
LEMNA: Explaining Deep Learning based Security Applications

Wenbo Guo1,2, Dongliang Mu5,1, Jun Xu4,1, Purui Su6, Gang Wang3, Xinyu Xing1,2
1The Pennsylvania State University, 2JD Security Research Center, 3Virginia Tech,

4Stevens Institute of Technolog, 5Nanjing University, 6Chinese Academy of Sciences
{wzg13,dzm77,xxing}@ist.psu.edu,jxu69@stevens.edu,purui@iscas.ac.cn,gangwang@vt.edu

ABSTRACT

While deep learning has shown a great potential in various domains,

the lack of transparency has limited its application in security or

safety-critical areas. Existing research has attempted to develop

explanation techniques to provide interpretable explanations for

each classification decision. Unfortunately, current methods are

optimized for non-security tasks (e.g., image analysis). Their key

assumptions are often violated in security applications, leading to

a poor explanation fidelity.

In this paper, we propose LEMNA, a high-fidelity explanation

method dedicated for security applications. Given an input data

sample, LEMNA generates a small set of interpretable features to ex-

plain how the input sample is classified. The core idea is to approx-

imate a local area of the complex deep learning decision boundary

using a simple interpretable model. The local interpretable model

is specially designed to (1) handle feature dependency to better

work with security applications (e.g., binary code analysis); and

(2) handle nonlinear local boundaries to boost explanation fidelity.

We evaluate our system using two popular deep learning applica-

tions in security (a malware classifier, and a function start detector

for binary reverse-engineering). Extensive evaluations show that

LEMNA’s explanation has a much higher fidelity level compared to

existing methods. In addition, we demonstrate practical use cases

of LEMNA to help machine learning developers to validate model be-

havior, troubleshoot classification errors, and automatically patch

the errors of the target models.

CCS CONCEPTS

· Security and privacy → Software reverse engineering;

KEYWORDS

Explainable AI, Binary Analysis, Deep Recurrent Neural Networks

ACMReference Format:Wenbo Guo, Dongliang Mu, Jun Xu, Pu-

rui Su, Gang Wang, Xinyu Xing. 2018. LEMNA: Explaining Deep

Learning based Security Applications. In CCS ’18: 2018ACMSIGSAC

Conference on Computer & Communications Security, Oct. 15ś19,

2018, Toronto, ON, Canada. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3243734.3243792

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15ś19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243792

1 INTRODUCTION

In recent years, Deep Neural Networks have shown a great potential

to build security applications. So far, researchers have successfully

applied deep neural networks to train classifiers for malware classi-

fication [2, 16, 21, 48, 68], binary reverse-engineering [15, 52, 71]

and network intrusion detection [24, 62], which all achieved an

exceptionally high accuracy.

While intrigued by the high-accuracy, security practitioners are

concerned about the lack of transparency of the deep learning mod-

els and thus hesitated to widely adopt deep learning classifiers in

security and safety-critical areas. More specifically, deep neural net-

works could easily contain hundreds of thousands or even millions

of neurons. This network, once trained with massive datasets, can

provide a high classification accuracy. However, the high complex-

ity of the network also leads to a low łinterpretabilityž of the model.

It is very difficult to understand how deep neural networks make

certain decisions. The lack of transparency creates key barriers

to establishing trusts to the model or effectively troubleshooting

classification errors.

To improve the transparency of deep neural networks, researchers

start to work on explanation methods to interpret the classification

results. Most existing works focus on non-security applications

such as image analysis or natural language processing (NLP). Fig-

ure 1a shows an example. Given an input image, the explanation

method explains the classification result by pinpointing the most

impactful features to the final decision. Common approaches in-

volve running forward propagation [17, 19, 32, 76] or backward

propagation [3, 50, 53] in the network to infer important features.

More advanced methods [34, 45] produce explanations under a

łblackboxž setting where no knowledge of classifier details is avail-

able. The basic idea is to approximate the local decision boundary

using a linear model to infer the important features.

Unfortunately, existing explanation methods are not directly

applicable to security applications. First, most existing methods are

designed for image analysis, which prefers using Convolutional

Neural Networks (CNN). However, CNN model is not very popular

in security domains. Security applications such as binary reverse-

engineering and malware analysis either have a high-level feature

dependency (e.g, binary code sequences), or require high scalability.

As a result, Recurrent Neural Networks (RNN) or Multilayer Percep-

tron Model (MLP) are more widely used [15, 21, 52, 68]. So far, there

is no explanation method working well on RNN. Second, existing

methods still suffer from a low explanation fidelity, as validated by

our experiments in ğ5. This might be acceptable for image analysis,

but can cause serious troubles in security applications. For exam-

ple, in Figure 1a, the highlighted pixels are not entirely accurate

(in particular at the edge areas) but are sufficient to provide an

intuitive understanding. However, for security applications such as

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

364

4 OUR EXPLANATION METHOD

To achieve the above goals, we design and develop LEMNA. At the

high-level, we treat a target deep learning classifier as a blackbox

and derive explanation through model approximation. In order to

provide a high fidelity explanation, LEMNA needs to take a very

different design path from existing methods. First, we introduce

fused lasso [64] to handle the feature dependency problems that are

often encountered in security applications and RNN (e.g., time series

analysis, binary code sequence analysis). Then, we integrate fused

lasso into amixture regressionmodel [28] to approximate locally non-

linear decision boundaries to support complex security applications.

In the following, we first discuss the insights behind the design

choices of using fused lasso and mixture regression model. Then,

we describe the technical details to integrate them into a single

model to handle feature dependencies and locally nonlinearity at

the same time. Finally, we introduce additional steps to utilize LEMNA

to derive high-fidelity explanations.

