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Abstract: Entity resolution identifies and removes duplicate entities in
large, noisy databases and has grown in both usage and new developments
as a result of increased data availability. Nevertheless, entity resolution
has tradeoffs regarding assumptions of the data generation process, error
rates, and computational scalability that make it a difficult task for real
applications. In this paper, we focus on a related problem of unique entity
estimation, which is the task of estimating the unique number of entities
and associated standard errors in a data set with duplicate entities. Unique
entity estimation shares many fundamental challenges of entity resolution,
namely, that the computational cost of all-to-all entity comparisons is in-
tractable for large databases. To circumvent this computational barrier, we
propose an efficient (near-linear time) estimation algorithm based on local-
ity sensitive hashing. Our estimator, under realistic assumptions, is unbi-
ased and has provably low variance compared to existing random sampling
based approaches. In addition, we empirically show its superiority over the
state-of-the-art estimators on three real applications. The motivation for
our work is to derive an accurate estimate of the documented, identifiable
deaths in the ongoing Syrian conflict. Our methodology, when applied to
the Syrian data set, provides an estimate of 191,874 + 1772 documented,
identifiable deaths, which is very close to the Human Rights Data Analysis
Group (HRDAG) estimate of 191,369. Our work provides an example of
challenges and efforts involved in solving a real, noisy challenging problem
where modeling assumptions may not hold.

Keywords and phrases: Syrian conflict, entity resolution, clustering,
hashing.

1. Introduction

Our work is motivated by a real estimation problem associated with the ongoing
conflict in Syria. While deaths are tremendously well documented, it is hard to
know how many unique individuals have been killed from conflict-related vio-
lence in Syria. Since March 2011, increasing reports of deaths have appeared in
both the national and international news. There are many inconsistencies from
various media sources, which is inherent due to the data collection process and
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the fact that reported victims are documented by multiple sources. Thus, our
ultimate goal is to determine an accurate number of documented, identifiable
deaths (with associated standard errors) because such information may con-
tribute to future transitional justice and accountability measures. For instance,
statistical estimates of death counts have been introduced as evidence in na-
tional court cases and international tribunals investigating the responsibility of
state leaders for crimes against humanity (Grillo, 2016).

The main challenge with reliable death estimation of the Syrian data set is
the fact that individuals who are documented as dead are often duplicated in
the data sets. To address this challenge, one could employ entity resolution (de-
duplication or record linkage), which refers to the task of removing duplicated
records in noisy datasets that refer to the same entity (Tancredi and Liseo, 2011;
Sadinle et al., 2014; Bhattacharya and Getoor, 2006; Baxter et al., 2003; Gut-
man, Afendulis and Zaslavsky, 2013; Winkler, 2004; McCallum and Wellner,
2004; Deming and Glasser, 1959; Fellegi and Sunter, 1969). Entity resolution
is fundamental in many large data processing applications. Informally, let us
assume that each entity (records) is a vector in RP. Then given a data set of M
records aggregated from many data sources with possibly numerous duplicated
entities perturbed by noise, the task of entity resolution is to identify and re-
move the duplicate entities. For a review of entity resolution see (Winkler, 2006;
Christen, 2012; Liseo and Tancredi, 2013).

One important subtask of entity resolution is estimating the number of unique
entities (records) n out of M > n duplicated entities, which we call unique entity
estimation. Entity resolution is a more difficult problem because it requires one
to link each entity to its associated duplicate entities. To obtain high-accuracy
entity resolution, the algorithms must at least evaluate a significant amount
of pairs for potential duplicates to ensure a link is not missed. Due to this
(and to the best of our knowledge), accurate entity resolution algorithms scale
quadratically or higher (> O(M?)) making them computationally intractable for
large data sets. Reducing the computational cost in entity resolution is known
as blocking, which, via deterministic or probabilistic algorithms, places similar
records into blocks or bins (Christen, 2012; Steorts et al., 2014). The compu-
tational efficiency comes at the cost of missed links and reduced accuracy for
entity resolution. Further, it is not clear if we can use these crude but cheap
entity resolution sub-routines for unbiased estimation of unique entities with
strong statistical guarantees.

The primary focus of this paper is on developing a unique entity estimation
algorithm that is motivated by the ongoing conflict in Syria and has the following
desiderata:

1. The estimation cost should be significantly less than quadratic (O(M?)).
In particular, any methodology requiring one to evaluate all pairs for link-
age is not suitable. This is crucial for the Syrian data set and other large,
noisy data sets (Section 1.3).

2. To ensure accountability regarding estimating the unique number of doc-
umented identifiable victims in the Syrian conflict, it is essential to under-
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stand the statistical properties of any proposed estimator. Such a require-
ment eliminates many heuristics and rule-based entity resolution tasks,
where the estimates may be very far from the true value.

3. In most real entity resolution tasks, duplicated data can occur with ar-
bitrarily large changes including missing information, which we observe
in the Syrian data set, and standard modeling assumptions may not hold
due to the noise inherent in the data. Due to this, we prefer not to make
strong modeling assumptions regarding the data generation process.

1.1. Related Work for Unique Entity Estimation

The three aforementioned desiderata eliminate all but random sampling-based
approaches. In this section, we review them briefly.

To our knowledge, only two random sampling based methodologies satisfy
such requirements. Frank (1978) proposed sampling a large enough subgraph to
estimate the total number of connected components based on the properties of
the sub-sampled subgraph. Also, Chazelle, Rubinfeld and Trevisan (2005) pro-
posed finding connected components with high probability by sampling random
vertices and then visiting their associated components using breadth-first search
(BFS). One major issue with random sampling is that most sampled pairs are
unlikely to be matches (no edge) providing nearly no information, as the un-
derlying graph is generally very sparse in practice. Randomly sampling vertices
and running BFS required by Chazelle, Rubinfeld and Trevisan (2005) are very
likely to result in singleton vertices because many records are themselves unique
in entity resolution data sets. In addition, finding all possible connections of a
given vertex would require O(M) query for edges. A query for edges corresponds
to the query for actual link between two records. Sub-sampling a sub-graph, as
in Frank (1978), of size s requires O(s?) edge queries to completely observe it.
Thus, s should be reasonably small in order to scale. Unfortunately, requiring a
small s hurts the variance of the estimator. We show that the accuracy of both
aforementioned methodologies is similar to the non-adaptive variant of our esti-
mator which has provably large variance. In addition, we show both theoretically
and empirically that the methodologies based on random sampling lead to poor
estimators.

While some methods have recently been proposed for accurate estimation of
unique records, they belong to the Bayesian literature and have difficulty scal-
ing due to the curse of dimensionality with Markov chain Monte Carlo Steorts,
Hall and Fienberg (2014, 2016); Steorts (2015); Sadinle et al. (2014); Tancredi
and Liseo (2011); Zanella et al. (2016). The evaluation of the likelihood itself
is quadratic. Furthermore, they rely on a strong assumption about the spec-
ified generative models for the duplicate records. Given such computational
challenges with the current state of the methods in the literature, we take a
simple approach, especially given the large and constantly growing data sets
that we seek to analyze. We focus on practical methodologies that can easily
scale to large data sets with minimal assumptions. Specifically, we propose a
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unique entity estimation algorithm with sub-quadratic cost, which can be re-
duced to approximating the number of connected components in a graph with
sub-quadratic queries for edges (Section 3.1).

