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Abstract.—By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming
the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue
to increase in complexity to better capture micro- and macroevolutionary processes. In a Bayesian framework, the marginal
likelihood is how data update our prior beliefs about models, which gives us an intuitive measure of comparing model
fit that is grounded in probability theory. Given the rapid increase in the number and complexity of phylogenetic models,
methods for approximating marginal likelihoods are increasingly important. Here, we try to provide an intuitive description
of marginal likelihoods and why they are important in Bayesian model testing. We also categorize and review methods
for estimating marginal likelihoods of phylogenetic models, highlighting several recent methods that provide well-behaved
estimates. Furthermore, we review some empirical studies that demonstrate how marginal likelihoods can be used to learn
about models of evolution from biological data. We discuss promising alternatives that can complement marginal likelihoods
for Bayesian model choice, including posterior-predictive methods. Using simulations, we find one alternative method based
on approximate-Bayesian computation to be biased. We conclude by discussing the challenges of Bayesian model choice
and future directions that promise to improve the approximation of marginal likelihoods and Bayesian phylogenetics as a
whole. [Marginal likelihood; model choice; phylogenetics.]

Phylogenetics is rapidly progressing as the statistical
foundation of comparative biology, providing a
framework that accounts for the shared ancestry
inherent in biological data. Soon after phylogenetics
became feasible as a likelihood-based statistical
endeavor (Felsenstein 1981), models became richer to
better capture processes of biological diversification
and character change. This increasing trend in model
complexity made Bayesian approaches appealing,
because they can approximate posterior distributions
of rich models by leveraging prior information and
hierarchical models, where researchers can take into
account uncertainty at all levels in the hierarchy.

From the earliest days of Bayesian phylogenetics
(Rannala and Yang 1996; Mau and Newton 1997), the
numerical tool of choice for approximating the posterior
distribution was Markov chain Monte Carlo (MCMC).
The popularity of MCMC was due, in no small part,
to avoiding the calculation of the marginal likelihood
of the model—the probability of the data under the
model, averaged, with respect to the prior, over the whole
parameter space. This marginalized measure of model
fit is not easy to compute due to the large number of
parameters in phylogenetic models (including the tree
itself) over which the likelihood needs to be summed or
integrated.

Nonetheless, marginal likelihoods are central to
model comparison in a Bayesian framework. Learning
about evolutionary patterns and processes via Bayesian
comparison of phylogenetic models requires the
calculation of marginal likelihoods. As the diversity and
richness of phylogenetic models has increased, there
has been a renewed appreciation of the importance of

such Bayesian model comparison. As a result, there
has been substantial work over the last decade to
develop methods for estimating marginal likelihoods of
phylogenetic models.

The goals of this review are to (1) try to provide
some intuition about what marginal likelihoods are and
why they can be useful, (2) review the various methods
available for approximating marginal likelihoods of
phylogenetic models, (3) review some of the ways
marginal likelihoods have been applied to learn
about evolutionary history and processes, (4) highlight
some alternatives to marginal likelihoods for Bayesian
model comparison, (5) discuss some of the challenges
of Bayesian model choice, and (6) highlight some
promising avenues for advancing the field of Bayesian
phylogenetics.

WHAT ARE MARGINAL LIKELIHOODS AND WHY ARE THEY

USEFUL?

A marginal likelihood is the average fit of a model
to a data set. More specifically, it is an average over the
entire parameter space of the likelihood weighted by the
prior. For a phylogenetic model M with parameters that
include the discrete topology (T) and continuous branch
lengths and other parameters that govern the evolution
of the characters along the tree (together represented
by �), the marginal likelihood can be represented as

p(D|M)=
∑

T

∫
�

p(D|T,�,M)p(T,� |M)d�, (1)
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2 SYSTEMATIC BIOLOGY

where D are the data. Each parameter of the model adds
a dimension to the model, over which the likelihood
must be averaged. The marginal likelihood is also the
normalizing constant in the denominator of Bayes’ rule
that ensures the posterior is a proper probability density
that sums and integrates to one:

p(T,� |D,M)=
p(D|T,�,M)p(T,� |M)

p(D|M)
. (2)

Marginal likelihoods are the currency of model
comparison in a Bayesian framework. This differs from
the frequentist approach to model choice, which is based
on comparing the maximum probability or density of the
data under two models either using a likelihood ratio
test or some information-theoretic criterion. Because
adding a parameter (dimension) to a model will always
ensure a maximum likelihood at least as large as without
the parameter, some penalty must be imposed when
parameters are added. How large this penalty should
be is not easy to define, which has led to many different
possible criteria, e.g., the Akaike information criterion
(AIC; Akaike 1974), second-order AIC (AICC; Sugiura
1978; Hurvich and Tsai 1989), and Bayesian information
criterion (BIC Schwarz 1978).

Instead of focusing on the maximum likelihood of
a model, the Bayesian approach compares the average
fit of a model. This imposes a “natural” penalty
for parameters, because each additional parameter
introduces a dimension that must be averaged over. If
that dimension introduces substantial parameter space
with small likelihood, and little space that improves the
likelihood, it will decrease the marginal likelihood. Thus,
unlike the maximum likelihood, adding a parameter to
a model can decrease the marginal likelihood, which
ensures that more parameter-rich models are not
automatically preferred.

The ratio of two marginal likelihoods gives us the
factor by which the average fit of the model in
the numerator is better or worse than the model in
the denominator. This is called the Bayes factor (Jeffreys
1935). We can again leverage Bayes’ rule to gain more
intuition for how marginal likelihoods and Bayes factors
guide Bayesian model selection by writing it in terms
of the posterior probability of a model, M1, among N
candidate models:

p(M1 |D)=
p(D|M1)p(M1)
N∑

i=1
p(D|Mi)p(Mi)

. (3)

This shows us that the posterior probability of a model
is proportional to the prior probability multiplied by the
marginal likelihood of that model. Thus, the marginal
likelihood is how the data update our prior beliefs about
a model. As a result, it is often simply referred to as “the
evidence” (MacKay 2005). If we look at the ratio of the
posterior probabilities of two models,

p(M1 |D)
p(M2 |D)

=
p(D|M1)
p(D|M2)

×
p(M1)
p(M2)

, (4)

we see that the Bayes factor is the factor by which
the prior odds of a model is multiplied to give us the
posterior odds. Thus, marginal likelihoods and their
ratios give us intuitive measures of how much the data
“favor” one model over another, and these measures
have natural probabilistic interpretations. However,
marginal likelihoods and Bayes factors do not offer
a panacea for model choice. As Equation 1 shows,
weighting the average likelihood by the prior causes
marginal likelihoods to be inherently sensitive to the
prior distributions placed on the models’ parameters.
To gain more intuition about what this means and
how Bayesian model choice differs from parameter
estimation, let’s use a simple, albeit contrived, example
of flipping a coin.

A Coin-Flipping Example

Let’s assume we are interested in the probability of
a coin we have not seen landing heads-side up when
it is flipped (�); we refer to this as the rate of landing
heads up to avoid confusion with other uses of the
word probability. Our plan is to flip this coin 100 times
and count the number of times it lands heads up,
which we model as a random outcome from a binomial
distribution. Before flipping, we decide to compare four
models that vary in our prior assumptions about the
probability of the coin landing heads up (Fig. 1): We
assume

1. all values are equally probable (M1: �∼Beta(1,1)),

2. the coin is likely weighted to land mostly “heads”
or “tails” (M2: �∼Beta(0.6,0.6)),

3. the coin is probably fair (M3: �∼Beta(5.0,5.0)), and

4. the coin is weighted to land tails side up most of
time (M4: �∼Beta(1.0,5.0)).

We use beta distributions to represent our prior
expectations, because the beta is a conjugate prior for
the binomial likelihood function. This allows us to
obtain the posterior distribution and marginal likelihood
analytically.

After flipping the coin and observing that it landed
heads side up 50 times, we can calculate the posterior
probability distribution for the rate of landing heads up
under each of our four models:

p(� |D,Mi)=
p(D|�,Mi)p(� |Mi)

p(D|Mi)
. (5)

Doing so, we see that regardless of our prior assumptions
about the rate of the coin landing heads, the posterior
distribution is very similar (Fig. 1). This makes sense;
given we observed 50 heads out of 100 flips, values
for � toward zero and one are extremely unlikely, and
the posterior is dominated by the likelihood of values
near 0.5.