4.1 Insights behind Our Designs

Fused Lasso. Fused lasso is a penalty term commonly used for

capturing feature dependencies, and is useful to handle the depen-

dent features in deep learning models such as RNN. At the high-level,

łfused lassož forces LEMNA to group relevant/adjacent features to-

gether to generate meaningful explanations. Below, we introduce

the technical details of this intuition.

To learn a model from a set of data samples, a machine learning

algorithm needs to minimize a loss function L(f (x),y) that defines
the dissimilarity between the true label and the predicted label by

the model. For example, to learn a linear regression model f (x) =
βx + ϵ from a data set with N samples, a learning algorithm needs

to minimize the following equation with respect to the parameter

β using Maximum Likelihood Estimation (MLE) [38].

L(f (x),y) =
N∑

i=1

∥βxi − yi ∥ . (1)

Here, xi is a training sample, represented by an M-dimensionality

feature vector (x1,x2, · · · ,xM)T . The label of xi is denoted as yi .

The vector β = (β1, β2, · · · βM) contains the coefficients of the linear

model. ∥ · ∥ is the L2-norm measuring the dissimilarity between

the model prediction and the true label.

Fused lasso is a penalty term that can be introduced into any

loss functions used by a learning algorithm. Take linear regression

for example. Fused lasso manifests as a constraint imposed upon

coefficients, i.e.,

L(f (x),y) =
N∑

i=1

∥βxi − yi ∥ ,

subject to

M∑

j=2

∥βj − βj−1∥ ≤ S .

(2)

Fused lasso restricts the dissimilarity of coefficients assigned to ad-

jacent features within a small threshold S (i.e., a hyper-parameter)

when a learning algorithm minimizes the loss function. As a re-

sult, the penalty term forces a learning algorithm to assign equal

weights to the adjacent features. Intuitively, this can be interpreted

as forcing a learning algorithm to take features as groups and then

learn a target model based on feature groups.

Security applications, such as time series analysis and code se-

quence analysis, often need to explicitly model the feature depen-

dency of sequential data using RNN. The resulting classifier makes

a classification decision based on the co-occurrence of features. If

we use a standard linear regression model (e.g., LIME) to derive

an explanation, we cannot approximate a local decision boundary

correctly. This is because a linear regression model cannot capture

feature dependency and treat them independently.

By introducing fused lasso in the process of approximating local

decision boundary, we expect the resulting linear model to have

the following form:

f (x) = β1x1 + β2(x2 + x3) + β3(x4 + x5) + · · · + βkxM , (3)

where features are grouped together and thus important features

are likely to be selected as a group or multiple groups. Explicitly

modeling this process in LEMNA helps to derive a more accurate

explanation, particularly for the decision made by an RNN. We fur-

ther explain this idea using an example of sentiment analysis in

Figure 1b. With the help of fused lasso, a regression model would

collectively consider adjacent features (e.g., words next to each

other in a sentence). When deriving the explanations, our model

does not simply yield a single word łnotž2, but can accurately cap-

ture the phrase łnot worth the pricež as the explanation for the

sentiment analysis result.

Mixture Regression Model. A mixture regression model allows

us to approximate locally nonlinear decision boundaries more ac-

curately. As shown in Figure 3b, a mixture regression model is a

combination of multiple linear regression models, which makes it

more expressive to perform the approximation:

y =

K∑

k=1

πk (βkx + ϵk) , (4)

where K is a hyper-parameter indicating the total number of lin-

ear components combined in the mixture model; πk indicates the

weight assigned to that corresponding component.

Given sufficient data samples, whether the classifier has a linear

or non-linear decision boundary, the mixture regression model

can nearly perfectly approximate the decision boundary (using a

finite set of linear models) [35]. As such, in the context of deep

learning explanation, the mixture regression model can help avoid

the aforementioned non-linearity issues and derive more accurate

explanations.

To illustrate this idea, we use the example in Figure 3. As shown

in Figure 3a, a standard linear approximation cannot guarantee the

data sampled around the input x still remain in the locally linear

region. This can easily lead to imprecise approximation and low-

fidelity explanations. Our method in Figure 3b approximates the

local decision boundary with a polygon boundary, in which each

blue line represents an independent linear regression model. The

best linear model for producing the explanation should be the red

line passing through the data point x. In this way, the approximation

process can yield an optimal linear regressionmodel for pinpointing

important features as the explanation.

2In sentiment analysis, łnotž does not always carry negative sentiment, e.g., łnot badž.

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

368

4.2 Model Development

Next, we convert these design insights into a functional explanation

system. We introduce the technical steps to integrate fused lasso in

the learning process of a mixture regression model so that we can

handle feature dependency and decision boundary non-linearity at

the same time. Technically speaking, we need to derive a mixture

regression model by minimizing the following equation

L(f (x),y) =
N∑

i=1

∥ f (xi) − yi ∥ ,

subject to

M∑

j=2

∥βk j − βk (j−1)∥ ≤ S , k = 1, . . . ,K .

(5)

where f (·) represents the mixture regression model shown in Equa-

tion (4), and βk j indicates the parameter in the k th linear regression

model tied to its jth feature.

Different from a standard linear regression, our optimization

objective is intractable andwe cannot simply utilizeMLE to perform

minimization. To effectively estimate parameters for the mixture

regression model, we utilize an alternative approach.