The rest of the paper proceeds as follows. Section 1.2 provides our moti-
vational application from the Syrian conflict and Section 1.3 remarks on the
main challenges of the Syrian data set and our proposed methodology. Sec-
tion 2.1 provides background on variants of locality sensitive hashing (LSH),
which is essential to our proposed methodology. Section 3 provides our pro-
posed methodology for unique entity estimation, which is the first formalism
of using efficient adaptive LSH on edges to estimate the connected components
with sub-quadratic computational time. (An example of our approach is given
in section 3.2). More specifically, we draw connections between our methodology
and random and adaptive sampling in section 3.3, where we show under realistic
assumptions that our estimator is theoretically unbiased and has provably low
variance. In addition, in section 3.5, we compare random and adaptive sam-
pling for the Syrian data set, illustrating the strengths of adaptive sampling.
In section 3.6, we introduction the variant of LSH used in our paper. Section
3.7 provides our complete algorithm for unique entity estimation. Section 4 pro-
vides evaluations of all the related estimation methods on three real data sets
from the music and food industries as well as official statistics. Section 5 reports
the documented identifiable number of deaths in the Syrian conflict (with a
standard error).

1.2. The Syrian Conflict

Thanks to Human Rights Data Analysis Group (HRDAG), we have access to
four databases from the Syrian conflict which cover roughly the same period,
namely March 2011 — April 2014, namely, the Violation Documentation Centre
(VDC), Syrian Center for Statistics and Research (CSR-SY), Syrian Network
for Human Rights (SNHR), and Syria Shuhada website (SS). Each database
lists a different number of recorded victims killed in the Syrian conflict, along
with available identifying information including full Arabic name, date of death,
death location, and gender.

Since the above information is collected indirectly, such as through friends
and religious leaders, or traditional media resources, it naturally comes with
many challenges. The data set has biases, spelling errors, and missing values.
In addition, it is well known that there are duplicate entities present in the
data sets, making estimation more difficult. The ambiguities in Arabic names
make the situation significantly worse as there can be a large textual difference
between the full and short names in Arabic. (It is not surprising that the Syrian
data set has such biases given that the data is collected in the midst of a conflict).

Such ambiguities and lack of additional information make entity resolution
on this data set considerably challenging (Price et al., 2014). Owing to the

1These databases include documented identifiable victims and not those who are missing
in the conflict, hence, any estimate reported only refers to the data at hand.
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significance of the problem, HRDAG has provided labels for a large subset of
the data set. More specifically, five different human experts from the HRDAG
manually reviewed pairs of records in the four data sets, classifying them as
matches if referred to the same entity and non-matches otherwise. Our first
goal is to accurately estimate the number of unique victims. Obtaining a match
or non-match label of a given record pair may require momentous cost such as
manual human supervision or involving sophisticated machine learning. Given
that coming up with hand-matched data is a costly process, our second goal is
to provide a proxy, automated mechanism to create labeled data. (More infor-
mation regarding the Syrian data set can be found in Appendix ?7).

1.3. Challenges and Proposed Solutions

Consider evaluating the Syrian data set using all-to-all records comparisons to
remove duplicate entities. With approximately 354,000 records from the Syrian
data set, we have around 63 billion pairs (6.3 x 10'9). Therefore, it is impractical
to classify all these pairs as matches/non-matches reliably. We cannot expect
a few experts (five in our case) to manually label 63 billion pairs. A simple
computation of all pairwise similarity (63 billion) takes more than 8 days on
a heavyweight machine that can run 56 threads in parallel (28 cores in total).
In general, this quadratic computational cost is widely considered infeasible for
large data sets. Algorithmic labeling of every pair, even if possible for rela-
tively small datasets, is neither reliable nor efficient. Furthermore, it is hard
to understand the statistical properties of algorithmic labelling of pairs. Such
challenges, therefore, motivate us to focus on the estimation algorithm with
constraints mentioned in Section 1.

Our Contributions: We formalize unique entity estimation as approxi-
mating the number of connected components in a graph with sub-quadratic
< O(M?) computational time. We then propose a generic methodology that
provides an estimate in sample (with standard errors). Our proposal leverages
locality sensitive hashing (LSH) in a novel way for the estimation process, with
the required computational complexity that is less than quadratic. Our pro-
posed estimator is unbiased and has provably low variance compared to random
sampling based approaches. To the best of our knowledge this is the first use
of LSH for unique entity estimation in an entity resolution setting. Our unique
entity estimation procedure is broadly applicable to many applications, and we
illustrate this on three additional real, fully labelled, entity resolution data sets,
which include the food industry, the music industry, and an application from
official statistics. In the absence of ground truth information, we estimate that
the number of documented identifiable deaths for the Syrian conflict is 191,874,
with standard deviation of 1,772, reported casualties, which is very close to the
2014 HRDAG estimate of 191,369. This clearly demonstrates the power of our
efficient estimator in practice, which does not rely on any strong modeling as-
sumptions. Out of 63 billion possible pairs, our estimator only queries around
450,000 adaptively sampled pairs (~ O(M)) for labels, yielding a 99.99% re-
duction. The labelling was done using support vector machines (SVMs) trained
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on a small number of hand-matched, labeled examples provided by five domain
experts. Our work is an example of the efforts required to solve a real noisy
challenging problem where modeling assumptions may not hold.

2. Variants of Locality Sensitive Hashing (LSH)

In this section, we first provide a review of LSH and min-wise hashing, which
is crucial to our proposed methodology. We then introduce a variant of LSH —
Densified One Permutation Hashing (DOPH), which is essential to our proposed
algorithm for unique entity estimation in terms of scalability. We first provide
a brief literature review of LSH.

2.1. Review of Locality Sensitive Hashing (LSH)

In this section, we first provide a review of locality sensitive hashing and min-
wise hashing, which is crucial to our proposed methodology.

Locality sensitive hashing (LSH) is a well-known probabilistic method of di-
mension reduction, which is widely used in computer science and in database
engineering as a way of rapidly finding approximate nearest neighbors (Gio-
nis et al., 1999). More recently, locality sensitive hashing has been utilized has
a form of blocking in entity resolution, where one tries to achieve scalability
and avoid all-to-all record comparisons by placing records into “partitions” or
“blocks” either using deterministic or probabilistic methods.

Unlike other conventional forms of dimension reduction or blocking for en-
tity resolution, LSH uses all the features of a record, and can be adjusted to
ensure that blocks are manageably small, but then do not allow for further
record linkage within blocks. For example, Vatsalan et al. (2014) introduced
novel data structures for sorting and fast approximate nearest-neighbor look-up
within blocks produced by LSH. Their approach gave a good balance between
speed and recall, but their technique is very specific to nearest neighbor search.
In other related work, Steorts et al. (2014) proposed clustering-based blocking
schemes that are variants on LSH. The first, transitive locality sensitive hash-
ing (TLSH) is based upon the community discovery literature such that a soft
transitivity (or relaxed form of transitivity) can be imposed across blocks. The
second, k-means locality sensitive hashing (KLSH) is based upon the information
retrieval literature and clusters similar records into blocks using a vector-space
representation and projections (KLSH had been used before in information re-
trieval but never with entity resolution (Paulevé, Jégou and Amsaleg, 2010)).
Steorts et al. (2014) showed that both KLSH and TLSH gave improvements
over popular methods in the literature such as traditional blocking, canopies
(McCallum, Nigam and Ungar, 2000), and k-nearest neighbors clustering.

There are many variants of LSH and one popular form is min-wise hashing. All
LSH methods are defined by a type of similarity and a type of dimension reduc-
tion (Broder, 1997a). Recently, Shrivastava and Li (2014a) showed that min-wise
hashing based approaches are superior to random projection based approaches
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when the data is very sparse and feature poor. Furthermore, improvements in
computational speed can be obtained by using the recently proposed densifica-
tion scheme known as densified one permutation hashing (DOPH) (Shrivastava
and Li, 2014a,b). Specifically, the authors proposed an efficient substitute for
min-wise hashing, which only requires one permutation (or one hash function)
for generating many different hash values needed for indexing. In short, the
algorithm is linear (or constant) in the tuning parameters, making it very com-
putationally efficient.

