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Abstract: Entity resolution identifies and removes duplicate entities in 12

large, noisy databases and has grown in both usage and new developments 13

as a result of increased data availability. Nevertheless, entity resolution 14

has tradeoffs regarding assumptions of the data generation process, error 15

rates, and computational scalability that make it a difficult task for real 16

applications. In this paper, we focus on a related problem of unique entity 17

estimation, which is the task of estimating the unique number of entities 18

and associated standard errors in a data set with duplicate entities. Unique 19

entity estimation shares many fundamental challenges of entity resolution, 20

namely, that the computational cost of all-to-all entity comparisons is in- 21

tractable for large databases. To circumvent this computational barrier, we 22

propose an efficient (near-linear time) estimation algorithm based on local- 23

ity sensitive hashing. Our estimator, under realistic assumptions, is unbi- 24

ased and has provably low variance compared to existing random sampling 25

based approaches. In addition, we empirically show its superiority over the 26

state-of-the-art estimators on three real applications. The motivation for 27

our work is to derive an accurate estimate of the documented, identifiable 28

deaths in the ongoing Syrian conflict. Our methodology, when applied to 29

the Syrian data set, provides an estimate of 191, 874 ± 1772 documented, 30

identifiable deaths, which is very close to the Human Rights Data Analysis 31

Group (HRDAG) estimate of 191,369. Our work provides an example of 32

challenges and efforts involved in solving a real, noisy challenging problem 33

where modeling assumptions may not hold. 34

Keywords and phrases: Syrian conflict, entity resolution, clustering, 35

hashing. 36

1. Introduction 37

Our work is motivated by a real estimation problem associated with the ongoing 38

conflict in Syria. While deaths are tremendously well documented, it is hard to 39

know how many unique individuals have been killed from conflict-related vio- 40

lence in Syria. Since March 2011, increasing reports of deaths have appeared in 41

both the national and international news. There are many inconsistencies from 42

various media sources, which is inherent due to the data collection process and 43
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the fact that reported victims are documented by multiple sources. Thus, our44

ultimate goal is to determine an accurate number of documented, identifiable45

deaths (with associated standard errors) because such information may con-46

tribute to future transitional justice and accountability measures. For instance,47

statistical estimates of death counts have been introduced as evidence in na-48

tional court cases and international tribunals investigating the responsibility of49

state leaders for crimes against humanity (Grillo, 2016).50

The main challenge with reliable death estimation of the Syrian data set is51

the fact that individuals who are documented as dead are often duplicated in52

the data sets. To address this challenge, one could employ entity resolution (de-53

duplication or record linkage), which refers to the task of removing duplicated54

records in noisy datasets that refer to the same entity (Tancredi and Liseo, 2011;55

Sadinle et al., 2014; Bhattacharya and Getoor, 2006; Baxter et al., 2003; Gut-56

man, Afendulis and Zaslavsky, 2013; Winkler, 2004; McCallum and Wellner,57

2004; Deming and Glasser, 1959; Fellegi and Sunter, 1969). Entity resolution58

is fundamental in many large data processing applications. Informally, let us59

assume that each entity (records) is a vector in RD. Then given a data set of M60

records aggregated from many data sources with possibly numerous duplicated61

entities perturbed by noise, the task of entity resolution is to identify and re-62

move the duplicate entities. For a review of entity resolution see (Winkler, 2006;63

Christen, 2012; Liseo and Tancredi, 2013).64

One important subtask of entity resolution is estimating the number of unique65

entities (records) n out of M > n duplicated entities, which we call unique entity66

estimation. Entity resolution is a more difficult problem because it requires one67

to link each entity to its associated duplicate entities. To obtain high-accuracy68

entity resolution, the algorithms must at least evaluate a significant amount69

of pairs for potential duplicates to ensure a link is not missed. Due to this70

(and to the best of our knowledge), accurate entity resolution algorithms scale71

quadratically or higher (> O(M2)) making them computationally intractable for72

large data sets. Reducing the computational cost in entity resolution is known73

as blocking, which, via deterministic or probabilistic algorithms, places similar74

records into blocks or bins (Christen, 2012; Steorts et al., 2014). The compu-75

tational efficiency comes at the cost of missed links and reduced accuracy for76

entity resolution. Further, it is not clear if we can use these crude but cheap77

entity resolution sub-routines for unbiased estimation of unique entities with78

strong statistical guarantees.79

The primary focus of this paper is on developing a unique entity estimation80

algorithm that is motivated by the ongoing conflict in Syria and has the following81

desiderata:82

1. The estimation cost should be significantly less than quadratic (O(M2)).83

In particular, any methodology requiring one to evaluate all pairs for link-84

age is not suitable. This is crucial for the Syrian data set and other large,85

noisy data sets (Section 1.3).86

2. To ensure accountability regarding estimating the unique number of doc-87

umented identifiable victims in the Syrian conflict, it is essential to under-88
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stand the statistical properties of any proposed estimator. Such a require- 89