First, we represent the mixture regression model in the form of

probability distributions

yi ∼
K∑

k=1

πkN(βkxi ,σ 2
k
) . (6)

Then, we treat π1:K , β1:K andσ 2
1:K as parameters3. By taking a guess

at these parameters, we initialize their values and thus perform

parameter estimation by using ExpectationMaximization (EM) [37],

an algorithm which estimates parameters by repeatedly performing

two steps ś E-Step and M-Step. In the following, we briefly describe

how this EM algorithm is used in our problem. More details can be

found in Appendix-A.

In the Equation (6), yi follows a distribution which combines

K Gaussian distributions, and each of these distributions has the

mean βkxi and the variance σ 2
k
. In the E-Step, we assign each of

the data samples to one of the Gaussian distributions by following

the standard procedure applied in learning an ordinary mixture

regression model. Based on the data samples assigned in the pre-

vious E-Step, we then re-compute the parameters π1:K , β1:K and

σ 2
1:K . For the parameters π1:K and σ 2

1:K , the re-computation still

follows the standard procedure used by ordinary mixture model

learning. But, for each parameter in β1:K , re-computation follows

a customized procedure. That is to compute βk by minimizing the

following equation with respect to βk

L(x ,y) =
Nk∑

i=1

∥βkxi − yi ∥ ,

subject to

M∑

j=2

∥βk j − βk (j−1)∥ ≤ S ,

(7)

where Nk refers to the number of samples assigned to the k th com-

ponent. Here, the reason behind this re-computation customization

3π1:K indicates parameters π1, · · · , πK . β 1:K represents parameters β 1, · · · , βK .

σ 2
1:K are the parameters σ 2

1 , · · · , σK

1 , each of which describes the variance of the

normal distribution that ϵk follows, i.e., ϵk ∼ N(0, σ 2
k
).

is that fused lasso has to be imposed to parameters β1:K in order

to grant a mixture regression model the ability to handle feature

dependency. As we can observe, the equation above shares the

same form with that shown in Equation (2). Therefore, we can min-

imize the equation through MLE and thus compute the values for

parameters β1:K .

Following the standard procedure of EM algorithm, we repeat-

edly perform the E-step and M-Step. Until stability is reached (i.e.,

the Gaussian distributions do not vary much from the E-step to

the M-step), we output the mixture regression model. Note that

we convert σ 2
1:K into the model parameter ϵ1:K by following the

standard approach applied in ordinary mixture model learning.

4.3 Applying the Model for Explanation

With the enhanced mixture regression model, we now discuss how

to derive high-fidelity explanations for deep learning classifiers.

Approximating Local Decision Boundary. Given an input in-

stance x, the key to generate the explanation is to approximate the

local decision boundary of the target classifier. The end product is

an łinterpretablež linear model that allows us to select a small set of

top features as the explanation. To do so, we first synthesize a set of

data samples locally (around x) following the approach described

in [45]. The idea is to randomly nullify a subset of features of x.

Using the corpus of synthesized data samples, we then approxi-

mate the local decision boundary. There are two possible schemes:

one is to train a single mixture regression model to perform multi-

class classification; the other scheme is to train multiple mixture

regression models, each of which performs binary classification.

For efficiency considerations, we choose the second scheme and

put more rigorous analysis to the Appendix-B.

Deriving Explanations. Given the input data instance x, and its

classification result y, we now can generate explanations as a small

set of important features to x’s classification. More specifically, we

obtain a mixture regression model enhanced by fused lasso. From

this mixture model, we then identify the linear component that has

the best approximation of the local decision boundary. The weights

(or coefficients) in the linear model can be used to rank features. A

small set of top features is selected as the explanation result.

Note that LEMNA is designed to simultaneously handle non-linearity

and feature dependency, but this does not mean that LEMNA cannot

work on deep learning models using relatively independent features

(e.g., MLP or CNN). In fact, the design of LEMNA provides the flexibil-

ity to adjust the explanation method according to the target deep

learning model. For example, by increasing the hyper-parameter S

(which is a threshold for fused lasso), we can relax the constraint

imposed upon parameter β1:K and allow LEMNA to better handle

less dependent features. In Section ğ5, we demonstrate the level of

generalizability by applying LEMNA to security applications built on

both RNN and MLP.

5 EVALUATION

In this section, we evaluate the effectiveness of our explanation

method on two security applications: malware classification and

binary reverse engineering. This current section focuses evaluating

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

369

Cases ID Opt.-level F. Start Explanation Assembling code

C.W.H.

1 O0 55 5b 5d c3 55 89 e5 pop ebx; pop ebp; ret; push ebp; mov ebp, esp

2 O1 53 5b 90 c3 53 83 ec 18 pop ebx; nop; ret; push ebx; sub esp,0x18

3 O2 89 8d b4 26 00 00 00 00 89 c1 8b 40 0c lea esi, [esi+eiz*1+0]; mov ecx, eax

4 O3 56 90 90 90 90 56 53 nop; nop; nop; nop; push esi; push ebx

D.N.K.

5 O0 31 e9 00 f9 ff ff 31 ed 5e jmp 0xfffff900; xor ebp, ebp; pop esi

6 O1 b8 90 90 90 b8 e7 20 19 08 2d e4 20 19 08 nop; nop; nop;mov eax, 0x81920e7;sub eax, 0x81920e4

7 O2 83 83 c4 1c c3 83 ec 1c add esp, 0x1c; ret; sub esp, 0x1c

8 O3 8b 90 90 90 90 8b 44 24 04 nop; nop; nop; nop; mov eax, DWORD PTR [esp+0x4]

9 O3 55 8d bc 27 00 00 00 00 55 57 56 lea edi, [edi+eiz+0x0]; push ebp; push edi; push esi

R.F.N.

