edges,

≤ ✶[γ even] ·
(

1

n

)|Eγ |(

1 +
2k

n

)2k

.(A.8)

Using that 2k ≪ √
n we obtain our conclusion.
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A.4 Counting walks To apply Fact A.1, we will
need to bound the trace of a power of Bℓ

n(B
ℓ
n)

∗. Since
the trace corresponds to a sum over walks, and because
in Section A.3 we have a bound on the expectation
of each walk as a function of the number of distinct
edges and the evenness of the walk, we have reduced
our problem to counting the number of walks of various
types. We will follow the definitions of Bordenave rather
closely, so we may recycle his bounds.

We have that

tr
(

(Bℓ(Bℓ)∗)m
)

=
∑

e1,...,e2m−1∈E2m−1
n

2m−1
∏

s=1

(Bℓ
n)es,es+1 ,

(A.9)

where we have taken s + 1 modulo 2m − 1. To
characterize the summation, it is useful for us to define
the following set of sequences of half-edges, which have
the property that large sub-sequences are tangle-free.

Definition A.6. Let Wℓ,m be the set of sequences of
half-edges γ of length 2ℓ × 2m with the properties that,
if we write γ as a sequence of sub-sequences γ =
(γ(1), . . . , γ(2m))

1. For each s ∈ [2m], the sub-sequence γ(s) is valid,
non-backtracking, and tangle-free.

2. For each s ∈ [m], the final edge in γ(s)

is equal to the first edge in γ(s+1) (where we
take addition mod 2m). Formally, if γ(t) =

(((u
(t)
1 , v

(t)
1 ), i

(t)
1 ), . . . , ((u

(t)
2ℓ , v

(t)
2ℓ ), i

(t)
2ℓ )), then we re-

quire u
(s)
2ℓ−1 = u

(s+1)
1 , v

(s)
2ℓ−1 = v

(s+1)
1 , i

(s)
2ℓ−1 = i

(s+1)
1

and i
(s)
2ℓ = i

(s+1)
2 .

Recall we have defined Π to be the set of all half-
edges (not necessarily present in Yn).

Definition A.7. We define an equivalence relation on
Πm: γ, γ′ ∈ Πm, with γt = ((ut, vt), it) and with
γ′
t = ((u′

t, v
′
t), i

′
t) for t ∈ [m]. We’ll say that for γ ∼ γ′

if for all t ∈ [m] we have (ut, vt) = (u′
t, v

′
t), and if in

addition there exists a tuple of permutations in Sn, one
for each vertex u ∈ V from the base graph, (σu)u∈V , so
that i′t = σut

(it).

We observe that if γ is even, then any γ′ ∼ γ is
even as well. Similarly, if γ ∼ γ′, then |Eγ | = |Eγ′ |. We
choose a canonical representative for each equivalence
class:

Definition A.8. (Canonical sequence) Let
Vγ(u) ⊆ {u} × [n] be the set of all vertices of Yn

visited by γ which include u. We’ll call γ ∈ Πm canon-
ical if for all u ∈ V , Vγ(u) = {(u, 1), . . . , (u, |Vγ(u)|)},

and if the vertices of Vγ(u) appear in lexicographical
order in γ.

The following lemmas are given in [Bor17].

Lemma A.2. ([Bor17, Lemma 27]) Let γ ∈ Πm, and
let Vγ ⊆ V × [n] be the set of vertices of Yn which appear
in γ. Suppose that |Vγ | = s. Then γ is isomorphic to
at most ns elements in Πm.

Lemma A.3. ([Bor17, Lemma 28]) Let Wℓ,m(s, a) be
the subset of canonical paths in Wℓ,m with |Vγ | = s and
|Eγ | = a. Then for any fixed ρ > ρ(B), there exists a
constant κ (depending also on Y ) such that we have

|Wℓ,m(s, a)| ≤ ρs(κℓm)8m(a−s+1)+10m.

We are now ready to bound the contribution of the
sums of tangle-free sections.

Proposition A.2. For m = ⌊ logn
17 log logn⌋, n ≥ 3, and

ℓ ≤ 1
4 logd−1 n, and ρ > 1 as above, there is a constant

c independent of n such that

E





∑

γ∈Wℓ,m

2m
∏

i=1

ℓ
∏

t=1

M
γ
(i)
2t−1,γ

(i)
2t



 ≤ n(cℓm)10mρ(ℓ+2)m.

