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Abstract: 
 

Baculoviruses are large DNA viruses of invertebrates that are highly pathogenic in 

many hosts. In the infection cycle, baculoviruses produce two types of virions. These 

virion phenotypes are physically and functionally distinct and each serves a critical 

role in the biology of the virus. One phenotype, the occlusion derived virus (ODV) is 

occluded within a crystallized protein that facilitates oral infection of the host. A large 

complex of at least 9 ODV envelope proteins called Per os Infectivity Factors (PIF) 

are critically important for ODV infection of insect midgut epithelial cells. Viral egress 

from midgut cells is by budding to produce a second virus phenotype, the budded 

virus (BV). BV binds, enters, and replicates in most other tissues of the host insect. 

Cell recognition and entry by BV is mediated by a single major envelope glycoprotein: 

GP64 in some baculoviruses, and F in others. Entry and egress by the two virion 

phenotypes occur by dramatically different mechanisms and reflect a life cycle in 

which ODV are specifically adapted for oral infection while BV mediate dissemination 

of the infection within the animal.  
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INTRODUCTION  
Baculoviruses are pathogenic viruses that infect invertebrates and are widely 

distributed in the environment. The name baculovirus is derived from the latin “baculum” 

which refers to the rod-shaped nucleocapsids (app. 50 x 300 nm) characteristic of these 

viruses. As a group, baculoviruses have been described from host insect species that 

are mostly within the insect Order Lepidoptera (moths and butterflies), but some 

baculovirus species also infect insects in the Orders Diptera (mosquitoes) and 

Hymenoptera (sawflies). Baculoviruses are also well known in biotechnology, as the 

baculovirus expression vector system has been used extensively for applications that 

range from routine protein expression in research laboratories, to vaccine production 

and gene therapy (1-5).   

The Family Baculoviridae:  Baculoviruses have large circular dsDNA genomes 

ranging from approximately 80-180 kbp. Genome sequences of approximately 70 

baculoviruses are available and have guided our current understanding of baculovirus 

phylogeny (6-9). The family Baculoviridae is subdivided into four genera: 

Alphabaculoviruses, Betabaculoviruses, Deltabaculoviruses, and Gammabaculoviruses. 

These subdivisions reflect differences in  a) phylogeny as determined by relatedness of 

38 core genes, b) permissive host species, and c) the manner in which virions are 

occluded or embedded within their characteristic occlusion bodies (6, 10, 11). It should 

also be noted that certain other large dsDNA viruses of invertebrates (Nudiviridae, 

Hytrosaviruses, Nimaviridae, and the bracovirus genus of Polydnaviridae) share a 

subset of the 38 baculovirus core genes, suggesting either a common ancestor with the 

baculoviruses, or an exchange of certain functional groups of genes (6, 7, 12, 13). 

Among the baculoviruses, several viruses in the Alphabaculovirus genus have been 

studied most intensively, and these include: Autographa californica multiple 

nucleopolyhedrovirus (AcMNPV), Bombyx mori nucleopolyhedrovirus (BmNPV), Orgyia 

pseudotsugata multiple nucleopolyhedrovirus (OpMNPV), Lymantria dispar multiple 

nucleopolyhedrovirus (LdMNPV), Spodoptera exigua multiple nucleopolyhedrovirus 

(SeMNPV), and Helicoverpa armigera nucleopolyhedrovirus (HearNPV). However, 

because a large majority of the detailed studies on baculovirus biology have focused on 
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the model baculovirus AcMNPV, this review will focus primarily on our understanding of 

AcMNPV, but with exceptions and examples of diversity noted where appropriate.  

Two Virion Phenotypes:  A striking feature of the typical baculovirus infection 

cycle is the production of two physically different types of virions, often referred to as 

virion phenotypes (Fig. 1). The production of two structurally and functionally distinct 

virion phenotypes appears to be unique among eukaryotic viruses. The two virion 

phenotypes carry an identical genome and it was thought earlier that nucleocapsids 

were identical (see below). Virions of the two phenotypes differ dramatically in several 

aspects: they are produced at different sites in the infected cell, their envelopes are 

comprised of different membranes and membrane proteins, and each serves a distinctly 

different and essential role in the infection cycle in nature. One virion phenotype is 

referred to as the Occlusion Derived Virus (ODV) and the other is called the Budded 

Virus (BV), with the names referring to how each virus particle is produced (Fig. 1-2). In 

the case of ODV virions, nucleocapsids acquire an envelope within the nucleus and 

virions are subsequently occluded or encased within a crystallized protein matrix to form 

an occlusion body (OB), a structure that physically protects virions in the environment. 

ODV spread infection orally from insect to insect and are specifically adapted to infect 

the epithelial cells of the insect midgut. After infection of midgut cells by ODV, BV bud 

from the basal surfaces of the polarized midgut epithelial cells into the hemocoel (the 

open circulatory system of the insect) and they transmit infection systemically from cell-

to-cell and tissue-to-tissue within the infected animal. For viruses such as AcMNPV, 

most tissues within the hemocoel (tracheal epithelium, hemocytes, epidermis, muscle, 

fatbody, etc.) become infected and produce additional BV, further spreading the 

infection through the animal. BV are produced in substantial quantities as early as 12-18 

h p.i. in cell culture (14). Later in the infection, many nucleocapsids are retained within 

the nucleus, and are subsequently enveloped by a membrane derived from the nuclear 

envelope (15). These newly enveloped ODV in the nucleus are then encased in the 

occlusion body protein, which crystallizes to form the OB. While several distinct types of 

OBs are produced by baculoviruses, each OB of AcMNPV is large (app. 1.7-3 µm in 

diameter) and contains many virions (app. 10-30)(Fig. 2B). In addition, each AcMNPV 

ODV virion typically contains multiple (app. 5-25) nucleocapsids (16). Thus, a single 
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AcMNPV OB (the oral infectious unit) may carry hundreds of nucleocapsids. OBs are 

released from infected cells upon cell lysis late in the infection of the animal and 

typically, infected insects appear to dissolve, a process sometimes called liquefaction. 

This is a process mediated by at least two viral-encoded enzymes (a chitinase and a 

cathepsin protease) that catalyze the breakdown of the insect exoskeleton and the 

release of OBs into the environment (17), completing the infection cycle in nature. 

Research utilizing cultured cells is believed to be mostly representative of the secondary 

phase of infection in the animal (non-midgut infections)(Fig. 1B). In cell culture systems, 

infection is initiated by BV because ODV are poorly infectious in cultured cells (18). 

However, both BV and ODV are produced in cultured cells. Studies of infection by ODV 

are typically performed in larval insects as no convenient polarized midgut cell culture 

system is available. However, much progress has been made toward understanding 

viral determinants of ODV infection in the midgut, a critically important phase of the 

infection cycle in nature. Here, we will review some of the important aspects of entry 

and egress at the cellular level, by baculovirus ODV and BV, and summarize our current 

understanding of these processes.   

