

Synthesis of Five-Membered Iodine-Nitrogen Heterocycles from Benzimidazole-Based Iodonium Salts

Yulia A. Vlasenko,[†] Pavel S. Postnikov,^{#,†} Marina E. Trusova,[†] Alexandr Shafir,^{‡,\$}
Viktor V. Zhdankin,^{*,\$}
Akira Yoshimura,^{†,\$} and Mekhman S. Yusubov^{*,†}

Supporting Information

TSO⁻ + OH TfO⁻ + Ar KOH, MeOH
$$R^2$$
 + N Me, Cl, F, NO₂ R^1 and R^2 = H, Me, Cl, F, NO₂ R^2 + N Me R^2 + N

ABSTRACT: Pseudocyclic 2-benzimidazolyl-substituted diaryliodonium salts were obtained by the reaction of the corresponding [hydroxy(tosyloxy)iodo] arenes with arenes in the presence of trifluoromethanesulfonic acid. X-ray structural analysis of these iodonium salts confirmed their pseudocyclic structure with a short (2.57-2.58 Å) noncovalent I···N interaction. Treatment of 2-benzimidazolyl-substituted diaryliodonium triflates with a base afforded novel five-membered iodine-nitrogen heterocycles.

INTRODUCTION

Since the beginning of the 21st century, the interest in hypervalent iodine heterocycles has experienced an unprecedented growth. The five-membered iodine-oxygen heterocycles (benziodoxoles) represent one of the most important classes of hypervalent iodine(III) reagents. 1-6 Substituted benziodoxolones 1 (Scheme 1) are widely used as electrophilic or radical atom-transfer reagents for azidation, amination, cyanation, alkynylation, or chlorination. Other important classes of fivemembered hypervalent iodine(III) heterocycles include dibenziodolium derivatives 2 and 3 and benziodazolones 4. Five-membered cyclic iodonium salts 2, derivatives of the iodolium heterocyclic system, are particularly interesting because of the high thermal stability and applications in biological studies.⁷⁻⁹ For example, dibenziodolium chloride (also known as diphenyleneiodonium chloride or DPI) has found numerous applications in biological studies.^{8,9} In biochemical and pharmacological research, DPI is commonly used as an NADPH oxidase inhibitor.9 The neutral dibenziodolium derivatives, 5-aryl-5H-5 λ^3 -dibenzo[b,d]iodoles 3, have also been prepared as thermally unstable and air-sensitive compounds.10

The preparation of several five-membered iodine-nitrogen heterocycles, benziodazolones 4, has been reported by Wolf and Steinberg, 11 Gougoutas, 12 Balthazor, 13 and our group. 14 Benziodazolone derivatives can be used as reagents for oxidative functionalization of organic substrates. 14a,15,16 For example, azidobenziodazolone was used as an azidation reagent

with reactivity similar to that of azidobenziodoxoles. 14a Very recently, we reported the preparation of a novel bicyclic benziodazolone, which is an efficient reagent for oxidatively assisted coupling of carboxylic acids with alcohols or amines. 16 To the best of our knowledge, all known five-membered iodine-nitrogen heterocycles have the benziodazolone structure 4, which is characterized by the presence of the amido nitrogen in the ring. In this paper, we report the first synthesis of a stable polycyclic benziodazole system 5, which represents a nitrogen analogue of the neutral diphenyleneiodonium system 4 (Scheme 1).

RESULTS AND DISCUSSION

We have developed an efficient three-step approach to the synthesis of benziodazole system 5 starting from readily available 2-(2-iodophenyl)-1*H*-benzo[*d*]imidazoles **6**. Iodides **6** were initially oxidized to [hydroxy(tosyloxy)iodo]arenes 7 by treatment with *m*-chloroperoxybenzoic acid in the presence of p-toluenesulfonic acid (Scheme 2) according to the modified procedure of Yamamoto and Togo. 17 Products with the general structure type 7 were isolated in high yields in the form of stable microcrystalline solids and were characterized by NMR and mass spectrometry. According to NMR, the nonsymmetrically substituted derivatives of 7 ($R^1 \neq R^2$) in solution exist in the form of two tautomers differing in the position of the protonated N-site in the benziodazole fragment.

Received: August 2, 2018 Published: September 11, 2018

[†]The Tomsk Polytechnic University, 634050 Tomsk, Russia

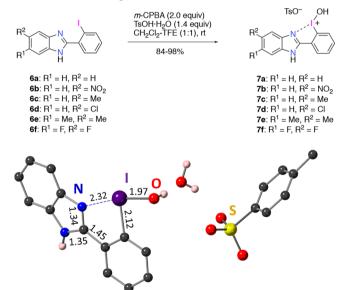
^{*}University of Chemistry and Technology, 16628 Prague, Czech Republic

[‡]Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Tarragona, Spain

SInstitute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain

[§]Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States

Scheme 1. Hypervalent Iodine Heterocycles: Benziodoxoles, Dibenziodolium Derivatives, and Benziodazoles


Previously known iodine heterocycles:

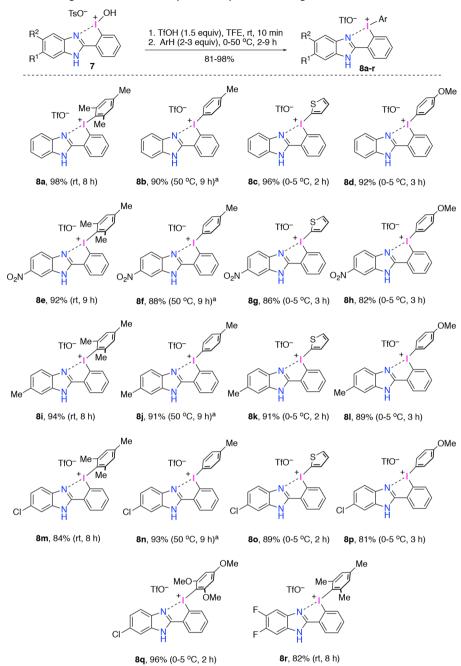
This work:

 $X = AcO, N_3; R = H, alkyl, etc.$

5-aryl-5*H*-5λ³-benzo[d]benzo[4,5]imidazo[1,2-b][1,2]iodazoles

Scheme 2. Oxidation of 2-(2-Iodophenyl)-1H-benzo[d]imidazoles 6 to [Hydroxy(tosyloxy)iodo]arenes 7. X-ray Structure Diagram of 7a

Next we sought to convert the newly prepared [hydroxy-(tosyloxy)iodo] arenes 7 into diaryliodonium species by a direct reaction with arenes. Initially, the model tosylate 7a demonstrated extremely low reactivity toward arenes, and even the treatment with the electron-rich mesitylene did not lead to the formation of desired iodonium salt 8a after 32 h of stirring in trifluoroethanol according to Kita's procedure. Nevertheless, the addition of 1.5 equiv of TfOH led to a dramatic change in reactivity and allowed for the isolation of the iodonium salt 8a in quantitative yield. Using this protocol, a series of N-coordinated diaryliodonium salts 8a—r could be prepared in the presence of triflic acid, as shown in Scheme 3.


These salts were isolated in excellent yields in their N-H triflate forms and were characterized by NMR and mass spectrometry. The presence of a proton on one of the benzimidazole nitrogens should in principle lead to all four benzimidazole C-H sites in 8a to be chemically distinct. Experimentally, the ¹H NMR spectrum of 8a showed a fluxional behavior for the benzimidazole moiety, evidenced by two broad resonances each integrating for 2H, suggesting a rather rapid equilibration of the two sides of the molecule. Similar behavior was observed for the rest for the derivatives within this family. The solid-state structures of two such salts, the nitro derivative 8e and the chloro derivative 8m, were subsequently determined to be borderline pseudocyclic on the basis of the presence of a long nitrogen-to-iodine donor bond (Figure 1). It should be noted that the presence of a substituent on the benzimidazole fragment leads to the possibility of two tautomeric structures, both of which were found to coexist in the solid state (via disorder) and in solution.

At this point, we wondered whether the pseudocyclic species 8 could readily form the corresponding cyclic derivative upon deprotonation. This possibility was tested by examining the ¹H NMR spectrum of the thienyl pseudocycle 8c in DMSO-d₆ before and after the addition of 1.0 equiv of KOH (Figure 2a,b). Consistent with our hypothesis, the addition of the base led to a significant change in the spectrum, with benzimidazole resonances shifted upfield by up to 0.2 ppm (Figure 2b). The original chemical shifts of 8c could be largely restored by treating the resulting solution of 9c with 1.0 equiv of TfOH (Figure 2c), attesting to the reversibility of the cyclic-pseudocyclic interconversion. As a synthetic procedure, treating the methanolic solution of 8c with potassium hydroxide led to the precipitation of the cyclic 9c in nearly quantitative yield. Similarly, a series of cyclic hypervalent iodine heterocycles 9 (Scheme 4) were isolated as thermally stable solids in excellent yields and were characterized by NMR and mass spectrometry. Unfortunately, we were not able to grow single crystals of 9 suitable for X-ray analysis.

Interestingly, unlike the pseudocyclic triflates, the NMR spectra of **9** were at odds with what was expected for a stronger N–I bond. Hence, while the ¹⁹F NMR spectrum of the pseudocyclic difluoro derivative **8r** showed two aromatic fluorine resonances (doublets in the proton-decoupled mode), the corresponding cyclic derivative **9r** showed a unique well-defined ¹⁹F singlet, indicating either a low rotation barrier around the C–C bond (Figure 3) or a preference for a C_s -symmetric noncyclic conformation with the ArI ring perpendicular to the benzimidazole plane.

Due to the same phenomenon, the asymmetrically substituted derivatives, such as 90, displayed an NMR spectrum consistent with a relatively facile rotamer interconversion. To shed light on this phenomenon, the conformational analysis of the chloro-substituted 90 was carried out using DFT calculations. It was found that the two cyclic forms do indeed represent the energetic minima, and the noncyclic perpendicular form a transition state in rotamer interconversion (Figure 4). The "proximal" isomer proved to be somewhat more stable (about ~2 kcal/mol) than the "remote" one, with an interconversion barrier of ~16 kcal/mol consistent with a medium velocity rotamer interconversion on the NMR time scale. For comparison, the barrier for a degenerate exchange (via C-N) bond rotation in N,N-dimethylformamide is close to $\Delta G^{\ddagger} \sim 19$ kcal/mol. Interestingly, in the case of the pseudocyclic derivatives such as 80, the apparently higher barrier for tautomerization may seem contrary to what would

Scheme 3. Formation and Examples of the Pseudocyclic Diaryliodonium Species 8

^aHexafluoro-2-propanol (HFIP) was used as a solvent instead of trifluoroethanol (TFE).

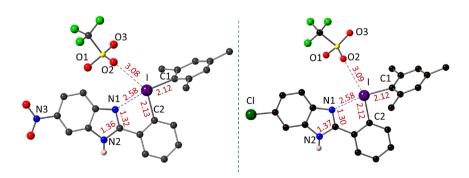


Figure 1. X-ray crystal structure diagrams for 8e (left) and 8m (right). All except N-bound protons have been omitted for clarity.

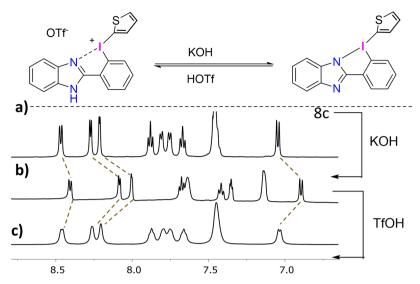


Figure 2. Changes observed in the ¹H NMR spectrum of 8c upon addition of KOH (a and b). Bottom spectrum (c) was recorded upon addition of TfOH (1.0 equiv) to the sample b.

be expected for a weaker I—N bond. It should be noted, however, that while the tautomerization in **90** may be achieved by a simple rotation (as shown in Figure 4), such a process in **80** is precluded due to the protonation at the "remote" nitrogen atom. Hence, tautomerization in this case likely proceeds in a multistep sequence involving both a proton transfer and a rotation. In consequence, such a process would be more difficult to model and may show a strong medium dependence.