ment eliminates many heuristics and rule-based entity resolution tasks, 90

where the estimates may be very far from the true value. 91

3. In most real entity resolution tasks, duplicated data can occur with ar- 92

bitrarily large changes including missing information, which we observe 93

in the Syrian data set, and standard modeling assumptions may not hold 94

due to the noise inherent in the data. Due to this, we prefer not to make 95

strong modeling assumptions regarding the data generation process. 96

1.1. Related Work for Unique Entity Estimation 97

The three aforementioned desiderata eliminate all but random sampling-based 98

approaches. In this section, we review them briefly. 99

To our knowledge, only two random sampling based methodologies satisfy 100

such requirements. Frank (1978) proposed sampling a large enough subgraph to 101

estimate the total number of connected components based on the properties of 102

the sub-sampled subgraph. Also, Chazelle, Rubinfeld and Trevisan (2005) pro- 103

posed finding connected components with high probability by sampling random 104

vertices and then visiting their associated components using breadth-first search 105

(BFS). One major issue with random sampling is that most sampled pairs are 106

unlikely to be matches (no edge) providing nearly no information, as the un- 107

derlying graph is generally very sparse in practice. Randomly sampling vertices 108

and running BFS required by Chazelle, Rubinfeld and Trevisan (2005) are very 109

likely to result in singleton vertices because many records are themselves unique 110

in entity resolution data sets. In addition, finding all possible connections of a 111

given vertex would require O(M) query for edges. A query for edges corresponds 112

to the query for actual link between two records. Sub-sampling a sub-graph, as 113

in Frank (1978), of size s requires O(s2) edge queries to completely observe it. 114

Thus, s should be reasonably small in order to scale. Unfortunately, requiring a 115

small s hurts the variance of the estimator. We show that the accuracy of both 116

aforementioned methodologies is similar to the non-adaptive variant of our esti- 117

mator which has provably large variance. In addition, we show both theoretically 118

and empirically that the methodologies based on random sampling lead to poor 119

estimators. 120

While some methods have recently been proposed for accurate estimation of 121

unique records, they belong to the Bayesian literature and have difficulty scal- 122

ing due to the curse of dimensionality with Markov chain Monte Carlo Steorts, 123

Hall and Fienberg (2014, 2016); Steorts (2015); Sadinle et al. (2014); Tancredi 124

and Liseo (2011); Zanella et al. (2016). The evaluation of the likelihood itself 125

is quadratic. Furthermore, they rely on a strong assumption about the spec- 126

ified generative models for the duplicate records. Given such computational 127

challenges with the current state of the methods in the literature, we take a 128

simple approach, especially given the large and constantly growing data sets 129

that we seek to analyze. We focus on practical methodologies that can easily 130

scale to large data sets with minimal assumptions. Specifically, we propose a 131
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unique entity estimation algorithm with sub-quadratic cost, which can be re-132

duced to approximating the number of connected components in a graph with133

sub-quadratic queries for edges (Section 3.1).134

The rest of the paper proceeds as follows. Section 1.2 provides our moti-135

vational application from the Syrian conflict and Section 1.3 remarks on the136

main challenges of the Syrian data set and our proposed methodology. Sec-137

tion 2.1 provides background on variants of locality sensitive hashing (LSH),138

which is essential to our proposed methodology. Section 3 provides our pro-139

posed methodology for unique entity estimation, which is the first formalism140

of using efficient adaptive LSH on edges to estimate the connected components141

with sub-quadratic computational time. (An example of our approach is given142

in section 3.2). More specifically, we draw connections between our methodology143

and random and adaptive sampling in section 3.3, where we show under realistic144

assumptions that our estimator is theoretically unbiased and has provably low145

variance. In addition, in section 3.5, we compare random and adaptive sam-146

pling for the Syrian data set, illustrating the strengths of adaptive sampling.147

In section 3.6, we introduction the variant of LSH used in our paper. Section148

3.7 provides our complete algorithm for unique entity estimation. Section 4 pro-149

vides evaluations of all the related estimation methods on three real data sets150

from the music and food industries as well as official statistics. Section 5 reports151

the documented identifiable number of deaths in the Syrian conflict (with a152

standard error).153

1.2. The Syrian Conflict154

Thanks to Human Rights Data Analysis Group (HRDAG), we have access to155

four databases from the Syrian conflict which cover roughly the same period,156

namely March 2011 – April 2014, namely, the Violation Documentation Centre157

(VDC), Syrian Center for Statistics and Research (CSR-SY), Syrian Network158

for Human Rights (SNHR), and Syria Shuhada website (SS). Each database159

lists a different number of recorded victims killed in the Syrian conflict, along160

with available identifying information including full Arabic name, date of death,161

death location, and gender.1162

Since the above information is collected indirectly, such as through friends163

and religious leaders, or traditional media resources, it naturally comes with164

many challenges. The data set has biases, spelling errors, and missing values.165