I. ODV ENTRY  
I.1. ODV Structure 
ODV are highly specialized for infection of insect midgut cells and must 

overcome significant physical and biological barriers. ODV stability in the environment is 

critically dependent on the occlusion body protein, which surrounds and protects ODV 

from desiccation and possibly UV inactivation (Fig. 2B). The OB protein (called 

Polyhedrin in most baculoviruses) forms a natural crystal in the OB, and in that structure 

Polyhedrin trimers are linked via disulfide bonds to form a dodecamer (19). An N-

terminal region of the polyhedrin protein (amino acids 32-48) is highly disordered and it 

has been proposed that this region may interact with the embedded ODV virions at the 

interface of the virion and the crystallized OB protein. A critically important characteristic 

of the OB structure is its rapid disassembly at high pH, a process that occurs in the 

alkaline environment of the insect gut. The disruption of disulfide bonds between trimer 

subunits is thought to be an early step in OB disassembly, a process that is accelerated 
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at high pH (19). Polyhedrin is enriched in tyrosine, with residues clustered at interfaces 

between trimer subunits. pH effects on these interfaces are thought to also promote OB 

disassembly at high pH. AcMNPV OBs each contain many embedded ODV, but it 

should be noted that the number of ODV/OB can vary significantly depending on the 

baculovirus genus and species. The surface of the OB is covered by an outer layer 

comprised of carbohydrate and protein which appears to stabilize the OB. ODV of 

AcMNPV are released into the relatively harsh environment of the midgut lumen which 

is rich in proteases and is highly alkaline. The peritrophic matrix, a protein-chitin 

structure that lines the midgut, is another potential obstacle to ODV infection. Chitin-

binding fluorochromes known as optical brighteners (e.g. calcofluor) are known to 

disrupt or degrade the peritrophic matrix and can lower the LD50 for baculovirus 

infections (20). This suggests that the peritrophic matrix is a significant physical barrier 

to ODV infection. OBs of some alpha- and betabaculoviruses contain a metalloprotease 

(called Enhancin, Viral Enhancing Factor, VEF; or Synergistic Factor) that can cleave 

proteins in the peritrophic matrix and increase the efficiency of infection (21-23). While 

not all baculoviruses sequenced to date contain an identified enhancin gene in their 

genomes, most are thought likely to encode a protein with this function.  

I.2. ODV Binding and Entry into Midgut Cells.  
ODV enter midgut epithelial cells via direct membrane fusion with microvilli (24, 

25). The nature of the receptor on midgut epithelial cells is not known although a 

specific receptor is suspected since binding of ODV to midgut brush border membrane 

vesicles is saturable (26, 27). Although definitive experimental evidence is lacking, 

available current evidence implicates a large protein complex of viral PIF proteins, as 

mediating ODV binding and fusion with midgut microvillar membranes.   

PIF Proteins. The ODV envelope contains at least 13 integral membrane 

proteins. The first ODV envelope protein found to be important for oral infection and 

possibly receptor interactions was P74 (ac138). Deletion of P74 does not substantially 

impact BV production but importantly, ODV oral infectivity is lost (27-30). Following the 

identification of P74, 8 additional ODV envelope proteins required for oral infectivity 

were identified. The genes encoding these proteins are referred to as per os infectivity 

factor or pif genes, and the 9 pif genes are named: pif0 (p74), pif1 (ac119), pif2 (ac22), 
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pif3 (ac115), pif4 (ac96), pif5 (odv-e56, odvp-6e, or ac148), pif6 (ac68), pif7 (ac110), 

and pif8 (ac83) (31-38). All PIF proteins identified to date have the following properties 

in common: 1) deletion results in the loss of per os infectivity, 2) deletion does not 

impact assembly of ODV or occlusion of ODV into OBs, 3) deletion has no observable 

effect on BV production or infectivity, and 4) homologs are present in all baculovirus 

genomes (pif genes represent 9 of the 38 baculovirus core genes). All PIF proteins are 

associated with the ODV envelope, and PIF8 was also found associated with the 

nucleocapsid (36). The 9 AcMNPV PIF proteins form a large high molecular weight 

complex in the ODV envelope (37, 39) (Fig. 3A). Association of PIF0,-5,-6,-7, and -8  

with the high molecular weight PIF complex appears to depend on the presence of 

PIF1-4. Current data suggests that PIF1-4 can form a smaller relatively stable core 

complex, independent of other PIF proteins (36, 40). An important aspect of the PIF 

complex is that it exists and functions in an environment rich in proteases and high pH 

(the midgut) and formation of a stable PIF complex is necessary for resistance to 

proteolytic degradation (41). Because PIF complex stability is almost certainly critical for 

oral infectivity, conclusions regarding PIF protein functions (based on gene knockouts 

and oral infection assays) must take into account the stability and protease resistance of 

the PIF complex. Thus, conclusions from prior and future studies of pif gene deletions 

should be examined in light of possible effects on PIF complex stability. Still to be 

determined is the stoichiometry of PIF proteins in the entry complex. Transcriptomic 

analysis indicates that AcMNPV pif gene transcripts are present at significantly different 

relative levels with pif5>pif1>pif4>pif8, pif6, pif7, pif2>pif0>pif3 (42). Yeast two-hybrid 

studies suggest a complex interaction network among PIF proteins. The core complex 

PIF-1, -2, -3 and -4 all interact with each other, with PIF3 potentially forming a multimer 

and also binding to PIF5 (also possibly a multimer). In addition, PIF5 interacts with 

PIF0, and PIF8 binds to PIF1 (36, 43). Other interactions are likely to occur but it is 

currently unknown how PIF-6 and -7 interact with the complex (Fig. 3A). As all pif genes 

are core genes and thus conserved across all baculoviruses, the ODV entry mechanism 

appears to be highly conserved in the Baculoviridae. Indeed, the identification of 

orthologs in other invertebrate viruses also suggests that the same entry mechanism 

may be used by other virus families. Central questions going forward are: Does the PIF 
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complex mediate binding and possibly also confer host specificity? Does the PIF 

complex mediate membrane fusion, and if so, how is fusion with the plasma membrane 

triggered? To date, no PIF proteins have been identified with similarities to fusion 

proteins from other viruses although such similarities are often difficult to detect without 

structural data. Elucidating the predicted binding, fusion and entry mechanisms of PIF 

complexes and the roles of their components will be one of the most exciting areas of 

baculovirus research due to their evolutionary conservation in diverse invertebrate DNA 

viruses. Because ODV membrane fusion events occur in the high pH of the larval 

midgut, the receptor-binding and membrane fusion mechanisms likely mediated by PIF 

complexes represent a type of uniquely interesting biological machine that has not been 

previously studied.   