Proof. We split the left-hand side according to the W
equivalence classes,

E





∑

γ∈Wℓ,m

2m
∏

i=1

ℓ
∏

t=1

M
γ
(i)
2t−1,γ

(i)
2t



 ≤
∞
∑

s=1

∞
∑

a=s−1

ns×

∑

γ∈Wℓ,m(s,a)

E

[

2m
∏

i=1

ℓ
∏

t=1

M
γ
(i)
2t−1,γ

(i)
2t

]

,(A.10)

where we have used that |Vγ | − 1 ≤ |Eγ |, since Gγ is
connected. Now applying Proposition A.1 (using that
ℓm ≪ √

n), we have that for γ ∈ Wℓ,m(s, a),

E

[

2m
∏

i=1

ℓ
∏

t=1

M
γ
(i)
2t−1,γ

(i)
2t

]

≤ ✶[γ even] · (1+ on(1)) ·
(

1

n

)a

.

Plugging this in above, along with the bound on
|Wℓ,m(s, a)| from Lemma A.3, we have

eq. (A.10) ≤
(ℓ+2)m+1
∑

s=1

ns

(ℓ+2)m
∑

a=s−1

ρs(κℓm)8m(a−s+1)+10m×

(1 + on(1)) · n−a,

where we use the fact that γ must be even to obtain that
|Eγ | = s ≤ (ℓ+2)m, (as there are only 2(ℓ+2)m edges
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in the sequence γ, and each must appear twice), and
adjusted the upper limits of the summation accordingly.

We re-index the above summation, setting a′ =
a−s+1 and beginning to sum from a′ = 0 (and summing
till a′ = ∞, as this yields a valid upper bound),

eq. (A.10) ≤ (1 + on(1)) · (κℓm)10m ·
(ℓ+2)m+1
∑

s=1

nsρs×

(

1

n

)s−1 ∞
∑

a′=0

(κℓm)8ma′ ·
(

1

n

)a′

= (1 + on(1)) · n(κℓm)10m×
(ℓ+2)m+1
∑

s=1

ρs
∞
∑

a′=0

(κℓm)8ma′ ·
(

1

n

)a′

.(A.11)

For our chosen m, when n is large enough, (κℓm)8m

n ≤
(logn)16m

n ≤ n−1/17. Combining this observation with
the fact that the rightmost sum is a geometric sum,
there is a constant c such that

eq. (A.11) ≤ cn(κℓm)10m ·
(ℓ+2)m+1
∑

s=1

ρs.

Finally, we are left again with a geometric sum; since
we have ρ > 1, there is a constant c′ so that

≤ c′n(κℓm)10m · ρ(ℓ+2)m+1.

Using that ρ is independent of n to push ρ into the
constant, we have our conclusion.

A.5 Putting things together We now finally have
the ingredients to prove Theorem 4.2.

Proof. [Proof of Theorem 4.2] Fix ǫ > 0, choose ρ >
ρ(B) such that

√
ρ <

√

ρ(B) + ǫ/2, let ℓ = κ logd−1 n

for a constant κ ∈ (0, 1/4), and let m = ⌊ logn
17 log logn⌋. By

Lemma A.1, if E is the event that Yn is ℓ-tangle-free,

Pr[ρ(Bn) ≥
√

ρ(B) + ǫ]

≤ Pr[ρ(Bn) ≥
√

ρ+ ǫ/2, E ] + o(1)

≤ Pr ‖Bℓ
n(B

ℓ
n)

∗‖1/2ℓ ≥
√

ρ+ ǫ/2, E ] + o(1).

If Yn is ℓ-tangle-free, then only sequences γ ∈ Wℓ,m

contribute to Equation (A.9), as any (consecutive) sub-
sequence γ(i) ⊂ γ of length 2ℓ defines a length-ℓ
walk in Yn. So using Fact A.1 in conjunction with
Equation (A.9) and Proposition A.2, we have that

E[tr((Bℓ
n(B

ℓ
n)

∗)m) · ✶[E ]] ≤ n(cℓm)10mρ(ℓ+2)m.

Taking the 2ℓmth root on the right, by our choice of
ℓ = Θ(log n) and m = Θ(log n/ log log n), (cℓm)5/ℓ =

o(log2 n)1/ logn = 1 + o(1), n1/2ℓm ≤ 2Θ(log logn/ logn) =
1+o(1), and since ρ is independent of n, ρ1/ℓ = 1+on(1),
and we have the desired conclusion.
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