Given the posterior distribution for � is very robust to
our prior assumptions, we might assume that each of our
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2019 OAKS ET AL.—MARGINAL LIKELIHOODS IN PHYLOGENETICS 3

FIGURE 1. An illustration of the posterior probability densities and marginal likelihoods of the four different prior assumptions we made in
our coin-flipping experiment. The data are 50 “heads” out of 100 coin flips, and the parameter, �, is the probability of the coin landing heads side
up. The binomial likelihood density function is proportional to a Beta(51,51) and is the same across the four different beta priors on � (M1–M4).
The posterior of each model is a Beta(�+50,�+50) distribution. The marginal likelihoods (P(D); the average of the likelihood density curve
weighted by the prior) of the four models are compared.

four models explain the data similarly well. However,
to compare their ability to explain the data, we need to
average (integrate) the likelihood density function over
all possible values of �, weighting by the prior:

p(D|Mi)=
∫
�

p(D|�,Mi)p(� |Mi)d�. (6)

Looking at the plots in Figure 1, we see that the models
that place a lot of prior weight on values of � that do
not explain the data well (i.e., have small likelihood)
have a much smaller marginal likelihood. Thus, even if
we have very informative data that make the posterior
distribution robust to prior assumptions, this example
illustrates that the marginal likelihood of a model can
still be very sensitive to the prior assumptions we make
about the parameters.

Because of this inherent sensitivity to the priors, we
have to take more care when choosing priors on the
models’ parameters when our goal is to compare models
versus estimating parameters. For example, in Bayesian
phylogenetics, it is commonplace to use “uninformative”

priors, some of which are improper (i.e., they do not
integrate to one). The example above demonstrates that
if we have informative data, this objective Bayesian
strategy (Jeffreys 1961; Berger 2006) is defensible if our
goal is to infer the posterior distribution of a model;
we are hedging our bets against specifying a prior that
concentrates its probability density outside of where
the true value lies, and we can rely on the informative
data to dominate the posterior. However, this strategy is
much harder to justify if our goal is to compare marginal
likelihoods among models. First of all, models with
improper priors do not have a well-defined marginal
likelihood and should not be used when comparing
models (Baele et al. 2013b). Second, even if diffuse priors
are proper, they could potentially sink the marginal
likelihood of good models by placing excessive weight in
biologically unrealistic regions of parameter space with
low likelihood. Thus, if our goal is to leverage Bayesian
model choice to learn about the processes that gave
rise to our data, a different strategy is called for. One
option is to take a more subjective Bayesian approach
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4 SYSTEMATIC BIOLOGY

(Lad 1996; Lindley 2000; Goldstein 2006) by carefully
choosing prior distributions for the models’ parameters
based on existing knowledge. In the era of “big data,” one
could also use a portion of their data to inform the priors,
and the rest of the data for inference. Alternatively, we
can use hierarchical models that allow the data to inform
the priors on the parameters (e.g., Suchard et al. 2003a).

We have developed an interactive version of Figure 1
where readers can vary the parameters of the coin-
flip experiment and prior assumptions to further
gain intuition for marginal likelihoods (https://
kerrycobb.github.io/beta-binomial-web-demo/). It’s
worth noting that this pedagogical example is somewhat
contrived given that the models we are comparing are
simply different priors. Using the marginal likelihood
to choose a prior is dubious, because the “best” prior
will always be a point mass on the maximum likelihood
estimate. Nonetheless, the principles of (and differences
between) Bayesian parameter estimation and model
choice that are illustrated by this example are directly
relevant to more practical Bayesian inference settings.
Now we turn to methods for approximating the
marginal likelihood of phylogenetic models, where
simple analytical solutions are generally not possible.
Nonetheless, the same fundamental principles apply.

METHODS FOR MARGINAL LIKELIHOOD APPROXIMATION

For all but the simplest of models, the summation
and integrals in Equation 1 are analytically intractable.
This is particularly true for phylogenetic models, which
have a complex structure containing both discrete and
continuous elements. Thus, we must resort to numerical
techniques to approximate the marginal likelihood.

Perhaps the simplest numerical approximation of the
marginal likelihood is to draw samples of a model’s
parameters from their respective prior distributions.
This turns the intractable integral into a sum of the
samples’ likelihoods. Because the prior weight of each
sample is one in this case, the marginal likelihood
can be approximated by simply calculating the average
likelihood of the prior samples. Alternatively, if we
have a sample of the parameters from the posterior
distribution—such as one obtained from a “standard”
Bayesian phylogenetic analysis via MCMC—we can
again use summation to approximate the integral. In
this case, the weight of each sample is the ratio of
the prior density to the posterior density. As a result,
the sum simplifies to the harmonic mean (HM) of the
likelihoods from the posterior sample (Newton and
Raftery 1994). Both of these techniques can be thought
of as importance-sampling integral approximations.
Whereas both provide unbiased estimates of the
marginal likelihood in theory, they can suffer from very
large Monte Carlo error due to the fact that the prior and
posterior are often very divergent, with the latter usually
much more peaked than the former due to the strong
influence of the likelihood. A finite sample from the
prior will often yield an underestimate of the marginal

likelihood, because the region of parameter space with
high likelihood is likely to be missed. In comparison,
a finite sample from the posterior will almost always
lead to an overestimate (Lartillot and Philippe 2006; Fan
et al. 2011; Xie et al. 2011), because it will contain too few
samples outside of the region of high likelihood, where
the prior weight “penalizes” the average likelihood.
However, Baele et al. (2016) showed that for trees with 3–6
tips and relatively simple models, the average likelihood
of a very large sample from the prior (30–50 billion
samples) can yield accurate estimates of the marginal
likelihood.

Recent methods developed to estimate marginal
likelihoods generally fall into two categories for dealing
with the sharp contrast between the prior and posterior
that cripples the simple approaches mentioned above.
One general strategy is to turn the giant leap between
the unnormalized posterior and prior into many small
steps across intermediate distributions; methods that
fall into this category require samples collected from
the intermediate distributions. The second strategy is
to turn the giant leap between the posterior and prior
into a smaller leap between the posterior and a reference
distribution that is as similar as possible to the posterior;
many methods in this category only require samples
from the posterior distribution. These approaches are
not mutually exclusive (e.g., see Fan et al., 2011), but they
serve as a useful way to categorize many of the methods
available for approximating marginal likelihoods. In
practical terms, the first strategy is computationally
expensive, because samples need to be collected from
each step between the posterior and prior, which is
not normally part of a standard Bayesian phylogenetic
analysis. The second strategy can be very inexpensive
for methods that attempt to approximate the marginal
likelihood using only the posterior samples collected
from a typical analysis.

Approaches that Bridge the Prior and Posterior with Small
Steps

Path Sampling.—Lartillot and Philippe (2006) introduced
path sampling (PS; also called thermodynamic
integration; Gelman and Meng 1998) phylogenetics
to address the problem that the posterior is often
dominated by the likelihood and very divergent from
the prior. Rather than restrict themselves to a sample
from the posterior, they collected MCMC samples
from a series of distributions between the prior and
posterior. Specifically, samples are taken from a series of
power-posterior distributions, p(D|T,�,M)�p(T,� |M),
where the likelihood is raised to a power �. When
�=1, this is equal to the unnormalized joint posterior,
which integrates to what we want to know, the marginal
likelihood. When �=0, this is equal to the joint prior
distribution, which, assuming we are using proper prior
probability distributions, integrates to 1. If we integrate
the power posterior expectation of the derivative with
respect to � of the log power posterior over the interval
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2019 OAKS ET AL.—MARGINAL LIKELIHOODS IN PHYLOGENETICS 5

(0–1) with respect to �, we get the log ratio of the
normalizing constants when � equals 1 and 0, and since
we know the constant is 1 when � is zero, we are left
with the marginal likelihood. Lartillot and Philippe
(2006) approximated this integral by summing over
MCMC samples taken from a discrete number of �
values evenly distributed between 1 and 0.

Stepping-Stone Sampling.—The stepping-stone (SS)
method introduced by Xie et al. (2011) is similar to PS
in that it also uses samples from power posteriors, but
the idea is not based on approximating the integral per
se, but by the fact that we can accurately use importance
sampling to approximate the ratio of normalizing
constants with respect to two pre-chosen consecutive
� values at each step between the posterior and prior.
Also, Xie et al. (2011) chose the values of � for the
series of power posteriors from which to sample so that
most were close to the prior (reference) distribution,
rather than evenly distributed between 0 and 1. This is
beneficial, because most of the change happens near the
prior; the likelihood begins to dominate quickly, even
at small values of �. The SS method results in more
accurate estimates of the marginal likelihood with fewer
steps than PS (Xie et al. 2011).

Generalized Stepping Stone.—The most accurate estimator
of marginal likelihoods available to date, the generalized
stepping-stone (GSS) method, combines both strategies
we are using to categorize methods by taking many
small steps from a starting point (reference distribution)
that is much closer to the posterior than the prior
(Fan et al. 2011). Fan et al. (2011) improved upon the
original SS method by using a reference distribution
that, in most cases, will be much more similar to the
posterior than the prior. The reference distribution has
the same form as the joint prior, but each marginal prior
distribution is adjusted so that its mean and variance
matches the corresponding sample mean and variance
of an MCMC sample from the posterior. This guarantees
that the support of the reference distribution will cover
the posterior.