CONCLUSIONS

In summary, we have reported the synthesis of a novel, stable hypervalent iodine polyheterocyclic system derived from benziodazole. The hypervalent iodine heterocycles $\bf 9$ were prepared starting from readily available 2-(2-iodophenyl)-1H-benzo[d]imidazoles $\bf 6$ via benzimidazole-based diaryliodonium salts $\bf 8$. The prepared iodazoles exhibit a fast interconversion between tautomers according to NMR experiment and theoretical calculations.

EXPERIMENTAL SECTION

General Comments. All reagents and solvents were from commercial sources and used without further purification from freshly opened containers. ¹H NMR spectra were recorded at 300, 400 and 500 MHz, ¹³C NMR spectra were recorded at 75, 100 and 125 MHz, and ¹⁹F NMR spectra were recorded at 376 MHz. Chemical shifts are reported in parts per million (ppm). ¹H and ¹³C chemical shifts are referenced relative to tetramethylsilane. High resolution mass spectra were recorded on Thermo Fisher Scientific LC-MS LTQ-Orbitrap Velos and MicroTof-Q from Bruker Daltronics Instruments with electrospray ionization (EI) in positive ionization mode.

Synthesis of Benzimidazoles 6: General Procedure. Benzimidazoles 6a—f were prepared according to a slightly modified published procedure. The mixture of appropriate o-phenylenediamine (20 mmol) and 2-iodobenzoic acids (20 mmol, 5.6 g) in polyphosphoric acid (200 mmol, 30.2 g) was heated to 100 °C. POCl₃ (65 mmol, 9.87 g, 6 mL) was added portionwise (1 mL every 15 min) to a stirred reaction mixture at 100 °C. The heating was continued until full conversion of starting material (monitored by TLC, eluent hexane:EtOAc = 2:7). The reaction mixture was cooled to room temperature with the formation of solid material. The solid was suspended in water (70 mL) and was basified by the addition of solid NaHCO₃ until pH = 7–8. The precipitate was filtered off and washed on the filter with water 30 mL and recrystallized from a water—ethanol mixture. In the case of

5,6-difluoro-2-(2-iodophenyl)-1*H*-benzimidazole, the precipitate was filtered off, resuspended in 600 mL of EtOAc, and filtered through a short pad of Celite. The solvent was removed under reduced pressure at room temperature.

2-(2-lodophenyl)-1H-benzo[d]imidazole (6a). Reaction of o-phenylenediamine (2.16 g, 20 mmol) according to the general

procedure afforded 5.12 g (80%) of product **6a**, isolated as a beige solid: mp 246–247 °C (lit, 21 mp 230–232 °C); 1 H NMR (500 MHz, DMSO- d_6): δ = 12.70 (s, 1H), 8.06 (dd, J = 8.0, 1,0 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.57–7.53 (m, 2H), 7.29–7.20 (m, 3H); 13 C NMR (125 MHz, DMSO- d_6): δ = 152.6, 143.2, 139.6, 136.6, 134.3, 131.3, 131.1, 128.1, 122.5, 121.4, 119.1, 111.5, 97.3.

2-(2-lodophenyl)-6-nitro-1H-benzo[d]imidazole (6b). Reaction of 4-nitrobenzene-1,2-diamine (3.06 g, 20 mmol) according to the

$$\bigcap_{Q_2N} \bigcap_{H} \bigcap_{Q_2N} \bigcap_{Q_2N} \bigcap_{Q_2N} \bigcap_{Q_2N} \bigcap_{Q_2N} \bigcap_{H} \bigcap_{Q_2N} \bigcap_{Q_2N$$

general procedure afforded 5.69 g (78%) of product **6b** (mixture of tautomers), isolated as a dark-orange solid: mp 207–208 °C;

¹H NMR (400 MHz, DMSO- d_6): δ = 10.20 (d, J = 5.6 Hz, 1H), 8.74 (s, 1H), 8.54 (s, 1H), 8.18 (d, J = 8.8 Hz, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 157.1, 143.5, 142.8, 142.0, 141.9, 139.8, 139.2, 139.1, 136.1, 135.5, 131.9, 131.6, 131.4, 128.4, 128.3, 124.5, 120.7, 120.0, 118.1, 114.9, 112.7, 97.2; HRMS (ESI-TOF-positive ionization): calcd for C₁₃H₉IN₃O₂ ([M + H]⁺): 365.9734, found: 365.9738. The crystal suitable for X-ray was prepared by slow evaporation of MeCN/H₂O solution (the structure is provided in SI).

2-(2-lodophenyl)-6-methyl-1H-benzo[d]imidazole (6c). Reaction of 4-methylbenzene-1,2-diamine (2.44 g, 20 mmol) according to the general procedure afforded 5.41 g (81%) of product 6c (mixture

Scheme 4. Formation and Examples of the Cyclic Diaryliodonium Species 9

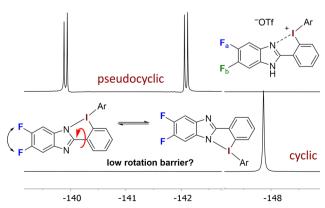


Figure 3. Aromatic region of the ^{19}F { ^{1}H } NMR spectra of the difluoro derivatives 8r (top) and 9r (bottom).

of tautomers), isolated as a beige solid: mp 85–86 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 12.59 (s, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.60 (dd, J = 7.6, 1.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.38 (s, 1H), 7.26 (td, J = 7.6, 1.6 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 152.5, 152.1, 143.6, 141.4, 139.7, 136.7, 134.7, 132.4, 131.9, 131.3, 131.1, 130.5, 128.1, 124.0, 123.1, 118.9, 118.7, 111.2, 111.0, 97.4, 21.4, 21.3; HRMS (ESI-TOF-positive ionization): calcd for $C_{14}H_{12}IN_2$ ([M + H]⁺): 335.0040, found: 335.0041.

6-Chloro-2-(2-iodophenyl)-1H-benzo[d]imidazole (6d). Reaction of 4-chlorobenzene-1,2-diamine (2.85 g, 20 mmol) according to the

general procedure afforded 6.03 g (85%) of product **6d** (mixture of tautomers), isolated as a creamy-white solid: mp 189–190 °C;



Figure 4. Energy profile for the rotamer interconversion of a cyclic benzimidazole-containing system. Values are given in kcal/mol: DFT: B3LYP, 6-31+G(d,p)/LANL2DZ(d,p) for I.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 12.91$ (d, J = 11.6 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.76 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.62(d, J = 7.6 Hz, 1H), 7.58-7.54 (m, 2H); 7.31-7.23 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 154.1, 153.7, 144.0, 141.9, 139.7, 136.1, 135.0, 133.1, 131.4, 131,3, 128.1, 126.9, 126.0, 122.7, 121.9, 120.4, 118.5, 112.8, 111.2, 97.2; HRMS (ESI-TOF-positive ionization): calcd for $C_{13}H_9CIIN_2$ ([M + H]⁺): 354.9493, found: 354 9494

2-(2-lodophenyl)-5,6-dimethyl-1H-benzo[d]imidazole (6e). Reaction of 4,5-dimethylbenzene-1,2-diamine (2.72 g, 20 mmol) according

to the general procedure afforded 5.50 g (79%) of product 6e, isolated as a beige solid: mp 203–204 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 12.41 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.59 (dd, J = 7.6, 1.6 Hz, 1H), 7.53 (td, J = 7.6, 0.8 Hz, 1H), 7.44 (s, 1H), 7.28–7.23 (m, 2H), 2.33 (s, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 152.1$, 142.4, 140.1, 137.2, 133.4, 131.7, 131.6, 131.4, 130.2, 128.5, 119.6, 111.9, 97.8, 20.5; HRMS (ESI-TOF-positive ionization): calcd for $C_{15}H_{14}IN_2$ ([M + H]⁺): 349.0196, found: 349.0198.

5,6-Difluoro-2-(2-iodophenyl)-1H-benzo[d]imidazole (6f). Reaction of 4,5-difluorobenzene-1,2-diamine (2.88 g, 20 mmol) according

to the general procedure afforded 4.98 g (70%) of product 6f, isolated as a deep violet solid: mp 186-187 °C; ¹H NMR (400 MHz, DMSO d_6): $\delta = 8.06$ (d, J = 7.6 Hz, 1H), 7.70 (t, J = 9.2 Hz, 2H), 7.62 (dd, J= 7.6, 1.6 Hz, 1H), 7.56 (t, J = 7.2 Hz, 2H), 7.30 (td, J = 7.6, 1.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 154.49, 154.48, 154.46, 148.2 (d, $J_{C-F} = 16.4 \text{ Hz}$), 145.8 (d, $J_{C-F} = 16.4 \text{ Hz}$), 139.7, 135.7, 131.6, 131.4, 128.2, 103.1 (br. s), 97.4; ¹⁹F NMR (376 MHz, DMSO d_6): $\delta = -143.7$; HRMS (ESI-TOF-positive ionization): calcd for $C_{13}H_8F_2IN_2$ ([M + H]⁺): 356.9695, found: 356.9700.

Synthesis of [Hydroxy(tosyloxy)iodo]arenes 7: General Procedure. To a stirred solution of 2-(2-iodophenyl)-1*H*-benzo[d]imidazoles 6a-f (1.0 equiv) in a mixture of DCM-TFE (1:1) were added mCPBA (77%, 2.0 equiv) and p-TsOH·H₂O (1.4 equiv). The stirring was continued at room temperature until full conversion of starting material (monitored by TLC, eluent hexane:EtOAc = 2:7), and solvents were evaporated at reduced pressure. The products were precipitated by the addition of Et₂O. The solids were filtered off, washed with Et₂O three times, and dried in a vacuum.

(2-(1H-Benzo[d]imidazol-2-yl)phenyl)(hydroxy)iodonium Tosylate (7a). Reaction of 2-(2-iodophenyl)-1H-benzo[d]imidazole 6a

(1.60 g, 5 mmol) with mCPBA (77%, 3.46 g, 10 mmol) and p-TsOH· H₂O (1.33 g, 7 mmol) in 25 mL of DCM-TFE mixture (1:1) according to the general procedure afforded 2.49 g (98%) of product 7a, isolated as a beige solid: mp 190-192 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 8.44$ (d, J = 7.5 Hz, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.99-7.87 (m, 3H), 7.78-7.75 (m, 1H), 7.51-7.46 (m, 4H), 7.11 (d, $J = 8.1 \text{ Hz}, 2\text{H}), 2.26 \text{ (s, 3H)}; ^{13}\text{C NMR} (75 \text{ MHz}, \text{DMSO}-d_6): \delta$ = 151.3, 145.2, 138.4, 136.7, 134.2, 131.5, 128.5, 128.2, 128.0, 125.8, 125.7, 125.3, 124.8, 121.1, 117.1, 113.7, 21.0; HRMS (ESI-TOFpositive ionization): calcd for $C_{13}H_{10}IN_2O$ ([M - OTs]⁺): 336.9838, found: 336.9832. The crystal suitable for X-ray was prepared by slow cooling of saturated MeCN/H₂O solution followed by evaporation.

Hvdroxv(2-(6-nitro-1H-benzo[d]imidazol-2-vl)phenvl)iodonium *Tosylate (7b).* Reaction of 2-(2-iodophenyl)-1*H*-benzo[*d*]imidazole

6b (1.83 g, 5 mmol) with mCPBA (77%, 3.46 g, 10 mmol) and p-TsOH·H₂O (1.33 g, 7 mmol) in 25 mL of DCM-TFE mixture (1:1) according to the general procedure afforded 2.49 g (90%) of product 7b (mixture of tautomers), isolated as a yellow solid: mp 220–221 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.00$ (d, J = 1.6 Hz, 1H), 8.61 (s, 1H), 8.55-8.51 (m, 2H), 8.32-8.30 (m, 2H), 8.12-8.09 (m, 2H), 8.05-7.93 (m, 4H), 7.49 (d, J = 7.6 Hz, 3H), 7.11 (d, J = 8.0 Hz, 3H), 2.28 (s, 4H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 145.4$, 144.1, 143.0, 141.3, 140.0, 139.2, 138.2, 136.5, 134.9, 133.6, 132.2, 131.6, 130.9, 129.0, 128.8, 128.4, 127.9, 127.7, 125.7, 125.1, 121.4, 121.3, 120.6, 119.9, 118.4, 117.5, 114.6, 113.7, 110.6, 21.0; HRMS (ESI-TOF-positive ionization): calcd for $C_{13}H_9IN_3O_3$ ($[M - OTs]^+$): 381.9689, found: 381.9685.