I.3. Nucleocapsid Transit to the Nucleus or Basal Membrane 
Upon ODV fusion with a midgut microvillus, a single ODV virion may release one 

or many nucleocapsids (24, 44). Microvilli typically contain a thick bundle of crosslinked 

actin filaments and it is not known whether entering nucleocapsid(s) specifically interact 

with these pre-existing actin filaments. However, based on studies of nucleocapsids 

released from BV (see below) actin polymerization is likely initiated from one end of the 

ODV-derived nucleocapsid and the formation of new actin filaments is thought to 

provide propulsion for transporting nucleocapsids to the nucleus (45-47). The interaction 

of the nucleocapsid with the nuclear pore complex and transit through the nuclear pore 

are also thought to be similar to that described during BV entry (47-50) (see Fig. 1B and 

discussion below). In addition to nucleocapsids that enter the nucleus, nucleocapsids 

from alphabaculovirus ODV (that contain multiple nucleocapsids) may also circumvent 

the nucleus and transit directly through the midgut epithelial cell to the basal 

membranes of those cells, where they bud into the hemocoel (24). The observation by 

TEM of BV with characteristic GP64-like peplomers budding from basal surfaces of 

midgut cells within 1-2 hours post infection (h pi) (24), combined with studies of 

pathogenesis (51) suggest that this midgut cell pass-through process requires early 

gene expression from nucleocapsids that are simultaneously trafficked to the nucleus 

(Fig. 1A). Thus for baculoviruses such as AcMNPV, multiple nucleocapsids released 
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into a midgut cell may permit the infection to rapidly pass through midgut cells and avoid 

cellular and organismal defenses associated with the midgut.  

II. ODV Assembly and Egress 
Following viral gene expression and DNA replication in the nuclei of infected 

cells, nucleocapsids are assembled in the virogenic stroma, and then transported to the 

so-called ring zone, an electron lucent region at the periphery of the nucleus (Fig. 2B). 

Nuclear transport to the ring zone is dependent on nuclear actin polymerization and 

nucleocapsid proteins VP80 (Ac104), P78/83 (Ac9), VP1054 (Ac54), and BV/ODV-C42 

(Ac101) (45, 52, 53). During assembly or in the ring zone, nucleocapsids may be 

somehow designated to form either ODV or BV. While the mechanism(s) that direct 

some nucleocapsids to exit the nucleus (to generate BV) and others to remain within the 

nucleus (to form ODV) are not understood, several hypotheses have been suggested 

(discussed below). The genetic content of ODV and BV nucleocapsids appears to be 

identical and based on viral DNA levels, it has been estimated that 97% of the 

synthesized viral genomic DNA is found in ODV or remains in the nucleus (54). Thus, 

only a small percentage of the total viral DNA synthesized is found in BV.  

II.1. Nucleocapsid and Envelope Composition. 
Although nucleocapsids of the ODV and BV were previously considered to have 

the same structure, proteomic studies of purified virions indicate that differences exist 

(55-57). ODV and BV nucleocapsids and envelopes have been analyzed in greatest 

detail for AcMNPV and HearNPV and the results are summarized in Figure 2A. Of the 

approximately 55 AcMNPV nucleocapsid proteins, 24 appear to be common to both 

ODV and BV nucleocapsids. Another 31 proteins are specific to either the ODV or BV 

nucleocapsids of AcMNPV (Fig. 2A). For HearNPV nucleocapsids, 21 proteins specific 

to either ODV or BV nucleocapsids were also identified (56). Similarities and differences 

between virion proteins from the two viruses are indicated in Figure 2A. Depending on 

the virus analyzed, 3-6 envelope proteins are common to both ODV and BV 

phenotypes. For AcMNPV these include BV/ODV-E26 (Ac16), F-like protein (Ac23), 

Ac76, ODV-E25 (Ac94), ODV-E18 (Ac143), and ODV-E56 (PIF5 or Ac148). In contrast, 

GP64 (Ac128), Viral Ubiquitin (v-Ubi, Ac35), GP37 (Ac64), Ac75, and P18 (Ac93) are 
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specific to BV envelopes. Envelope proteins specific to AcMNPV ODV include PIF 0-4 

and 6-8, ODV-E66 (Ac44), and GP41 (Ac80). Comparisons of AcMNPV and HearNPV 

show similarities and differences with respect to their protein contents detected for ODV 

and BV nucleocapsids and envelopes (Fig. 2A). Proteomic studies have also been 

performed on virions from other baculovirus species and similarly, results have been 

variable. Future studies with both sensitive and quantitative analytical techniques should 

permit us to more confidently define the viral and host protein content of ODV and BV.  

The assembly and occlusion of ODV in the nucleus requires a complex 

integration of events that include: trafficking of ODV membrane proteins to the nucleus 

and formation of intranuclear membranes, the assembly and association of 

nucleocapsids with intranuclear membranes, and the wrapping or enclosing of 

nucleocapsids in membranes. Finally, the envelopes of assembled ODV must associate 

with concentrated occlusion body protein (Polyhedrin) which crystallizes around one or 

many ODV to form the OB (Fig. 1B and 2B). From TEM studies and electron 

tomography, a model was recently developed for the sequence of events in ODV 

envelopment (58).  

The ODV envelope. The ODV envelope appears to originate from either the inner 

nuclear membrane (INM) or both the INM and outer nuclear membrane (ONM) and 

many of the ODV envelope proteins contain INM sorting motifs (15, 58-67). 

Microvesicles that are likely derived from the INM appear to begin pinching off or 

blebbing from the nuclear membrane (Fig. 1B, 2B) and this process was previously 

shown to require at least three viral proteins: Ac76, Ac75, and Ac93 (68-70). Ac76 is a 

dimeric integral membrane protein that localizes to the INM and interacts with Ac75 at 

this location. It is interesting to note that these three proteins are also required for 

egress of nucleocapsids from the nucleus to ultimately form BV. Thus, these three 

proteins appear to play roles in both the production of enveloped ODV in the nucleus, 

and production of BV. Based on TEM studies, it appears that nucleocapsids aggregate 

concomitant with their interaction with intranuclear virion membranes and subsequently 

appear to be associated at their ends with somewhat spherical vesicles that likely 

formed from the INM/ONM-derived microvesicles. Vesicles with associated 

nucleocapsids then become elongated and nucleocapsids are lined up in a parallel and 
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polarized fashion (58, 71). Based on gene deletions, three viral proteins have been 

identified as required for the membrane-nucleocapsid interactions in the nucleus: P45 

(Ac103), P49 (Ac142) and ODV-E18 (Ac143) (72-74). Also, P49 (Ac142) and ODV-E18 

(Ac143) are found associated with the virus-induced intra-nuclear membranes (62). 

Later, it appears that the virus-induced membranes wrap around their associated 

nucleocapsids and close to form large enveloped groups of nucleocapsids, which may 

be further subdivided by a fission process that generates the ODV. The viral proteins 

required for this process are not known but deletions of PIF genes do not prevent ODV 

formation or the incorporation of ODV into OBs (34, 75, 76), indicating that PIF proteins 

are not required. The intranuclear envelopment of nucleocapsids to form ODV appears 

to be a process that is unique for eukaryotic viruses and studies of the biochemistry of 

this complex process should uncover new mechanisms of membrane manipulation and 

membrane-protein interactions.  

II.2. Roles for nuclear F-actin in ODV assembly.  
During the later stages of infection (app. 10-20 h pi), nuclear G-actin begins to 

accumulate in the nucleus and subsequently polymerizes to form F-actin (77). Prior 

studies indicate that nuclear G- and F-actin are in a dynamic state, requiring capsid 

protein p78/83 for activation of Arp2/3 followed by polymerization and accumulation of 

F-actin in the nucleus (45). Further studies indirectly suggest that F-actin may play a 

role in nucleocapsid morphogenesis and in nucleocapsid transport within the nucleus. In 

viruses containing a deletion in a gene encoding an F-actin-interacting protein (VP80), 

nucleocapsids are assembled but not transported from the virogenic stroma to the 

nuclear periphery, and ODV do not form (53). In addition, it was hypothesized that VP80 

may function with another viral protein (Ac66) that is also required for nucleocapsid 

transport and ODV production (78).   

