Connecting the Digital and Physical World: Improving the Robustness of Adversarial Attacks

Steve T.K. Jan¹, Joseph Messou¹, Yen-Chen Lin², Jia-Bin Huang¹, and Gang Wang¹
¹Virginia Tech ²Massachusetts Institute of Technology
{tekang, mejc2014}@vt.edu, yenchenl@mit.edu, {jbhuang, gangwang}@vt.edu

Abstract
While deep learning models have achieved unprecedented success in various domains, there is also a growing concern of adversarial attacks against related applications. Recent results show that by adding a small amount of perturbations to an image (imperceptible to humans), the resulting adversarial examples can force a classifier to make targeted mistakes. So far, most existing works focus on crafting adversarial examples in the digital domain, while limited efforts have been devoted to understanding the physical domain attacks. In this work, we explore the feasibility of generating robust adversarial examples that remain effective in the physical domain. Our core idea is to use an image-to-image translation network to simulate the digital-to-physical transformation process for generating robust adversarial examples. To validate our method, we conduct a large-scale physical-domain experiment, which involves manually taking more than 3000 physical domain photos. The results show that our method outperforms existing ones by a large margin and demonstrates a high level of robustness and transferability.

Introduction
Deep learning algorithms have shown exceptionally good performance in speech recognition, natural language processing, and image classification. However, there is growing concern about the robustness of the deep neural networks (DNN) against adversarial attacks (Bastani et al. 2016). This concern is particularly escalated after recent deadly crashes of self-driving vehicles (Fonseca and Krisher 2018). For image classifiers, it has been shown that adding small perturbations to the original input image (known as “adversarial examples”) can force an image classifier to make mistakes (Szegedy et al. 2014; Kurakin, Goodfellow, and Bengio 2017; Lu, Sibai, and Fabry 2017; Evtimov et al. 2018). For example, an image classifier used to recognize stop signs for self-driving cars may mistake the sign as a yield sign if adversarial perturbations were added to the image (that are imperceivable to humans).

Unfortunately, the current exploration of adversarial machine learning largely resides in the “digital domain”, without considering the physical constraints in practice. A common assumption is that attackers can directly feed the digital images into the target classifiers (Szegedy et al. 2014; Moosavi-Dezfooli, Fawzi, and Frossard 2016; Papernot et al. 2016; Sharif et al. 2016; Kurakin, Goodfellow, and Bengio 2017). However, this assumption is unrealistic since attackers have limited control on how the target system (e.g., self-driving cars, surveillance cameras) takes photos. The different viewing angles and the non-linear camera response functions may substantially reduce the impact of the adversarial perturbations.

More recently, researchers started to study the feasibility of adversarial examples in the physical domain by printing out the images and re-taking them using cameras (Kurakin, Goodfellow, and Bengio 2017). The results show that the effectiveness of adversarial perturbations (or noises) degrades significantly under the various physical conditions (e.g., different viewing angles and distances). Initial efforts have been investigated to improve the robustness of adversarial examples by either synthesizing the digital images to simulate the effect of rotation, scaling, and perspective changes (Athalye et al. 2018; Sitawarin et al. 2018) or manually taking “physical-domain” photos from different viewpoints and distances for producing robust physical adversarial examples (Eykholt et al. 2017; Evtimov et al. 2018).

However, two challenges remain un-addressed that limit the feasibility of physical-domain adversarial examples. First, most existing methods (Lu, Sibai, and Fabry 2017; Eykholt et al. 2017; Evtimov et al. 2018; Sitawarin et al. 2018) are evaluated with an extremely small set of testing cases (e.g., 5 cases in (Evtimov et al. 2018)). This is largely due to the expensive manual efforts required to conduct physical-domain experiments. There is a lack of large-scale evaluation to fairly and thoroughly assess different methods under a common ground. Second, existing methods, especially those relying on image synthesis, did not consider the transformation introduced by physical devices (e.g., cameras, printers), which significantly limits its performance.