Initially, the application of the GSS method was
limited, because it required that the topology be fixed,
because there was no reference distribution across
topologies. However, Holder et al. (2014) introduced
such a distribution on trees, allowing the GSS to
approximate the fully marginalized likelihood of
phylogenetic models. Baele et al. (2016) introduced
additional reference distributions on trees under
coalescent models. Furthermore, Wu et al. (2014) and
Rannala and Yang (2017) showed that the GSS and PS
methods remain statistically consistent and unbiased
when the topology is allowed to vary.

Based on intuition, it may seem that GSS would fail
to adequately penalize the marginal likelihood, because
it would lack samples from regions of parameter space
with low likelihood (i.e., it does not use samples from
the prior). However, importance sampling can be used

to estimate the ratio of the normalizing constant of
the posterior distribution (i.e., the marginal likelihood)
to the reference distribution. As long as the reference
distribution is proper, such that its normalizing constant
is 1.0, this ratio is equal to the marginal likelihood. As a
result, any proper reference distribution that covers the
same parameter space as the posterior will work. The
closer the reference is to the posterior, the easier it is to
estimate the ratio of their normalizing constants (and
thus the marginal likelihood). In fact, at the extreme that
the reference distribution matches the posterior, we can
determine the marginal likelihood exactly with only a
single sample, because the difference in their densities
is solely due to the normalizing constant of the posterior
distribution (Fan et al. 2011).

All of the methods discussed below under
“Approaches that use only posterior samples” are based
on this idea of estimating the unknown normalizing
constant of the posterior (the marginal likelihood)
by “comparing” it to a reference distribution with
a known normalizing constant (or at least a known
difference in normalizing constant). What is different
about GSS is the use of samples from a series of
power-posterior distributions in between the reference
and the posterior, which make estimating the ratio of
normalizing constants between each sequential pair of
distributions more accurate.

The fact that PS, SS, and GSS all use samples
from a series of power-posterior distributions raises
some important practical questions: How many power-
posterior distributions are sufficient, how should they be
spaced between the reference and posterior distribution,
and how many MCMC samples are needed from
each? There are no simple answers to these questions,
because they will vary depending on the data and
model. However, one general strategy that is clearly
advantageous is having most of the � values near zero
so that most of the power-posterior distributions are
similar to the reference distribution (Lepage et al. 2007;
Xie et al. 2011; Baele et al. 2016). Also, a practical approach
to assess if the number of � values and the number of
samples from each power posterior is sufficient is to
estimate the marginal likelihood multiple times (starting
with different seeds for the random number generator)
for each model to get a measure of variance among
estimates. It is difficult to quantify how much variance is
too much, but the estimates for a model should probably
be within a log likelihood unit or two from each other,
and the ranking among models should be consistent.
It can also be useful to check how much the variance
among estimates decreases after repeating the analysis
with more � values and/or more MCMC sampling from
each step; a large decrease in variance suggests the
sampling scheme was insufficient.

Sequential Monte Carlo.—Another approach that uses
sequential importance-sampling steps is sequential
Monte Carlo (SMC), also known as particle filtering
(Gordon et al. 1993; Del Moral 1996; Liu and Chen
1998). Recently, SMC algorithms have been developed for
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6 SYSTEMATIC BIOLOGY

approximating the posterior distribution of phylogenetic
trees (Bouchard-Côté et al. 2012; Bouchard-Côté 2014;
Wang et al. 2018a). While inferring the posterior, SMC
algorithms can approximate the marginal likelihood of
the model “for free,” by keeping a running average of
the importance-sampling weights of the trees (particles)
along the way. SMC algorithms hold a lot of promise
for complementing MCMC in Bayesian phylogenetics
due to their sequential nature and ease with which
the computations can be parallelized (Bouchard-Côté
et al. 2012; Dinh et al. 2018; Fourment et al. 2018; Wang
et al. 2018a). See Bouchard-Côté (2014) for an accessible
treatment of SMC in phylogenetics.

Wang et al. (2018a) introduced a variant of SMC into
phylogenetics that, similar to path sampling and SS,
transitions from a sample from the prior distribution
to the posterior across a series of distributions where
the likelihood is raised to a power (annealing). This
approach provides an estimator of the marginal
likelihood that is unbiased from both a statistical
and computational perspective. Also, their approach
maintains the full state space of the model, while
sampling across the power-posterior distributions,
which allows them to use standard Metropolis-Hastings
algorithms from the MCMC literature for the proposals
used during the SMC. This should make the algorithm
easier to implement in existing phylogenetic software
compared with other SMC approaches that build up
the state space of the model during the algorithm.
Under the simulation conditions they explored, Wang
et al. (2018a) showed that the annealed SMC algorithm
compared favorably to MCMC and SS in terms of
sampling the posterior distribution and estimating the
marginal likelihood, respectively.

Nested Sampling.—Recently, Maturana et al. (2018)
introduced the numerical technique known as nested
sampling (NS; Skilling 2006) to Bayesian phylogenetics.
This tries to simplify the multi-dimensional integral
in Equation 1 into a one-dimensional integral over
the cumulative distribution function of the likelihood.
The latter can be numerically approximated using
basic quadrature methods, essentially summing up the
area of polygons under the likelihood function. The
algorithm works by starting with a random sample
of parameter values from the joint prior distribution
and their associated likelihood scores. Sequentially, the
sample with the lowest likelihood is removed and
replaced by another random sample from the prior with
the constraint that its likelihood must be larger than the
removed sample. The approximate marginal likelihood
is a running sum of the likelihood of these removed
samples with appropriate weights. Re-sampling these
removed samples according to their weights yields a
posterior sample at no extra computational cost. Initial
assessment of NS suggest it performs similarly to GSS.
As with SMC, NS seems like a promising complement
to MCMC for both approximating the posterior and
marginal likelihood of phylogenetic models.

Approaches that Use Only Posterior Samples

Generalized Harmonic Mean.—Gelfand and Dey (1994)
introduced a generalized harmonic mean (GHM)
estimator that uses an arbitrary normalized reference
distribution, as opposed to the prior distribution used
in the HM estimator, to weight the samples from
the posterior. If the chosen reference distribution is
more similar to the posterior than the prior (i.e., a
“smaller leap” as discussed above), the GHM estimator
will perform better than the HM estimator. However,
for high-dimensional phylogenetic models, choosing
a suitable reference distribution is very challenging,
especially for tree topologies. As a result, the GHM
estimator has not been used for comparing phylogenetic
models. However, recent advances on defining a
reference distribution on trees (Holder et al. 2014;
Baele et al. 2016) makes the GHM a tenable option in
phylogenetics.

As discussed above, the HM estimator is unbiased in
theory, but can suffer from very large Monte Carlo error
in practice. The degree to which the GHM estimator
solves this problem will depend on how much more
similar the chosen reference distribution is to the
posterior compared with the prior. Knowing whether
it is similar enough in practice will be difficult without
comparing the estimates to other unbiased methods with
much smaller Monte Carlo error (e.g., GSS, PS, or SMC).

Inflated-Density Ratio.—The inflated-density ratio (IDR)
estimator solves the problem of choosing a reference
distribution by using a perturbation of the posterior
density; essentially the posterior is “inflated” from
the center by a known radius (Petris and Tardella
2007; Arima and Tardella 2012; Arima and Tardella
2014). As one might expect, the radius must be
chosen carefully. The application of this method to
phylogenetics has been limited by the fact that all
parameters must be unbounded; any parameters that
are bounded (e.g., must be positive) must be re-
parameterized to span the real number line, perhaps
using log transformation. As a result, this method
cannot be applied directly to MCMC samples collected
by popular Bayesian phylogenetic software packages.
Nonetheless, the IDR estimator has recently been applied
to phylogenetic models (Arima and Tardella 2014),
including in settings where the topology is allowed
to vary (Wu et al. 2014). Initial applications of the
IDR are very promising, demonstrating comparable
accuracy to methods that sample from power-posterior
distributions, while avoiding such computation (Arima
and Tardella 2014; Wu et al. 2014). Currently, however,
the IDR has only been used on relatively small data
sets and simple models of character evolution. More
work is necessary to determine whether the promising
combination of accuracy and computational efficiency
holds for large data sets and rich models.

Partition-Weighted Kernel.—Recently, Wang et al. (2018b)
introduced the partition weighted kernel (PWK) method
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2019 OAKS ET AL.—MARGINAL LIKELIHOODS IN PHYLOGENETICS 7

of approximating marginal likelihoods. This approach
entails partitioning parameter space into regions within
which the posterior density is relatively homogeneous.
Given the complex structure of phylogenetic models,
it is not obvious how this would be done. As of yet,
this method has not been used for phylogenetic models.
However, for simulations of mixtures of bivariate normal
distributions, the PWK outperforms the IDR estimator
(Wang et al. 2018b). Thus, the method holds promise if
it can be adapted to phylogenetic models.