2.2. Shingling

In entity resolution tasks, each record can be represented as a string of infor-
mation. For example, each record in the Syrian data set can be represented as
a short text description of the person who died in the conflict. In this paper,
we use a k-grams based shingle representation, which is the most common rep-
resentation of text data and naturally gives a set token (or k-grams). That is,
each record is treated as a string and is replaced by a “bag” (or “multi-set”)
of length-k contiguous sub-strings that it contains. Since we will use a k-gram
based approach to transform the records, our representation of each record will
also be a set, which consists of all the k-contiguous characters occurring in record
string. As an illustration, for the record BAKER, TED, we separate it into a
2-gram representation. The resulting set is the following:

BA, AK, KE, ER, RT, TE, ED.

In another example, consider Sammy, Smith, whose 2-gram set representation
is

SA, AM, MM, MY, YS, MS, SM, MI, IT, TH.

We now have two records that have been transformed into a 2-gram represen-
tation. Thus, for every record (string) we obtain a set C U, where the universe
U is the set of all possible k-contiguous characters.

2.3. Locality Sensitive Hashing

In this paper, we leverage LSH, which comes with sound mathematical for-
malism and guarantees. LSH is widely used in computer science and database
engineering as a way of rapidly finding approximate nearest neighbors (Indyk
and Motwani, 1998; Gionis et al., 1999). Specifically, the variant of LSH that we
utilize is scalable to large databases, and allows for similarity based sampling of
entities in less than a quadratic amount of time.

In LSH, a hash function is defined as y = h(z), where y is the hash code
and h(-) the hash function. A hash table is a data structure that is composed
of buckets (not to be confused with blocks), each of which is indexed by a hash
code. Each reference item x is placed into a bucket h(x).
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More precisely, LSH is a family of functions that map vectors to a discrete set,
namely, h: RP — {1, 2,..- , M}, where M is in finite range. Given this family
of functions, similar points (entities) are likely to have the same hash value
compared to dissimilar points (entities). The notion of similarity is specified by
comparing two vectors of points (entities), x and y. We will denote a general
notion of similarity by SIM(z, y). In this paper, we only require a relaxed version
LSH, and we define this below. Formally, a LSH is defined by the following
definition below:

Definition 1. (Locality Sensitive Hashing (LSH)) Let 1, w2, y1, y2 € RP
and suppose h is chosen uniformly from a family H. Given a similarity metric,
SIM(x,y), H is locality sensitive if SIM(x1, x2) > Sim(ys,ys) then Pry(h(z1) =
h(z2)) > Pry(h(y1) = h(y2)), where Pry is the probability over the uniform
sampling of h.

The above definition is sufficient condition for a family of functions to be
LSH. While many popular LSH families satisfy the aforementioned property, we
only require this condition for the work described herein. For a complete review
of LSH, we refer to Rajaraman and Ullman (2012).

2.4. Minhashing

One of the most popular forms of LSH is minhashing (Broder, 1997b), which
has two key properties — a type of similarity and a type of dimension reduction.
The type of similarity used is the Jaccard similarity and the type of dimension
reduction is known as the minwise hash, which we now define.

Let {0,1}P denote the set of all binary D dimensional vectors, while RP
refers to the set of all D dimensional vectors (of records). Note that records can
be represented as a binary vector (or set) representation via shingling, BoW,
or combining these two methods. More specifically, given two record sets (or

equivalently binary vectors) z,y € {0, 1}, the Jaccard similarity between x,y €
{0,1}P is

~Jznyl

EH

where | - | is the cardinality of the set.

More specifically, the minwise hashing family applies a random permutation
m, on the given set S, and stores only the minimum value after the permutation
mapping, known as the minhash. Formally, the minhash is defined as h"(S) =
min(7(S)), where h(-) is a hash function.

Given two sets S7 and Ss, it can be shown by an elementary probability
argument that

Pro(h ™ ($1) = () = G2, 1)
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where the probability is over uniform sampling of «. It follows from Equation 1
that minhashing is a LSH family for the Jaccard similarity.

Remark: In this paper, we utilize a shingling based approach, and thus, our
representation of each record is likely to be very sparse. Moreover, Shrivastava
and Li (2014c¢) showed that minhashing based approaches are superior compared
to random projection based approaches for very sparse datasets.

2.4.1. Densified One Permutation Hashing (DOPH)

LSH has been utilized for more than two-decades, where one can use LSH to
reduce the computational cost of entity resolution. More specifically, the main
idea is to only match records which have the same hash values, known as block-
ing or indexing. One major issue with LSH is that the step of creating blocks
(hash buckets) is expensive because it requires several hash computations (Liang
et al., 2014; Steorts et al., 2014). However, it was recently shown that the several
minwise hashes of data can be computed in data reading time using the tech-
nique of Densified One Permutation Hashing (DOPH). Subsequent works (Shri-
vastava and Li, 2014a,b) improved the statistical properties of DOPH. (Wang,
Shrivastava and Ryu, 2017) illustated that using DOPH one can get significant
improvements over LSH, which leads to the fastest approximate near-neighbor
search algorithm. In this paper, we use the most recent variant of DOPH, which
is significantly faster in practice compared to minwise hashing. Since we use a
shingle based representation for textual data, DOPH is ideal for our proposed
algorithm because the cost for blocking is the same as the data reading cost,
which is about 100 times faster than traditional minwise hashing. Through-
out the rest of the paper, when we refer to minwise hashing will refer to the
DOPH algorithm for computing minhashes. Further details of LSH and DOPH
can be found in the aforementioned papers. In addition, we specify another rea-
son for using LSH as the only blocking mechanism which suits our purpose in
section 3.6.4.

3. Unique Entity Estimation

In this section, we provide notation used throughout the rest of the paper and
provide an illustrative example. We then propose our estimator, which is unbi-
ased and has provably low variance. In addition, random sampling is a special
case of our procedure as explained in section 3.5. Finally, we present our unique
entity estimation algorithm in section 3.3.

3.1. Notation

The problem of unique entity estimation can be reduced to approximating the
number of connected components in a corresponding graph. Given a data set
with size M, we denote the records as

R={RJ|1<i<M,icZ}
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Next, we define

1, if R;, R; refer to the same entity .
0, otherwise. '

Q(Riv Rj ) = {
Let us represent the data set by a graph G* = (E, V), with vertices E, V. Let
vertex V; correspond to record R; and vertex V; correspond to record R;. Then
let edge E;; represent the linkage between records of R; and R; (or vertex V;
and V;). More specifically, we can represent this by the following relationship:

3.2. Illustrative Example

In this section, we provide an illustrative example of how six records are mapped
to a graph G*. Consider record 3 (John) and record 5 (Johnathan) which cor-
respond to the same entity (John Schaech). In G*, there is an edge E35 that
connect these records, denoted by V5 and V5. Now consider records 2, 4, and
6, which all refer to the same entity (Nicholas Cage). In G*, there are edges
FEsy, Eo, and FEye that connect these records, denoted by V5, Vy, and Vi. Ob-
serve that each connected component in G* is a unique entity and also a clique.
Therefore, our task is reduced to estimating the number of connected compo-
nents in G*.

Records

Id FirstName, LastName, ...

1 Mary, Jane, ...

2 Nick, Cage, ...

3 John, Schaech, ...

4 Nicholas, Cage, ...

5 Johnathan, Schaech, ...

6 Nico, Cage, ...

Fig 1: A toy example of mapping records to a graph, where vertices represent
records and edges refer to the relation between records.

3.3. Proposed Unique Entity Estimator

In this section, we propose our unique entity estimator and provide assumptions
that are necessary for our estimation procedure to be practical (scalable).
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Since we do not observe the edges of G* (the linkage), inferring whether
there is an edge between two nodes (or whether two records are linked) can be
costly, i.e., O(M?). Hence, one is constrained to probe a small set S C V x V
with |S| < O(M?) of pairs and query if they have edges. The aim is to use
the information about S to estimate the total number of connected components
accurately. More precisely, given the partial graph G’ = {V, E'}, where E' =
E NS, one wishes to estimate the connected components n of G* = {V, E'}.