Hvdroxv(2-(6-methyl-1H-benzo[d]imidazol-2-vl)phenyl)iodonium Tosylate (7c). Reaction of 2-(2-iodophenyl)-1H-benzo-[d]imidazole 6c (1.67 g, 5 mmol) with mCPBA (77%, 3.46 g,

10 mmol) and p-TsOH·H₂O (1.33 g, 7 mmol) in 25 mL of DCM-TFE mixture (1:1) according to the general procedure afforded 2.19 g (84%) of product 7c (mixture of tautomers), isolated as a creamy-white mp 175–176 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 14.52$ (br. s, 1H), 14.46 (br. s, 1H), 8.44–8.41 (m, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.93 (t, J = 7.2 Hz, 1H), 7.87 (t, J = 7.6 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H),7.71 (s, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.53–7.48 (m, 3H), 7.24 (t, J =8.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 2.44 (d, J = 6.4 Hz, 3H), 2.27 (s, 3H); 13 C NMR (100 MHz, DMSO- d_6): $\delta = 150.8$, 150.6, 145.3, 138.0, 136.7, 135.4, 134.6, 134.2, 134.1, 133.7, 133.6, 132.0, 131.2, 128.2, 127.9, 127.7, 126.9, 126.0, 125.6, 125.2, 120.9, 120.8, 116.4, 116.3, 113.1, 112.9, 21.4, 21.3, 20.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{14}H_{12}IN_2O$ ([M - OTs]⁺): 350.9994, found: 350.9994.

(2-(6-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)(hydroxy)iodonium Tosylate (7d). Reaction of 2-(2-iodophenyl)-1H-benzo-[d]imidazole 6d (1.77 g, 5 mmol) with mCPBA (77%, 3.46 g,

10 mmol) and *p*-TsOH·H₂O (1.33 g, 7 mmol) in 25 mL of DCM—TFE mixture (1:1) according to the general procedure afforded 2.61 g (96%) of product 7d (mixture of tautomers), isolated as a beige solid: mp 188–190 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 9.22 (br. s, 1H), 8.44 (t, J = 6.8 Hz, 1H), 8.05 (d, J = 8.4 Hz, 2H), 7.98–7.86 (m, 3H), 7.80 (s, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 7.6 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 152.3, 145.1, 138.1, 137.4, 135.6, 134.8, 134.2, 134.1, 133.0, 131.3, 129.8, 128.7, 128.3, 127.7, 127.6, 125.6, 125.0, 124.9, 121.0, 120.9, 118.3, 116.6, 115.0, 113.3, 20.9; HRMS (ESI-TOF-positive ionization): calcd for C₁₃H₈ClIN₂ ([M – OH – OTs]⁺): 353.9415, found: 353.9415.

(2-(5,6-Dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)(hydroxy)-iodonium Tosylate (7e). Reaction of 2-(2-iodophenyl)-1H-benzo-[d]imidazole 6e (0.70 g, 2 mmol) with mCPBA (77%, 1.38 g,

4 mmol) and *p*-TsOH·H₂O (0.53 g, 2.8 mmol) in 10 mL of DCM—TFE mixture (1:1) according to the general procedure afforded 0.97 g (91%) of product 7e, isolated as a beige solid: mp 185–186 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 14.40 (s, 1H), 8.44 (dd, J = 7.6, 1.6 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.95 (td, J = 7.6, 1.6 Hz, 1H), 7.90 (td, J = 7.6, 1.2 Hz, 1H), 7.71 (s, 1H), 7.54 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H) 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 150.1, 145.6, 137.7, 135.0, 134.9, 134.0, 133.5, 132.4, 131.2, 128.1, 127.7, 125.5, 125.3, 120.7, 116.5, 113.1, 20.8, 20.1, 20.0; HRMS (ESI-TOF-positive ionization): calcd for C₁₅H₁₃IN₂ ([M – OH – OTs]⁺): 348.0118, found: 348.0120.

(2-(5,6-Difluoro-1H-benzo[d]imidazol-2-yl)phenyl)(hydroxy)-iodonium Tosylate (7f). Reaction of 2-(2-iodophenyl)-1H-benzo[d]imidazole 6f (0.71 g, 2 mmol) with mCPBA (77%, 1.38 g, 4 mmol)

and $p\text{-TsOH}\cdot\text{H}_2\text{O}$ (0.53 g, 2.8 mmol) in 10 mL of DCM-TFE mixture (1:1) according to the general procedure afforded 0.95 g (87%) of product 7f, isolated as a light brown solid: mp 167–168 °C; ^1H NMR (400 MHz, DMSO- d_6): δ = 8.48 (dd, J = 7.6, 1.2 Hz, 1H), 8.08–8.03 (m, 2H), 8.00–7.96 (m, 2H), 7.91 (td, J = 7.5, 0.8 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.11(d, J = 7.6 Hz, 2H), 2.28 (s, 3H); ^1C NMR (100 MHz, DMSO- d_6): δ = 153.0, 145.5, 139.7, 137.9, 134.1, 132.5 (d, $J_{\text{C-F}}$ = 11.7 Hz), 131.5, 131.3, 129.9 (d, $J_{\text{C-F}}$ = 12.0 Hz), 128.2, 127.6, 125.5, 125.0, 120.8, 104.9 (d, $J_{\text{C-F}}$ = 21.8 Hz), 102.1 (d, $J_{\text{C-F}}$ = 23.1 Hz), 20.8; ^{19}F NMR (376 MHz, DMSO- d_6): δ = -138.6 (d, J = 23.2 Hz), -139.9 (d, J = 23.2 Hz); HRMS (ESI-TOF-positive ionization): calcd for $C_{13}H_7F_2\text{IN}_2$ ([M - OH - OTs] $^+$): 355.9616, found: 355.9621.

Synthesis of (2-(1H-Benzo[d]imidazol-2-yl)phenyl)(aryl)-iodonium Triflates 8: General Procedure. To a stirred solution of [hydroxy(tosyloxy)iodo]arenes 7a-f (0.2 mmol, 1 equiv) in 1.5 mL of TFE or HFIP was added trifluoromethanesulfonic acid (0.026 mL, 0.3 mmol, 1.5 equiv), and reaction mixture was stirred during 10 min. Then arene was added, and stirring was continued until full conversion of starting material according to NMR (temperature and reaction times are provided in the text). The solvent was evaporated at room temperature. The products were precipitated by the addition of Et₂O. The solids were filtered off, washed with Et₂O three times, and dried in a vacuum.

(2-(1H-Benzo[d]imidazol-2-yl)phenyl)(mesityl)iodonium Triflate (8a). Reaction of [hydroxy(tosyloxy)iodo]arene 7a (0.102 g, 0.2 mmol) with mesitylene (0.056 mL, 0.048 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at room

temperature during 8 h afforded 0.115 g (98%) of product 8a, isolated as a beige solid: mp 195–196 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 13.90 (s, 1H), 8.47 (dd, J = 7.6, 1.6 Hz, 1H), 7.86 (t, J = 7.2 Hz, 1H), 7.78–7.76 (m, 2H), 7.60–7.56 (m, 1H), 7.44–7.40 (m, 2H), 7.37 (s, 2H), 6.92 (d, J = 8.0 Hz, 1H), 2.53 (s, 6H), 2.42 (s, 3H); 13 C NMR (125 MHz, DMSO- d_6): δ = 149.3, 144.0, 143.0, 133.8, 131.4, 130.0, 129.4, 128.9, 127.8, 124,2, 124.1, 121.0, 120.71 (q, $J_{\rm CF}$ = 320 Hz, CF₃SO₃ $^-$), 111.6, 26.0, 20.8; 19 F NMR (376 MHz, DMSO- d_6): δ = -77.7; HRMS (ESI-TOF-positive ionization): calcd for $C_{22}H_{20}$ IN₂ ([M - OTf] $^+$): 439.0671, found: 439.0666.

(2-(1H-Benzo[d]imidazol-2-yl)phenyl)(p-tolyl)iodonium Triflate (8b). Reaction of [hydroxy(tosyloxy)iodo]arene 7a (0.102 g,

0.2 mmol) with toluene (0.064 mL, 0.055 g, 0.6 mmol) in 1.5 mL of TFE (HFIP) according to the general procedure at 50 °C during 48 h (9 h with HFIP) afforded 0.092 g (82%) [or 0.101 g (90%) with HFIP] of product 8b (contains 20% of ortho-isomer), isolated as a beige solid: mp 234–235 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 13.93 (s, 1H), 8.45 (dd, J = 8.0, 1.2 Hz, 1H), 8.36 (d, J = 7.6 Hz, 1H), 8.21 (d, J = 8.0 Hz, 2H), 7.84 (t, J = 7.2 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.74 (dd, J = 7.6, 1.6 Hz, 1H), 7.63–7.57 (m, 1H), 7.54 (d, J =8.0 Hz, 2H), 7.49-7.46 (m, 1H), 7.42 (td, J = 7.2, 1.2 Hz, 2H), 7.11 $(d_1, J = 8.0 \text{ Hz}, 1\text{H}), 7.02 (d_1, J = 8.4 \text{ Hz}, 1\text{H}), 6.94 (d_1, J = 8.4 \text{ Hz}, 1\text{H})$ 1H), 2.57 (s, 3H), 2.50 (s, 3H); 13 C NMR (100 MHz, DMSO- d_{δ}): δ = 149.3, 145.7, 143.7, 142.3, 140.1, 138.8, 137.7, 137.4, 134.6, 133.9, 133.7, 133.4, 132.9, 131.8, 131.4, 131.2, 130.5, 129.9, 129.6, 129.2, 129.0, 128.1, 127.4, 127.1, 124.8, 123.6, 120.70 (q, $J_{CF} = 320$ Hz, CF₃SO₃⁻), 118.4, 114.3, 113.0, 112.7, 111.9, 24.7, 21.3; ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -77.8$; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{16}IN_2$ ([M - OTf]⁺): 411.0353, found:

(2-(1H-Benzo[d]imidazol-2-yl)phenyl)(thiophen-2-yl)iodonium Triflate (8c). Reaction of [hydroxy(tosyloxy)iodo]arene 7a (0.102 g,

0.2 mmol) with thiophene (0.032 mL, 0.034 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at 0–5 °C during 2 h afforded 0.106 g (96%) of product 8c, isolated as a beige solid: mp 221–222 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 14.03 (s, 1H), 8.43 (d, J = 7.2 Hz, 1H), 8.26 (d, J = 4.4 Hz, 1H), 8.19 (s, 1H), 7.85 (t, J = 7.2 Hz, 1H), 7.79 (d, J = 6.4 Hz, 1H), 7.73 (d, J = 6.4 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.44 (br s, 3H), 7.01 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 149.5, 143.5, 139.5, 139.2, 134.4, 133.7, 131.7, 130.6, 129.5, 128.6, 126.6, 124.9, 123.8, 120.67 (q, $J_{\rm CF}$ = 320 Hz, CF₃SO₃⁻), 118.0, 116.9, 112.8, 102.2; ¹°F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{17}H_{12}{\rm IN}_2{\rm S}$ ([M – OTf] $^+$): 402.9760, found: 402.9754.