Virions with Single and Multiple Nucleocapsids. It is important to note here that 

the ODV of all beta-, delta-, and gammabaculoviruses typically have only a single 

nucleocapsid per virion, and only some alphabaculovirus species form ODV with 

multiple nucleocapsids per envelope. It is not clear how this trait is determined as the 

number of nucleocapsids enveloped in the each ODV virion has been reported to be 

impacted by several viral genes and also by viral replication in different host cell lines 
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(16, 79-81). It has also been speculated that the multiple nucleocapsid phenotype could 

be determined by the concentrations and proximity of nucleocapsids in the infected 

nucleus (9). While a mechanistic explanation is lacking, the envelopment and delivery of 

multiple nucleocapsids to the midgut cell provides the virus with advantages in rapid 

movement of infection through the midgut (24, 82), as well as a mechanism for genetic 

complementation to mitigate the effects of mutations acquired in the environment (83).  

After mature ODV are formed, they associate with dense concentrations of the 

polyhedrin protein, which subsequently crystallize around ODV. The mechanisms that 

control crystallization at the ODV-polyhedrin interface are unknown. The occlusion 

process appears to be highly regulated, as OBs of a baculovirus species are relatively 

uniform in size, occlude a number of ODV (within a predictable range for a virus 

species), and OBs typically have a peripheral outer exclusion zone in which ODV are 

not incorporated. An outer layer (known as the calyx or polyhedral envelope) comprised 

of carbohydrate and protein (Polyhedral Envelope, Ac131) is added to the surface of the 

mature OB (84-87). The formation of this OB surface structure appears to require a 

functional P10 protein and is associated with nuclear fibrillar structures (30, 88). In the 

absence of ac131 or p10, OBs contain no outer calyx layer and are irregular and fragile 

(30, 88). The occlusion of ODV virions varies substantially between baculovirus genera. 

For example, betabaculovirus OBs each typically incorporate only a single ODV virion, 

whereas OBs of the other three genera contain many ODV per OB. The occlusion 

process is complex and critically important in this group of viruses. Important questions 

that remain to be addressed include:  a) How is occlusion body protein crystallization 

triggered? b) How do the membrane and membrane proteins of ODV cooperatively 

interact with the OB protein before and in the crystal state? c) How is the number of 

ODV incorporated into the OB regulated? and d) How is the size of the growing 

occlusion body limited? A number of broad questions should also be addressed in the 

future. Are infections and OB release coordinated at the organismal level, such that 

coordinated cell lysis and OB release result in maximally efficient OB production and 

delivery into the environment? Baculoviruses are known to alter the developmental 

program and behavior of the host insect in order to maximize virus production and 

distribution (89-91), and it would be surprising if the release of OBs in the dramatic 
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process of larval melting (or liquefaction) was not also coordinated to optimize OB 

production and delivery to the environment.  

 

III. BV ENTRY 
III.1. BV in nature  
In nature, BV transmits infection from cell-to-cell and tissue-to-tissue within the 

animal. After initially budding from infected midgut cells (and later from other infected 

tissues), BV circulate in the hemolymph and are capable of binding and entering most 

cell types within the host. This promiscuous entry of AcMNPV BV into many 

heterologous cell types has been exploited in a number of biotechnological applications 

(92-94).  

III.2. BV structure 

BV Envelopes and Envelope Proteins.  

Unlike the ODV envelope, the BV envelope is acquired from the cell plasma 

membrane during budding, and contains a more limited number of virus-encoded 

proteins (Fig. 2A). The AcMNPV BV envelope contains one highly abundant viral 

protein, GP64, and at least six additional virus-encoded membrane proteins that are 

present at lower levels. These include:  F-like protein (Ac23), v-Ubi (Ac35), GP37 

(Ac64), ODV-E25 (Ac94), ODV-E18 (Ac143), and BV/ODV-E26 (Ac16) (57, 95). GP64 

is essential for virion entry, and two of the other BV envelope proteins are important for 

the production of infectious BV (ODV-E25 and ODV-E18) (9, 73, 96). However, the 

other BV envelope proteins (F-like protein, v-Ubi, GP37, and BV/ODV-E26) may impact 

BV production levels but they are not required for BV production or BV infectivity. BV 

contain both host and viral-encoded ubiquitin proteins and both associate with the inner 

surface of the BV envelope through a covalently attached phospholipid anchor (97, 98). 

Studies of v-ubi knockouts in AcMNPV reported substantially reduced BV yields at 24 h 

pi (99, 100) whereas  a v-ubi knockout in a closely related virus, BmNPV, was reported 

to have no apparent effect on cumulative BV production at 72 h pi but earlier times pi 

were not reported (101). Because ubiquitination of nucleocapsid proteins has also been 
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reported (see discussion below), and both BV envelopes and nucleocapsids contain 

viral (v-Ubi) and cellular ubiquitin, the specific role of ubiquitin in the BV envelope is not 

yet clear.  

GP64 and F proteins. 

GP64 is a Class III viral fusion protein (102-104) that appears to have been acquired 

relatively recently in the evolutionary history of the baculoviruses (103, 105, 106). GP64 

orthologs within the Baculoviridae show an unusually high level of amino acid sequence 

conservation and they are found only in a subgroup (group I) of the alphabaculoviruses. 

Class III fusion proteins are a structurally related group of viral fusion proteins that 

include members in other seemingly unrelated virus families, such as the gB proteins of 

herpesviruses, the GP75 proteins of certain orthomyxoviruses, and the G proteins of 

rhabdoviruses (102, 103, 107). Class III fusion proteins are found as trimers in the 

membrane and (based on the low pH post-fusion structures of these proteins) have 

structural characteristics that are distinct from other classes of viral fusion proteins: 1) 

each monomer contains a long central alpha helix that is one member of a trimer of 

coiled-coils in the center of the trimer, 2) the monomer contains five characteristic 

domains which are comprised of alpha helical and beta sheet structures distinct from 

class I and II fusion proteins, and 3) critical fusion domains (fusion peptides) are found 

within two internal loops referred to as fusion loops (102, 108). Fusion loops are located 

at the extremity of the post-fusion structure (Fig. 3B), and contain hydrophobic residues 

critical for fusion (109-112). Experimental data suggest that they may interact with the 

host cell membrane bilayer during the process of membrane fusion (104, 109-111). 

Unlike other viral class III fusion proteins, each monomer of the baculovirus GP64 trimer 

is covalently linked to the other monomers in the trimer, by inter-molecular disulfide 

bonds (104, 113).  