One key property of our estimation process is that we do not make any
modeling assumptions of how duplicate records are generated, and it is not
immediately clear how we can obtain unbiased estimation. For sake of simplicity,
we first assume the existence of an efficient (sub-quadratic) process that samples
a small set (near-linear size) of edges S, such that every edge in the original
graph G* has (reasonably high) probability p of being in S. Thus, set S, even
though small, contains p fraction of the actual edges. For sparse graphs, as in the
case of duplicate records, such a sampler will be far more efficient than random
sampling. Based on this assumption, we will first describe our estimator and
its properties. We then show why our assumption about existence of adaptive
sampler is practical by providing an efficient sampling process based on LSH
(Section 3).

Remark: It is not difficult to see that random sampling is a special case when
p = % which, as we show later, is a very small number for any accurate
estimation.

Our proposed estimator and corresponding algorithm obtains the set of vertex
pairs (or edges) S through an efficient (adaptive) sampling process and queries
whether there is an edge (linkage) between each pair in S. Respectively, after
the ground truth querying, we observe a sub-sampled graph G’, consisting of
vertices returned by the sampler. Let n; be the number of connected component
of size i in the observed graph G, i.e., n} is the number of singleton vertices,
n5 is the number of isolated edges, etc. in G'. It is worth noting that every
connected component in G’ is a part of some clique (maybe larger) in G*. Let
n} denote the number of connected components (clique) of size ¢ in the original
(unobserved) graph G*.

Observe that under the sampling process, any original connected component,
say CF (clique), will be sub-sampled and can appear as some possibly smaller
connected component in G’. For example, a singleton set in G* will remain
the same in G’. An isolated edge, on the other hand, can appear as an edge
in G’ with probability p and as two singleton vertices in G’ with probability
1 — p. A triangle can decompose into three possibilities with probability shown
in figure 2. Each of these possibilities provides a linear equation connecting n;}
to n. These equations up to cliques of size three are

Elng] = nj - p* - (3 - 2p) (2)
Elny] =ns -p+ni-(3-(1—p)* p) (3)
E[ni] =ni+n5-(2-(1—p)+n3-(3-(1—-p)°). (4)
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Since we observe n}, we can solve for the estimator of each n} and compute
the number of connected components by summing up all n}.

G @

| Q/\) /7& :
© s = 2)s
o %%
GI.: .A‘.‘ .’ y
@ ® 00

Fig 2: A general example illustrating the transformation and probabilities of
connected components from G* to G’.

Unfortunately, this process quickly becomes combinatorial, and in fact, is at
least #P hard (Provan and Ball, 1983) to compute for cliques of larger sizes. A
large clique of size k can appear as many separate connected components and
the possibilities of smaller size components it can break into are exponential
(Aleksandrov, 1956). Fortunately, we can safely ignore large connected compo-
nents without significant loss in estimation for two reasons. First, in practical
entity resolution tasks, when M is large and contains at least one string-valued
feature, it is observed that most entities are replicated no more than three or
four times. Second, a large clique can only induce large errors if it is broken
into many connected components due to undersampling. According to Erdos
and Rényi (1960), it will almost surely stay connected if p is high, which is the
case with our sampling method.

Assumption: As argued above, we safely assume that the cliques of sizes
equal to or larger than 4 in the original graph would retain their structures,
ie., Vi >4, nf =n}. With this assumption, we can write down the formula for
estimating n}, n3, nj by solving Equations 2-4 as,

o B E-n5(-(1-p)?p)
n3_p2.(3_2p)1 2 — (5)

ni =Em] —n3-(2-(1-p) —n5-(3-(1-p)?*) (6)

It directly follows that our estimator, which we call the Locality Sensitive Hash-
ing Estimator (LSHE) for the number of connected components is given by

M
2p—1 1-6-(1—-p)?*-p
LSHE = n} +n), - +nj - + E n;. (7)
2, _ ?
p p?-(3—2p) P
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3.4. Optimality Properties of LSHE

We now prove two properties of our unique entity estimator, namely, that it
is unbiased and that is has provably lower variance than random sampling ap-
proaches. Here we have assumed independence of sampling. Our sampler relying
on LSH, described in Section 3.6, will have even better variance due to favorable
correlations. Please see (Spring and Shrivastava, 2017a; Luo and Shrivastava,
2017; Chen, Xu and Shrivastava, 2018; Luo and Shrivastava, 2018) for more
details. Those discussions are out of the scope of this paper.

Theorem 1. Assuming Vi > 4, n} =n}, we have
E[LSHE| =n unbiased (8)

(p—1)%-(3p> —p+1) (1-p)
- (3-2) ®)

The above estimator is unbiased and the variance is given by Equation 9.

V[LSHE] = n} - +nj

Theorem 2 proves the variance of our estimator is monotonically decreasing
with p.

Theorem 2. V[LSHE)] is monotonically decreasing when p increases in range
(0,1].

The proof of Theorem 2 directly follows Lemma 1, which is immediately
given.

Lemma 1. First order derivative of V[LSHE] is negative when p € (0, 1].

Note that when p = 1, V[LSHE] = 0 which means the observed graph G’ is
exactly the same as G*. For detailed proofs of unbiasedness and Lemma 77, see
Appendix 77.

3.5. Adaptive Sampling versus Random Sampling

Before we describe our adaptive sampler, we briefly quantify the advantages of
an adaptive sampling over random sampling for the Syrian data set by com-
puting the differences between their variances. Let p be the probability that an
edge (correct match) is sampled. On the Syrian data set, our proposed sampler,
described in next section, empirically achieves p = 0.83, by reporting around
450,000 sampled pairs (O(M)) out of the 63 billion possibilities (O(M?)). Sub-
stituting this value of p, the corresponding variance can be calculated from
Equation 9 as
ns - 0.07 + nj - 0.204.

Turning to plain random sampling of edges, in order to achieve the same
sample size above leads to p as low as éf;fgfo ~ 6.9x 1076, With such minuscule
p, the resulting variance is

ns - 6954620166 + n3 - 144443.
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Thus, the variance for random sampling is roughly 7 x 10° times the number of
duplicates in the data set and 1 x 10'! the number of triplets in the data set.

In section 4, we illustrate that two other random sampling based algorithms
of (Chazelle, Rubinfeld and Trevisan, 2005) and (Frank, 1978) also have poor
accuracy compared to our proposed estimator. The poor performance of random
sampling is not surprising from a theoretical perspective, and illustrates a major
weakness empirically for the task of unique entity estimation with sparse graphs,
where adaptive sampling is significantly advantageous.

3.6. The Missing Ingredient: (K,L)-LSH Algorithm

Our proposed methodology, for unique entity estimation, assumes that we have
an efficient algorithm that adaptively samples a set of record pairs, in sub-
quadratic time. In this section, we argue that using a variant of LSH (Section 2.1)
we can construct such an efficient sampler.

As already noted, we do not make any modeling assumptions on the gener-
ation process of the duplicate records. Also, we cannot assume that there is a
fixed similarity threshold, because in real datasets duplicates can have arbitrar-
ily large similarity. Instead, we rely on the observation that record pairs with
high similarity have a higher chance of being duplicate records. That is, we as-
sume that when two entities R; and R; are similar in their attributes, it is more
likely that they refer to the same entities (Christen, 2012).2 We note that this
probabilistic observation is the weakest possible assumption, and almost always
true for entity resolution tasks because linking records by a similarity score is
one simple way of approaching entity resolution (Christen, 2012; Winkler, 2006;
Fellegi and Sunter, 1969).