(2-(1H-Benzo[d]imidazol-2-yl)phenyl)(4-methoxyphenyl)-iodonium Triflate (8d). Reaction of [hydroxy(tosyloxy)iodo]arene 7a (0.102 g, 0.2 mmol) with 4-anisole (0.040 mL, 0.043 g, 0.4 mmol) in

1.5 mL of TFE according to the general procedure at 0–5 °C during 3 h afforded 0.099 g (92%) of product **8d** (contains 15% of orthosomer), isolated as a beige solid: mp 151–152 °C; ¹H NMR (500 MHz, DMSO- d_6) δ = 8.44 (dd, J = 8.0, 1.5 Hz, 1H), 8.29 (dd, J = 7.5, 1.5 Hz, 1H), 8.26–8.21 (m, 2H), 8.19 (dd, J = 7.5, 1.0 Hz, 1H), 7.94–7.92 (m, 2H), 7.89–7.86 (m, 2H), 7.84 (td, J = 7.5, 1.0 Hz, 1H), 7.76 (br. s, 2H), 7.73 (dd, J = 7.5, 1.0 Hz, 1H), 7.68–7.66 (m, 2H), 7.60 (ddd, J = 8.7, 7.4, 1.5 Hz, 1H), 7.54–7.51 (m, 2H), 7.43–7.41 (m, 2H), 7.30–7.24 (m, 2H), 7.05 (dd, J = 8.5, 1.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 162.8, 149.3, 140.1, 139.4, 134.1, 133.4, 132.3, 131.1, 131.0, 130.3, 130.2, 128.9, 128.6, 127.0, 126.5, 120.68 (q, $J_{\rm CF}$ = 320 Hz, CF₃SO₃⁻), 118.0, 114.7, 114.4, 104.3, 55.8, 55.2; ¹⁹F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{16}IN_{2}O$ ([M - OTf] $^+$): 427.0302, found: 427.0301.

Mesityl(2-(6-nitro-1H-benzo[d]imidazol-2-yl)phenyl)iodonium Triflate (8e). Reaction of [hydroxy(tosyloxy)iodo]arene 7b (0.111 g,

0.2 mmol) with mesitylene (0.056 mL, 0.048 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at room temperature during 9 h afforded 0.106 g (92%) of product **8e** (mixture of tautomers), isolated as a beige solid: mp 241–242 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 14.47 (s, 1H), 8.62 (s, 1H), 8.51–8.44 (m, 1H), 8.26 (t, J = 8.4 Hz, 1H), 7.96–7.88 (m, 2H), 7.65 (t, J = 8.0 Hz, 1H), 7.40 (s, 2H), 6.96 (d, J = 8.4 Hz, 1H), 2.55 (s, 6H), 2.43 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 154.0, 153.4, 144.5, 144.3, 144.0, 143.6, 143.1, 139.5, 139.1, 137.1, 134.8, 134.7, 134.0, 131.5, 130.3, 130.1, 129.2, 127.1, 126.8, 120.71 (q, $J_{\rm CF}$ = 321 Hz, CF₃SO₃⁻), 120.6, 119.9, 119.0, 114.6, 113.2, 112.0, 109.0, 26.1, 20.9; ¹9F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for C₂₂H₁₉IN₃O₂ ([M – OTf]⁺): 484.0516, found: 484.0534. The crystal suitable for X-ray was prepared by diffusion of ether to the saturated solution of **8e** in MeOH.

(2-(6-Nitro-1H-benzo[d]imidazol-2-yl)phenyl)(p-tolyl)iodonium Triflate (8f). Reaction of [hydroxy(tosyloxy)iodo]arene 7b (0.111 g,

0.2 mmol) with toluene (0.064 mL, 0.055 g, 0.6 mmol) in 1.5 mL of TFE (HFIP) according to the general procedure at 50 °C during 48 h (9 h with HFIP) afforded 0.096 g (79%) [or 0.106 g (88%) with HFIP] of product 8f (mixture of tautomers, contains 20% of orthosomer), isolated as a beige solid: mp 228–229 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.61 (s, 1H), 8.48 (d, J = 7.6 Hz, 1H), 8.37 (d, J = 7.6 Hz, 1H), 8.28 (dd, J = 8.8, 2.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 2H), 7.93 (d, J = 8.8 Hz, 1H), 7.87 (t, J = 7.2 Hz, 1H), 7.82–7.78 (m, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.51–7.47 (m, 1H), 7.08 (d, J = 8.4 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 2.57 (s, 3H), 2.50 (s, 3H); 13 C NMR (100 MHz, DMSO- d_6): δ = 154.6, 143.8, 143.4, 142.3, 138.8, 137.3, 134.0, 132.9, 131.8, 131.2, 130.7, 129.9, 129.7, 127.3, 122.3, 120.91 (q, J_{CF} = 322 Hz, CF₃SO₃ $^{-}$),

119.1, 115.9, 115.6, 114.8, 113.5, 111.7, 24.7, 21.2; ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -77.8$; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{15}IN_3O_2$ ([M - OTf]⁺): 456.0203, found: 456.0205.

(2-(6-Nitro-1H-benzo[d]imidazol-2-yl)phenyl)(thiophen-2-yl)-iodonium Triflate (8g). Reaction of [hydroxy(tosyloxy)iodo]arene 7b

(0.111 g, 0.2 mmol) with thiophene (0.032 mL, 0.034 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at 0–5 °C during 3 h afforded 0.103 g (86%) of product 8g (mixture of tautomers), isolated as a beige solid: mp 229–230 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.63 (br. s, 1H), 8.48 (d, J = 7.2 Hz, 1H), 8.29 (d, J = 6.4 Hz, 2H), 8.24 (d, J = 3.2 Hz, 1H), 7.95–7.89 (m, 2H), 7.72 (t, J = 7.2 Hz, 1H), 7.48–7.46 (m, 1H), 7.08 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 154.0, 153.4, 144.1, 143.9, 143.7, 140.1, 138.9, 138.7, 134.6, 133.9, 131.5, 130.7, 129.7, 129.5, 129.3, 125.9, 120.67 (q, J_{CF} = 321 Hz, $CF_3SO_3^-$), 120.1, 119.2, 118.6, 117.2, 114.2, 113.4, 109.2, 100.9, 100.7; ¹⁹F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{17}H_{11}IN_3O_2S$ ([M — OTf] $^+$): 447.9611, found: 447.9622.

(2-(6-Nitro-1H-benzo[d]imidazol-2-yl)phenyl)(4-methoxyphenyl)-iodonium Triflate (8h). Reaction of [hydroxy(tosyloxy)iodo]arene 7b

(0.111 g, 0.2 mmol) with 4-anisole (0.040 mL, 0.043 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at 0–5 °C during 3 h afforded 0.102 g (82%) of product 8h (mixture of tautomers, contains 15% of ortho-isomer), isolated as a beige solid: mp 191–192 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 14.08 (d, J = 9.2 Hz, 1H), 8.43 (d, J = 7.6 Hz, 1H), 8.30 (dd, J = 8.0, 1.6 Hz, 1H), 8.24 (d, J = 8.8 Hz, 2H), 7.91–7.89 (m, 1H), 7.87–7.80 (m, 3H), 7.64–7.60 (m, 1H), 7.53–7.48 (m, 2H), 7.45–7.44 (m, 1H), 7.27 (d, J = 9.2 Hz, 2H), 7.11 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0, 1H), 3.92 (s, 3H); 13 C NMR (100 MHz, DMSO- d_6): δ = 162.9, 139.5, 133.7, 131.2, 130.5, 129.1, 128.1, 126.8, 123.9, 123.87 (q, J_{CF} = 322 Hz, CF $_3$ SO $_3$ -), 118.0, 114.7, 104.0, 55.8; 19 F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{15}IN_3O_3$ ([M - OTf] $^+$): 472.0158, found: 472.0149.

Mesityl(2-(6-methyl-1H-benzo[d]imidazol-2-yl)phenyl)iodonium Triflate (8i). Reaction of [hydroxy(tosyloxy)iodo]arene 7c (0.104 g,

0.2 mmol) with mesitylene (0.056 mL, 0.048 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at room temperature during 8 h afforded 0.113 g (94%) of product 8i (mixture of tautomers), isolated as a beige solid: mp 221–222 °C; $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) δ = 13.78 and 13.73 (2s, 1H), 8.44 (d, J = 7.6 Hz, 1H), 7.85 (t, J = 7.2 Hz, 1H), 7.67–7.51 (m, 3H), 7.31 (s, 2H), 7.26 and 7.22 (2d, J = 8.4 Hz, 1H), 6.91 (dd, J = 8.4, 2.4 Hz, 1H), 2.52 (s, 6H), 2.49 (s, 3H), 2.42 (s, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO- d_6): δ = 149.1, 148.8, 144.0, 143.0, 140.4, 138.3, 134.9, 134.5, 133.6, 133.5, 132.8, 132.7, 131.4, 130.0, 129.2, 128.8, 127.8, 126.3, 125.1, 121.1, 121.0, 120.70 (q, J_{CF} = 321 Hz, $\mathrm{CF_3SO_3}^-$), 118.0, 112.1,

111.4, 111.4, 26.0, 21.4, 21.3, 20.9; ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -77.8$; HRMS (ESI-TOF-positive ionization): calcd for $C_{23}H_{22}IN_2$ ([M - OTf]⁺): 453.0822, found: 453.0824.

(2-(6-Methyl-1H-benzo[d]imidazol-2-yl)phenyl)(p-tolyl)iodonium Triflate (8j). Reaction of [hydroxy(tosyloxy)iodo]arene 7c

(0.104 g, 0.2 mmol) with toluene (0.064 mL, 0.055 g, 0.6 mmol) in 1.5 mL of TFE (HFIP) according to the general procedure at 50 °C during 48 h (9 h with HFIP) afforded 0.094 g (82%) [or 0.104 g (91%) with HFIP] of product 8j (mixture of tautomers, contains 5% of ortho-isomer), isolated as a beige solid: mp 223–224 °C; $^1{\rm H}$ NMR (500 MHz, DMSO- d_6) δ = 13.71 (s, 1H), 8.41 (dd, J = 7.5, 1.0 Hz, 1H), 8.19 (d, J = 8.0 Hz, 2H), 7.82 (t, J = 7.5 Hz, 1H), 7.64–7.49 (m, 5H), 7.24 (s, 1H), 6.99 (d, J = 8.5 Hz, 1H), 2.49 (s, 6H); $^{13}{\rm C}$ NMR (125 MHz, DMSO- d_6): δ = 148.8, 143.7, 138.2, 137.3, 134.8, 134.5, 133.1, 132.8, 131.1, 130.4, 128.7, 128.1, 127.1, 126.2, 125.5, 125.1, 120.68 (q, $J_{\rm CF}$ = 321 Hz, CF $_3{\rm SO}_3^-$), 117.8, 114.1, 112.1, 111.9, 24.7, 21.3, 21.2; $^{19}{\rm F}$ NMR (376 MHz, DMSO- d_6): δ = -77.7; HRMS (ESI-TOF-positive ionization): calcd for C $_{21}{\rm H}_{18}{\rm IN}_2$ ([M - OTf]*): 425.0509, found: 425.0504.

(2-(6-Methyl-1H-benzo[d]imidazol-2-yl)phenyl)(thiophen-2-yl)-iodonium Triflate (8k). Reaction of [hydroxy(tosyloxy)iodo]arene 7c

(0.104 g, 0.2 mmol) with thiophene (0.032 mL, 0.034 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at 0–5 °C during 2 h afforded 0.103 g (91%) of product 8k (mixture of tautomers), isolated as a beige solid: mp 220–221 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 13.91 (s, 1H), 8.43 (d, J = 7.6 Hz, 1H), 8.26 (d, J = 5.2 Hz, 1H), 8.20 (t, J = 3.2 Hz, 1H), 7.86 (t, J = 7.6 Hz, 1H), 7.69–7.60 (m, 2H), 7.56 (s, 1H), 7.51 (s, 1H), 7.45 (t, J = 3.6 Hz, 1H), 7.29–7.22 (m, 1H), 7.01 (d, J = 8.0 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 149.3, 149.1, 143.5, 139.5, 137.4, 134.8, 134.7, 133.6, 133.5, 133.2, 132.5, 131.4, 130.6, 129.5, 128.5, 126.7, 126.5, 125.4, 120.70 (q, J_{CF} = 320 Hz, $CF_3SO_3^-$), 117.6, 117.5, 116.8, 112.4, 112.3, 102.5, 102.4, 21.4, 21.3; ¹¹9F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{18}H_{14}IN_2S$ ([M - OTf] $^+$): 416.9917, found: 416.9918.