In this paper, we advance the state-of-the-art by addressing these challenges. First, we propose a new method (called D2P) to generate robust adversarial examples that can survive in the physical world. The core idea is to explicitly simulate the digital-to-physical transformation of the physical devices (e.g., paper printing, non-linear camera response functions, sensor quantization, and noises) to translate a digital image to its physical version before generating adversarial noises. We introduce an image-to-image transla-
tion layer based on conditional Generative Adversarial Networks (cGAN) to simulate this process. We experimented with pix2pix (Isola et al. 2017) and cycleGAN (Zhu et al. 2017) models to carry out the transformation and redesign the noise generation to improve the robustness of the adversarial examples. Second, we conduct a large-scale experiment in the physical domain to evaluate our D2P method and compare it with three other state-of-the-art methods under the same settings. Our experiment takes advantage of a programmable rotational table to take a large number of photos semi-automatically (3000+ physical-domain images). The experiment validates the effectiveness of adversarial examples in the physical domain and shows that our method compares favorably with existing approaches. Our method also achieves a higher level of robustness (under different viewing angles) and transferability (under different cameras, printers, and models).

We make three key contributions:

• We design a novel method D2P to generate robust adversarial examples against deep neural networks, by explicitly modeling the digital-to-physical transformation.\(^1\)

• We evaluate D2P using “physical-domain” experiments. We show that our adversarial examples are not only effective at the frontal view, but have a higher level of robustness across different viewing angles, and transfer well under different physical devices.

• We conduct a large-scale physical-domain experiment (3000+ physical images taken by cameras) that allows us to assess several related methods under the same setting to provide insights into their strengths and weaknesses.

Related Work

Digital Adversarial Examples

Research first shows that deep neural networks are vulnerable to adversarial examples (Szegedy et al. 2014). Since then various adversarial example generation algorithms have been proposed (Moosavi-Dezfooli, Fawzi, and Frossard 2016; Papernot et al. 2016; Carlini and Wagner 2017; Kurakin, Goodfellow, and Bengio 2017; Cisse et al. 2017). Beyond image classification, adversarial examples have shown success in manipulating deep neural networks for object detection and semantic segmentation (Xie et al. 2017; Fischer et al. 2017), and reinforcement learning agent (Lin et al. 2017; Huang et al. 2017; Kos and Song 2017). However, most existing works only focus on the digital domain, assuming attackers can directly feed the digital version of the adversarial images into a DNN. This assumption is unrealistic. Take self-driving cars for example, it’s less likely for an attacker to compromise the operating system to manipulate the digital images taken by the car cameras. Instead, a more realistic assumption is that attackers can perturb physical objects (e.g., a movie poster) outside of the car, which will be captured (digitalized) by the camera before being classified by the DNN.

Physical Adversarial Examples

More recently, researchers started to explore how well adversarial examples can survive in the physical world. Results show that adversarial examples, while they can survive under a well-controlled environment (Kurakin, Goodfellow, and Bengio 2017), would lose the effectiveness in the physical world where there are spatial constraints (angle and distance), fabrication errors, and resolution changes (Lu et al. 2017; Evtimov et al. 2018). To construct more robust adversarial examples, researchers have tried to increase the amount of adversarial noises (Lu, Sibai, and Fabry 2017), but the drawback is the perturbations become more perceptible. Brown et al. (Brown et al. 2017) develop a scene-independent patch model to fool classifiers, which again makes the adversarial examples obviously different from the original image (easily recognized). Athalye et al. (Athalye et al. 2018) propose to apply digital transformations on the original images while generating adversarial noises. These transformations aim to simulate the changes of image conditions such as the perspective, the brightness, and the image scale. Sitawarin et al. (Sitawarin et al. 2018) extend this work to traffic sign classifications. Sharif et al. (Sharif et al. 2016) print the adversarial examples to fool a facial authentication system.

However, existing works have two main limitations. First, most existing works evaluate their methods on an extremely small testing set (e.g., 1–5 different traffic signs) (Lu, Sibai, and Fabry 2017; Eykholt et al. 2017; Evtimov et al. 2018; Sitawarin et al. 2018), which raises concerns on the generalizability to more complex objects. The only larger scale evaluation (Kurakin, Goodfellow, and Bengio 2017) focuses on non-targeted attacks (an easy attack) and the results suggest that physical domain attacks are much weaker, echoing the need for new methods to handle the physical domain transformation. Second, existing methods often require taking a large number of physical images (Evtimov et al. 2018), which is another unrealistic burden to bear. In this paper, we specifically address these two weaknesses.