USES OF MARGINAL LIKELIHOODS

The application of marginal likelihoods to compare
phylogenetic models is rapidly gaining popularity.
Rather than attempt to be comprehensive, below
we highlight examples that represent some of the
diversity of questions being asked and the insights that
marginal likelihoods can provide about our data and the
evolutionary processes giving rise to them.

Comparing Partitioning Schemes

One of the earliest applications of marginal likelihoods
in phylogenetics was to choose among ways of assigning
models of substitution to different subsets of aligned
sites. This became important when phylogenetics moved
beyond singe-locus trees to concatenated alignments
of several loci. Mueller et al. (2004), Nylander et al.
(2004), and Brandley et al. (2005) used Bayes factors
calculated from HM estimates of marginal likelihoods
to choose among different strategies for partitioning
aligned characters to substitution models. All three
studies found that the model with the most subsets was
strongly preferred. Nylander et al. (2004) also showed
that removing parameters for which the data seemed
to have little influence decreased the HM estimates
of the marginal likelihood, suggesting that the HM
estimates might favor over-parameterized models. These
findings could be an artifact of the tendency of the HM
estimator to overestimate marginal likelihoods and thus
underestimate the “penalty” associated with the prior
weight of additional parameters. However, Brown and
Lemmon (2007) showed that for simulated data, HM
estimates of Bayes factors can have a low error rate of
over-partitioning an alignment.

Fan et al. (2011) showed that, again, the HM estimator
strongly favors the most partitioned model for a four-
gene alignment from cicadas (12 subsets partitioned
by gene and codon position). However, the marginal
likelihoods estimated via the GSS stone method favor a
much simpler model (three subsets partitioned by codon
position). This demonstrates how the HM method fails
to penalize the marginal likelihood for the weight of the
prior when applied to finite samples from the posterior.
It also suggests that relatively few, well-assigned subsets
can go a long way to explain the variation in substitution
rates among sites.

Baele and Lemey (2013) compared the marginal
likelihoods of alternative partitioning strategies (in
combination with either strict or relaxed-clock models)
for an alignment of whole mitochondrial genomes of
carnivores. They used the HM, stabilized HM (Newton
and Raftery 1994), PS, and SS estimators. For all 41
models they evaluated, both HM estimators returned
much larger marginal likelihoods than PS and SS,
again suggesting these estimators based solely on the
posterior sample are unable to adequately penalize the
models. They also found that by allowing the sharing of
information among partitions via hierarchical modeling
(Suchard et al. 2003a), the model with the largest PS
and SS-estimated marginal likelihood switched from a
codon model to a nucleotide model partitioned by codon
position. This demonstrates the sensitivity of marginal
likelihoods to prior assumptions.

Comparing Models of Character Substitution

Lartillot and Philippe (2006) used PS to compare
models of amino-acid substitution. They found that
the HM estimator favored the most parameter rich
model for all five data sets they explored, whereas
the PS estimates favored simpler models for three of
the data sets. This again demonstrates that accurately
estimated marginal likelihoods can indeed “penalize”
for over-parameterization of phylogenetic models. More
importantly, this work also revealed that modeling
heterogeneity in amino acid composition across sites of
an alignment better explains the variation in biological
data.

Comparing “Relaxed Clock” Models

Lepage et al. (2007) used PS to approximate Bayes
factors comparing various “relaxed-clock” phylogenetic
models for three empirical data sets. They found that
models in which the rate of substitution evolves across
the tree (autocorrelated rate models) better explain the
empirical sequence alignments they investigated than
models that assume the rate of substitution on each
branch is independent (uncorrelated rate models). This
provides insight into how the rate of evolution evolves
through time.

Baele et al. (2013b) demonstrated that modeling
among-branch rate variation with a lognormal
distribution tends to explain mammalian sequence
alignments better than using an exponential
distribution. They used marginal likelihoods (PS and SS
estimates) and Bayesian model averaging to compare the
fit of lognormally and exponentially distributed priors
on branch-specific rates of nucleotide substitution (i.e.,
relaxed clocks) for almost 1000 loci from 12 mammalian
species. They found that the lognormal relaxed-clock
was a better fit for almost 88% of the loci. Baele et al.
(2012) also used marginal likelihoods to demonstrate the
importance of using sampling dates when estimating
time-calibrated phylogenetic trees. They used PS and
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8 SYSTEMATIC BIOLOGY

SS methods to estimate the marginal likelihoods of
strict and relaxed-clock models for sequence data of
herpes viruses. They found that when the dates the
viruses were sampled were provided, a strict molecular
clock was the best fit model, but when the dates were
excluded, relaxed-clock models were strongly favored.
Their findings show that using information about the
ages of the tips can be critical for accurately modeling
processes of evolution and inferring evolutionary
history.

Comparing Demographic Models

Baele et al. (2012) used the PS and SS estimators
for marginal likelihoods to compare the fit of various
demographic models to the HIV-1 group M data
of Worobey et al. (2008), and Methicillin-resistant
Staphylococcus aureus (MRSA) data of Gray et al. (2011).
They found that a flexible, non-parametric model that
enforces no particular demographic history is a better
explanation of the HIV and MRSA sequence data than
exponential and logistic population growth models. This
suggests that traditional parametric growth models are
not the best predictors of viral and bacterial epidemics.

Measuring Phylogenetic Information Content Across
Genomic Data Sets

Not only can we use marginal likelihoods to learn
about evolutionary models, but we can also use them
to learn important lessons about our data. Brown and
Thomson (2017) explored six different genomic data sets
that were collected to infer phylogenetic relationships
within Amniota. For each locus across all six data sets,
they used the SS method (Xie et al. 2011) to approximate
the marginal likelihood of models that included or
excluded a particular branch (bipartition) in the amniote
tree. This allowed Brown and Thomson (2017) to
calculate, for each gene, Bayes factors as measures of
support for or against particular relationships, some of
which are uncontroversial (e.g., the monophyly of birds)
and others contentious (e.g., the placement of turtles).

Such use of marginal likelihoods to compare
topologies, or constraints on topologies, raises some
interesting questions. Bergsten et al. (2013) showed
that using Bayes factors for topological tests can result
in strong support for a constrained topology over an
unconstrained model for reasons other than the data
supporting the branch (bipartition) being constrained.
This occurs when the data support other branches in
the tree that make the constrained branch more likely
to be present just by chance, compared with a diffuse
prior on topologies. This is not a problem with the
marginal likelihoods (or their estimates), but rather how
we interpret the results of the Bayes factors; if we want
to interpret it as support for a particular relationship,
we have to be cognizant of the topology space we are
summing over under both models. Brown and Thomson

(2017) tried to limit the effect of this issue by constraining
all “uncontroversial” bipartitions when they calculate
the marginal likelihoods of models with and without
a particular branch, essentially enforcing an informative
prior across topologies under both models.

Brown and Thomson’s (2017) use of marginal
likelihoods allowed them to reveal a large degree
of variation among loci in support for and against
relationships that was masked by the corresponding
posterior probabilities estimated by MCMC.
Furthermore, they found that a small number of
loci can have a large effect on the tree and associated
posterior probabilities of branches inferred from
the combined data. For example, they showed that
including or excluding just two loci out of the 248 locus
data set of (Chiari et al. 2012) resulted in a posterior
probability of 1.0 in support of turtles either being
sister to crocodylians or archosaurs (crocodylians and
birds), respectively. By using marginal likelihoods of
different topologies, Brown and Thomson (2017) were
able to identify these two loci as putative paralogs
due to their strikingly strong support for turtles
being sister to crocodylians. This work demonstrates
how marginal likelihoods can simultaneously be
used as a powerful means of controlling the quality
of data in “phylogenomics”, while informing us
about the evolutionary processes that gave rise to
our data.

Furthermore, Brown and Thomson (2017) found
that the properties of loci commonly used as
proxies for the reliability of phylogenetic signal (rate
of substitution, how “clock-like” the rate is, base
composition heterogeneity, amount of missing data,
and alignment uncertainty) were poor predictors of
Bayes factor support for well-established amniote
relationships. This suggests these popular rules of
thumb are not useful for identifying “good” loci for
phylogenetic inference.