(4-Methoxyphenyl)(2-(6-methyl-1H-benzo[d]imidazol-2-yl)-phenyl)iodonium Triflate (8l). Reaction of [hydroxy(tosyloxy)iodo]arene 7c (0.104 g, 0.2 mmol) with 4-anisole (0.040 mL, 0.043 g,

0.4 mmol) in 1.5 mL of TFE according to the general procedure at 0–5 °C during 3 h afforded 0.105 g (89%) of product 8l (mixture of tautomers, contains 35% of ortho-isomer), isolated as a beige solid: mp 189–190 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 13.80 (s, 1H), 13.75 (s, 1H), 8.42 (d, J = 7.2 Hz, 1H), 8.24 (d, J = 7.2 Hz, 2H), 8.15 (d, J = 8.0 Hz, 1H), 7.85–7.82 (m, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.68–7.46 (m, 4H), 7.46–7.39 (m, 2H), 7.28–7.22 (m, 3H), 7.03

(d, J = 8.0 Hz, 1H), 3.92 (s, 3H); 13 C NMR (100 MHz, DMSO- d_6): $\delta = 162.8$, 148.9, 139.6, 139.5, 138.3, 134.9, 134.5, 133.3, 133.2, 132.1, 131.1, 130.3, 128.7, 128.5, 125.2, 124.66 (q, $J_{CF} = 329$ Hz, CF₃SO₃⁻), 118.0, 114.5, 112.1, 104.4, 55.8, 21.4, 21.2; 19 F NMR (376 MHz, DMSO- d_6): $\delta = -77.8$; HRMS (ESI-TOF-positive ionization): calcd for C₂₁H₁₈IN₂O ([M – OTf]⁺): 441.0458, found: 441.0468.

(2-(6-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)(mesityl)-iodonium Triflate (8m). Reaction of [hydroxy(tosyloxy)iodo]arene

7d (0.109 g, 0.2 mmol) with mesitylene (0.056 mL, 0.048 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at room temperature during 8 h afforded 0.105 g (84%) of product 8m (mixture of tautomers), isolated as a beige solid: mp 222–223 °C; $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) δ = 14.05 (d, J = 12.0 Hz, 1H), 8.46 (d, J = 7.6 Hz, 1H), 7.87 (td, J = 7.6, 0.4 Hz, 1H), 7.80 (br. s, 2H), 7.59 (ddd, J = 8.6, 7.5, 1.4 Hz, 1H), 7.44 (br. s, 1H), 7.38 (s, 2H), 6.93 (d, J = 8.0 Hz, 1H), 2.53 (s, 6H), 2.43 (s, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO- d_6): δ = 150.8, 150.6, 144.1, 143.0, 141.0, 139.0, 135.4, 134.1, 133.5, 131.5, 130.0, 129.7, 129.0, 128.2, 127.5, 124.8, 123.9, 120.9, 120.72 (q, J_{CF} = 321 Hz, $\mathrm{CF_3SO_3}^-$), 119.9, 117.9, 114.1, 112.3, 111.7, 26.0, 20.9; $^{19}\mathrm{F}$ NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $\mathrm{C_{22}H_{19}CllN_2}$ ([M - OTf] $^+$): 473.0276, found: 473.0274. The crystal suitable for X-ray was prepared by diffusion of ether to the saturated solution of 8m in MeOH.

(2-(6-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)(p-tolyl)iodonium Triflate (8n). Reaction of [hydroxy(tosyloxy)iodo]arene 7d (0.109 g,

0.2 mmol) with toluene (0.064 mL, 0.055 g, 0.6 mmol) in 1.5 mL of TFE (HFIP) according to the general procedure at 50 °C during 48 h (9 h with HFIP) afforded 0.096 g (81%) or 0.111 g (93%) with HFIP of product 8n (mixture of tautomers, contains 20% of ortho-isomer), isolated as a beige solid: mp 158–159 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 14.09 (s, 1H), 8.47 (s, 1H), 8.43 (dd, J = 8.0, 1.2 Hz, 1H), 8.35 (d, J = 7.2 Hz, 1H), 8.21 (d, J = 8.0 Hz, 2H), 7.88–7.76 (m, 4H), 7.63–7.59 (m, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.50–7.48 (m, 1H), 7.44 (dd, J = 8.4, 1.2 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 2.57 (s, 3H), 2.50 (s, 3H); 13 C NMR (100 MHz, DMSO- d_6): δ = 150,7, 148.8, 143.8, 142.3, 138.8, 137.3, 133.9, 133.6, 132.9, 131.8, 131.3, 131.2, 130.0, 129.6, 129.4, 129.2, 127.2, 126.9, 120.67 (q, J_{CF} = 321 Hz, CF₃SO₃ $^-$), 119.9, 114.4, 113.0, 111.6, 111.1, 24.7, 21.2; 19 F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{15}$ ClIN $_2$ ([M $^-$ OTf] $^+$): 444.9963, found: 444.9956.

 $(2\hbox{-}(6\hbox{-}Chloro\hbox{-}1H\hbox{-}benzo[d]imidazol\hbox{-}2\hbox{-}yl)phenyl)(thiophen\hbox{-}2\hbox{-}yl)\hbox{-}iodonium Triflate (\textbf{80}). Reaction of [hydroxy(tosyloxy)iodo]arene 7d$

(0.109 g, 0.2 mmol) with thiophene (0.032 mL, 0.034 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at 0–5 $^{\circ}$ C during

2 h afforded 0.104 g (89%) of product **8o** (mixture of tautomers), isolated as a beige solid: mp 238–239 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.43 (t, J = 6.4 Hz, 1H), 8.27 (d, J = 5.2 Hz, 1H), 8.21 (s, 1H), 7.87 (t, J = 7.6 Hz, 1H), 7.82–7.74 (m, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.47–7.43 (m, 2H), 7.03 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 151.0, 150.8, 143.8, 140.2, 139.8, 138.2, 135.3, 134.1, 134.0, 133.5, 131.5, 130.7, 129.6, 129.2, 128.9, 128.0, 126.5, 126.4, 125.1, 124.3, 120.72 (q, J_{CF} = 320 Hz, $CF_3SO_3^-$), 119.4, 117.5, 117.0, 114.3, 112.6, 101.7; ¹³F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{17}H_{11}CIIN_2S$ ([M - OTf] $^+$): 436.9371, found: 436.9373.

(2-(6-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)(4-methoxyphenyl)-iodonium Triflate (**8p**). Reaction of [hydroxy(tosyloxy)iodo]arene 7**d**

(0.109 g, 0.2 mmol) with 4-anisole (0.040 mL, 0.043 g, 0.4 mmol) in 1.5 mL of TFE according to the general procedure at 0–5 °C during 3 h afforded 0.099 g (81%) of product **8p** (mixture of tautomers, contains 13% of ortho-isomer), isolated as a beige solid: mp 191–192 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 14.06 (d, J = 9.2 Hz, 1H), 8.43 (d, J = 7.6 Hz, 1H), 8.29 (dd, J = 8.0, 1.6 Hz, 1H), 8.24 (d, J = 8.8 Hz, 2H), 7.90 (d, J = 7.6 Hz, 1H), 7.87–7.80 (m, 3H), 7.64–7.59 (m, 1H), 7.53–7.48 (m, 2H), 7.45 (m, 1H), 7.27 (d, J = 9.2 Hz, 2H), 7.11 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 162.9, 150.6, 139.5, 138.4, 133.7, 132.2, 131.2, 130.5, 129.1, 128.1, 126.8, 124.9, 123.9, 120.67 (q, J_{CF} = 320 Hz, J_{CF} (SSO₃), 119.7, 114.7, 114.1, 112.3, 104.0, 55.8; ¹⁹F NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESITOF-positive ionization): calcd for J_{C20}H₁₅CIIN₂O ([M – OTf]+): 460.9912, found: 460.9914.

(2-(6-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)(2,4,6-trimethoxyphenyl)iodonium Triflate (8q). Reaction of [hydroxy-(tosyloxy)iodo]arene 7d (0.109 g, 0.2 mmol) with 1,3,5-trimethoxybenzene (0.067 g, 0.4 mmol) in 1.5 mL of TFE according to the

general procedure at 0–5 °C during 2 h afforded 0.129 g (96%) of product 8q (mixture of tautomers), isolated as a beige solid: mp 236–237 °C; $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) δ = 14.10 (s, 1H), 8.44 (t, J = 6.4 Hz, 1H), 7.87–7.73 (m, 3H), 7.61 (t, J = 7.6 Hz, 1H), 7.46–7.40 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.63 (s, 2H), 3.98 (s, 4H), 3.89 (s, 7H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO- d_6): δ = 167.3, 161.0, 150.8, 150.6, 140.7, 138.7, 135.3, 134.0, 133.9, 133.4, 131.3, 129.4, 129.0, 128.2, 127.7, 127.0, 124.9, 124.0, 122.3, 120.71 (q, J_{CF} = 320 Hz, CF $_3\mathrm{SO}_3^-$), 119.7, 117.7, 114.1, 112.6, 112.4, 92.4, 85.7, 57.4, 56.4; $^{19}\mathrm{F}$ NMR (376 MHz, DMSO- d_6): δ = -77.8; HRMS (ESITOF-positive ionization): calcd for $\mathrm{C}_{22}\mathrm{H}_{19}\mathrm{ClIN}_2\mathrm{O}_3$ ([M - OTf] $^+$): 521.0123, found: 521.0117.

(2-(5,6-Difluoro-1H-benzo[d]imidazol-2-yl)phenyl)(mesityl)-iodonium Triflate (8r). Reaction of [hydroxy(tosyloxy)iodo]arene 7f

(0.109 g, 0.2 mmol) with mesitylene (0.056 mL, 0.048 g, 0.4 mmol) in 1.5 mL HFIP according to the general procedure at room temperature during 8 h afforded 0.102 g (82%) of product 8r, isolated as a beige solid: mp 166–167 °C; $^{1}\mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ = 14.14 (s, 1H), 8.45 (dd, J = 7.6, 1.2 Hz, 1H), 7.88–7.83 (m, 3H), 7.61–7.56 (m, 1H), 7.38 (s, 2H), 6.92 (d, J = 8.0 Hz, 1H), 2.52 (s, 6H), 2.42 (s, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ = 151.3, 144.1, 142.9, 135.8 (d, J_{CF} = 10.3 Hz), 134.0, 131.5, 130.3 (d, J_{CF} = 10.3 Hz), 130.0, 129.6, 129.0, 128.3, 128.2, 127.5, 120.9, 120.63 (q, J_{CF} = 320 Hz, CF $_{3}\mathrm{SO}_{3}^{-}$), 111.5, 106.0 (d, J_{CF} = 21.3 Hz), 100.8 (d, J_{CF} = 23.0 Hz), 26.0, 20.8; $^{19}\mathrm{F}$ NMR (376 MHz, DMSO- d_{6}): δ = -77.8, -139.9 (d, J = 5.8 Hz), -142.1 (d, J = 5.8 Hz); HRMS (ESITOF-positive ionization): calcd for $\mathrm{C}_{22}\mathrm{H}_{18}\mathrm{F}_{2}\mathrm{IN}_{2}$ ([M - OTf] $^{+}$): 475.0477, found: 475.0480.

Synthesis of 5-aryl-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazoles **9**: General Procedure. A pseudocyclic iodonium salt **8a–8f** (0.2 mmol) was dissolved in methanol until the formation of a clear solution (2.5–10.0 mL of MeOH). An aqueous solution of potassium hydroxide (0.1 mL of solution containing 0.4 mmol, 2 equiv of KOH) was added to the solution under vigorous stirring. An immediate precipitation of cyclic iodonium products **9** was observed. The stirring was continued for 1 h. The methanol was removed using rotary evaporation and water (3 mL) was added. The stirring was continued for 15 min. The solid was filtered off, washed by water (2 × 1.5 mL), and dried under vacuum.