10 O0 31* e9 50 fd ff ff 31 ed 5e jmp 0xfffffd50; xor ebp, ebp; pop esi

11 O2 89* e9 85 fe ff ff 90 89 c2 31 c0 jmp 0xfffffe8a; nop; mov edx, eax; xor eax, eax

12 O3 a1* 8d b4 26 00 00 00 00 a1 d0 14 20 08 lea esi, [esi+eiz*1+0]; mov eax, ds:0x82014d0

R.F.P.

13 O1 83 0f b6 c0 c3 83 ec 1c movzx eax,al; ret; sub esp, 0x1c

14 O2 b8 8d 74 26 00 b8 01 00 00 00 lea esi, [esi+eiz*1+0x0]; mov eax, 0x1

15 O3 83 8d 74 26 00 83 ec 1c c7 04 lea esi, [esi+eiz*1+0x0]; sub esp, 0x1c

Table 5: Case study for the binary analysis (15 cases). Our explanation method ranks features and marks the most important

features as red , followed by orange , gold , yellow . We also translate the hex code to assembling code for the ease of

understanding. Note that the F. start refers to the function start detected by the deep learning classifier. The function start

is also marked by a black square in the hex sequence. *For false negatives under R.F.N., we present the real function start that

the classifier failed to detect, and explain why the function start is missed.

performed the same analysis for the PDF malware classifier, and

the results are in Appendix-E.

6.1 Understanding Classifier Behavior

The primary application of our explanation method is to assess

the reliability of the classifiers and help to establish the łtrustž. We

argue that classifier reliability and trusts do not necessarily come

from a high classification accuracy on the training data. Often

cases, the training data is not complete enough to capture all the

possible variances. Instead, trusts are more likely to be established

by understanding the model behavior. In this section, we examine

two key directions to understand how classifier makes decisions:

(1) capturing and validating łgolden rulesž and well-established

heuristics; and (2) discovering new knowledge.

Capturing Well-known Heuristics (C.W.H.). A reliable classi-

fier should at least capture the well-known heuristics in the re-

spective application domain. For example, in the area of binary

reverse-engineering, security practitioners have accumulated a set

of useful heuristics to identify the function start, some of which are

even treated as łgolden rulesž. Certain łgolden rulesž are derived

from the specifications of the Application Binary Interface (ABI)

standards [22]. For example, the ABI requires a function to store

the old frame pointer (ebp) at the start if this function maintains a

new frame pointer. This leads to the most commonly seen prologue

[push ebp; mov ebp, esp]. Another set of well-established rules

come from mainstream compilers. For example, GNU GCC often

inserts nop instructions before a function start, which aligns the

function for architectural optimization [43].

By analyzing the explanation results, we observed strong ev-

idence that deep learning classifiers have successfully captured

well-known heuristics. In Table 5, we show 4 most representative

cases, one for each classifier (or optimization level). In Case-1, the

classifier correctly detected the function start at ł55ž. Then our

LEMNA shows why 55 is marked as the function start by highlight-

ing the importance of features (i.e., the hex code nearby). The result

matches the well-known golden rule, namely [push ebp; mov

ebp,esp]. This suggests the classifiers are making decisions in a

reasonable way. Similarly, Case-2 captures the function start ł53ž

right after a łc3ž. This corresponds to a popular heuristic intro-

duced by compilers as compilers often make a function exit in the

end through a łretž instruction (particularly at the O0 and O1 level).

In Case-4, ł83ž is the function start and LEMNA highlighted the

ł90ž in red. This indicates that the classifier follows the ł nop right

before a function startž rule, which is caused by compilers padding

łnopžs prior to aligned functions. Similarly, in Case-3, LEMNA high-

lighted padding instruction [lea esi,[esi+eiz*1+0]], which is

another pattern introduced by compilers. Overall, LEMNA shows that

well-known heuristics are successfully captured by the classifiers.

During our analysis, we observe that well-known heuristics are

widely applicable at the lower optimization levels (O0, O1), but do

not cover as many binaries at the higher levels (O2, O3). For example,

95% of the functions at O0-level start with [55 89 E5], matching

the heuristics of Case-1. 74% of the O1-optimized functions have

ret as the ending instruction (Case-2). On the contrary, only 30%

of the binary functions at the O2 or O3 level match the well-known

heuristics, e.g., padding instructions at the function end (ł[90 90

90 90]ž, ł[8d b4 26 00 00 00 00]ž. This makes intuitive sense

because the higher-level optimization would significantly diversify

the code structure, making golden rules less effective.

Discovering New Knowledge (D.N.K.). In addition to matching

well-known heuristics, we also examine if the classifiers have picked

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

373

up new heuristics beyond existing knowledge. For security appli-

cations, we argue that the new heuristics need to be interpretable

by domain experts. In the domain of binary analysis, many poten-

tially useful heuristics are specific to individual functions, and it is

hard to summarize all of them manually. For example, the utility

functions inserted by the linker often have unique beginning code

segments and those segments rarely appear elsewhere (e.g., the

_start function always start with [xor ebp, ebp; pop esi]).

Manually organizing such rules are not practical. However, these

rules, once derived by LEMNA, would make intuitive sense to domain

experts.

As shown in Table 5, we analyze the explanation results and

find that classifiers indeed learned new knowledge. We select five

representative cases (ID 5ś9). Case-5 shows that ł31ž is detected

as the function start because of the subsequent [ed 5e]. ł [31 ed

5e]ž corresponds to the start of utility function _start (namely

[xor ebp, ebp; pop esi]). This illustrates that our explanation

method can help summarize unique prologues pertaining to special

functions. Note that the function start ł31ž itself is not necessarily

an important indicator. In fact, ł31ž represents an opcode (xor) that

often appears in the middle of the functions. It is ł[ed 5e]ž that

leads to the correct detection.