The similarity between entities (records) naturally gives us a notion of adap-
tiveness. One simple adaptive approach is to sample records pairs with probabil-
ity proportional to their similarity. However, as a prerequisite for such sampling,
we must compute all the pairwise similarities and associated probability values
with every edge. Computing such a pairwise similarity score is a quadratic oper-
ation (O(M?)) and is intractable for large datasets. Fortunately, recent work has
shown that (Spring and Shrivastava, 2017b,a; Luo and Shrivastava, 2017; Chen,
Xu and Shrivastava, 2018; Luo and Shrivastava, 2018) it is possible to sample
pairs adaptively in proportion to the similarity in provably sub-quadratic time
using LSH, which we describe in the next section.

3.6.1. (K,L)-LSH Algorithm and Sub-quadratic Adaptive Sampling

We leverage a very recent observation associated with the traditional (K, L)
parameterized LSH algorithm. The (K, L) parameterized LSH algorithm is a
popular similarity search algorithm, which given a query ¢, retrieves element x
from a preprocessed data set in sub-linear time (O(K L) < M) with probability

2The similarity metric that we use to compare sets of record strings is the Jaccard similarity.
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1—(1—J(q, z)%)E. Here, J denotes the Jaccard similarity between the query
and the retrieved data vector xz. Our proposed method leverages this (K, L)-
parameterized LSH Algorithm, and we briefly describe the algorithm in this
section. For complete details refer to (Andoni and Indyk, 2004).

Before we proceed, we define hash maps and keys. We use hash maps, where
every integer (or key) is associated with a bucket (or a list) of records. In a
hash map, searching for the bucket corresponding to a key is a constant time
operation. Please refer to algorithms literature (Rajaraman and Ullman, 2012)
for details on hashing and its computational complexity. Our algorithm will
require several hash maps, L of them, where a record R; is associated with
a unique bucket in every hash map. The key corresponding to this bucket is
determined by minwise hashes of the record R;. We encourage readers to refer
to (Andoni and Indyk, 2004) for implementation details.

More precisely, let h;;, i = {1, 2,..., L} and j = {1, 2,..., K} be K x L
minwise hash functions (Equation 1) with each minwise hash function formed
by independently choosing the underlying permutation 7. Next, we construct L
meta-hash functions (or the keys) H; = {hi 1, hi 2, ..., hi k }, where each of the
H,’s is formed by combining K different minwise hash functions. For this variant
of the algorithm, we need a total of K x L functions. With such L meta-hash
functions, the algorithm has two main phases, namely the data pre-processing
and the sampling pairs phases, which we outline below.

e Data Preprocessing Phase: We create L different hash maps (or hash
tables), where every hash values maps to a bucket of elements. For every
record R; in the dataset, we insert R; in the bucket associated with the
key H;(R;), in hash map i = {1, 2,..., L}. To assign K-tuples H; (meta-
hash) to a number in a fixed range, we use some universal random mapping
function to the desired address range. See (Andoni and Indyk, 2004; Wang,
Shrivastava and Ryu, 2017) for details.

e Sample Pair Reporting: For every record R; in the dataset and from
each table i, we obtain all the elements in the bucket associated with key
H,;(R;), where ¢ = {1, 2,..., L}. We then take the union of the L buckets
obtained from the L hash tables, and denote this (aggregated) set by A.
We finally, report pairs of records (R;, R;), where R € A.

Theorem 3. The (K,L)-LSH Algorithm reports a pair (R;, R;) with probability
1-(1-J(R;, R))®)L, where J(R;, R;) is the Jaccard Similarity between record
pairs (R;, R;).

Proof: Since all the minwise hashes are independent due to an independent
sampling of permutations, the probability that both R; and R; belong to the
same bucket in any hash table i is 7 (R;, R;)*. Note from equation 1, each meta-
hash agreement has probability J(R;, R;). Therefore, the probability that pair
(R;, R;) is missed by all the L tables is precisely (1 —J(R;, R;)¥)F, and thus,
the required probability of successful retreival is the complement.

The probabilistic expression 1 — (1 — J(R;, R;)*) is a monotonic function
of the underlying similarity Sim(q,y) associated with the LSH. In particular,
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higher similarity pairs have more chance of being retrieved. Thus, LSH provides
the required sampling that is adaptive in similarity and is sub-quadratic in
running time.

3.6.2. Computational Complezity

The computational complexity for sampling with M records is O(M KL). The
procedure requires computing K L minwise hashes for each record. This step is
followed by adding every record to L hash tables. Finally, for each record, we ag-
gregate L buckets to form sample pairs. The result of monotonicity and adaptiv-
ity of the samples applies to any value of K and L. We choose O(K x L) < O(M)
such that we are able to get samples in sub-quadratic time. We further tune K
and L using cross-validation to limit the size of our samples. In section 5.3,
we evaluate the effect of varying K and L in terms of the recall and reduction
ratio. (For a review of the recall and reduction ratio, we refer to (Christen,
2012).) We address the precision at the very end of our experimental procedure
to ensure that the recall, reduction ratio, and precision of our proposed unique
entity estimation procedure are all as close to 1 as possible while ensuring that
the entire algorithm is computationally efficient. For example, on the Syrian
data set, we can generate 450,000 samples in less than 127 sec with an adaptive
sampling probability (recall) p as high as 0.83. (Note: the preprocessing is of
the order of data loading cost using the (K,L)-LSH Algorithm). On the other
hand, computing all pairwise similarities (63 billion) takes more than 8 days on
the same machine with 28 cores capable of running 56 threads in parallel. We
refer to (Sadosky et al., 2015) regarding specific comparisons of traditional and
advanced blocking methods. Specifically, figures 1-3 illustrate variants of block-
ing, which perform extremely poorly on the Syrian data set for two reasons.
The first is that the recall and the precision are both extremely low for entity
resolution to be practical. The second reason is that under further inspection
the blocks sizes are too large to manage for entity resolution problems at scale.
Hence, our focus in this paper is one the variant that we find works the best
under standard entity resolution evaluation metrics. Next, we describe how this
LSH sampler is related to the adaptive sampler described earlier in Section 3.3.

8.6.3. Underlying Assumptions and Connections with p

Recall that we can efficiently sample record pairs R;, R; with probability 1 —
(1 — J(R;, R;)¥)E. Since we are not making any modeling assumptions, we
cannot directly link this probability to p, the probability of sampling the right
duplicated pair (or linked entities) as required by our estimator LSHE. In the
absence of any knowledge, we can get the estimate of p using a small set of
labeled linked pairs L. Specifically, we we can estimate the value of p by counting
the fraction of matched pairs (true edges) from L reported by the sampling
process.
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Note that in practice there is no similarity threshold 6 that guarantees that
two record pairs are duplicate records. That is, it is difficult in practice to know
a fixed 6 where J(R;, R;) > 6 ensures that R; and R; are the same entities.
However, the weakest possible and reasonable assumption is that high similarity
pairs (textual similarity of records) should have higher chances of being duplicate
records than lower similarity pairs.

Formally, this assumption implies that there exists a monotonic function
f of similarity J(R;, R;) such that the probability of any R;, R; being a
duplicate record is given by f(J(R;, R;)). Since our sampling probability 1 —
(1-J(Ri, R;)¥)E is also a monotonic function of J(R;, R;), we can also write

F(T(Ri, R;)) =g(1—(1-J(Ri, R)™)"),

where g is f composed with A~1 which is the inverse of h(z) = 1 — (1 — %)L,
Unfortunately, we do not know the form of f or g.

Instead of deriving g (or f), which requires additional implicit assumptions
on the form of the functions, our process estimates p directly. In particular,
the estimated value of p is a data dependent mean-field approximation of g, or
rather,

p=E[g(l - (1 - TR, R)™)")].

Crucially, our estimation procedure does not require any modeling assumptions
regarding the generation process of the duplicate records, which is significant
for noisy data sets, where such assumptions typically break.