Generating Adversarial Examples

In this section, we introduce the key methods for generating adversarial examples, including those that focus on the digital domain and those that aim to create adversarial examples for the physical domain. Here, we first define the problem. Adversarial examples are images that are carefully crafted to cause mis-classifications at testing time. Given an input image \(X \), the attack method generates adversarial noises and adds them to \(X \) to create an adversarial example \(X^{\text{adv}} \). The goal is to use \(X^{\text{adv}} \) to cause a mis-classification while keeping the noise sufficiently small to avoid alerting human observers. We denote \(y \) as the label of \(X \) and \(y' \) as the target label that \(X^{\text{adv}} \) aims to acquire (\(y' \neq y \), and \(X \neq X^{\text{adv}} \)). The image classifier \(F: [-1,1]^{3 \times 3 \times 3} \rightarrow \mathbb{R}^K \) takes an image of height \(h \) and width \(w \) as input, and produces the output of a probability distribution over \(K \) classes. Denote \(L(F(X), y) \) as the loss function that calculates the distance between the model output \(F(X) \) and the target label \(y \).

Basic Iterative Method (BIM)

Basic iterative method presents a simple idea to generate adversarial noises (Goodfellow, Shlens, and Szegedy 2014). The goal is to find a small \(\delta \) so that \(F(X + \delta) = y' \). The method aims to solve

\(^1\)We open-sourced our data and tools at https://github.com/stevetkjan/Digital2Physical.
the following objective function:
\[
\arg \min_\delta \ L(F(X + \delta), y') + c \cdot ||\delta||_p
\]
where \(c\) controls the regularization of the distortion, and \(||\delta||_p\) is the \(L_p\) norm that specifies \(||X^{adv} - X||_p < \delta\). The optimization aims to cause a mis-classification from \(y\) to \(y'\) while minimizing the perturbation to \(x\).

BIM does not consider the physical world challenges. As shown in Figure 1, it is unlikely that attackers can directly feed the generated adversarial example (a digital image) into the classifier. More practically, the digital image can be printed by the attacker as a physical object (e.g., a poster), which is then captured by the camera of the target system (e.g., a self-driving car) and digitalized into a new image (referred as “physical image”). This physical image is the actual input of the classifier. Since attackers have very limited control over the internal parts of the system, the different angles to take the photo or the nonlinear response functions of the camera can affect the attack success rate.

Expectation over Transformation (EOT). The EOT method (Athalye et al. 2018) aims to improve the robustness of adversarial examples using a series of synthetically transformed images (in the digital domain). More specifically, EOT applies a transformation function \(t\) to generate a distribution \(T\) for noise optimization, in order to make the perturbation \(\delta\) more robust to physical changes. The objective function is of the form:
\[
\arg \min_\delta \ E_{t \in T} \ L(F(t(X + \delta)), y') + c \cdot ||\delta||_p.
\]
Here, transformation \(t\) can be either image translation, rotation, scaling, lighting variations, and contrast changes. Note that, however, EOT is solely based on the synthesis of digital images, which still ignores the physical effects introduced by the digital-to-physical transformations.

Robust Physical Perturbations (RP	extsubscript{2}). The RP	extsubscript{2} method (Evtimov et al. 2018) enhances the EOT method by also considering the physical images. The RP	extsubscript{2} method, however, requires the attacker to print out a clean image and take a number of photos of the printout from different angles and distances (physical images). The set of physical images are denoted as \(X^P\). RP	extsubscript{2} solves this optimization:
\[
\arg \min_\delta \ E_{t \in T, x \in X^P} \ L(F(t(x + \delta)), y') + c \cdot ||\delta||_p
\]
RP	extsubscript{2} is only tested on 5 road signs, and it is not yet clear if the method is broadly applicable; More importantly, the need of manually printing and taking multiple photos for producing each adversarial example hurts its practical value.

For all the methods above, the optimization problem can be solved by stochastic gradient descent and back-propagation, provided that the classifier \(F\) is differentiable. The expectation can be approximated by empirical mean (i.e., Monte Carlo integration). For instance, in basic iterative method, \(X^{adv}\) is obtained when the following optimization equations 1 converge. Note that the “clip” function is to ensure that \(X^{adv}\) is a valid image and \(L_{\alpha \in \mathcal{E}}\) is the real input of the classifier. Since attackers have very limited control over the internal parts of the system, the different angles to take the photo or the nonlinear response functions of the camera can affect the attack success rate.

\[
\begin{align*}
X_{N+1}^{adv} &= X_{N+1}^{adv} + \alpha \text{sign}(\nabla J(X^{adv}_{N+1}, y')) \\
X_{N+1} &= \text{clip}(X_{N+1}^{adv}, X + \varepsilon, X - \varepsilon)
\end{align*}
\]

Defining Key Terms. We use Figure 1 to define important terms for the rest of the paper. (1) “digital image”: the original image in the digital form. (2) “printout”: the printed paper/poster of the original image. (3) “physical image”: the photograph of the printout taken by a camera.