Phylogenetic Factor Analysis

The goal of comparative biology is to understand
the relationships among a potentially large number of
phenotypic traits across organisms. To do so correctly,
we need to account for the inherent shared ancestry
underlying all life (Felsenstein 1985). A lot of progress
has been made for inferring the relationship between
pairs of phenotypic traits as they evolve across a
phylogeny, but a general and efficient solution for large
numbers of continuous and discrete traits has remained
elusive. Tolkoff et al. (2018) introduced Bayesian factor
analysis to a phylogenetic framework as a potential
solution. Phylogenetic factor analysis works by modeling
a small number of unobserved (latent) factors that
evolve independently across the tree, which give rise to
the large number of observed continuous and discrete
phenotypic traits. This allows correlations among traits
to be estimated, without having to model every trait as
a conditionally independent process.
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2019 OAKS ET AL.—MARGINAL LIKELIHOODS IN PHYLOGENETICS 9

The question that immediately arises is, what number
of factors best explains the evolution of the observed
traits? To address this, Tolkoff et al. (2018) use PS to
approximate the marginal likelihood of models with
different numbers of traits. To do so, they extend the
PS method to handle the latent variables underlying the
discrete traits by softening the thresholds that delimit
the discrete character states across the series of power
posteriors. This new approach leverages Bayesian model
comparison via marginal likelihoods to learn about the
processes governing the evolution of multidimensional
phenotypes.

Comparing Phylogeographic Models

Phylogeographers are interested in explaining the
genetic variation within and among species across
a landscape. As a result, we are often interested in
comparing models that include various combinations
of micro- and macroevolutionary processes and
geographic and ecological parameters. Deriving the
likelihood function for such models is often difficult
and, as a result, model choice approaches that use
approximate-likelihood Bayesian computation (ABC)
are often used.

At the forefront of generalizing phylogeographic
models is an approach that is referred to as iDDC, which
stands for integrating distributional, demographic,
and coalescent models (Papadopoulou and Knowles
2016). This approach simulates data under various
phylogeographical models upon proxies for habitat
suitability derived from species distribution models. To
choose the model that best explains the empirical data,
this approach compares the marginal densities of the
models approximated with general linear models (ABC-
GLM; Leuenberger and Wegmann 2010), and P values
derived from these (He et al. 2013; Massatti and Knowles
2016; Bemmels et al. 2016; Papadopoulou and Knowles
2016; Knowles and Massatti 2017). This approach is an
important step forward for bringing more biological
realism into phylogeographical models. However, our
findings below (see section on “approximate-likelihood
approaches” below) show that the marginal GLM
density fitted to a truncated region of parameter space
should not be interpreted as a marginal likelihood of
the full model. Thus, these methods should be seen
as a useful exploration of data, rather than rigorous
hypothesis tests. Because ABC-GLM marginal densities
fail to penalize parameters for their prior weight in
regions of low likelihood, these approaches will likely
be biased toward over-parameterized phylogeographical
models. Nonetheless, knowledge of this bias can help
guide interpretations of results.

Species Delimitation

Calculating the marginal probability of sequence
alignments (Grummer et al. 2013) and single-nucleotide
polymorphisms (Leaché et al. 2014) under various

multi-species coalescent models has been used to
estimate species boundaries. By comparing the marginal
likelihoods of models that differ in how they assign
individual organisms to species, systematists can
calculate Bayes factors to determine how much the
genetic data support different delimitations. Using
simulated data, Grummer et al. (2013) found that
marginal likelihoods calculated using PS and SS
methods outperformed HM estimators at identifying the
true species delimitation model. Marginal likelihoods
seem better able to distinguish some species delimitation
models than others. For example, models that lump
species together or reassign samples into different
species produce larger marginal likelihood differences
versus models that split populations apart (Grummer
et al. 2013; Leaché et al. 2014). Current implementations
of the multi-species coalescent assume strict models
of genetic isolation, and oversplitting populations that
exchange genes creates a difficult Bayesian model
comparison problem that does not include the correct
model (Leaché et al. 2018a,b).

Species delimitation using marginal likelihoods in
conjunction with Bayes factors has some advantages
over alternative approaches. The flexibility of being
able to compare non-nested models that contain
different numbers of species, or different species
assignments, is one key advantage. The methods also
integrate over gene trees, species trees, and other
model parameters, allowing the marginal likelihoods
of delimitations to be compared without conditioning
on any parameters being known. Marginal likelihoods
also provide a natural way to rank competing models
while automatically accounting for model complexity
(Baele et al. 2012). Finally, it is unnecessary to assign
prior probabilities to the alternative species delimitation
models being compared. The marginal likelihood of
a delimitation provides the factor by which the data
update our prior expectations, regardless of what
that expectation is (Equation 3). As multi-species
coalescent models continue to advance, using the
marginal likelihoods of delimitations will continue to be
a powerful approach to learning about biodiversity.

ALTERNATIVES TO MARGINAL LIKELIHOODS FOR BAYESIAN

MODEL CHOICE

Bayesian Model Averaging

Bayesian model averaging provides a way to avoid
model choice altogether. Rather than infer the parameter
of interest (e.g., the topology) under a single “best”
model, we can incorporate uncertainty by averaging
the posterior over alternative models. In situations
where model choice is not the primary goal, and the
parameter of interest is sensitive to which model is
used, model averaging is arguably the best solution from
a Bayesian standpoint. Nonetheless, when we jointly
sample the posterior across competing models, we can
use the posterior sample for the purposes of model
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10 SYSTEMATIC BIOLOGY

choice. The frequency of samples from each model
approximates its posterior probability, which can be
used to approximate Bayes factors among models. Note,
this approach is still based on marginal likelihoods—
the marginal likelihood is how the data inform the
model posterior probabilities, and the Bayes factor is
simply a ratio of marginal likelihoods (Equations 3 and
4). However, by sampling across models, we can avoid
calculating the marginal likelihoods directly.

Algorithms for sampling across models include
reversible-jump MCMC (Green 1995), Gibbs sampling
(Neal 2000), Bayesian stochastic search variable selection
(George and McCulloch 1993; Kuo and Mallick 1998),
and approximations of reversible-jump (Jones et al.
2015). In fact, the first application of Bayes factors
for phylogenetic model comparison was performed by
Suchard et al. (2001) via reversible-jump MCMC. This
technique was also used in Bayesian tests of phylogenetic
incongruence/recombination (Suchard et al. 2003b;
Minin et al. 2005). In terms of selecting the correct
“relaxed-clock” model from simulated data, Baele et al.
(2013b) and Baele and Lemey (2014) showed that model-
averaging performed similarly to the PS and SS marginal
likelihood estimators.

There are a couple of limitations for these approaches.
First, a Bayes factor that includes a model with small
posterior probability will suffer from Monte Carlo error.
For example, unless a very large sample from the
posterior is collected, some models might not be sampled
at all. A potential solution to this problem is adjusting the
prior probabilities of the models such that none of their
posterior probabilities are very small (Carlin and Chib
1995; Suchard et al. 2005). Second, and perhaps more
importantly, for these numerical algorithms to be able
to “jump” among models, the models being sampled
need to be similar. Whereas the first limitation is specific
to using model averaging to estimate Bayes factors, the
second problem is more general.

In comparison, with estimates of marginal
likelihooods in hand, we can compare any models,
regardless of how different they are in terms of
parameterization or relative probability. Alternatively,
Lartillot and Philippe (2006) introduced a method of
using path sampling to directly approximate the Bayes
factor between two models that can be highly dissimilar.
Similarly, Baele et al. (2013a) extended the SS approach
of Xie et al. (2011) to do the same.

Measures of Predictive Performance

Another, albeit not an unrelated, way to compare
models is based on their predictive power, with the idea
that we should prefer the model that best predicts future
data. There are many approaches to do this, but they are
all centered around measuring the predictive power of
a model using the marginal probability of new data (D′)
given our original data (D),

p(D′ |M,D)=
∑

T

∫
�

p(D′ |T,�,M)p(T,� |M,D)d�, (7)

which we will call the marginal posterior predictive
likelihood. This has clear parallels to the marginal
likelihood (see Equation 1), with one key difference:
We condition on our knowledge of the original data,
so that the average of the likelihood of the new data
is now weighted by the posterior distribution rather
than the prior. Thus, in situations where our data are
informative and dominate the posterior distribution
under each model, the marginal posterior predictive
likelihood should be much less sensitive than the
marginal likelihood to the prior distributions used for
the models’ parameters.

Whether one should favor a posterior-predictive
perspective or marginal likelihoods will depend on
the goals of a particular model-choice exercise and
whether the prior is the appropriate penalty for adding
parameters to a model. Regardless, posterior predictive
measures of model fit are a valuable complement to
marginal likelihoods. Methods based on the marginal
posterior predictive likelihood tend to be labeled with
one of two names depending on the surrogate they
use for the “new” data (D′): (1) cross-validation methods
partition the data under study into a training (D)
and testing (D′) data set, whereas (2) posterior-predictive
methods generate D′ via simulation.