Case-6 illustrates another interesting pattern where ł2bž is the

most important feature to detect the function start at łb8ž. ł2bž

resides in instruction following the pattern [mov eax, CONS1;

sub eax, CONS2] where CONS1 and CONS2 are constant values and

CONS1 - CONS2 = 0 or 3. This pattern appears only in the pro-

logues of łregister_tm_clonesž and łderegister_tm_clonesž,

which are utility functions for transactional memory. Again this is

a function-specific pattern to detect function start.

Case-7, Case-8 and Case-9 all have some types of łpreparationsž

at the function start. In Case-7, ł[83, ec]ž is marked as the most

important feature, which corresponds to the instruction [sub esp,

0x1c]. Instructions of this form are frequently used at function

start to prepare the stack frame. For Case-8, [mov eax, DWORD PTR

[esp+0x4]] is marked as the most indicative feature. This instruc-

tion is usually inserted to fetch the first argument of a function.

Note that ł04ž has the red color, which is because ł04ž is used as

the offset for [esp+0x4] to fetch the argument of the function. If

this offset is of a different value, this instruction would not nec-

essarily be an indicator of the function start. For Case-9, it starts

with preserving the registers that are later modified ([push ebp;

push edi; push esi]). Preservation of those registers, which is

required by the calling convention (a common ABI standard), also

frequently appears at the function start.

Overall, LEMNA validates that the classifiers’ decision-making has

largely followed explainable logics, which helps to establish the

trust to these classifiers.

6.2 Troubleshooting Classification Errors

The deep neural networks, although highly accurate, still have er-

rors. These errors should not be simply ignored since they often in-

dicate insufficient training, which may be amplified in practice (due

to the biased training). Our explanation method seeks to provide

insights into łwhat caused the errorž for a given misclassification.

By inspecting the reason of errors, we seek to provide actionable

guidelines for targeted error correction.

Reasons for False Negatives (R.F.N.). For the binary analysis

application, the classifiers would occasionally miss the real func-

tion start. As shown in Table 5 (under łR.F.N.ž), given a false neg-

ative, we explain łwhy the real function start is not classified as

a function startž. Specifically, we feed the tuple (Code-sequence,

Real-function-start) into LEMNA, and the red-colored features

are the reasons for not recognizing the function start. For example,

in Case-10, ł[50 fd]ž is marked as the main reason, which cor-

respond to ł[jmp 0xfffffd50]ž. This instruction almost always

appears in the middle of routines or functions, which misleads the

classifier to think the substantial 31 is not a function start. This is

an outlier case because this ł[50 fd]ž happens to be the last in-

struction of a special region .plt, which is followed by the _start

function. Case-11 and Case-12 are mis-classified due to instructions

ł[mov edx,eax]ž and ł[mov eax,ds:0x82014d0]ž, which often

appear in the middle of functions.

Reasons for False Positives (R.F.P.). Table 5 also show examples

where the classifier picked the wrong function start. Here, we feed

the tuple (Code-Sequence, Wrong-function-start) into LEMNA

to explain why the wrong function start is picked. For example,

Case-13 highlighted łc3ž in red which represents the łretž instruc-

tion. Typically, łretž is located at the end of a function to make

the exit, which makes the next byte ł83ž a strong candidate for the

function start. However, Case-13 is special because łretž is actu-

ally placed in the middle of a function for optimization purposes.

Case-14 and Case-15 are both misled by the padding instruction

[lea esi,[esi+eiz*1+0x0]] which is often used to align func-

tions. However, in both cases, this padding instruction is actually

used to align the basic blocks inside of the function.

Overall, LEMNA shows that the errors are largely caused by the

fact that the misleading patterns are dominating over the real indica-

tors. To mitigate such errors, we need to pinpoint the corresponding

areas in the feature space and suppress the misleading patterns.

6.3 Targeted Patching of ML Classifiers

Based on the above results, we now develop automatic procedures

to convert thełinsightsž into actions to patch the classifiers.

Patching Method. To patch a specific classification error, our idea

is to identify the corresponding parts of the classifier that are under-

trained. Then we craft targeted training samples to augment the

original training data. Specifically, given a misclassified instance,

we apply LEMNA to pinpoint the small set of features (Fx) that cause

the errors. Often cases, such instances are outliers in the training

data, and do not have enough łcounter examplesž. To this end, our

strategy is to augment the training data by adding related łcounter

examplesž, by replacing the feature values of Fx with random values.

We use an example (Case-10 in Table 5) to describe the patching

procedure. The classifier missed the function start due to ł[50 fd]ž,

a hex pattern that often exists in the middle of a function. Ideally,

the classifier should have picked up the other pattern ł[31 ed 5e]ž

to locate the function start. Unfortunately, the impact of the wrong

pattern is too dominating. To this end, we can add new samples

to reduce the impact of the misleading features (ł[50 fd]ž) and

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

374

Application Num. of kn kp Before After

Samples FN FP FN FP

Binary O0 4,891,200 5 5 3 1 0 0

Binary O1 4,001,820 3 4 48 33 23 29

Binary O2 4,174,000 4 5 107 129 59 62

Binary O3 5,007,800 2 5 83 41 15 39

PDF Malware 3,000 6 15 28 13 10 5

Table 6: Classification result before and after patching. kn
(kp) referes to the number of augmented samples generated

for each false negative (false positive). Note that for function

start detection, the number of samples refers to the number

of total hex code in the testing set.

promote the right indicator (ł[31 ed 5e]ž). The new samples are

generated by replacing the hex value of ł[50 fd]ž with random

hex values. By adding the new samples to the training data, we

seek to reduce the errors in the retrained classifier.