F proteins. While GP64 is the major envelope glycoprotein in the BV envelope of 

AcMNPV and other group I alphabaculoviruses (9, 114), the major envelope 

glycoprotein in group II alphabaculoviruses and other genera of baculoviruses, is called 

F (for Fusion) protein. GP64 and most F proteins are functional analogs, mediating host 

cell binding and membrane fusion, but they differ dramatically in structure (104, 115). 
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GP64 and F proteins also appear to have an interesting evolutionary relationship within 

this virus family. In group I alphabaculoviruses like AcMNPV, an F (Ac23) protein is also 

present but it is a minor non-essential component of the BV envelope (116). However, 

in baculoviruses that do not encode a GP64 protein, F is an abundant BV envelope 

glycoprotein and is essential, mediating virion binding and membrane fusion (105, 117, 

118). F proteins are structurally similar to paramyxovirus F proteins (Class I fusion 

proteins) although there is little or no recognizable amino acid sequence conservation 

(115). Although poorly conserved at the sequence level, F proteins related to 

baculovirus F proteins have also been identified in endogenous retroviruses (119-121) 

and in the genomes of several insect species (115, 120, 122, 123). Several lines of 

evidence support the concept that F represents an ancestral BV fusion protein, and that 

GP64 was more recently acquired by an ancestor of the group I alphabaculoviruses: 

First, F protein genes are widely distributed in the Baculoviridae and encode proteins 

with lower levels of amino acid sequence conservation. In contrast,  GP64 proteins are 

restricted to a single baculovirus subgroup (group I of the Alphabaculovirus genus) and 

have a high level of  amino acid sequence conservation. In addition, all group I 

alphabaculoviruses that encode a gp64 gene also contain an F protein gene, although it 

is often called F-like because it no longer functions as a fusion protein in these viruses. 

Thus, it appears that upon acquisition of GP64 in the progenitor of the group I 

alphabaculoviruses, the central role of F in entry was displaced (105, 106, 116, 117). 

However, because the F gene has been retained in viruses carrying GP64, this also 

suggests positive selection for other function(s) of F. Knockout of the AcMNPV F-like 

protein gene (Ac23) in AcMNPV has little or no effect on BV production or BV infectivity, 

but effects on ODV occlusion and pathogenicity have been observed (16, 116). In the 

group II alphabaculoviruses (which carry no GP64 gene), knockouts of F are lethal (124, 

125).  

Lipid composition of the BV Envelope.  
In the limited studies that have examined and compared the lipids of BV and ODV 

envelopes (and host cells) it was determined that the BV and ODV envelope lipid 

compositions differ substantially (64, 126, 127). The envelope phospholipids of 
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AcMNPV BV generated from infection of Sf9 cells were reported to be comprised of 

approximately 50% phosphatidylserine (PS) and lower amounts of sphingomyelin (SPH, 

13%), phosphatidylinositol (PI, 12%), phosphatidylcholine (PC, 11%), 

phosphatidylethanolamine (PE, 8%) and lysophosphatidylcholine (LPC, 6%)(64). In 

contrast, ODV envelopes contain much higher levels of PC (39%) and PE (30%), while 

PS is present at somewhat reduced levels (20%) and SPH and LPC were reported at 

extremely low levels (<2 and 1%, respectively). While lipid compositions of the BV and 

ODV envelopes, as well as that of the host or target cells have received very little 

attention, they are likely to play important roles in virus binding and entry, as well as 

ODV and BV assembly and egress.  

III.3. BV Binding  

Cellular Receptor 

Receptor binding by baculovirus BV is only poorly understood. AcMNPV BV binding to 

host cells is mediated by the major envelope glycoprotein GP64 and its cognate 

receptor has not been clearly identified. While the AcMNPV F-like protein, Ac23, is non-

essential for infection (116), experiments in a heterologous system suggest that Ac23 

could enhance entry in some cases (105). Early studies indicated that AcMNPV BV 

binding to Sf9 cells (and 5 other cell lines) was spatially saturated, essentially covering 

the cell surface (128). Current data suggest that GP64 binds to either acidic 

phospholipids in the cell’s plasma membrane (110), or to a highly abundant and widely 

distributed cellular protein or class of proteins (128-130). Studies of BV transduction of 

mammalian cells (that are non-permissive for viral replication) have also implicated 

charged cell surface proteins as important for BV binding in those cells (131, 132), 

although it is not clear whether such binding is relevant to entry into permissive insect 

cells. The lack of a requirement for a protein receptor is also suggested by a number of 

studies demonstrating AcMNPV BV binding to liposomes that contain no protein (110, 

126, 133). BV binding to liposomes is enhanced when liposome membranes contain 

acidic phospholipids, suggesting that GP64 interactions with the charged heads of 

phospholipids may be the critical factor for BV binding to the host cell. It is of special 

note that in studies of receptor binding by another promiscuously-binding class III fusion 
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protein (VSV G), a definitive protein receptor has not been identified and phospholipids 

have also been implicated as a likely cellular receptor (134-137). In support of a 

phospholipid receptor for AcMNPV BV, prior treatment of mammalian cells with 

phospholipase, and studies with cell lines deficient in phospholipid synthesis showed 

reduced BV transduction efficiency (138). Combined, these and other studies suggest 

that lipid composition plays an important if not critical role in BV binding and entry.  

GP64 Binding.   

In studies of GP64-binding to host cells, it was reported that binding was neutralized by 

anti-peptide antisera directed against regions of GP64 that contain the fusion loops 

(139). In addition, substitution mutations of several critical residues within the GP64 

fusion loops resulted in decreased binding of a soluble GP64 protein to liposomes 

(110). These data suggest that the GP64 fusion loops may serve roles in both BV 

binding and membrane fusion (see below). Recently, a similar model for binding was 

proposed for the structurally related VSV G protein. In this model, reversible structural 

changes expose fusion loop domains that subsequently interact with target membranes 

as a step in host cell binding (136). It was proposed that binding by VSV G was 

established via reversible extension of the fusion loops at neutral pH, with more 

extensive interactions occurring at lower pH. Experimental data from GP64 and BV 

interactions with liposomes (110, 126, 133, 140, 141) suggest the possibility that a 

similar mechanism may mediate GP64 binding to permissive host cells.  

III.4. Endocytosis 
After binding at the cell surface, BV enter cells by clathrin-mediated endocytosis 

(142-144) and this appears to be the case for both permissive insect cells and non-

permissive mammalian cells (144, 145). Little is known regarding the endosomal 

trafficking that occurs immediately following entry from the cell surface but several 

studies have identified cellular components of vesicle formation and trafficking that are 

necessary or important for entry (146-149). These include components of the 

endosomal sorting complex required for transport (ESCRT) pathway and N-

ethylmaleimide sensitive fusion protein (NSF), a key regulator of soluble NSF 

attachment protein receptor (SNARE) function. The cellular ESCRT pathway is best 
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known to mediate the formation and fission of multivesicular bodies in healthy cells, but 

this pathway plays a variety of additional roles in normal cellular physiology (150, 151). 