3.6.4. Why LSH?

Although there are several rule-based blocking methodologies, LSH is the only
one that is also a random adaptive sampler. In particular, consider a rule-based
blocking mechanism, for example on the Syrian data set, which might block on
the date of death feature. Such blocking could be a very reasonable strategy for
finding candidate pairs. Note that it is still very likely that duplicate records
can have different dates of death because the information could be different or
misrepresented. In addition, such a blocking method is deterministic, and differ-
ent independent runs of the blocking algorithm will report the same set of pairs.
Even if we find reasonable candidates, we cannot up-sample the linked records
to get an unbiased estimate. There will be a systematic bias in the estimates,
which does not have any reasonable correction. In fact, random sampling to our
knowledge is the only known choice in the existing literature for an unbiased
estimation procedure; however, as already mentioned, random uninformative
sampling is likely to be very inaccurate.

LSH, on the other hand, can also be used as a blocking mechanism (Steorts
et al., 2014). It is, however, more than just a blocking scheme; it is a provably
adaptive sampler. Due to randomness in the blocking, different runs of sampler
lead to different candidates, unlike deterministic blocking. We can also average
over multiple runs to even increase the concentration of our estimates. The
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adaptive sampling view of LSH has come to light very recently (Spring and
Shrivastava, 2017b,a; Luo and Shrivastava, 2017; Chen, Xu and Shrivastava,
2018; Luo and Shrivastava, 2018). With adaptive sampling, we get much sharper
unbiased estimators than the random sampling approach. To our knowledge, this
is the first study of LSH sampling for unique entity estimation.

3.7. Putting it all Together: Scalable Unique Entity Estimation

We now describe our scalable unique entity estimation algorithm. As mentioned
earlier, assume that we have a data set that contains a text representation
of the M records. Suppose that we have a reasonably sized, manually labeled
training set 7. We will denote the set of sampled pairs of records given by our
sampling process as S. Note, each element of S is a pair. Then our scalable entity
resolution algorithm consists of three main steps, with the total computational
complexity O(ML + KL+ |S|+ |T|). In our case, we will always have |S| <
O(M?) and KL < M (in fact, L will be a small constant), which ensures that
the total cost is strictly sub-quadratic. The complete procedure is summarized
in Algorithm 1.

1. Adaptively Sample Record Pairs (O(ML)): We regard each record
R; as a short string and replace it by an “n-grams” based representation.
Then one computes K x L minwise hashes of each corresponding string.
This can be done in a computationally efficient manner using the DOPH
algorithm, which is done in data reading time. Next, once these hashes
are obtained, one applies the sampling algorithm described in section 3
in order to generate a large enough sample set, which we denote by S.
For each record, the sampling step requires exactly L hash table queries,
which are themselves O(1) memory lookups. Therefore, the computational
complexity of this step is O(ML + KL).

2. Query each Sample Pairs: Given the set of sampled pairs of records &
from Step 1, for every pair of records in S, we query whether these record
pairs are a match or non-match. This step requires, O(]S|), queries for the
true labels. Here, one can use manually labeled data if it exists. In the
absence of manually labeled data, we can also use a supervised algorithm,
such as support vector machines or random forests, that is trained on the
manually labeled set 7 (Section 5).

(a) Estimate p: Given the sampled set of record pairs S, we need to
know the value of p, the probability that any given correct pair is
sampled. To do so, we use the fraction of true pairs sampled from the
labeled training set 7. The sampling probability p can be estimated
by computing the fraction of the matched pairs of training set records
Trmaten appearing in S. That is, we estimate p (unbiasedly) by

_ |Tmatch N S|
|Tmatch‘
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Algorithm 1 LSH-Based Unique Entity Estimation Algorithm

: Input: Records R, Labeled Set 7, Sample Size m
: Output: LSHE
S = LSHSampling(R) (Section 3.6.1)
Get Tpuaten be the linked pairs (duplicate entities) in T
p= [Tmaten NS
[Tmatcnl
: Query every pair in S for match/mismatch (get actual labels). (Graph G')
nf,nh,nfs..nh, = Traverse(G')
: LSHE = Equation 7 (p , nf,nb,nk..n,)

Fig 3: Overview of our proposed unique entity estimation algorithm.

If T is stored in a dictionary, then this step can be done on the fly
while generating samples. It only costs O(T) extra work to create
the dictionary.

(b) Count Different Connected Components in G’ (O(M + |S])):
The resulting matched sampled pairs, after querying every sample for
actual (or inferred) labels, form the edges of G’. We now have com-
plete information about our sampled graph G’. We can now traverse
G’ and count all sizes of connected components in G’ to obtain n},

nh, n% and so on. Traversing the graph has computational complexity
O(M + |S|) time using Breadth First Search (BFS).

3. Estimate the Number of Connected Components in G* (0O(1)):
Given the values of p, n}, nb, and n} we use equation 7 to compute the
unique entity estimator LSHE.

4. Experiments

We evaluate the effectiveness of our proposed methodology on the Syrian data
set and three additional real data sets, where the Syrian data set is only par-
tially labeled, while the other three data sets are fully labeled. We first perform
evaluations and comparisons on the three fully labeled data sets, and then give
an estimate of the documented number of identifiable victims for the Syrian
data set.

e Restaurant: The Restaurant data set contains 864 restaurant records
collected from Fodor’s and Zagat’s restaurant guides.® There are a total
of 112 duplicate records. Attribute information contains name, address,
city, and cuisine.

e CD: The CD data set that includes 9,763 CDs randomly extracted from
freeDB.* There are a total of 299 duplicate records. Attribute informa-

3QOriginally provided by Sheila Tejada, downloaded from
http://www.cs.utexas.edu/users/ml/riddle/data.html.
4https://hpi.de/naumann/projects/repeatability /datasets/cd-datasets.html.

imsart-generic ver. 2013/03/06 file: chenl7unique.tex date: May 26, 2018

619

620

621

622

623

624

625

626

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644



645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

Chen, Shrivastava, and Steorts/Unique Entity Estimation with Application to Syria 20

DBname Domain Size # Matching Pairs # Attributes # Entities
Restaurants Restaurant Guide 864 112 4 752
CD Music CDs 9,763 299 106 9,508
Voter Registration Info 324,074 70,359 6 255,447
Syria Death Records 354,996 N/A 6 N/A

Table 1: We present five important features of the four data sets. Domain
reflects the variety of the data type we used in the experiments. Size is the
number of total records respectively. # Matching Pairs shows how many pair
of records point to the same entity in each data set. # Attributes represents
the dimensionality of individual record. # Entities is the number of unique
records.

tion consists of 106 total features such as artist name, title, genre, among
others.

e Voter: The Voter data has been scraped and collected by (Christen,
2014) beginning in October 2011. We work with a subset of this data set
containing 324,074 records. There are a total of 68,627 duplicate records.
Attribute information contains personal information on voters from North
Carolina including full name, age, gender, race, ethnicity, address, zip code,
birth place, and phone number.

e Syria: The Syria data set comprises data from the Syrian conflict, which
covers the same time period, namely, March 2011 — April 2014. This data
set is not publicly available and was provided by HRDAG. The respective
data sets come from the Violation Documentation Centre (VDC), Syrian
Center for Statistics and Research (CSR-SY), Syrian Network for Human
Rights (SNHR), and Syria Shuhada website (SS). Each database lists a
different number of recorded victims killed in the Syrian conflict, along
with available identifying information including full Arabic name, date of
death, death location, and gender.?

The above datasets cover a wide spectrum of different varieties observed in
practice. For each data set, we report summary information in Table 1.