Evaluation Results. To demonstrate the effectiveness of patching,

we perform the above procedure on all 5 classifiers. For each false

positive and false negative, we generate kp and kn new samples

respectively. Note that kp and kn are not necessarily the same, but

they both need to be small. After all, we want to patch the targeted

errors without hurting the already high accuracy of the classifiers.

Consistently for all the classifiers, we replace the top 5 misleading

features and retrain the models with 40 epochs.

Table 6 shows the classifier performance before and after the

patching. We have tested the sensitivity of the parameters and find

the results remain relatively consistent as long as we set kp and kn
between 2 to 10 (Appendix-F). Due to the space limit, Table 6 only

presents one set of the results for each classifier. Our experiment

shows that both false positives and false negatives can be reduced

after retraining for all five classifiers. These results demonstrate

that by understanding the model behavior, we can identify the

weaknesses of the model and enhance the model accordingly.

7 DISCUSSION

Benefits v.s. Risks. LEMNA is designed to assist security analysts

to understand, scrutinize and even patch a deep learning based

security system. While designed from the defense perspective, it

might be used by an attacker to seek theweakness of a deep learning

classifier. However, we argue that this should not dilute the value of

LEMNA, and should not be a reason for not developing explanation

tools. The analogy is the software fuzzing techniques [13, 73]: while

fuzzing tools can be used by hackers to seek vulnerabilities to

exploit, the fuzzing techniques have significantly benefited the

software industry by facilitating software testing to find and fix

vulnerabilities before the software release.

Guidelines for Analyzing LEMNA’s Outputs. LEMNA outputs an

łexplanationž to each testing case. To thoroughly examine a classi-

fier, developers might need to run a large number of testing cases

through LEMNA. Manually reading each case’s explanation is time-

consuming, and thus we suggest a more efficient method, which is

to group similar explanations first. In ğ6, we grouped explanations

that are exactly the same before picking the łmost representativež

cases. In practice, developers can use any other clustering tech-

niques to group explanations as needed.

Broader Security Applications. LEMNA is evaluated using two

popular security applications. There are many other security ap-

plications such as detecting the łfunction endž for binary code,

pinpointing the function types and detecting vulnerable code [15,

24, 47, 52, 66]. They can also potentially benefit from LEMNA, given

that their deep learning architectures are RNN or MLP. Note that

models like CNN share some similarities with MLP, and thus LEMNA

can potentially help with related applications (e.g., image analy-

sis). Future work will explore the applicability of LEMNA in broader

application domains.

Other Deep Learning Architectures. In addition to MLP and RNN,

there are other deep learning architectures such as sequence-to-

sequence networks [4, 60], and hybrid networks [25, 36, 71]. Al-

though, these architectures primarily find success in fields such as

machine translation [4] and image captioning [25], initial evidence

shows that they have the potential to play a bigger role in secu-

rity [36, 71]. Once concrete security applications are built in the

future, we plan to test LEMNA on these new architectures.

Feature Obfuscation. LEMNA is useful when features are inter-

pretable, but this may not be true for all applications. In particular,

researchers recently proposed various methods [8, 67, 70] to obfus-

cate input features to increase the difficulty of running adversarial

attacks. Possibly because feature obfuscation often degrades classi-

fier accuracy, these techniques haven’t received a wide usage yet.

LEMNA is not directly applicable to classifiers trained on obfuscated

features. However, if the model developer has a mapping between

the raw and obfuscated features, the developer can still translate

LEMNA’s output to the interpretable features.

8 OTHER RELATEDWORK

Since most related works have been discussed in ğ2 and ğ3, we

briefly discuss other related works here.

ImprovingMachine LearningRobustness.Adeep learningmodel

can be deceived by an adversarial sample (i.e., a malicious input

crafted to cause misclassification) [61]. To improve the model re-

sistance, researchers have proposed various defense methods [9,

20, 36, 40, 67]. The most relevant work is adversarial training [20].

Adversarial training seeks to add adversarial examples to the train-

ing dataset to retrain a more robust model. Various techniques

are available to craft adversarial examples for adversarial train-

ing [11, 33, 42, 72]. A key difference between our patching method

and the standard adversarial training is that our patching is based on

the understanding of the errors. We try to avoid blindly retraining

the model which may introduce new vulnerabilities.

Mitigating the Influence of Contaminated Data. Recent re-

search has explored ways to mitigate misclassifications introduced

by contaminated training data [10, 12, 46, 65]. A representative

method is łmachine unlearningž [10], which is to remove the influ-

ence of certain training data by transforming the standard training

algorithms into a summation form. A more recent work [29] pro-

poses to utilize an influence function to identify data points that

contribute to misclassification. Our approach is complementary to

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

375

existing works: we propose to augment training data to fix under-

trained components (instead of removing bad training data). More

importantly, LEMNA helps the human analysts to understand these

errors before patching them.

9 CONCLUSION

This paper introduces LEMNA, a new method to derive high-fidelity

explanations for individual classification results for security appli-

cations. LEMNA treats a target deep learning model as a blackbox and

approximates its decision boundary through a mixture regression

model enhanced by fused lasso. By evaluating it on two popular

deep learning based security applications, we show that the pro-

posed method produces highly accurate explanations. In addition,

we demonstrate howmachine learning developers and security ana-

lysts can benefit from LEMNA to better understand classifier behavior,

troubleshoot misclassification errors, and even perform automated

patches to enhance the original deep learning model.