5-Mesityl-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b][1,2]iodazole (9a). Reaction of 8a (0.118 g, 0.2 mmol) according to the general

procedure afforded 0.084 g (96%) of product 9a, isolated as a creamywhite solid: mp 235–236 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.51 (d, J = 7.6 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.73 (br. s, 2H), 7.52 (t, J = 7.6 Hz, 1H), 7.37–7.34 (m, 4H), 6.87 (d, J = 8.4 Hz, 1H), 2.52 (s, 6H), 2.41 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 150.2, 143.5, 142.7, 133.2, 131.1, 129.8, 129.3, 128.8, 128.6, 124.0, 123.7, 123.5, 123.4, 122.1, 118.9, 113.5, 26.0, 20.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{22}H_{20}IN_2$ ([M + H]+): 439.0666, found: 439.0668.

5-(p-Tolyl)-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b][1,2]-iodazole (9b). Reaction of 8b (0.112 g, 0.2 mmol) according to the

general procedure afforded 0.075 g (91%) of product **9b** (contains 10% of ortho-isomer), isolated as a beige solid: mp 228–229 °C; $^1\mathrm{H}$ NMR (500 MHz, DMSO- d_6) $\delta=8.46$ (d, J=8.0 Hz, 1H), 8.30 (d, J=8.0 Hz, 1H), 8.16 (d, J=8.0 Hz, 2H), 8.06 (d, J=8.0 Hz, 1H), 7.72 (t, J=7.5 Hz, 1H), 7.65–7.63 (m, 2H), 7.50 (d, J=8.0 Hz, 2H), 7.45 (t, J=8.5 Hz, 1H), 7.20–7.18 (m, 2H), 7.11 (d, J=7.5 Hz, 2H), 6.93 (d, J=8.5 Hz, 1H), 6.85 (d, J=8.5 Hz, 1H), 2.48 (s, 3H); $^{13}\mathrm{C}$ NMR (125 MHz, DMSO- d_6): $\delta=143.0$, 141.3, 137.1, 132.5, 131.6, 130.7, 129.5, 128.4, 128.0, 125.5, 121.7, 116.0, 114.2, 21.2; HRMS (ESI-TOF-positive ionization): calcd for $\mathrm{C}_{20}\mathrm{H}_{16}\mathrm{IN}_2$ ([M + H]*): 411.0353, found: 411.0356.

5-(Thiophen-2-yl)-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazole (**9c**). Reaction of 8c (0.110 g, 0.2 mmol) according to the general procedure afforded 0.076 g (95%) of product **9c**, isolated as a linen solid: mp 210–211 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.44 (d, J = 6.8 Hz, 1H), 8.17 (dd, J = 5.2, 1.2 Hz, 1H), 8.11 (dd, J = 3.6, 1.2 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.66–7.63

(m, 2H), 7.52–7.47 (m, 1H), 7.39 (dd, J=5.2, 3.6 Hz, 1H), 7.19–7.17 (m, 2H), 6.95 (d, J=8.4 Hz, 1H); 13 C NMR (100 MHz, DMSO- d_6): $\delta=153.4$, 142.2, 138.1, 131.7, 130.9, 130.7, 130.3, 128.6, 127.9, 121.57, 121.55, 121.54, 116.8, 116.0, 107.4; HRMS (ESI-TOF-positive ionization): calcd for $C_{17}H_{12}IN_2S$ ([M + H]+): 402.9760, found: 402.9762.

5-(4-Methoxyphenyl)-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazole (9d). Reaction of 8d (0.115 g, 0.2 mmol) according to

the general procedure afforded 0.080 g (94%) of product **9d** (contains 15% of ortho-isomer), isolated as a beige solid: mp 229–230 °C;

¹H NMR (500 MHz, DMSO- d_6) δ = 8.45 (d, J = 7.5 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 8.5 Hz, 2H), 8.05 (d, J = 8.0 Hz, 1H), 7.87 (m, 1H), 7.83 (t, J = 7.5 Hz, 1H), 7.75 (br. s, 2H), 7.62 (s, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.57–7.56 (m, 2H), 7.52 (d, J = 8.5 Hz, 1H), 7.40–7.38 (m, 2H), 7.26 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.0 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 163.2, 150.2, 140.1, 139.9, 133.6, 131.8, 131.7, 131.6, 130.7, 129.3, 128.6, 127.9, 124.3, 118.4, 115.1, 105.1, 56.3; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{16}IN_2O$ ([M + H]+): 427.0302, found: 427.0304.

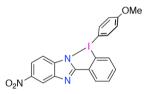
5-Mesityl-9-nitro-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b][1,2]-iodazole (**9e**). Reaction of **8e** (0.127 g, 0.2 mmol) according to the

general procedure afforded 0.093 g (96%) of product **9e**, isolated as a light yellow solid: mp 237–238 °C; $^1{\rm H}$ NMR (400 MHz, DMSO- d_6) δ = 8.55–8.52 (m, 2H), 8.12 (dd, J = 9.2, 2.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.53 (t, J = 8.0 Hz, 1H), 7.36 (s, 2H), 6.89 (d, J = 8.4 Hz, 1H), 2.53 (s, 6H), 2.42 (s, 3H); $^{13}{\rm C}$ NMR (125 MHz, DMSO- d_6): δ = 157.7, 157.6, 145.8, 143.7, 142.9, 142.0, 140.7, 134.0, 133.3, 132.7, 132.6, 131.8, 131.2, 130.48, 130.46, 130.3, 129.8, 129.2, 128.3, 127.6, 121.6, 111.9, 25.9, 20.8; HRMS (ESI-TOF-positive ionization): calcd for $\rm C_{22}H_{19}IN_3O_2$ ([M + H]*): 484.0516, found: 484.0526.

5-(p-Tolyl)-9-nitro-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazole (**9f**). Reaction of 8f (0.121 g, 0.2 mmol) according to

$$O_2N$$
 N N N

the general procedure afforded 0.076 g (83%) of product **9f** (contains 30% of ortho-isomer), isolated as a yellow solid: mp 208–209 °C;


¹H NMR (400 MHz, DMSO- d_6) δ = 8.57(d, J = 1.6 Hz, 1H), 8.54 (dd, J = 7.6, 1.6 Hz, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.32(d, J = 7.2 Hz, 1H), 8.17 (d, J = 8.4 Hz, 2H), 8.01 (dd, J = 8.8, 2.4 Hz, 1H), 7.74–7.67 (m, 3H), 7.51 (d, J = 8.0 Hz, 2H), 7.49–7.44 (m, 2H), 6.92 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 2.56 (s, 3H), 2.48

(s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 160.3, 143.1, 142.7, 142.1, 141.0, 139.0, 137.1, 133.4, 132.5, 132.3, 132.0, 131.7, 131.4, 130.8, 130.7, 129.4, 129.3, 129.2, 128.8, 121.7, 116.2, 116.0, 114.3, 113.9, 113.0, 112.7, 24.6, 21.2; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{15}IN_3O_2$ ([M + H]⁺): 456.0203, found: 456.0208.

5-(Thiophen-2-yl)-9-nitro-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo-[1,2-b][1,2]iodazole (**9g**). Reaction of **8g** (0.119 g, 0.2 mmol)

according to the general procedure afforded 0.082 g (92%) of product **9g**, isolated as a light yellow solid: mp 231–232 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.51 (dd, J = 6.0, 1.2 Hz, 2H), 8.29 (d, J = 6.4 Hz, 2H), 8.19 (dd, J = 5.2, 0.8 Hz, 1H), 8.13 (dd, J = 3.6, 0.8 Hz, 1H), 8.00 (dd, J = 8.8, 2.0 Hz, 1H), 7.74–7.68 (m, 2H), 7.54–7.50 (m, 1H), 7.41 (dd, J = 5.2, 3.6 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 160.6, 142.4, 141.0, 138.3, 132.1, 131.7, 130.9, 130.4, 128.6, 128.4, 117.0, 116.1, 112.75, 112.71, 112.0, 106.7; HRMS (ESI-TOF-positive ionization): calcd for $C_{17}H_{11}IN_3O_2S$ ([M + H]⁺): 447.9611, found: 447.9617.

5-(4-Methoxyphenyl)-9-nitro-5H- $5\lambda^3$ -benzo[d]benzo[4,5]imidazo-[1,2-b][1,2]iodazole (**9h**). Reaction of **8h** (0.124 g, 0.2 mmol)

according to the general procedure afforded 0.081 g (86%) of product 9h, isolated as a yellow solid: mp 227–228 °C; ¹H NMR (500 MHz, DMSO- d_6) δ = 8.54 (d, J = 7.0 Hz, 1H), 8.46 (s, 1H), 8.20 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.0 Hz, 1H), 7.70–7.65 (m, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.5 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 162.4, 160.8, 149.6, 143.2, 140.7, 139.1, 132.1, 131.8, 130.5, 129.0, 128.0, 125.4, 117.6, 116.0, 115.8, 114.6, 112.7, 106.8, 55.7; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{15}IN_3O_3$ ([M + H]⁺): 472.0158, found: 472.0154.

5-Mesityl-9-methyl-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazole (**9i**). Reaction of **8i** (0.120 g, 0.2 mmol) according to

the general procedure afforded 0.084 g (93%) of product 9i, isolated as a creamy-white solid: mp 198–199 °C; ¹H NMR (500 MHz, DMSO- d_6) δ = 8.45 (d, J = 7.5 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.48–7.46 (m, 2H), 7.34 (s, 2H), 7.11–7.09 (m, 1H), 6.86 (d, J = 8.6 Hz, 1H), 2.52 (s, 6H), 2.47 (s, 3H), 2.41 (s, 3H); 13 C NMR (100 MHz, DMSO- d_6): δ = 143.5, 142.8, 132.4, 131.1, 129.7, 128.9, 128.2, 128.04, 128.99, 127.6, 125.5, 124.1, 122.1, 111.4, 25.8, 21.4, 20.8; HRMS (ESI-TOF-positive ionization): calcd for $C_{23}H_{22}IN_2$ ([M + H] $^+$): 453.0822, found: 453.0826.

5-(p-Tolyl)-9-methyl-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazole (9j). Reaction of 8j (0.115 g, 0.2 mmol) according to the general procedure afforded 0.071 g (84%) of product 9j, isolated as a beige solid: mp 204–205 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.42 (d, J = 7.6 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.2 Hz, 1H), 7.57–7.48 (m, 3H), 7.40 (t, J = 7.6 Hz, 2H), 6.99 (d, J = 8.0 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 2.48 (s, 3H), 2.44 (s, 3H);

¹³C NMR (100 MHz, DMSO- d_6): δ = 152.9, 142.8, 141.9, 140.1, 137.1, 137.0, 136.9, 132.4, 131.4, 131.2, 131.1, 130.6, 129.4, 128.2, 123.0, 115.8, 115.6, 115.5, 114.7, 114.1, 21.5, 21.2.; HRMS (ESITOF-positive ionization): calcd for $C_{21}H_{18}IN_2$ ([M + H]⁺): 425.0509, found: 425.0512.

5-(Thiophen-2-yl)-9-methyl-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo-[1,2-b][1,2]iodazole (9k). Reaction of 8k (0.113 g, 0.2 mmol)

according to the general procedure afforded 0.077 g (93%) of product 9k, isolated as a beige solid: mp 222–223 °C; $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) $\delta=8.42$ (d, J=6.8 Hz, 1H), 8.21 (d, J=4.8 Hz, 1H), 8.14 (d, J=3.6 Hz, 1H), 7.79 (t, J=7.6 Hz, 1H), 7.58–7.54 (m, 2H), 7.48 (s, 1H), 7.42 (dd, J=5.2, 3.6 Hz, 1H), 7.14 (d, J=8.4 Hz, 1H), 6.98 (d, J=8.4 Hz, 1H), 2.47 (s, 3H); $^{13}\mathrm{C}$ NMR (125 MHz, DMSO- d_6): $\delta=142.9$, 138.91, 138.89, 136.8, 132.70, 132.66, 132.3, 131.1, 130.4, 129.4, 129.1, 128.9, 128.2, 126.3, 116.7, 21.4; HRMS (ESI-TOF-positive ionization): calcd for $\mathrm{C_{18}H_{14}IN_2S}$ ([M + H] $^+$): 416.9917, found: 416.9922.