Cross-Validation Methods.—With joint samples of
parameter values from the posterior (conditional on
the training data D), we can easily get a Monte Carlo
approximation of the marginal posterior predictive
likelihood (Equation 7) by simply taking the average
probability of the testing data across the posterior
samples of parameter values:

p(D′ |M,D)≃
1
n

n∑
i−1

p(D′ |Ti,�i,M), (8)

where n is the number of samples from the posterior
under model M. Lartillot et al. (2007) used this approach
to show that a mixture model that accommodates
among-site heterogeneity in amino acid frequencies
is a better predictor of animal sequence alignments
than standard amino-acid models. This corroborated
the findings of Lartillot and Philippe (2006) based on
PS estimates of marginal likelihoods. Lewis et al. (2014)
introduced a leave-one-out cross-validation approach to
phylogenetics called the conditional predictive ordinates
method (Geisser 1980; Gelfand et al. 1992; Chen et al.
2000). This method leaves one site out of the alignment
to serve as the testing data to estimate p(D′ |M,D),
which is equal to the posterior harmonic mean of the
site likelihood (Chen et al. 2000). Summing the log
of this value across all sites yields what is called the
log pseudomarginal likelihood (LPML). Lewis et al.
(2014) compared the estimated LPML to SS estimates
of the marginal likelihood for selecting among models
that differed in how they partitioned sites across a
concatenated alignment of four genes from algae. The
LPML favored a 12-subset model (partitioned by gene
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2019 OAKS ET AL.—MARGINAL LIKELIHOODS IN PHYLOGENETICS 11

and codon position) as opposed to the three-subset
model (partitioned by codon) preferred by marginal
likelihoods. This difference could reflect the lesser
penalty against additional parameters imposed by the
weight of the posterior (Equation 7) versus the prior
(Equation 1).

Posterior-Predictive Methods.—Alternatively, we can take
a different Monte Carlo approach to Equation 7 and
sample from p(D′ |M,D) by simulating data sets. For each
posterior sample of the parameter values (conditional
on all the data under study) we can simply simulate a
new data set based on those parameter values. We can
then compare the observed data (D) to the sample of
simulated data sets (D′) from the posterior predictive
distribution. In all but the most trivial phylogenetic data
sets, it is not practical to compare the counts of site
patterns directly, because there are too many possible
patterns (e.g., four raised to the power of the number
of tips for DNA data). Thus, we have to tolerate some
loss of information by summarizing the data in some
way to reduce the dimensionality. Once a summary
statistic is chosen, perhaps the simplest way to evaluate
the fit of the model is to approximate the posterior
predictive P value by finding the percentile of the
statistic from the observed data out of the values of the
statistic calculated from the simulated data sets (Rubin
1984; Gelfand et al. 1992). Bollback (2002) explored
this approach for phylogenetic models using simulated
data, and found that a simple JC69 model (Jukes and
Cantor 1969) was often rejected for data simulated under
more complex K2P (Kimura 1980) and GTR (Tavaré
et al. 1997) models. Lartillot et al. (2007) also used
this approach to corroborate their findings based on
marginal likelihoods (Lartillot and Philippe 2006) and
cross validation that allowing among-site variation in
amino acid composition (i.e., the CAT model) leads to a
better fit.

One drawback of the posterior predictive P value is
that it rewards models with large posterior predictive
variance (Lewis et al. 2014). In other words, a model
that produces a broad enough distribution of data sets
can avoid the observed data falling into one of the
tails. The method of Gelfand and Ghosh (1998) (GG)
attempts to solve this problem by balancing the tradeoff
between posterior predictive variance and goodness-
of-fit. Lewis et al. (2014) introduced the GG method
into phylogenetics and compared it to cross-validation
(LPML) and SS estimates of marginal likelihoods for
selecting among models that differed in how they
partitioned the sites of a four-gene alignment of
algae. Similar to LPML, the GG method preferred the
model with most subsets (12; partitioned by gene and
codon position), in contrast to the marginal likelihood
estimates, which favored the model partitioned by codon
position (three subsets). Again, this difference could be
due to the lesser penalty against parameters imposed by
the weight of the posterior (Equation 7) versus the prior
(Equation 1).

Approximate-Likelihood Approaches

Approximate-likelihood Bayesian computation
approaches Tavaré et al. 1997; Beaumont et al. 2002)
have become popular in situations where it is not
possible (or undesirable) to derive and compute the
likelihood function of a model. The basic idea is
simple: by generating simulations under the model,
the fraction of times that we generate a simulated data
set that matches the observed data is a Monte Carlo
approximation of the likelihood. Because simulating
the observed data exactly is often not possible (or
extremely unlikely), simulations “close enough” to
the observed data are counted, and usually a set of
insufficient summary statistics are used in place of the
data. Whether a simulated data set is “close enough” to
count is formalized as whether or not it falls within a
zone of tolerance around the empirical data.

This simple approach assumes the likelihood
within the zone of tolerance is constant. However,
this zone usually needs to be quite large for
computational tractability, so this assumption does
not hold. Leuenberger and Wegmann (Leuenberger
and Wegmann 2010) proposed fitting a general linear
model (GLM) to approximate the likelihood within the
zone of tolerance. With the GLM in hand, the marginal
likelihood of the model can simply be approximated by
the marginal density of the GLM.

The accuracy of this estimator has not been assessed.
However, there are good theoretical reasons to be
skeptical of its accuracy. Because the GLM is only
fit within the zone of tolerance (also called the
“truncated prior”), it cannot account for the weight of
the prior on the marginal likelihood outside of this
region. Whereas the posterior distribution usually is not
strongly influenced by regions of parameter space with
low likelihood, the marginal likelihood very much is. By
not accounting for prior weight in regions of parameter
space outside the zone of tolerance, where the likelihood
is low, we predict this method will not properly
penalize models and tend to favor models with more
parameters.

To test this prediction, we assessed the behavior of
the ABC-GLM method on 100 data sets simulated under
the simplest possible phylogenetic model: two DNA
sequences separated by a single branch along which
the sequence evolved under a Jukes-Cantor model of
nucleotide substitution (Jukes and Cantor 1969). The
simulated sequences were 10,000 nucleotides long, and
the prior on the only parameter in the model, the
length of the branch, was a uniform distribution from
0.0001 to 0.1 substitutions per site. For such a simple
model, we used quadrature integration to calculate the
marginal likelihood for each simulated alignment of two
sequences. Integration using 1000 and 10,000 steps and
rectangular and trapezoidal quadrature rules all yielded
identical values for the log marginal likelihood to at
least five decimal places for all 100 simulated data sets,
providing a very precise proxy for the true values. We
used a sufficient summary statistic, the proportion of
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12 SYSTEMATIC BIOLOGY

FIGURE 2. A comparison of the approximate-likelihood Bayesian computation general linear model (ABC-GLM) estimator of the marginal
likelihood (Leuenberger and Wegmann 2010) to quadrature integration approximations (Xie et al. 2011) for 100 simulated data sets. We compared
the ratio of the marginal likelihood (Bayes factor) comparing the correct branch-length model [branch length ∼ uniform(0.0001, 0.1)] to a model
with a broader prior on the branch length [branch length ∼ uniform(0.0001, 0.2)]. The solid line represents perfect performance of the ABC-GLM
estimator (i.e., matching the “true” value of the Bayes factor). The dashed line represents the expected Bayes factor when failing to penalize for
the extra parameter space (branch length 0.1 to 0.2) with essentially zero likelihood. Quadrature integration with 1000 and 10,000 steps using
the rectangular and trapezoidal rule produced identical values of log marginal likelihoods to at least five decimal places for all 100 simulated
data sets.

variable sites, for ABC analyses. However, the ABC-GLM
and quadrature marginal likelihoods are not directly
comparable, because the marginal probability of the
proportion of variable sites versus the site pattern counts
will be on different scales that are data set dependent. So,
we compare the ratio of marginal likelihoods (i.e., Bayes
factors) comparing the correct branch-length model
[branch length ∼ uniform(0.0001, 0.1)] to a model with
a prior approximately twice as broad [branch length ∼

uniform(0.0001, 0.2)]. As we noted in our coin-flipping
example, using marginal likelihoods to compare priors
is dubious, and we do not advocate selecting priors in
this way. However, in this case, comparing the marginal
likelihood under these two priors is useful, because it
allows us to directly test our prediction that the ABC-
GLM method will not be able to correctly penalize the
marginal likelihood for the additional parameter space
under the broader prior.

This very simple model is a good test of the ABC-GLM
marginal likelihood estimator for several reasons. The
use of a sufficient statistic for a finite, one-dimensional
model makes ABC nearly equivalent to a full-likelihood
Bayesian method (Fig. A.1). Thus, this is a “best-case
scenario” for the ABC-GLM approach. Also, we can use
quadrature integration for very good proxies for the

true Bayes factors. Lastly, the simple scenario gives us
some analytical expectations for the behavior of ABC-
GLM. If it cannot penalize the marginal likelihood for
the additional branch length space in the model with the
broader prior, the Bayes factor should be off by a factor of
approximately 2, or more precisely (0.2−0.0001)/(0.1−

0.0001). As shown in Figure 2, this is exactly what
we find. This confirms our prediction that the ABC-
GLM approach cannot average over regions of parameter
space with low likelihood and thus will be biased toward
favoring models with more parameters. Given that the
GLM approximation of the likelihood is only fit within
a subset of parameter space with high likelihood, which
is usually a very small region of a model, the marginal of
the GLM should not be considered a marginal likelihood
of the model. We want to emphasize that our findings
in no way detract from the usefulness of ABC-GLM for
parameter estimation.