10 ACKNOWLEDGMENTS

We gratefully acknowledge the support of NVIDIA Corporation

with the donation of the Tesla K40 GPU used for this research. We

also would like to thank the anonymous reviewers and Jia Yan for

their helpful feedback. This project was supported in part by NSF

grants CNS-1718459, CNS-1750101 and CNS-1717028. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of any funding agencies.

REFERENCES
[1] 2014. Mimcus. https://github.com/srndic/mimicus. (2014).
[2] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,

and CERT Siemens. 2014. DREBIN: Effective and Explainable Detection of An-
droid Malware in Your Pocket. In Proceedings of the 20th Network and Distributed
System Security Symposium (NDSS).

[3] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance propagation. PloS one
(2015).

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[5] Tiffany Bao, Johnathon Burket, MaverickWoo, Rafael Turner, and David Brumley.
2014. Byteweight: Learning to recognize functions in binary code. In Proceedings
of the 23rd USENIX Security Symposium (USENIX Security).

[6] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. 2017. Interpreting blackbox
models via model extraction. arXiv preprint arXiv:1705.08504 (2017).

[7] Konstantin Berlin, David Slater, and Joshua Saxe. 2015. Malicious behavior
detection usingwindows audit logs. In Proceedings of the 8thWorkshop onArtificial
Intelligence and Security (AISec).

[8] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. 2017. Dimensionality
reduction as a defense against evasion attacks on machine learning classifiers.
arXiv preprint arXiv:1704.02654 (2017).

[9] Xiaoyu Cao and Neil Zhenqiang Gong. 2017. Mitigating evasion attacks to deep
neural networks via region-based classification. In Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC).

[10] Yinzhi Cao and Junfeng Yang. 2015. Towardsmaking systems forget withmachine
unlearning. In Proceedings of the 36th IEEE Symposium on Security and Privacy
(S&P).

[11] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In Proceedings of the 38th IEEE Symposium on Security and
Privacy (S&P).

[12] Gert Cauwenberghs and Tomaso Poggio. 2000. Incremental and decremental
support vector machine learning. In Proceedings of the 13th Conference on Neural
Information Processing Systems (NIPS).

[13] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P).

[14] François Chollet et al. 2017. Keras. (2017).

[15] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural
Nets Can Learn Function Type Signatures From Binaries. In Proceedings of the
26th USENIX Security Symposium (USENIX Security).

[16] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. 2013. Large-scale malware
classification using random projections and neural networks. In Proceedings of the
38th International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[17] R.C. Fong and A. Vedaldi. 2017. Interpretable Explanations of Black Boxes by
Meaningful Perturbation. In Proceedings of the 16th International Conference on
Computer Vision (ICCV).

[18] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alex G Hauptmann.
2015. Devnet: A deep event network for multimedia event detection and evidence
recounting. In Proceedings of the 28th Conference on Computer Vision and Pattern
Recognition. (CVPR).

[19] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. AI2 : Safety and Robustness Certification of
Neural Networks with Abstract Interpretation. In Proceedings of the 39th IEEE
Symposium on Security and Privacy (S&P).

[20] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
harnessing adversarial examples. In Proceedings of the 3rd International Conference
on Learning Representations (ICLR).

[21] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. 2016. Adversarial perturbations against deep neural networks
for malware classification. arXiv preprint arXiv:1606.04435 (2016).

[22] The Santa Cruz Operation Inc. 1997. System V application binary interface.
(1997).

[23] Anil K. Jain and B. Chandrasekaran. 1982. Dimensionality and Sample Size
Considerations in Pattern Recognition Practice. Handbook of Statistics (1982).

[24] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. 2016. A deep
learning approach for network intrusion detection system. In Proceedings of the
9th International Conference on Bio-inspired Information and Communications
Technologies (BIONETICS).

[25] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. 2016. Densecap: Fully convo-
lutional localization networks for dense captioning. In Proceedings of the 29th
Conference on Computer Vision and Pattern Recognition (CVPR).

[26] Ian T Jolliffe. 1986. Principal component analysis and factor analysis. In Principal
component analysis.

[27] Michael I Jordan and Robert A Jacobs. 1994. Hierarchical mixtures of experts and
the EM algorithm. Neural computation (1994).

[28] Abbas Khalili and Jiahua Chen. 2007. Variable selection in finite mixture of
regression models. Journal of the american Statistical association (2007).

[29] Pang Wei Koh and Percy Liang. 2017. Understanding Black-box Predictions
via Influence Functions. In Proceedings of the 34th International Conference on
Machine Learning (ICML).

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet clas-
sification with deep convolutional neural networks. In Proceedings of the 25th
Conference on Neural Information Processing Systems (NIPS).

[31] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable
decision sets: A joint framework for description and prediction. In Proceedings
of the 22nd International Conference on Knowledge Discovery and Data Mining
(KDD).

[32] Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Understanding Neural Networks
through Representation Erasure. arXiv preprint arXiv:1612.08220 (2016).

[33] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2017. Delving into
transferable adversarial examples and black-box attacks. In Proceedings of the 5th
International Conference on Learning Representations (ICLR).

[34] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. In Proceedings of the 30th Conference on Neural Information Processing
Systems (NIPS).

[35] Mengersen K.Marin, J.M. and C.P. Robert. 2005. Bayesianmodelling and inference
on mixtures of distributions. Handbook of statistics (2005).

[36] Dongyu Meng and Hao Chen. 2017. Magnet: a two-pronged defense against
adversarial examples. In Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS).