5These databases include documented identifiable victims and not those who are missing
in the conflict. Hence, any estimate reported only refers to the data at hand.
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Id First Name Last Name Gender Date of Death Governorate Location

1 ke EE F 2011-10-23 Homs alyp Wals ybal e 13als 58
2 Evn FE F 2011-10-23 Homs <l yedl ye

3 Jade F 2011-10-25 Homs >opa 1aded

Fig 4: We show several death records in Syrian dataset from VDC, which allows
for public access to some of the data. All of the three records belong to the same
entity, labeled by human experts. Record 1 and 2 are similar in all attributes
while Record 1 and 3 are very different. Due to the variation in the data, records
that are very similar are likely to be linked as the same entity, however, it is
more difficult to make decisions when records show differences, such as record
1 and 3. This illustrates some of the limitations from deterministic blocking
methods discussed in Section 3.6.4.

4.1. FEvaluation Settings

In this section, we outline our evaluation settings. We denote Algorithm 1 as the
LSH Estimator (LSHE). We make comparisons to the non-adaptive variant of
our estimator (PRSE), where we use plain random sampling (instead of adap-
tive sampling). This baseline uses the same procedure as our proposed LSHE,
except that the sampling is done uniformly. A comparison with PRSE quantifies
the advantages of the proposed adaptive sampling over random sampling. In ad-
dition, we implemented the two other known sampling methods, for connected
component estimation, proposed in (Frank, 1978) and (Chazelle, Rubinfeld and
Trevisan, 2005). For convenience, we denote them as Random Sub-Graph based
Estimator (RSGE), and BFS on Random Vertex based Estimator (BFSE) re-
spectively. Since the algorithms are based on sampling (adaptive or random), to
ensure fairness, we fix a budget m as the number of pairs of vertices considered
by the algorithm. Note that any query for an edge is a part of the budget. If
the fixed budget is exhausted, then we stop the sampling process and use the
corresponding estimate, using all the information available.

We briefly describe the implementation details of the four considered estima-
tors below:

1. LSHE: In our proposed algorithm, we use the (K, L) parameterized LSH
algorithm to generate samples of record pairs using Algorithm 3, where
recall K and L control the resulting sample size (section 5.3). Given K, L
as an input to Algorithm 1, we use the sample size as the value of the
fixed budget m. Table 2 gives different sample budget sizes (with the
corresponding K and L) and corresponding values of p for selected samples
in three real data sets.

2. PRSE: For a fair comparison, in this algorithm, we randomly sample
the same number of record pairs used by LSHE. We then perform the

2m
M which
MM —1) e

corresponds to the random sampling probability to get the same number

same estimation process as LSHE but instead use p =
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of samples, which is m.

3. RSGE (Frank, 1978): This algorithm requires performing breadth first
search (BFS) on each randomly selected vertices. BFS requires knowing
all edges (neighbors) of a node for the next step, which requires M — 1
edge queries. To ensure the fixed budget m, we end the traversal when the
number of distinct edge queries reaches the fixed budget m.

4. BFSE (Chazelle, Rubinfeld and Trevisan, 2005): This algorithm
samples a subgraph and observes it completely. This requires labeling all
the pairs of records in the sampled sub-graph. To ensure same budget m,
the sampled sub-graph has approximately /2m vertices.

Remark: To the best of our knowledge there have been no experimental
evaluations of the two algorithms of (Frank, 1978) and (Chazelle, Rubinfeld
and Trevisan, 2005) in the literature. Hence, our results could be of independent
interest in themselves.

We compute the relative error (RE), calculated as

RE — |ILSHE — n| 7
n
for each of the estimators, for different values of the budget m. We plot the RE
for each of the estimators, over a range of values of m, summarizing the results
in figure 5.

All the estimators require querying pairs of records compared to labeled
ground truth data for whether they are a match or a non-match. As already
mentioned, in the absence of full labeled ground truth data, we can use a super-
vised classifiers such as SVMs as a proxy, assuming at least some small amount
of labeled data exists. By training an SVM, we can use this as a proxy for labeled
data as well. We use such a proxy in the Syrian data set because we are not able
to query every pair of records to determine whether they are true duplicates or
not.

We start with the three data sets where fully labelled ground truth data
exists. For LSHE, we compute the estimation accuracy using both the supervised
SVM (Section 5) as well as using the fully labelled ground truth data. The
difference in these two numbers quantifies the loss in estimation accuracy due
to the use of the proxy SVM prediction instead of using ground truth labeled
data. In our use of SVMs, we take less than 0.01% of the total number of the
possible record pairs as the training set.
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5 on Restuarant o onCD o ion on Voter
10 10 —eHE 10
— -LSHE ROGE —-LSH
PRSE ~< - ZRSgE RSG
= RSGE = S. —LSHE+SVM] — N - -Brs
5 - -BFSE S107L - -YTmma o o A S < —LSHE+SVM
e —LSHE+swM| | 8 e ~oZZts
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2 ] g i —
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10 1z 0 0.01 0.02 0.03 0.04 0.0 0 0.002 0.004 0.006 0.008 0.01 0.012

2 4 6 8
Sample Size (in % of total) Sample Size (in % of total) Sample Size (in % of total)

Fig 5: The dashed lines show the RE of the four estimators on the three real
data sets, where the y-axis is on the log-scale. Observe that LSHE outperforms
all other three estimators in one to two orders of magnitude. The standard
deviation of the RE for LSHE is also shown in the plots with the red error
bars, which is with respect to randomization of hash functions. In particular,
the PRSE performs unreliable estimation on the CD and Voter data sets. The
dashed and solid black lines represent RE of LSHE using ground truth labels
and a SVM classifier (y-axis is on the log scale). We discuss the LSHE + SVM
estimator in section 5 (solid black line).

4.2. Evaluation Results

In this section, we summarize our results regarding the aforementioned evalua-
tion metrics by varying the sample size m on the three real data sets (see figure
5).5 We notice that for the CD and Voter data sets, we cannot obtain any reliable
estimate (for any sample size) using PRSE. Recall that plain random sampling
almost always samples pairs of records that correspond to non-matches. Thus, it
is not surprising that this method is unreliable because sampling random pairs
is unlikely to result in a duplicate pair for entity resolution tasks. Even with
repeated trials, there are no edges in the specified sampled pairs of records,
leading to an undefined value of p. This phenomenon is a common problem in
random sampling estimators over sparse graphs. Almost all the sampled nodes
are singletons. Subsampling a small sub-graph leads to a graph with most sin-
gleton nodes, which leads to a poor accuracy of BFSE. Thus, it is expected that
random sampling will perform poorly. Unfortunately, there is no other baseline
for unbiased estimation of the number of unique entities.

From figure 5 observe that the RE for proposed estimator LSHE is approx-
imately one to two orders of magnitude lower than the other considered meth-
ods, where the y-axis is on the log-scale. Undoubtedly, our proposed estimator
LSHE consistently leads to significantly lower RE (lower error rates) than the
other three estimators. This is not surprising from the analysis shown in sec-
tion 3.5. The variance of random sampling based methodologies will be signifi-
cantly higher.

6For using the fasthash package for unique entity estimation, please see our reproducible
code with a tutorial that corresponds with our paper.
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Taking a closer look at LSHE, we notice that we are able to efficiently generate
samples with very high values of p (see Table 2). In addition, we can clearly see
that LSHE achieves high accuracy with very few samples. For example, for the
CD data set, with a sample size less than 0.05% of the total possible pairs of
records of the entire data set, LSHE achieves 0.0006 RE. Similarly, for the Voter
data set, with a sample size less than 0.012% of the total possible pairs of records
of the entire data set, LSHE achieves 0.003 RE.

Also, note the small values of K and L parameters required to achieve the
corresponding sample size. K and L affect the running time, and small val-
ues KL < O(M?) indicate significant computational savings as argued in sec-
tion 3.6.2

As mentioned earlier, we also evaluate the effect of using SVM prediction as
a proxy for actual labels with our LSHE. The dotted plot shows those results.
We remark on the results for LSHE + SVM in section 5.