Many viruses hijack components of the cellular ESCRT machinery for virion budding 

during viral egress (152, 153). ESCRT proteins are also involved in entry by a variety of 

viruses, including rhabdoviruses, arenaviruses, flaviviruses, herpesviruses, 

bunyaviruses, and rotaviruses (153-158). NSF is an AAA ATPase that is critical for the 

disassembly and recycling of SNARE complexes, and disruption of NSF function results 

in disrupted SNARE function. SNARE proteins mediate the carefully regulated fusion 

between intracellular vesicles and their target membranes. While these studies point to 

the importance of specific components of the cellular vesicle trafficking system in the 

trafficking of virion-containing endosomes during entry, understanding the precise 

mechanistic roles of ESCRT and SNARE proteins in endosomal trafficking during 

baculovirus entry will require additional study. Following internalization of BV, 

endosomes are acidified by proton pumps in the endosome membrane and the 

acidification triggers GP64-mediated membrane fusion, releasing the nucleocapsid into 

the cytoplasm. Using inhibitors of endosome acidification, it was determined that 

nucleocapsids are released from the endosome with a half-time of approximately 25 min 

(142). Because the pH threshold for GP64-mediated membrane fusion was measured 

at approximately pH 5.5 (159), this suggests that fusion and nucleocapsid release 

occurs in late endosomes. 

III.5. Membrane fusion by GP64: 
Baculovirus GP64 proteins mediate low pH triggered membrane fusion in a pH 

dependent manner, through a series of discrete steps that include: receptor binding, low 

pH induced GP64 conformational change, outer membrane leaflet merger and 

membrane mixing (hemifusion), membrane pore formation, and finally pore enlargement 

which releases the nucleocapsid into the cytoplasm. How various fusion proteins 

accomplish membrane fusion is a subject of intense study, yet the mechanistic details of 

membrane fusion are only poorly understood in the best cases (160). While only the 

postfusion (low pH) structure of the GP64 protein is available (104)(Fig. 3B), both pre- 

and post-fusion structures are available for the structurally related class III fusion 

protein, VSV G, which also shares functional characteristics (promiscuous binding and 
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reversible structural changes) with GP64. A model for the neutral and low pH triggered 

conformational changes, and the extension of fusion loops has been proposed for VSV 

G (136). Like VSV G, GP64 requires no proteolytic activation and after exposure to low 

pH, conformational changes in the protein appear to be reversible (161). Because the 

pKa of histidine residues is around pH 6.0, the GP64 conformational change induced by 

low pH is believed to result from protonation of histidine residues. A cluster of 3 histidine 

residues was identified as necessary for stabilizing the prefusion structure of GP64, and 

thus these histidine residues are likely participants in the low pH triggering GP64 (162). 

Following triggering, Class III fusion proteins such as GP64 are thought to form an 

extended structure such that the two fusion loops at the extremity interact with the 

adjacent cell membrane. Subsequent refolding of the protein (apposition) then pulls the 

cell membrane into close proximity with the viral envelope membrane. Residues within 

and in close proximity to the viral envelope membrane (the transmembrane, TM, and 

the pre-transmembrane, PTM domains, respectively) are thought to play a role in 

disrupting the bilayer structure to facilitate membrane mixing and formation of a 

hemifusion state in which the outer layers of the two adjacent bilayers are merged 

(163). Experimental studies have identified amino acid positions in the GP64 fusion 

loops (102, 104, 110, 126, 139) as well as in the TM and PTM domains (164-166), that 

are important for several of the sequential steps in GP64-membrane interactions and 

fusion. In addition, domains important for stabilizing the pre-fusion and post-fusion 

structures of GP64 have been examined (162, 167). Understanding the mechanisms of 

GP64 triggering and membrane fusion will ultimately require a prefusion structure of 

GP64, as well as intermediate structures in the conformational change. Based on patch-

clamping studies, the GP64-induced fusion pore was described as a large pore that 

opens rapidly, when compared with the influenza HA-induced fusion pore, which forms 

small rapidly opening and closing pores that gradually enlarge (168-170). During 

membrane fusion, a higher order fusion complex of approximately 10 GP64 trimers 

appears to form (170, 171). Although a number of studies have examined GP64 

domains and their roles in membrane fusion, much work will be required to fully 

understand the mechanisms of GP64 receptor recognition, pH triggering and 
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conformational changes, and the complex interactions of GP64 domains with the viral 

envelope and host cell membrane during the process of membrane fusion.  

III.6. Actin Propulsion of Nucleocapsids 
Within a few hours following infection, dynamic changes in the actin cytoskeleton 

can be observed. Actin accumulates at the periphery of the cell near the plasma 

membrane and actin cables form in the cytoplasm (172, 173). A non-essential viral gene 

called actin rearrangement -inducing factor 1 (arif-1) was identified as required for the 

peripheral actin localization (173, 174). Following release of BV nucleocapsids from 

endosomes, a nucleocapsid structural protein, P78/83 (Ac9), recruits cellular Arp2/3 

which is a nucleator of actin polymerization (45). P78/83 is a viral WASP-like protein 

that contains a domain that binds G-actin, and another domain that binds the Arp2/3 

complex. The polymerizing F-actin generates “comet tails” which may represent or be 

related to the actin cables observed within a few hours after infection. Using AcMNPV 

BV (containing mCherry-labeled nucleocapsids) to infect cells expressing EGFP-actin, 

nucleocapsids were observed being propelled by actin comet tails at a velocity of 

approximately 7-22 µm/min, similar to the actin-based motility described from Listeria, 

Shigella, and vaccinia virus (47). The actin polymerization activity of P78/83 appears to 

be at least partially regulated by viral protein BV/ODV-C42 (Ac101) (175-177). A recent 

study of AcMNPV nucleocapsid propulsion by actin, using electron tomography in model 

vertebrate cells, suggested that nucleocapsids may be continuously tethered to 

branching actin filaments in what was described as a “fishbone-like array” and it was 

suggested that nucleocapsid propulsion likely results from an average of 4 filaments 

pushing a nucleocapsid (178). The authors also proposed that directionality may be 

imposed by P78/83 through the restriction of actin filament branching in a biased 

manner. It will be exciting to follow future studies that help us to better understand the 

mechanistic details of these engines of nucleocapsid propulsion in the cell.  

III.7. Nuclear entry 
It is now clear that nucleocapsids of the alphabaculoviruses enter the nucleus by 

transport through the nuclear pore complex (NPC). Initial evidence of nucleocapsid-

NPC interaction came from TEM observations of baculovirus infected cells (24). 

Nucleocapsids were observed to interact with the NPC via the nucleocapsid cap end, 
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and electron dense nucleocapsids were observed in the nucleoplasm, leading to the 

conclusion that nucleocapsids transited the NPC. Nucleocapsids labeled with mCherry 

can also be observed co-localize with nuclear pores, followed by their detection in the 

nucleoplasm (47). Nuclear entry can also be blocked by a truncated form of importin-

beta which inhibits NPC transport of large cargoes by binding to NPC proteins called 

nucleoporins. Using electron microscopy and electron tomography, nucleocapsids have 

been shown to interact with cytoplasmic filaments and transit the NPC (48). Deletion of 

ac132 results in nucleocapsids that appear to dock at the nucleus but do not enter, 

indicating that Ac132 may be required for NPC trafficking at a step following docking 

(179). Normally, transit of cargo across the NPC using the importin-beta superfamily 

requires the RAN-GTPase cycle. However, recent studies found that nucleocapsid 

transit into the nucleus required only actin polymerization mediated by Arp2/3 and not 

the RAN-GTPase cycle (50). These results are  the basis of a model for a novel 

mechanism of nuclear transport in which actin polymerization is the propulsive force 

driving cargo through the NPC and overcoming the normal size limit of the NPC central 

channel (47, 48). This type of mechanism for NPC transit has not been described 

previously and may be unique for alphabaculovirus nuclear entry. It should be noted 

here that other baculovirus genera may utilize another mechanism for nuclear entry. In 

TEM studies of betabaculovirus infected cells, nucleocapsids were observed docking at 

the NPC (but not entering through the NPC). Empty nucleocapsids were also observed 

docked on the cytoplasmic side of the NPC suggesting that betabaculovirus 

nucleocapsids may dock at the NPC and release the viral genome into the nucleus 

through a nuclear pore (180, 181). 