5-(4-Methoxyphenyl)-9-methyl-5H- $5\lambda^3$ -benzo[d]benzo[4,5]-imidazo[1,2-b][1,2]iodazole (9l). Reaction of 8l (0.118 g, 0.2 mmol)

according to the general procedure afforded 0.073 g (83%) of product 9l (contains 20% of ortho-isomer), isolated as a creamy-white solid: mp 235–236 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 13.81 (s, 1H), 13.76 (s, 1H), 8.43 (d, J = 7.6 Hz, 1H), 8.23 (dd, J = 9.2, 3.2 Hz, 2H), 8.07 (d, J = 8.0 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.67–7.51 (m, 3H), 7.44 (s, 1H), 8.32 (d, J = 8.0 Hz, 1H), 7.28–7.22 (m, 3H), 7.13 (d, J = 7.6 Hz, 1H), 7. Thirty (d, J = 8.4 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 162.8, 149.1, 148.9, 140.4, 139.7, 139.4, 138.3, 134.9, 134.5, 133.2, 132.9, 132.7, 131.1, 130.3, 128.7, 127.1, 125.2, 122.3, 121.5, 119.1, 118.0, 117.9, 114.7, 114.6, 114.4, 112.2, 112.1, 104.5, 104.4, 55.8, 21.4, 21.3; HRMS (ESI-TOF-positive ionization): calcd for $C_{21}H_{18}IN_2O$ ([M + H]⁺): 441.0458, found: 441.0463.

9-Chloro-5-mesityl-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazole (**9m**). Reaction of **8m** (0.125 g, 0.2 mmol) according to

the general procedure afforded 0.087 g (92%) of product **9m**, isolated as a beige solid: mp 223–224 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.48 (dd, J = 7.6, 1.6 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.65–7.61 (m, 2H), 7.47–7.42 (m, 1H), 7.33 (s, 2H), 7.17 (dd, J = 8.8, 2.4 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 2.52 (s, 6H), 2.41 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 155.2, 143.8, 143.2, 141.1, 132.7, 131.9, 131.4, 130.2, 129.6, 128.4, 126.1, 122.8, 121.9, 117.7, 115.9, 115.8,

112.0, 26.3, 21.3; HRMS (ESI-TOF-positive ionization): calcd for $C_{22}H_{19}CIIN_2$ ($[M + H]^+$): 473.0276, found: 473.0279.

9-Chloro-5-(p-tolyl)-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b]-[1,2]iodazole (**9n**). Reaction of **8n** (0.119 g, 0.2 mmol) according to

the general procedure afforded 0.079 g (89%) of product **9n** (contains 20% of ortho-isomer), isolated as a beige solid: mp 175–176 °C;

¹H NMR (500 MHz, DMSO- d_6) δ = 8.49 (s, 1H), 8.46 (dd, J = 7.5, 1.5 Hz, 1H), 8.28 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.0 Hz, 2H), 7.73–7.70 (m, 2H), 7.65 (t, J = 8.0 Hz, 1H), 7.57–7.54 (m, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.42–7.41 (m, 1H), 7.40–7.36 (m, 2H), 7.05 (dd, J = 8.5, 2.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 2.54 (s, 3H), 2.47 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6): δ = 156.7, 142.7, 142.0, 138.4, 137.0, 132.5, 132.3, 130.96, 130.64, 130.5, 129.0, 128.4, 124.3, 122.7, 120.1, 117.3, 115.6, 115.0, 114.1, 112.7, 24.5, 21.2; HRMS (ESI-TOF-positive ionization): calcd for $C_{20}H_{15}CIIN_2$ ([M + H] $^+$): 444.9963, found: 444.9959.

9-Chloro-5-(thiophen-2-yl)-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo-[1,2-b][1,2]iodazole (90). Reaction of 80 (0.117 g, 0.2 mmol)

according to the general procedure afforded 0.083 g (95%) of product **90**, isolated as a beige solid: mp 227–228 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.43 (d, J = 6.8 Hz, 1H), 8.20 (d, J = 4.8 Hz, 1H), 8.13 (d, J = 2.8 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.69–7.64 (m, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.41 (dd, J = 4.8, 4.0 Hz, 1H), 7.23 (dd, J = 8.4, 1.6 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 154.2, 142.7, 141.5, 139.5, 138.6, 132.4, 131.0, 130.4, 128.8, 128.3, 122.27, 122.16, 122.14, 116.8, 105.5; HRMS (ESI-TOF-positive ionization): calcd for $C_{17}H_{11}CllN_2S$ ([M + H]⁺): 436.9371, found: 436.9376.

9-Chloro-5-(4-methoxyphenyl)-5H-5 λ^3 -benzo[d]benzo[4,5]-imidazo[1,2-b][1,2]iodazole (**9p**). Reaction of **8p** (0.122 g, 0.2 mmol)

according to the general procedure afforded 0.084 g (91%) of product 9p, isolated as a beige solid: mp 196–197 °C; $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) δ = 8.45 (d, J = 7.2 Hz, 1H), 8.15 (d, J = 8.4 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.54 (d, J = 9.2 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 8.4 Hz, 2H), 7.04 (dd, J = 8.0, 0.8 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, DMSO- d_6): δ = 162.2, 156.8, 144.91, 144.88, 142.68, 142.65, 139.0, 132.6, 130.9, 130.4, 128.9, 128.3, 124.2, 120.1, 117.4, 117.3, 115.6, 114.4, 107.8, 55.6. HRMS (ESI-TOF-positive ionization): calcd for $\mathrm{C}_{20}\mathrm{H}_{15}\mathrm{ClIN}_2\mathrm{O}$ ([M + H]*): 460.9912, found: 460.9919.

9-Chloro-5-(2,4,6-trimethoxyphenyl)-5H-5 λ^3 -benzo[d]benzo-[4,5]imidazo[1,2-b][1,2]iodazole (**9q**). Reaction of **8q** (0.115 g,

0.2 mmol) according to the general procedure afforded 0.089 g (85%) of product $\bf 9q$, isolated as a beige solid: mp 178–179 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.44 (d, J = 5.6 Hz, 1H), 7.68 (t, J = 5.6 Hz, 1H), 7.61–7.58 (m, 2H), 7.43 (t, J = 6.0 Hz, 1H), 7.11 (d, J = 6.4 Hz, 1H), 6.99 (d, J = 6.4 Hz, 1H), 6.57 (s, 2H), 3.96 (s, 3H), 3.87 (s, 6H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 166.6, 161.1, 155.6, 131.8, 131.5, 130.6, 128.6, 127.8, 125.0, 120.9, 117.2, 115.5, 112.8, 92.0, 88.7, 57.0, 56.1; HRMS (ESI-TOF-positive ionization): calcd for $C_{22}H_{19}CIIN_2O_3$ ([M + H]⁺): 521.0123, found: 521.0121.

8,9-Difluoro-5-mesityl-5H-5 λ^3 -benzo[d]benzo[4,5]imidazo[1,2-b][1,2]iodazole (9 \mathbf{r}). Reaction of 8 \mathbf{r} (0.125 g, 0.2 mmol) according to

the general procedure afforded 0.077 g (81%) of product 9r, isolated as a light brown solid: mp 178–179 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.44 (d, J = 7.2 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 8.4 Hz, 2H), 7.31–7.27 (m, 3H), 6.72 (d, J = 8.0 Hz, 1H), 2.47 (s, 6H), 2.36 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ = 158.4, 146.8 (d, J_{C-F} = 17.5 Hz), 144.4 (d, J_{C-F} = 17.5 Hz), 142.9, 142.6, 134.2, 130.8, 130.7, 129.5, 128.6, 127.2, 123.2, 111.2, 102.8, 25.8, 20.8; ¹³F NMR (376 MHz, DMSO- d_6): δ = −147.9; HRMS (ESI-TOF-positive ionization): calcd for $C_{22}H_{18}F_2IN_2$ ([M + H] $^+$): 475.0477, found: 475.0483.

■ COMPUTATIONAL DETAILS

All calculations were performed using Gaussian 09²² by adapting a method described by Vasdev, Liang, and coworkers for a series of iodine(III)-containing species.²³

Geometry Optimizations. All calculations were performed at the DFT level using the B3LYP functional with an ultrafine integration grid. The 6-31+G(d,p) basis set was used for C, H, O, and S, while using for iodine the augmented LANL2DZ(dp) set described by Gilbert, Sunderlin, and co-workers.²⁴ Empirical dispersion was applied using the D3 version of Grimme dispersion with Becke–Johnson damping (gd3BJ keyword).²⁵ All structures were fully optimized in DMSO using the SMD continuum model. Transition states were identified by having one imaginary frequency in the Hessian matrix. It was confirmed that transition states connect with the corresponding intermediates by means of application of the eigenvector corresponding to the imaginary frequency and subsequent optimization of the resulting structures. All energies collected in the text are Gibbs energies in solvent at 298 K.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.8b01995.

Copies of ¹H and ¹³C NMR, details of computational studies, and ORTEP-style ellipsoid diagrams (PDF)

Crystallographic file for 6b (CIF)

Crystallographic file for 7a (CIF)

Crystallographic file for 8e (CIF)

Crystallographic file for 8m (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: yusubov@mail.ru. *E-mail: vzhdanki@d.umn.edu.

ORCID ®

Alexandr Shafir: 0000-0002-8127-2299 Viktor V. Zhdankin: 0000-0002-0315-8861

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by research grants from the Russian Science Foundation (RSF-17-73-20066) and the National Science Foundation (CHE-1759798). A.S. also acknowledges financial support from ICIQ and from Spain's MINECO (CTQ2017-86936-P).