Our Method

In this section, we present a simple yet surprisingly effective method to generate robust adversarial examples in the physical world. The core idea is to explicitly simulate the physical-to-digital transformation introduced by (1) crafting the physical object (e.g., image printing), and (2) digitalizing the physical object by the target system (e.g., by a camera). Our goal is to generate adversarial noises that can survive the digital-to-physical transformation in practice. In addition, our method remains simulation-based, which eliminates the costly process of manually taking physical images for every single adversarial example (unlike RP	extsubscript{2}). We call our method D2P, short for “digital-to-physical transformation”. Figure 2 shows the high-level workflow.

Step 1. We first simulate the digital-to-physical transformation using a conditional Generative Adversarial Networks (cGANs) for performing image-to-image translation (Isola et al. 2017; Zhu et al. 2017).

The cGANs model has shown successes in tasks such as labeling maps and coloring images. We tailor a network to capture the transformation from a digital image to its physical version to simulate the nonlinear quantization effect of physical devices (e.g., cameras).

Our cGANs model is trained to learn mapping function \(p: D \rightarrow P\) where \(D\) is a set of images in the digital domain.
and P is a set of physical images (i.e., the photos of printouts taken by a camera). We train the model using a set of paired training examples $\{x_i, y_i\}_i$ and $\{x'_i, y'_i\}_i$ where $x_i \in D$ and $x'_i \in P$. We denote the data distribution as $x \sim p_{data}(x)$ and $x' \sim p_{data}(x')$ for brevity. In addition to the mapping function (i.e., the generator), cGANs has another component, discriminator C, which aims to discriminate x' and $p(x)$. We train the cGAN models via the following objective function:

$$L_{cGAN} = E_{x'} \log(C(p(x'))) + E_x \log(1 - C(p(x))),$$

(2)

where the generator p tries to generate images x' that look similar to images y from the physical domain P, while the discriminator C aims to distinguish between simulated physical image $p(x)$ and real samples x'. For D2P, we consider two types of cGANs (equation 2) to improve the performance. First, pix2pix model (Isola et al. 2017) mixed it with a pixelwise reconstruction loss such as $L1$ or $L2$ distance. Second, cycleGAN (Zhu et al. 2017) mixed it with cycle loss and learned another set of generator ($p : P \rightarrow D$) and discriminator (C'_p). The generator p transforms the simulated physical image $p(X)$ back to digital domain and make $p(p(X))$ look similar to its original input X: Note that unlike pix2pix, cycleGAN does not require “paired” images for training, which can tolerate the potential misalignment between the digital and physical image. We adopt the network architecture in (Isola et al. 2017; Zhu et al. 2017) and follow the training procedure for training our D2P transformation network.

Step 2. After training the cGAN model, given an input digital image X, we map the image X to the simulated physical image $p(X)$. We then use $p(X)$ as the “base” and apply the Exception over Transformation (EOT) method to generate adversarial noises. By sampling the geometric transformation of $p(X)$, the EOT method can further improve the robustness of the produced adversarial noise over different viewpoints. Note that our method is operated via digital simulations, which incur a low cost. Later, we show that the cGANs can be trained with a one-shot effort using a small set of images (e.g., 200). Once it is trained, the model generalizes well to various different types of images (scalable).

Step 3. The adversarial noise is then added to the simulated physical image $p(X)$ to generate the adversarial image. This is very different from existing works which add noise to the digital image X (Carlini and Wagner 2017; Athalye et al. 2018; Evtimov et al. 2018). Our design is motivated by an observation from our experiments: after going through physical devices (printers, cameras), the digital images would lose certain features and details due to quantization. Such physical transformation effect is the strongest for the first time and then becomes much weaker when going through multiple rounds of transformations.