Full details of these analyses, which were all
designed atop the DendroPy phylogenetic API (version
4.3.0 commit 72ce015) (Sukumaran and Holder 2010),
can be found in Appendix A, and all of the
code to replicate our results is freely available at
https://github.com/phyletica/abc-glm-marginal-test.
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DISCUSSION

Promising Future Directions

As Bayesian phylogenetics continues to explore
more complex models of evolution, and data sets
continue to get larger, accurate and efficient methods
of estimating marginal likelihoods will become
increasingly important. Thanks to substantial work in
recent years, robust methods have been developed,
such as the GSS approach (Fan et al. 2011). However,
these methods are computationally demanding as
they have to sample likelihoods across a series of
power-posterior distributions that are not useful for
parameter estimation. Recent work has introduced
promising methods to estimate marginal likelihoods
solely from samples from the posterior distribution.
However, these methods remain difficult to apply to
phylogenetic models, and their performance on rich
models and large data sets remains to be explored.

Promising avenues for future research on methods for
estimating marginal likelihoods of phylogenetic models
include continued work on reference distributions that
are as similar to the posterior as possible, but easy to
formulate and use. This would improve the performance
and applicability of the GSS and derivations of the GHM
approach. Currently, the most promising method that
works solely from a posterior sample is IDR. Making
this method easier to apply to phylogenetic models
and implementing it in popular Bayesian phylogenetic
software packages, such as RevBayes (Höhna et al. 2016)
and BEAST (Suchard et al. 2018; Bouckaert et al. 2014)
would be very useful, though nontrivial.

Furthermore, nested sampling and sequential Monte
Carlo (SMC) are exciting numerical approaches to
Bayesian phylogenetics. These methods essentially use
the same amount of computation to both sample
from the posterior distribution of phylogenetic models
and provide an approximation of the marginal
likelihood. Both approaches are relatively new to
phylogenetics, but hold a lot of promise for Bayesian
phylogenetics generally and model comparison via
marginal likelihoods specifically.

A Fundamental Challenge of Bayesian Model Choice

While the computational challenges to approximating
marginal likelihoods are very real and will provide
fertile ground for future research, it is often easy to
forget about a fundamental challenge of Bayesian model
choice. This challenge becomes apparent when we
reflect on the differences between Bayesian model choice
and parameter estimation. The posterior distribution
of a model, and associated parameter estimates, are
informed by the likelihood function (Equation 2),
whereas the posterior probability of that model is
informed by the marginal likelihood (Equation 3). When
we have informative data, the posterior distribution
is dominated by the likelihood, and as a result
our parameter estimates are often robust to prior
assumptions we make about the parameters. However,

when comparing models, we need to assess their overall
ability to predict the data, which entails averaging
over the entire parameter space of the model, not just
the regions of high likelihood. As a result, marginal
likelihoods and associated model choices can be very
sensitive to priors on the parameters of each model,
even when the data are very informative (Fig. 1). This
sensitivity to prior assumptions about parameters is
inherent to Bayesian model choice based on marginal
likelihoods (i.e., Bayes factors and Bayesian model
averaging). However, other Bayesian model selection
approaches, such as cross-validation and posterior-
predictive methods, will be less sensitive to prior
assumptions. Regardless, the results of any application
of Bayesian model selection should be accompanied by
an assessment of the sensitivity of those results to the
priors placed on the models’ parameters.

CONCLUSIONS

Marginal likelihoods are intuitive measures of model
fit that are grounded in probability theory. As a result,
they provide us with a coherent way of gaining a better
understanding about how evolution proceeds as we
accrue biological data. We highlighted how marginal
likelihoods of phylogenetic models can be used to learn
about evolutionary processes and how our data inform
our models. Because shared ancestry is a fundamental
property of life, the use of marginal likelihoods of
phylogenetic models promises to continue to advance
biology.
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APPENDIX

METHODS FOR ASSESSING PERFORMANCE OF ABC-GLM
ESTIMATOR

We set up a simple scenario for assessing the
performance of the method for estimating marginal
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likelihoods based on approximating the likelihood
function with a general linear model (GLM) fitted to
posterior samples collected via ABC (Leuenberger and
Wegmann 2010); hereforth referred to as ABC-GLM.
The scenario is a DNA sequence, 10,000-nucleotides in
length, that evolves along a branch according to a Jukes–
Cantor continuous-time Markov chain (CTMC) model of
nucleotide substitution (Jukes and Cantor 1969). Because
the Jukes–Cantor model forces the relative rates of
change among the four nucleotides and the equilibrium
nucleotide frequencies to be equal, there is only a single
parameter in the model, the length of the branch, and the
direction of evolution along the branch does not matter.

Simulating Data Sets

We simulated 100 data sets under this model by

1. drawing 10,000 nucleotides of the “ancestral”
sequence from their equilibrium frequencies ( 1

4 ),

2. drawing a branch length ∼ uniform(0.0001, 0.1),
and

3. evolving the sequence along the branch according
to the Jukes–Cantor CTMC model to get the
“descendant” sequence.

This was done using the DendroPy phylogenetic API
(version 4.3.0 commit 72ce015) (Sukumaran and Holder
2010).

Calculating “True” Bayes Factors

For each data set, we used quadrature approaches to
approximate the marginal likelihood by integrating the
posterior density over the branch length prior. We did
this for two models:

1. the correct model [branch length ∼ uniform(0.0001,
0.1)], and

2. a model with a branch length prior slightly
more than twice as broad [branch length ∼

uniform(0.0001, 0.2)], which we refer to as the
“vague model”.

For both models and for each data set we used
the rectangular and trapezoidal quadrature rules with
1000 and 10,000 steps (i.e., four approximations of the
marginal likelihood for each data set under each model).
Across all 100 data sets and both models, all four
approximations were identical to at least five decimal
places. For each data set, we calculated the log Bayes
factor comparing the correct model to the vague model.

Approximate-Likelihood Bayesian Computation

To collect an approximate posterior sample from the
correct model for a data set, we first calculated the

proportion of variable sites (Pvar) between the two
sequences. Next, we simulated 50,000 data sets under
the correct model, calculated Pvar for each of them,
and retained the 1000 samples with the values of Pvar
closest to that calculated from the data. Lastly, we used
ABCtoolbox version 1.1 Wegmann et al. (2010) to fit a
GLM to the retained samples and calculate the marginal
density of the GLM, using a bandwidth of 0.002. We did
the same to obtain an ABC-GLM estimate of the marginal
density for the vague model with two differences: (1) we
drew the branch length for each prior sample from the
vague prior [branch length ∼ uniform(0.0001, 0.2)], and
(2) to maintain the same expected tolerance under both
models, we simulated 100,000 data sets under the vague
model (retaining the 1000 samples closest to the Pvar of
the data).

For each data set, we calculated the log Bayes factor
from the GLM marginal densities of the correct and
vague model, and compared the ABC-GLM-estimated
Bayes factor to the “true” Bayes factor calculated via
quadrature integration (Fig. 2).

Full-Likelihood Markov Chain Monte Carlo Analyses

One goal of the simplicity of the above model is
that the additional approximation of the ABC approach
would be limited. All numerical Bayesian analyses,
based on full or approximate likelihoods, suffer from
Monte Carlo error associated with approximating the
posterior with a finite number of samples. Approximate-
likelihood methods usually suffer from two additional
sources of approximation: (1) the full data are replaced
with insufficient summary statistics, and (2) samples are
retained that do not exactly match the data or summary
statistics (i.e., the “tolerance” of ABC). In our analyses
described above, we avoided the former source of error
by using a sufficient statistic. We hoped to minimize
the latter source of error by evaluating many samples
from a one-dimensional model with finite bounds; we
also kept this source of error approximately equal for
both models by sampling in proportion to the width of
the model.