REFERENCES

- (1) For selected books and recent reviews, see: (a) Zhdankin, V. V. Iodine Heterocycles. Adv. Heterocycl. Chem. 2015, 115, 1-91. (b) Hypervalent Iodine Chemistry. In Topics in Current Chemistry; Wirth, T., Ed.; Springer: Switzerland, 2015; Vol. 373. (c) Morimoto, K.; Dohi, T.; Kita, Y. Metal-free Oxidative Cross-Coupling Reaction of Aromatic Compounds Containing Heteroatoms. Synlett 2017, 28, 1680-1694. (d) Le Vaillant, F.; Waser, J. Decarboxylative Alkynylation and Cyanation of Carboxylic Acids using Photoredox Catalysis and Hypervalent Iodine Reagents. Chimia 2017, 71, 226-230. (e) Wang, X.; Studer, A. Iodine(III) Reagents in Radical Chemistry. Acc. Chem. Res. 2017, 50, 1712-1724. (f) Yoshimura, A.; Yusubov, M. S.; Zhdankin, V. V. Synthetic applications of pseudocyclic hypervalent iodine compounds. Org. Biomol. Chem. 2016, 14, 4771-4781. (g) Charpentier, J.; Früh, N.; Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent Iodine Reagents. Chem. Rev. 2015, 115, 650-682.
- (2) For selected examples, see: (a) Sharma, A.; Hartwig, J. F. Metalcatalyzed azidation of tertiary C-H bonds suitable for late-stage functionalization. *Nature* **2015**, *517*, 600–604. (b) Krasutsky, A. P.; Kuehl, C. J.; Zhdankin, V. V. Direct azidation of adamantane and norbornane by stable azidoiodinanes. *Synlett* **1995**, *1995*, 1081–1082. (c) Alazet, S.; Le Vaillant, F.; Nicolai, S.; Courant, T.; Waser, J. Divergent Access to (1,1) and (1,2)-Azidolactones from Alkenes using Hypervalent Iodine Reagents. *Chem. Eur. J.* **2017**, *23*, 9501–9504. (d) Rabet, P. T. G.; Fumagalli, G.; Boyd, S.; Greaney, M. F. Benzylic C–H Azidation Using the Zhdankin Reagent and a Copper Photoredox Catalyst. *Org. Lett.* **2016**, *18*, 1646–1649.
- (3) For selected examples, see: (a) Hu, X.-H.; Yang, X.-F.; Loh, T.-P. Chelation-Assisted Rhodium-Catalyzed Direct Amidation with Amidobenziodoxolones: C(sp2)-H, C(sp3)-H, and Late-Stage Functionalizations. ACS Catal. 2016, 6, 5930–5934. (b) Zhdankin, V. V.; McSherry, M.; Mismash, B.; Bolz, J. T.; Woodward, J. K.; Arbit, R. M.; Erickson, S. 1-Amido-3-(1H)-1,2-benziodoxoles: stable amidoiodanes and reagents for direct amidation of organic substrates. Tetrahedron Lett. 1997, 38, 21–24.
- (4) For selected examples, see: (a) Ma, B.; Lin, X.; Lin, L.; Feng, X.; Liu, X. Chiral N,N'-dioxide organocatalyzed asymmetric electrophilic α -cyanation of β -keto esters and β -keto amides. J. Org. Chem. 2017, 82, 701–708. (b) Le Vaillant, F.; Wodrich, M. D.; Waser, J. Room temperature decarboxylative cyanation of carboxylic acids using photoredox catalysis and cyanobenziodoxolones: a divergent mechanism compared to alkynylation. Chem. Sci. 2017, 8, 1790–1800. (c) Wang, Y.-F.; Qiu, J.; Kong, D.; Gao, Y.; Lu, F.; Karmaker, P. G.; Chen, F.-X. The direct electrophilic cyanation of β -keto esters and amides with cyano benziodoxole. Org. Biomol. Chem. 2015, 13, 365–368.
- (5) For selected examples, see: (a) Hari, D. P.; Waser, J. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds. *J. Am. Chem. Soc.* **2017**, *139*, 8420–8423. (b) Shen, K.; Wang, Q. Copper-catalyzed aminoalkynylation of alkenes with hypervalent iodine reagents. *Chem. Sci.* **2017**, *8*, 8265–8270. (c) Wodrich, M. D.; Caramenti, P.; Waser, J. Alkynylation of Thiols

with Ethynylbenziodoxolone (EBX) Reagents: α - or β - π -Addition? Org. Lett. 2016, 18, 60-63.

- (6) For selected examples, see: (a) Wang, M.; Zhang, Y.; Wang, T.; Wang, C.; Xue, D.; Xiao, J. Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one. Org. Lett. 2016, 18, 1976-1979. (b) Egami, H.; Yoneda, T.; Uku, M.; Ide, T.; Kawato, Y.; Hamashima, Y. Difunctionalization of Alkenes Using 1-Chloro-1,2-benziodoxol-3-(1H)-one. J. Org. Chem. 2016, 81, 4020-4030.
- (7) Postnikov, P. S.; Guselnikova, O. A.; Yusubov, M. S.; Yoshimura, A.; Nemykin, V. N.; Zhdankin, V. V. Preparation and X-ray Structural Study of Dibenziodolium Derivatives. J. Org. Chem. 2015, 80, 5783-
- (8) (a) Holland, P. C.; Clark, M. C.; Bloxham, D. P.; Lardy, H. A. Mechanism of action of the hypoglycemic agent diphenyleneiodonium. J. Biol. Chem. 1973, 248, 6050-6056. (b) Gatley, S. J.; Al-Bassam, S. S.; Taylor, J. R.; Sherratt, H. S. A. Inhibition of diphenyleneiodonium and by its substituted derivatives of gluconeogenesis in isolated rat hepatocytes. Biochem. Soc. Trans. 1975, 3, 333-335. (c) Holland, P. C.; Sherratt, H. S. A. Biochemical effects of the hypoglycemic compound diphenyleneiodonium. Catalysis of anionhydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Biochem. J. 1972, 129, 39-54. (d) Brosnan, M. J.; Hayes, D. J.; Challiss, R. A. J.; Radda, G. K. Diphenyleneiodonium-induced cardiomyopathy. Biochem. Soc. Trans. 1986, 14, 1209-1210. (e) Cooper, J. M.; Petty, R. K. H.; Hayes, D. J.; Challiss, R. A. J.; Brosnan, M. J.; Shoubridge, E. A.; Radda, G. K.; Morgan-Hughes, J. A.; Clark, J. B. An animal model of mitochondrial myopathy: a biochemical and physiological investigation of rats treated in vivo with the NADH-CoQ reductase inhibitor, diphenyleneiodonium. J. Neurol. Sci. 1988, 83, 335-347. (f) Cooper, J. M.; Petty, R. K. H.; Hayes, D. J.; Morgan-Hughes, J. A.; Clark, J. B. Chronic administration of the oral hypoglycemic agent diphenyleneiodonium to rats. An animal model of impaired oxidative phosphorylation (mitochondrial myopathy). Biochem. Pharmacol. 1988, 37, 687-694. (g) Doussiere, J.; Vignais, P. V. Inhibition of superoxide radical anion generating oxidase of neutrophils by iodonium biphenyl in a cell free system: effect of the redox state of the oxidase complex. Biochem. Biophys. Res. Commun. 1991, 175, 143-151. (h) Lee, H.-R.; Do, H.; Lee, S.-R.; Sohn, E.-S.; Pyo, S.; Son, E. Effects of fucoidan on neuronal cell proliferation: association with NO production through the iNOS pathway. Prev. Nutr. Food Sci. **2007**, 12, 74-78.
- (9) For representative examples, see: (a) Lien, G.-S.; Wu, M.-S.; Bien, M.-Y.; Chen, C.-H.; Lin, C.-H.; Chen, B.-C. Epidermal growth factor stimulates nuclear factor-kB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K and Akt in human colon cancer cells. PLoS One 2014, 9, e104891-e104815. (b) Song, S.-Y.; Jung, E. C.; Bae, C. H.; Choi, Y. S.; Kim, Y.-D. Visfatin induces MUC8 and MUC5B expression via p38 MAPK/ROS/NF-κB in human airway epithelial cells. J. Biomed. Sci. 2014, 21, 49. (c) Hino, S.; Kito, A.; Yokoshima, R.; Sugino, R.; Oshima, K.; Morita, T.; Okajima, T.; Nadano, D.; Uchida, K.; Matsuda, T. Discharge of solubilized and Dectin-1-reactive β -glucan from macrophage cells phagocytizing insoluble β -glucan particles: Involvement of reactive oxygen species (ROS)-driven degradation. Biochem. Biophys. Res. Commun. 2012, 421, 329-334. (d) Tsai, K.-H.; Wang, W.-J.; Lin, C.-W.; Pai, P.; Lai, T.-Y.; Tsai, C.-Y.; Kuo, W.-W. NADPH oxidasederived superoxide Anion-induced apoptosis is mediated via the JNKdependent activation of NF-κB in cardiomyocytes exposed to high glucose. J. Cell. Physiol. 2012, 227, 1347-1357. (e) Van De Veerdonk, F. L.; Smeekens, S. P.; Joosten, L. A. B.; Kullberg, B. J.; Dinarello, C. A.; Van Der Meer, J. W. M.; Netea, M. G. Reactive oxygen speciesindependent activation of the IL-1 β inflammasome in cells from patients with chronic granulomatous disease. Proc. Natl. Acad. Sci. U. S. A. **2010**, 107, 3030-3033.
- (10) (a) Reich, H. J.; Cooperman, C. S. Structure and stereolability of triaryliodine (III) compounds. Degenerate isomerization of 5phenyl-5H-dibenziodole. J. Am. Chem. Soc. 1973, 95, 5077-5078.

- (b) Beringer, F. M.; Chang, L. L. Electrophilic and homolytic cleavage of 5-aryl-5H-dibenziodoles. J. Org. Chem. 1971, 36, 4055-4060. (c) Beringer, F. M.; Chang, L. L. Exchange of aryl ligands to polyvalent iodine. J. Org. Chem. 1972, 37, 1516-1519.
- (11) Wolf, W.; Steinberg, L. Benziodazole: a new heterocyclic ring system. Chem. Commun. 1965, 449.
- (12) Naae, D. G.; Gougoutas, J. Z. Novel heterocycle. Crystal structure and formation of N-chloro-3-aza-3H,2,1-benzoxiodol-1-yl chloride from the dichloride of o-iodobenzamide. J. Org. Chem. 1975, 40, 2129-2131.
- (13) Balthazor, T. M.; Godar, D. E.; Stults, B. R. Synthesis and structure of benziodazoles. J. Org. Chem. 1979, 44, 1447-1449.
- (14) (a) Zhdankin, V. V.; Arbit, R. M.; McSherry, M.; Mismash, B.; Young, V. G. Structure and chemistry of acetoxybenziodazole. Acidcatalyzed rearrangement of benziodazoles to 3-iminobenziodoxoles. J. Am. Chem. Soc. 1997, 119, 7408-7409. (b) Zhdankin, V. V.; Koposov, A. E.; Smart, J. T.; Tykwinski, R. R.; McDonald, R.; Morales-Izquierdo, A. Secondary Bonding-Directed Self-Assembly of Amino Acid Derived Benziodazoles: Synthesis and Structure of Novel Hypervalent Iodine Macrocycles. J. Am. Chem. Soc. 2001, 123, 4095-4096. (c) Zhdankin, V. V.; Koposov, A. Y.; Su, L.; Boyarskikh, V. V.; Netzel, B. C.; Young, V. G. Synthesis and structure of amino acidderived benziodazoles: New hypervalent iodine heterocycles. Org. Lett. 2003, 5, 1583-1586.
- (15) Gu, H.; Wang, C. Rhenium-catalyzed dehydrogenative olefination of C(sp3)-H bonds with hypervalent iodine(III) reagents. Org. Biomol. Chem. 2015, 13, 5880-5884.
- (16) Yoshimura, A.; Shea, M. T.; Makitalo, C. L.; Jarvi, M. E.; Rohde, G. T.; Saito, A.; Yusubov, M. S.; Zhdankin, V. V. Preparation, structure, and reactivity of bicyclic benziodazole: a new hypervalent iodine heterocycle. Beilstein J. Org. Chem. 2018, 14, 1016-1020.
- (17) Yamamoto, Y.; Togo, H. Facile one-pot preparation of [hydroxy(sulfonyloxy)iodo]arenes from iodoarenes with MCPBA in the presence of sulfonic acids. Synlett 2005, 2486-2488.
- (18) Dohi, T.; Yamaoka, N.; Kita, Y. Fluoroalcohols: versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts. Tetrahedron 2010, 66, 5775-5785.
- (19) Wiberg, K. B.; Rablen, P. R.; Rush, D. J.; Keith, T. A. Amides. 3. Experimental and Theoretical Studies of the Effect of the Medium on the Rotational Barriers for N,N-Dimethylformamide and N,N-Dimethylacetamide. J. Am. Chem. Soc. 1995, 117, 4261-4270.
- (20) Lim, C. J.; Kim, N.; Lee, E. K.; Lee, B. H.; Oh, K.-S.; Yoo, S.-e.; Yi, K. Y. Synthesis and SAR investigations of novel 2-arylbenzimidazole derivatives as melanin-concentrating hormone receptor 1 (MCH-R1) antagonists. Bioorg. Med. Chem. Lett. 2011, 21, 2309-2312.
- (21) Hikawa, H.; Imani, M.; Suzuki, H.; Yokoyama, Y.; Azumaya, I. Benzoyl methyl phosphates as efficient reagents in the one-pot tandem approach for the synthesis of 2-phenylbenzimidazoles in water. RSC Adv. 2014, 4, 3768-3773.
- (22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
- (23) Rotstein, B. H.; Wang, L.; Liu, R. Y.; Patteson, J.; Kwan, E. E.; Vasdev, N.; Liang, S. H. Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(III) ylides. Chem. Sci. 2016, 7, 4407-4417.

- (24) Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements. *J. Phys. Chem. A* **2001**, *105*, 8111–8116.
- (25) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, 32, 1456–1465.