Table 1 validates this observation. We randomly select 30 images from the ImageNet validation dataset (Russakovsky et al. 2014). For each image, we print it out using a printer and take the photo of the printout using a camera at the frontal view. We consider as one round of digital-to-physical transformation. We then perform multiple rounds of transformation and measure the image similarity (or dissimilarity) to the original clean image. As shown in Table 1, we use the Structural Similarity Index (SSIM) (Wang et al. 2004) and Mean Squared Error (MSE) as the similarity metric. Our results validate that the loss is more significant during the first round, and then becomes much smaller for the third and fourth round. The result suggests that if we use a (simulated) physical image as the base, the resulting adversarial example is more likely to survive another round of quantization during the attack.

Experimental Evaluation

We evaluate the effectiveness of adversarial examples in the physical domain with two goals. First, we seek to compare our method with the state-of-the-art over a much larger-scale physical domain measurements. Over different experiment settings, we printed and shot over 3000 physical images for a comprehensive evaluation. Second, we seek to examine the transferability of our method, i.e., how well an adversarial example optimized for a specific DNN classifier and a pretrained pix2pix/cycleGAN model can transfer to other classifiers, cameras, and printers.

Experiment Setups. We compare our D2P method with existing algorithms including the baseline BIM and the more advanced EOT and RP methods. We choose the widely used Inception-V3 (Szegedy et al. 2016) as the target classifier, which is pre-trained from the ImageNet dataset (Russakovsky et al. 2014). Note that the “physical experiments” require us manually printing images and taking photos, which cannot be fully automated to reach a large scale. To

<table>
<thead>
<tr>
<th>Metric</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIM</td>
<td>1.00</td>
<td>0.69</td>
<td>0.54</td>
<td>0.49</td>
<td>0.42</td>
</tr>
<tr>
<td>MSE</td>
<td>0.00</td>
<td>1788.75</td>
<td>3180.50</td>
<td>4625.07</td>
<td>4852.89</td>
</tr>
</tbody>
</table>
Adversarial examples can fool the classifier. Table 3 shows three key evaluation metrics. First, we report the probability (i.e., confidence) produced by the classifier which indicates the likelihood of the input to be classified as each label. We show the average confidence of the original label ($P(\text{Orig.})$) and that of the target label ($P(\text{Adv.})$). Second, after ranking...
the labels based on the confidence, we show the percentage of images whose original label is ranked top-1 and top-5. Third, we also show how likely the target label is ranked at the top-1 and top-5. In Table 3, the “clean” row refers to clean images without attacks. The classifier has a perfect classification accuracy (100%) in the digital domain and a near-perfect performance in the physical domain. A successful adversarial example will suppress the original label (low $P(\text{Orig.})$) — low top-1 and top-5 ratio for the original label), and promote the target label (high $P(\text{Adv.})$ — high top-1 and top-5 ratio for the target label).

We have four key observations from the attack results. First, as shown in the left half of the table, the digital versions of the adversarial images are highly successful. Across all the methods, 100% of the original labels are dropped out of top-5, and the target label is always classified as the top-1. This shows that in the digital domain, a classifier can be extremely vulnerable to adversarial attacks.

Second, as shown in the right half of the table, adversarial examples are more difficult to succeed in the physical domain. The top-1 accuracy of the target label dropped significantly for BIM to 0.00 and 0.01. The results suggest that the basic methods do not work in the physical domain. Advanced methods such as EOT and RP$_c$ have a better performance, which confirms the advantage of optimizing over simulated geometric transformations.

Third, both of our D2P models outperform existing methods by a large margin. Compared to EOT and RP$_c$, our method significantly improves the target label’s ranking. For example, using D2P$_p$, the top-1 accuracy of the target label is improved to 0.91 from 0.55 and 0.78. The top-5 accuracy of the target label is improved to 0.98. In addition, our method successfully reduces the original label’s top-1 and top-5 accuracy to 0. These results demonstrate the benefits of using a simulated physical image as the base to generate adversarial examples and the cGANs have successfully captured the patterns of D2P transformation.