Restaurant CD Voter

Size | 1.0 2.5 5.0 10 | 0.005 0.01 0.02 0.04 | 0.002 0.006 0.009 0.013
P 0.42 054 0.65 0.82 | 0.72 0.74 0.82 0.92 | 0.62 0.72 0.76 0.82
K 1 1 1 1 1 1 1 1 4 4 4 4
L 4 8 12 20 5 6 8 14 25 32 35 40

Table 2: We illustrate part of the sample sizes (in % in TOTAL) for different
sets of samples generated by Min-Wise Hashing and their corresponding p in all
three data sets.

5. Documented Identifiable Deaths in the Syrian Conflict

In this section, we describe how we estimate the number of documented identi-
fiable deaths for the Syrian data set. As noted before, we do not have ground
truth labels for all record pairs, but the data set was partially labeled with
40,000 record pairs (out of 63 billion). We propose an alternative (automatic)
method of labeling the sample pairs, which is also needed by our proposed esti-
mation algorithm. More specifically, using the partially labeled pairs, we train
an SVM. In fact, other supervised methods could be considered here, such as
random forests, Bayesian Adaptive Regression Trees (BART), among others,
however, given that SVMs perform very well, we omit such comparisons as we
expect the results to be similar if not worse.

To train the SVM, we take every record pair and generate k-grams repre-
sentation for each record. Then we spilt the partially labeled data into training
and testing sets, respectively. Each training and testing set contains a pair of
records zy, = [R;, R;]. In addition, we can use a binary label indicating whether
the record pair is a match or non-match. That is, we can write the data as
{zx, = [Ri, R;], yx} as the set difference of the k-grams of the strings of pairs of
records R; and R;, respectively. Observe that y;, = 1 if the R; and R; is labelled
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as match and y = —1 otherwise. Next, we tune the SVM hyper-parameters us-
ing 5-fold cross-validation, and we find the accuracy of SVM on the testing set
was 99.9%. With a precision as high a 0.99, we can reliably query an SVM and
now treat this as an expert label.

To understand the effect of using SVM prediction as a proxy to label queries
in our proposed unique entity estimation algorithm, we return to observing
the behavior in figure 5. We treat the LSHE estimator on the other three real
datasets as our baselineand compare to LHSE with the SVM component, where
the SVM prediction replaces the querying process (LSHE +SVM). Observe in
figure 5, that the plot for LSH (solid black line) and LSH4+SVM (dotted black
line) overlap indicating a negligible loss in performance. This overlap is expected
given the high accuracy (high precision) of the SVM classifier.

5.1. Running Time

We briefly highlight the speed of the sampling process since it could be used
for on the fly or online unique entity estimation. The total running time for
producing 450,000 sampled pairs (out of a possible 63 billion) used for the
LSH sampler (Section 3.6.1) with K = 15 and L = 10 is 127 seconds. The
preprocessing cost is included in the 127 seconds. The preprocessing is of the
order of data loading cost using DOPH. (For further details on the benchmarking
performance of DOPH compared with other LSH methods, please see (Wang,
Shrivastava and Ryu, 2017)). On the other hand, it will take approximately take
8 days to compute all pairwise similarities across the 354,996 Syrian records.
Computing the pairwise similarities is just the first step for any known adaptive
sampling over pairs based on similarity assuming that we do not use the LSH
sampler. (Note: there are other ways of blocking (Christen, 2012; Sadosky et al.,
2015), however as mentioned in Section 3.6.4 they are mostly deterministic (or
rule-based) and do not provide an estimate of the unique entities.

5.2. Unique Number of Documented Identifiable Victims

In the Syrian dataset, with 354,996 records and possibly 63 billion (6.3 x 100)
pairs, our motivating goal was to estimate the unique number of documented
identifiable victims. Specifically, in our final estimate, we use 452,728 sampled
pairs that are given by LSHE4+SVM (K = 15, L = 10) which has approximately
p = 0.83 based on the subset of labeled pairs. The sample size was chosen to
balance the computational runtime and the value of p. Specifically, one wants
high values of p (for a resulting low variance of our estimate) and, to balance
running time, we limit the sample size to be around the total number of records
O(M), to ensure a near linear time algorithm. (Such settings are determined
by the application, but as we have demonstrated they work for a variety of real
entity resolution data sets). We chose the SVM as our classifier to label the
matches and non-matches. The final unique number of documented identifiable
victims in the Syrian data set was estimated to be 191,8744+1772, very close to
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the 191,369 documented identifiable deaths reported by HRDAG 2014, where
their process is described in Appendix ?77.

5.3. Effects of L, K, on sample size and p

In this section, we discuss the sensitivity of our proposed method as we vary
the choice of L, K, the sample size M, and p.

We want both KL < M as well as the number of samples to be <« M?, for
the process to be truly sub-quadratic. For accuracy, we want high values of p,
because the variance is monotonic in p, which is also the recall of true labeled
pairs. Thus, there is a natural trade-off. If we sample more, we get high p but
more computations.

K and L are the basic parameters of our sampler (Section 3.6.1), which
provide a tradeoff between the computationally complexity and accuracy. A
large value of K makes the buckets sparse exponentially), and thus, fewer pairs
of records are sampled from each table. A large value of L increases the repetition
of hash tables (linearly), which increases the sample size. As already argued, the
computational cost is O(MKL).

To understand the behavior of K, L, p, and the computational cost, we
perform a set of experiments on the Syrian dataset. We use n-gram of 2—5, we
vary L from 5-100 by steps of 5 and K takes values 15,18,20,23,25,28,30,32,35.
For all these combinations, we then plot the recall (also the value of p) and the
reduction ratio (RR), which is the percentage of computational savings. A 99%
reduction ratio means that the original space has been reduced to only having to
look at a only 1% of total sampled pairs. Figure 6 shows the tradeoffs between
reduction ratio and recall (or value of p). Every dot in the figure is one whole
experiment.

Regardless of the n-gram variation from 2-5, the recall and reduction ratio
(RR) are close to 1 as illustrated in figure 6. We see that an n-gram of 3 overall
is most stable in having a recall and RR close to 0.99. We observe that K = 15
and L = 10 gives a high recall of around 83% with less than half a million pairs
(out of 63 billion possible) to evaluate (RR > 0.99999).

6. Discussion

Motivated by three real entity resolution tasks and the ongoing Syrian conflict,
we have proposed a general, scalable algorithm for unique entity estimation.
Our proposed method is an adaptive LSH on the edges of a graph, which in
turn estimates the connected components in sub-quadratic time. Our estimator
is unbiased and has provably low variance in contrast to other such estimators
for unique entity estimation in the literature. In experimental results, it outper-
forms other estimators in the literature on three real entity resolution data sets.
Moreover, we have estimated the number of documented identifiable deaths to
be 191,8744+1772, which very closely matches the 2014 HRDAG estimate, com-
pleted by hand-matching. To our knowledge, we have the first estimate for the
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Fig 6: For shingles 2-5, we plot the RR versus the recall. Overall, we see the
best behavior for a shingle of 3, where the RR and recall can be reached at 0.98
and 1, respectively. We allow L and K to vary on a grid here. L varies from
5-100 by steps of 5; and K takes values 15, 18, 20, 23, 25, 28, 30, 32, and 35.
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number of documented identifiable deaths with a standard error associated with
such an estimate. Our methods are scalable, potentially bringing impact to the
human rights community, where such estimates could be updated in near real
time. It could lead to further impact in public policy and transitional justice in
Syria and other areas of conflict globally.
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Supplementary Material

Supplementary Article: Supplementary Material for “Unique Entity
Estimation with Application to the Syrian Conflict”

(doi: COMPLETED BY THE TYPESETTER, .pdf). This supplement consists
of two parts. It offers more details about: (A) the Syrian data set and (B) our
unique entity estimation proofs. in (A), we give details regarding the Syrian
data set and the training data that is used. in (B), we give detailed proofs
that our proposed estimator that is unbiased and has has provable low variance
compared to random sampling. Refer to Chen, Shrivastava and Steorts (2018)
for details.
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