 

IV. BV EGRESS 
BV egress has been studied largely in the alphabaculoviruses. In those viruses, a 

subset of the nucleocapsids assembled within the nucleus will exit the nucleus to 

produce the BV, while another subset remains in the nucleus and are enveloped to form 

the ODV (Fig. 1B). Although the mechanism by which nucleocapsids are selectively 

tagged for nuclear egress or retention is unknown, differences in the protein 
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compositions of nucleocapsids isolated from BV and ODV (55-57)(Fig. 2A) could 

suggest that one or more of the BV- or ODV-specific nucleocapsid proteins may 

regulate nuclear egress or retention (see Fig. 2A). Substantial differences in the levels 

of ubiquitination of nucleocapsids from BV and ODV were also reported, with BV-

derived nucleocapsids ubiquitinated at much higher levels than those from ODV (100), 

and it was speculated that nucleocapsid ubiquitination (potentially catalyzed by the viral 

E3 ubiquitin ligase Ac141 or Exon0), may serve as a tag for nucleocapsid egress. A 

potential target for ubiquitination was identified as Ac66, and the ubiquitinated Ac66 was 

detected only in BV nucleocapsids. Supporting a possible role for these proteins in 

nucleocapsid egress, deletion of either Ac66 or Ac141 results in nucleocapsids that are 

unable to exit the nucleus (78, 182). It is also possible that other post-translational 

modifications that have not yet been examined could be involved in regulating this 

process and studies that further refine and extend the structural analysis of 

nucleocapsids could yield important information in this area. Based on protein-protein 

interactions, gene knockouts, RNAi, and use of dominant-negative proteins, it was 

recently proposed that nucleocapsids may exit the nucleus via an egress complex at the 

nuclear membrane (146). The proposed complex of interacting proteins includes viral 

proteins Ac142, Ac146, Ac103, Ac93, Ac78, Ac76, and host cell proteins VPS20, Snf7, 

VPS24, VPS2, VPS46, VPS60, and VPS4. From studies based largely on TEM 

analysis, nucleocapsid egress from the nucleus is thought to occur through a process of 

budding from the nuclear membrane (Fig. 1B, 2B). Cage-like outpockets of the nuclear 

membrane appear during the peak of nucleocapsid egress and this nucleocapsid 

budding from the nucleus appears to produce a so-called “transport vesicle” in the 

cytoplasm, with the nucleocapsid(s) surrounded by two membranes (24, 183). It 

appears that the envelopes of transport vesicles are lost in the cytoplasm since free 

nucleocapsids are observed there and at the plasma membrane. Trafficking of 

enveloped nucleocapsids (transport vesicles) may occur via microtubules as inhibitors 

of microtubule formation disrupt BV production (184, 185). Production of transport 

vesicles or nucleocapsid release from them could also involve membrane fusion by 

cellular fusion proteins such as SNARE proteins since dominant negative forms of NSF 

(which regulates SNARE fusion of cellular transport vesicles) have been shown to 
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inhibit nuclear egress or release of nucleocapsids (147). In contrast to the nuclear 

egress of nucleocapsids (described for alphabaculoviruses here), betabaculovirus 

appear to differ substantially in this regard as TEM studies show that the nuclear 

membrane is lost late in infection, by a mechanism that is not understood. After release 

of nucleocapsids from alphabaculovirus transport vesicles, nucleocapsids may be 

trafficked by actin polymerization as has been described during entry and early stages 

of infection (47). Alternatively however, because Kinesin 1 may interact directly with 

VP39 and Ac141 (Exon0), it was proposed that free nucleocapsids could be transported 

to the plasma membrane along microtubules (185). Because the details and 

mechanisms of these events remain somewhat enigmatic, further work will be 

necessary to disentangle the complex nature of nucleocapsid tagging, nuclear egress, 

and transport to the plasma membrane.   

For many viruses, the budding and fission (scission) event that releases the 

budded virion from the plasma membrane is mediated by viral recruitment of 

components of the cellular ESCRT pathway to budding sites (151-153). The ESCRT 

pathway is a series of protein complexes that mediate cargo recruitment, bud formation, 

and scission of vesicles in the formation of multivesicular bodies in healthy cells. The 

baculovirus AcMNPV may also use this mechanism for budding at the plasma 

membrane as a functioning ESCRT pathway is required for BV production (146, 149). 

However, because ESCRT pathway components may be involved both in nuclear 

egress and budding at the plasma membrane, additional studies will be required to 

separately understand each process. The roles of viral proteins are unclear as regards 

BV budding at the plasma membrane. The major envelope glycoprotein GP64 

dramatically influences the efficiency of BV budding, but is not absolutely essential for 

budding since low levels of non-infectious BV are produced in the absence of GP64 

(186). The F-like protein (Ac23) does not appear to influence budding in AcMNPV 

infected cells (116). While no known matrix protein has been identified from baculovirus 

BV, viral protein ME53 (Ac140) has been shown to co-localize with GP64 at the plasma 

membrane (possibly at budding sites), and deletion of the me53 gene results in an 

approximately 1000 fold reduction in infectious BV, suggesting that ME53 may play a 

role in BV budding at the plasma membrane (187, 188). Viral envelope and 
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nucleocapsid proteins that are necessary for recruitment of an ESCRT complex, or are 

otherwise required for the budding or scission process, have not been identified. 

Discovery of the specific requirements for and mechanism of BV budding will be 

important for understanding the biology of this virus, and should have important 

applications in biotechnology.  