Fourth, D2P$_c$ slightly outperforms D2P$_p$ in the attacking results. D2P$_c$ uses the cycleGAN for learning the digitalto-physical transformation. The simulated physical images are more authentic compared with the real physical images because the training does not suffer from potential misalignment between the digital and physical images. As evidence, we measure the average Perception Loss, a metric to assess the visual dissimilarity (Richard Zhang 2018) between the actual physical image and the simulated one. We find that cycleGAN indeed has a lower loss (0.28) than the pix2pix model (0.38). Although cycleGAN makes the generated image more faithful to the real physical image (see the example in Figure 3), it also preserves more features of the original image which makes the attack more difficult. The attacking performance of D2P$_c$ is slightly weaker than that of D2P$_p$.

Given the good performance of D2P, a natural question is whether the performance would be even better if we directly use the physical image as the base (D2P$_{\text{physical}}$). This represents the best base image that the D2P model can output. As shown in Table 3, the result is counter-intuitive, as D2P$_c$ and D2P$_p$ perform slightly better than D2P$_{\text{physical}}$. A possible explanation is that the performance gain may come from the feature loss during the quantization. The simulated physical images produced from the cGAN model exhibit slight distortions compared to the corresponding physical images. The feature loss makes the simulated images slightly easier to attack. In the rest of the paper, we use D2P$_p$ to examine the robustness of adversarial examples.

Exp B: Robustness against Viewing Angles

Next, we examine the robustness of the adversarial examples by changing the viewing angles. The goal is to assess a realistic scenario where the target system (e.g., self-driving car) may take photos from different angles to classify an object. A robust adversarial example should remain effective under different viewing angles. In this experiment, we test 9 different angles ranging from -60° to 60° by rotating the turntable with a 15-degree increment at a time to take photos. To accurately capture the angle, we print one image at a time (instead of 6 images per paper). For this experiment, we only compare our D2P$_p$ method with the best performing baseline, the EOT method ($\varepsilon = 30$).

![Figure 6: Top-1 accuracy of target label for the adversarial examples under different viewing angles.](image-url)
Table 4: Transferability of adversarial examples. “Base” represents the result of the original configuration of Exp. A and B. We then examine the performance of adversarial examples under different phone cameras, printers, and classifiers.

<table>
<thead>
<tr>
<th>Model</th>
<th>Our Method D2P</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original P(Orig.)</td>
<td>Adversarial P(Adv.)</td>
</tr>
<tr>
<td>Base</td>
<td>0.00 0.00 0.00</td>
<td>0.76 0.91 0.98</td>
</tr>
<tr>
<td>Diff. phone</td>
<td>0.00 0.00 0.01</td>
<td>0.80 0.90 0.97</td>
</tr>
<tr>
<td>Diff. printer</td>
<td>0.00 0.00 0.00</td>
<td>0.87 0.97 1.00</td>
</tr>
<tr>
<td>Xception</td>
<td>0.00 0.00 0.01</td>
<td>0.37 0.54 0.79</td>
</tr>
<tr>
<td>ResNet</td>
<td>0.01 0.01 0.01</td>
<td>0.24 0.35 0.57</td>
</tr>
<tr>
<td>MobileNet</td>
<td>0.00 0.00 0.02</td>
<td>0.23 0.37 0.56</td>
</tr>
</tbody>
</table>

Discussion and Conclusion

In this paper, we explore the feasibility of generating robust adversarial examples that can survive in the physical world. We propose the D2P method to simulate the complex effect introduced by physical devices to construct more robust adversarial examples. Our contribution does not lie in the algorithmic design. Instead, our main contributions are (1) introducing a new method to generate robust adversarial examples that work in the physical domain; and (2) conducting a large-scale physical-domain experiment to validate the attack effectiveness, robustness, and transferability, which are largely missing in existing works. Our results show that the simulated transformation helps improve the attack effectiveness to other unseen or uncontrolled situations such as different viewing angles, printers, and cameras.

Our work has useful applications to improve the robustness of deep learning models. By automatically generating realistic adversarial examples that can survive in the physical world, we can scale up several lines of applications: (1) evaluating the robustness of real-world computer vision applications, such as object detection systems used by self-driving cars and home-security systems; (2) improving defense methods against adversarial examples. So far, most defense methods are designed to detect digital-domain adversarial noises (Papernot et al. 2017). Using D2P, we can generate more realistic adversarial examples to assist the troubleshooting of under-trained regions and augment the training data for model retraining (Rozsa, Rudd, and Boult 2016) or adversary detection (Xu, Evans, and Qi 2018). By adding our adversarial examples into the training data, we expect the re-trained classifier to be more robust against attacks.
References