To verify that the error introduced by the tolerance
of the ABC analyses was minimal, we compared the
branch length estimates to those estimated by full-
likelihood Markov chain Monte Carlo (MCMC). For
each data set, under both models, we ran a chain
for 10,000 generations, sampling every 10 generations.
All chains appeared to reach stationarity by the first
sample (10th generation). We plotted the branch length
estimated via ABC-GLM and MCMC under both the
true and vague models against the true branch lengths.
The results of all four analyses across all 100 data
sets are almost indistinguishable (Fig. A.1), confirming
that the approximation introduced by the tolerance is
very minimal. Our ABC-GLM analyses are essentially
equivalent to full-likelihood Bayesian analyses, creating
a “best-case scenario” for evaluating the marginal
likelihood estimates of the ABC-GLM method.
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FIGURE A.1. A comparison of the true branch length separating each pair of simulated sequences to the branch length estimated by ABC-GLM
and full-likelihood MCMC under the correct branch-length model (branch length ∼ uniform(0.0001, 0.1)) and the vague model (branch length
∼ uniform(0.0001, 0.1)).

Reproducibility

All of the code to replicate our results is freely
available at https://github.com/phyletica/abc-glm-
marginal-test.
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Sankhyā Indian J. Stat. Series B 60:65–81.

Lad F. 1996. Operational subjective statistical methods: a mathematical,
philosophical, and historical introduction. New York (NY): John
Wiley & Sons, Inc.

Lartillot N., Brinkmann H., Philippe H. 2007. Suppression of long-
branch attraction artefacts in the animal phylogeny using a site-
heterogeneous model. BMC Evol. Biol. 7:S4.

Lartillot N., Philippe H. 2006. Computing Bayes factors using
thermodynamic integration. Syst. Biol. 55:195–207.

Leaché A.D., Fujita M.K., Minin V.N., Bouckaert R.R. 2014.
Species delimitation using genome-wide SNP data. Syst. Biol.
63:534–542.

Leaché A.D., McElroy M.T., Trinh A. 2018a. A genomic evaluation
of taxonomic trends through time in coast horned lizards (genus
Phrynosoma). Mol. Ecol. 27:2884–2895.

Leaché A.D., Zhu T., Rannala B., Yang Z. 2018b. The spectre of too many
species. Syst. Biol. 68:168–181.

Lepage T., Bryant D., Philippe H., Lartillot N. 2007. A general
comparison of relaxed molecular clock models. Mol. Biol. Evol.
24:2669–2680.

Leuenberger C., Wegmann D. 2010. Bayesian computation and model
selection without likelihoods. Genetics. 184:243–252.

Lewis P.O., Xie W., Chen M.-H., Fan Y., Kuo L. 2014. Posterior
predictive Bayesian phylogenetic model selection. Syst. Biol. 63:309–
321.

Lindley D.V. 2000. The philosophy of statistics. The Statistician. 49:293–
337.

Liu J.S., Chen R. 1998. Sequential Monte Carlo methods for dynamic
systems. J. Am. Stat. Assoc. 93:1032–1044.

MacKay D.J.C. 2005. Information theory, inference & learning
algtorithms. 7.2 ed. New York, (NY): Cambridge University
Press.

Massatti R., Knowles L.L. 2016. Contrasting support for alternative
models of genomic variation based on microhabitat preference:
species-specific effects of climate change in alpine sedges. Mol. Ecol.
25:3974–3986.

Maturana R., P., Brewer B.J., Klaere S., Bouckaert R.R. 2018. Model
selection and parameter inference in phylogenetics using nested
sampling. Syst. Biol. DOI:10.1093/sysbio/syy050.

Mau B., Newton M.A. 1997. Phylogenetic inference for binary data on
dendograms using Markov chain Monte Carlo. J. Comput. Graph.
Stat. 6:122–131.

Minin V.N., Dorman K.S., Fang F., Suchard M.A. 2005. Dual
multiple change-point model leads to more accurate recombination
detection. Bioinformatics. 21:3034–3042.

Mueller R.L., Macey J.R., Jaekel M., Wake D.B., Boore J.L. 2004.
Morphological homoplasy, life history evolution, and historical
biogeography of plethodontid salamanders inferred from complete
mitochondrial genomes. Proc. Natl. Acad. Sci. USA. 101:13820–
13825.

Neal R.M. 2000. Markov chain sampling methods for Dirichlet process
mixture models. J. Comput. Graph. Stat. 9:249–265.

Newton M.A., Raftery A.E. 1994. Approximate Bayesian inference with
the weighted likelihood bootstrap. J. R. Stat. Soc. Series B Stat.
Methodol. 56:3–48.

Nylander J.A.A., Ronquist F., Huelsenbeck J.P., Nieves-Aldrey J.L. 2004.
Bayesian phylogenetic analysis of combined data. Syst. Biol. 53:47–
67.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
0
3
/5

2
9
8
7
3
9
 b

y
 A

u
b
u
rn

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 0

1
 M

a
y
 2

0
1
9



2019 OAKS ET AL.—MARGINAL LIKELIHOODS IN PHYLOGENETICS 17

Papadopoulou A., Knowles L.L. 2016. Toward a paradigm shift in
comparative phylogeography driven by trait-based hypotheses.
Proc. Natl. Acad. Sci. USA. 113:8018–8024.

Petris G., Tardella L. 2007. New perspectives for estimating normalizing
constants via posterior simulation. Tech. rep. Roma, Italy: Sapienza
Università di Roma.

Rannala B., Yang Z. 1996. Probability distribution of molecular
evolutionary trees: a new method of phylogenetic inference. J. Mol.
Evol. 43:304–311.

Rannala B., Yang Z. 2017. Efficient Bayesian species tree inference under
the multispecies coalescent. Syst. Biol. 66:823–842.

Rubin D.B. 1984. Bayesianly justifiable and relevant frequency
calculations for the applied statistician. Ann. Stat. 12:1151–1172.

Schwarz G. 1978. Estimating the dimension of a model. Ann. Stat. 6:461–
464.

Skilling J. 2006. Nested sampling for general Bayesian computation.
Bayesian Anal. 1:833–859.

Suchard M.A., Kitchen C.M.R., Sinsheimer J.S., Weiss R.E. 2003a.
Hierarchical phylogenetic models for analyzing multipartite
sequence data. Syst. Biol. 52:649–664.

Suchard M.A., Lemey P., Baele G., Ayres D. L., Drummond A. J.,
Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data
integration using BEAST 1.10. Virus Evolution. 4:vey016.

Suchard M.A., Weiss R.E., Dorman K.S., Sinsheimer J.S. 2003b.
Inferring spatial phylogenetic variation along nucleotide sequences.
J. Am. Stat. Assoc. 98:427–437.

Suchard M.A., Weiss R.E., Sinsheimer J.S. 2001. Bayesian selection
of continuous-time Markov chain evolutionary models. Mol. Biol.
Evol. 18:1001–1013.

Suchard M.A., Weiss R.E., Sinsheimer J.S. 2005. Models for estimating
Bayes factors with applications to phylogeny and tests of
monophyly. Biometrics. 61:665–673.

Sugiura N. 1978. Further analysis of the data by Akaike’s information
criterion and the finite corrections. Commun. Stat. Theory Methods
A7:13–26.

Sukumaran J., Holder M.T. 2010. DendroPy: a Python library for
phylogenetic computing. Bioinformatics. 26:1569–1571.

Tavaré S., Balding D.J., Griffiths R.C., Donnelly P. 1997. Inferring
coalescence times from DNA sequence data. Genetics. 145:505–
518.

Tolkoff M.R., Alfaro M.E., Baele G., Lemey P., Suchard M.A. 2018.
Phylogenetic factor analysis. Syst. Biol. 67:384–399.

Wang L., Wang S., Bouchard-Côté A. 2018a. An annealed sequential
Monte Carlo method for Bayesian phylogenetics. arXiv:1806.08813
[q-bio.PE].

Wang Y.-B., Chen M.-H., Kuo L., Lewis P.O. 2018b. A new Monte Carlo
method for estimating marginal likelihoods. Bayesian Anal. 13:311–
333.

Wegmann D., Leuenberger C., Neuenschwander S., Excoffier L.
2010. ABCtoolbox: a versatile toolkit for approximate Bayesian
computations. BMC Bioinformatics. 11:116.

Worobey M., Gemmel M., Teuwen D.E., Haselkorn T., Kunstman
K., Bunce M., Muyembe J.-J., Kabongo J.-M.M., Kalengayi R.M.,
Van Marck E., Gilbert M.T.P., Wolinsky S.M. 2008. Direct evidence
of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 455:661–
664.

Wu R., Chen M.-H., Kuo L., Lewis P. O. 2014. Consistency of marginal
likelihood estimation when topology varies. In: Chen M.-H., Kuo L.,
Lewis P.O., editors. Bayesian phylogenetics: methods, algorithms,
and applications, Chapter 6. Boca Raton (FL): CRC Press. p. 113–
127.

Xie W., Lewis P.O., Fan Y., Kuo L., Chen M.-H. 2011. Improving marginal
likelihood estimation for Bayesian phylogenetic model selection.
Syst. Biol. 60:150–160.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
z
0
0
3
/5

2
9
8
7
3
9
 b

y
 A

u
b
u
rn

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 0

1
 M

a
y
 2

0
1
9