V. Challenges and Future Studies  
 

The production of two virion phenotypes is an effective biological adaptation for virus 

survival in the environment, efficient oral transmission, and rapid viral amplification in 

individuals and populations of insects. While much progress has been made toward 

understanding specific details of the structures and functions of each virion phenotype, 

many fundamental questions remain to be addressed. Although critical components of 

the ODV have been identified and characterized, details of binding and entry 

mechanisms are not well understood and remain challenging. Dissecting the details of 

virus-host receptor interactions is experimentally challenging as studies of ODV entry 

have been limited largely to in vivo studies in animals. While more sensitive and 

quantitative analytical tools for understanding the physical composition of the ODV and 

protein-protein interactions should be forthcoming, perhaps most challenging will be the 

development of biological tools such as cell lines that permit synchronous infections of 

cultured cells. The development of engineered insect cell lines that are permissive for 

ODV infection, or the generation of polarized insect midgut epithelial cell cultures could 

greatly accelerate our understanding of ODV interactions during binding and entry. New 

tools such as CRISPR-Cas9 combined with host genome sequences should also lead 

to the development of new cell lines and transgenic host insects for detailed studies of 

midgut cell proteins and their interactions with ODV and PIF complexes. While the 

understanding of BV structure and entry have advanced substantially over the last 

decade, a number of key questions remain. While GP64 and F proteins utilize different 

receptors, unequivocal identification of a receptor for either remains elusive. The 

mechanism of binding and fusion-related conformational changes in GP64 or F also 

remain unknown. While crystal structures representing post-fusion conformations of 
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GP64 and F have been reported and analyzed, the next major step in understanding the 

mechanisms for triggering conformational change or mediating membrane fusion, will 

require pre-fusion structures for each protein. In addition, much remains to be 

discovered about the roles of cellular trafficking proteins and pathways that are critical 

for nucleocapsid transport and BV egress at the nuclear and plasma membranes. This 

is particularly significant in the midgut which represents the first cellular barrier to 

infection and the most critical step in successful infection of the organism.  
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FIGURE LEGENDS 
Figure 1.  

1A. Baculovirus virion phenotypes and their roles in the infection of host 

tissues. The diagram illustrates the Primary and Secondary phases of 

infection. The primary phase of infection occurs when occlusion bodies 

(OB) disassemble in response to high pH and release occlusion derived 

virions (ODV) into the lumen of the midgut. After traversing the 

peritrophic membrane (PM), ODV bind and fuse with microvilli of 

polarized epithelial cells of the midgut epithelium, releasing 

nucleocapsids into the cytoplasm. Following viral replication and 

nucleocapsid assembly in the nucleus (or direct pass-through), 

nucleocapsids are transported to the basal plasma membrane where 

they bud to generate the budded virus (BV) phenotype. The BV may 

infect some cells directly (Tracheal cells and Hemocytes) or may 

circulate in the hemolymph, infecting other tissues such as Fatbody and 

Muscle, among others. Infection of other tissues in this Secondary 

phase of infection, results in the generation of additional BV which 

further disseminates infection in the animal. ODV and OBs are 

produced in all cell types and are subsequently released when cells 

lyse and the animal dissolves or liquefies.  

 

1B. Baculovirus entry, replication, and egress in non-midgut host cells. The 

diagram represents infection by the alphabaculovirus budded virus (BV) 

and subsequent viral replication and production of BV and ODV. 

Following BV binding and entry by clathrin-mediated endocytosis 

(CME), endosomes are likely transported along microtubules (MT) and 

upon acidification of the endosome, the nucleocapsid (blue) is released. 

P78/83 recruitment of the Arp2/3 complex results in initiation of actin 

polymerization which provides a propulsive force for transporting the 

nucleocapsid in the cytoplasm and traversing the nuclear pore. 

Nucleocapsid uncoating in the nucleus results in viral gene expression, 
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DNA replication, and assembly of progeny nucleocapsids (blue and 

green) in the virogenic stroma (VS). Of the progeny nucleocapsids, 

some are tagged for egress from the nucleus (blue) and others for ODV 

production (green). Nucleocapsids that exit the nucleus are observed in 

cytoplasmic vesicles (transport vesicles) which appear to later release 

nucleocapsids into the cytoplasm. Transport of nucleocapsids to the 

plasma membrane may involve microtubules, actin polymerization, or 

both. ESCRT pathway proteins are involved in egress at either or both 

nuclear egress and budding at the plasma membrane. Nucleocapsids 

destined to become ODV interact with membranes derived from the 

inner nuclear membrane (INM) to eventually form the ODV which are 

subsequently occluded by the occlusion body protein (Polyhedrin). 

 

 

Figure 2.  
2A. Comparison of protein components of the two virion phenotypes: BV 

and ODV from the baculoviruses AcMNPV and HearNPV. Proteins are 

predicted primarily from proteomic analyses (55-57) as well as a variety 

of additional studies. Proteins are listed beside representations of BV 

and ODV. Proteins reported from the envelope or associated with 

nucleocapsids are subdivided into groups that are either specific to one 

phenotype (ODV or BV) or common to both. Proteins in common, within 

the same grouping of AcMNPV and HearNPV, are shown in bold italic 

and blue. The detailed analysis of HearNPV proteins (56) found some 

proteins associated with both the envelope and nucleocapsid fractions 

(*) suggesting that some may be tegument proteins. For simplicity, 

those proteins are listed in the nucleocapsid fraction. The nomenclature 

used for all proteins is for the AcMNPV protein unless the protein is 

specific to HearNPV, in which case the HearNPV protein name is used. 
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2B. Electron micrographs of AcMNPV replication and virion phenotypes.  a) 

Transmission Electron Micrograph (TEM) showing the various stages of 

BV and ODV development in an AcMNPV-infected Sf9 cell at 

approximately 24 h p.i.  Membrane microvesicles and nucleocapsids 

associated with membranes and in the nucleus (N) are indicated by 

green arrows. Nucleocapsids that are exiting the nucleus in transport 

vesicles are indicated by red arrows in the cytoplasm (C). The nuclear 

envelope (NE) and virogenic stroma (S) are also indicated. Blue arrows 

show nucleocapsids budding at the plasma membrane. A black arrow 

shows a nucleocapsid being assembled in the stroma. Yellow arrows 

show non-membrane associated nucleocapsids in the cytoplasm. b) 

TEM of a section showing end on association of nucleocapsids with 

membranes in the nucleus and envelopment of nucleocapsids to form 

ODV, prior to occlusion.  c) TEM of a cross section of a mature 

AcMNPV OB showing embedded ODV with multiple NCs per envelope. 

Surrounding the OB is the polyhedral calyx (arrow). d) SEM of AcMNPV 

OBs. e) TEM cross section showing the detailed structure of the ODV.  

f) Cryo EM image showing detailed structure of AcMNPV BV including 

the prominent spike proteins in the envelope. 

Images b, d, and e are reprinted from reference (189) and f is reprinted 

from reference (190). 

 

 

   

Figure 3. 
3A. Schematic diagram depicting the ODV PIF complex comprised of the 

nine baculovirus core proteins, PIF0-8. While little is known about the 

topology of the PIF complex, the hypothetical model presented is based 

on biochemical studies, protein interaction analysis between PIF 

proteins, and consensus membrane topology predictions resulting from 

analysis of multiple PIF homologs using the TOPCONS server (http: 
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http://topcons.cbr.su.se) (36, 41, 43, 191). The PIF complex containing 

all nine PIF proteins appears to depend on the formation of the core 

complex consisting of PIF1-4. PIF8 is known to associate with the 

nucleocapsid as well as the ODV membrane, and PIF8 binds to PIF1 

via a central Zinc finger domain.  

 

3B. The crystal structure of the postfusion form of the AcMNPV GP64 

protein (104) is shown as a ribbon diagram of the trimer (left) and 

monomer (center). Locations of the fusion loops (FL1 and FL2) are 

indicated. An end-on surface view of the fusion loop end of the trimer is 

shown in the upper right, with the fusion loops 1 (FL1) and 2 (FL2) 

indicated. A lateral view of the two fusion loops in the monomer is 

shown at the bottom right.  
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