[37] Bengt Muthén and Kerby Shedden. 1999. Finite mixture modeling with mixture
outcomes using the EM algorithm. Biometrics (1999).

[38] In Jae Myung. 2003. Tutorial on maximum likelihood estimation. Journal of
mathematical Psychology (2003).

[39] Bruno A Olshausen and David J Field. 1996. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature (1996).

[40] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In Proceedings of the 37th IEEE Symposium on Security and Privacy
(S&P).

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research (2011).

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

376

Application Model Structure Activation Optimizer Learning Rate Dropout Rate Batch Size Epoch

Binary Func. Start 255-8-2 relu adam 0.001 0.5 100 100

PDFmalware 135-100-50-10-2 sigmoid adam 0.001 0.2 100 30

Table 7: The hyper-parameters of corresponding deep learning models. Here łmodel structurež depicts the number of layers

in the model as well as the number of units in each layer. Note that for the four model in the function start identification

application (i.e., O0-O3), we use the same set of hyper-parameters.

To compute values for latent variables, we define

p(zik = 1) = πk , (8)

and thus have the following

p(yi |xi , zi1:K) =
K∏

k=1

[N(yi |βkxi ,σ 2
k
)]zik , (9)

where N(yi |βkxi ,σ 2
k
) indicates the k th Gaussian distribution with

the mean and variance equal to βkxi and σ
2
k
respectively.

From the Equation (9), we can derive a likelihood function below

p(y, z |x,Θ) =
N∏

i=1

p(yi , zi1, . . . , zin |βxi ,σ 2)

=

K∏

k=1

N∏

i=1

[πkN(xi |βkxi ,σ 2
k
)]zik

=

K∏

k=1

π
nk
k

N∏

i=1

[N(xi |βkxi ,σ 2
k
)]zik

(10)

from which we can further compute the expectation of this log-

likelihood function (i.e., Q function) as follow:

Q(Θ,Θ(t)) =E[logp(y, z |x,Θ)|y, x,Θ(t)]

=

K∑

k=1

{nk logπk +
N∑

i=1

ẑik ·

[log(1
√
2π

) − logπk − 1

σ 2
k

(yi − βkxi)2]} .

(11)

Here,nk =
∑N
k=1

Ezik .Θ indicates all of the parameters. ẑik = Ezik
which can be further represented as

ˆzik =
πkN(yi |βkxi ,σ 2

k
)

∑K
k=1

πkN(yi |βkxi ,σ 2
k
)
, i = 1, . . . ,N ,k = 1, . . . ,K , (12)

With the latent variables computed through the Equation (12),

we can assign each data sample to a corresponding Gaussian dis-

tribution. Then, in the M-step, we re-compute the parameters by

maximizing the aforementioned Q function with respect to each

parameter. More specifically, we can compute parameter σ 2
k
and

πk by using the following equations

σ 2
k
=

∑N
i=1 ẑik (yi − βkxi)2

nk
,k = 1, 2, . . . ,K ,

πk =
nk
N
,k = 1, 2, . . . ,K .

(13)

Recall that we re-compute parameter β1:K by minimizing the

Equation (7) shown in Section ğ4. While it can be resolved by using

MLE, in order to improve the efficiency of resolving this equation, we

can also an alternative algorithm introduced in [64]. As is depicted

in Figure 7, we can repeatedly perform E-step and then M-step until

the parameters converge, and thus output the mixture regression

model enhanced by fused lasso.

APPENDIX - B. MULTI-CLASS VS MULTIPLE
SINGLE-CLASS APPROXIMATION

As is mentioned in Section 4.3, we choose to perform model ap-

proximation with multiple single-class approximation rather than

a single muti-class approximation. Here, we discuss the rationale

behind our choice.

As is stated in Section 4.1, the Equation (4) represents a practice

that estimates parameters for a binary classifier, in which there are

K × (2 +M) parameters involved in the process of model learning.

For a single mixture regression model that classifies a data sample

xi into one of L categories (L > 2), the parameter βk and σ2
k
no

longer represent a vector and a singular value. Rather, they denote

matrices with the dimensionality of L ×M and L × L respectively.

In the process of learning a mixture regression model, this means

that, in addition to π1:K which still represents K parameters, the

learning algorithm needs to estimate β1:K and σ2
1:K , which denote

L × K ×M and L2 × K parameters respectively.

According to learning heuristics [23, 44], the more parameters

a learning algorithm needs to estimate, the more data samples it

would typically need. Technically speaking, following the data point

sampling approach commonly used by other model induction expla-

nation techniques, we have no difficulty in synthesizing sufficient

data samples to perform model learning (i.e., parameter estimation)

reasonably well. However, the practice shows that learning a model

with a large amount of data samples typically requires substantial

amount of computation resources. Recall that for each data sample

we have to train an individual mixture regression model in order to

derive an explanation. Therefore, we select the single-class approx-

imation scheme that can yield an explanation in a more efficient

fashion, even though both of the approximation schemes could

yield model(s) representing the equally good approximation for the

corresponding local decision boundary.

APPENDIX - C. HYPER-PARAMETERS OF
TARGET DEEP LEARNING MODEL

In Table 7, we show the hyper-parameters used for training corre-

sponding deep learning models. Regarding function start detector,

we utilized a recurrent neural network in which its first, second and

output layers are an embedding layer with 256 units, a bi-directional

RNN with 8 hidden units and a softmax classifier respectively. With

respect to the application of PDF malware classification, we used a

standard MLP which contains one input layer, three hidden layers

and one output layer. The number of hidden units tied to each layer

is presented in Table 7.

Session 2D: ML 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

378