In addition, it is well known that there are duplicate entities present in the166

data sets, making estimation more difficult. The ambiguities in Arabic names167

make the situation significantly worse as there can be a large textual difference168

between the full and short names in Arabic. (It is not surprising that the Syrian169

data set has such biases given that the data is collected in the midst of a conflict).170

Such ambiguities and lack of additional information make entity resolution171

on this data set considerably challenging (Price et al., 2014). Owing to the172

1These databases include documented identifiable victims and not those who are missing
in the conflict, hence, any estimate reported only refers to the data at hand.
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significance of the problem, HRDAG has provided labels for a large subset of 173

the data set. More specifically, five different human experts from the HRDAG 174

manually reviewed pairs of records in the four data sets, classifying them as 175

matches if referred to the same entity and non-matches otherwise. Our first 176

goal is to accurately estimate the number of unique victims. Obtaining a match 177

or non-match label of a given record pair may require momentous cost such as 178

manual human supervision or involving sophisticated machine learning. Given 179

that coming up with hand-matched data is a costly process, our second goal is 180

to provide a proxy, automated mechanism to create labeled data. (More infor- 181

mation regarding the Syrian data set can be found in Appendix ??). 182

1.3. Challenges and Proposed Solutions 183

Consider evaluating the Syrian data set using all-to-all records comparisons to 184

remove duplicate entities. With approximately 354,000 records from the Syrian 185

data set, we have around 63 billion pairs (6.3×1010). Therefore, it is impractical 186

to classify all these pairs as matches/non-matches reliably. We cannot expect 187

a few experts (five in our case) to manually label 63 billion pairs. A simple 188

computation of all pairwise similarity (63 billion) takes more than 8 days on 189

a heavyweight machine that can run 56 threads in parallel (28 cores in total). 190

In general, this quadratic computational cost is widely considered infeasible for 191

large data sets. Algorithmic labeling of every pair, even if possible for rela- 192

tively small datasets, is neither reliable nor efficient. Furthermore, it is hard 193

to understand the statistical properties of algorithmic labelling of pairs. Such 194

challenges, therefore, motivate us to focus on the estimation algorithm with 195

constraints mentioned in Section 1. 196

Our Contributions: We formalize unique entity estimation as approxi- 197

mating the number of connected components in a graph with sub-quadratic 198

� O(M2) computational time. We then propose a generic methodology that 199

provides an estimate in sample (with standard errors). Our proposal leverages 200

locality sensitive hashing (LSH) in a novel way for the estimation process, with 201

the required computational complexity that is less than quadratic. Our pro- 202

posed estimator is unbiased and has provably low variance compared to random 203

sampling based approaches. To the best of our knowledge this is the first use 204

of LSH for unique entity estimation in an entity resolution setting. Our unique 205

entity estimation procedure is broadly applicable to many applications, and we 206

illustrate this on three additional real, fully labelled, entity resolution data sets, 207

which include the food industry, the music industry, and an application from 208

official statistics. In the absence of ground truth information, we estimate that 209

the number of documented identifiable deaths for the Syrian conflict is 191,874, 210

with standard deviation of 1,772, reported casualties, which is very close to the 211

2014 HRDAG estimate of 191,369. This clearly demonstrates the power of our 212

efficient estimator in practice, which does not rely on any strong modeling as- 213

sumptions. Out of 63 billion possible pairs, our estimator only queries around 214

450,000 adaptively sampled pairs (' O(M)) for labels, yielding a 99.99% re- 215

duction. The labelling was done using support vector machines (SVMs) trained 216
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on a small number of hand-matched, labeled examples provided by five domain217

experts. Our work is an example of the efforts required to solve a real noisy218

challenging problem where modeling assumptions may not hold.219

2. Variants of Locality Sensitive Hashing (LSH)220

In this section, we first provide a review of LSH and min-wise hashing, which221

is crucial to our proposed methodology. We then introduce a variant of LSH —222

Densified One Permutation Hashing (DOPH), which is essential to our proposed223

algorithm for unique entity estimation in terms of scalability. We first provide224

a brief literature review of LSH.225

2.1. Review of Locality Sensitive Hashing (LSH)226

In this section, we first provide a review of locality sensitive hashing and min-227

wise hashing, which is crucial to our proposed methodology.228

Locality sensitive hashing (LSH) is a well-known probabilistic method of di-229

mension reduction, which is widely used in computer science and in database230

engineering as a way of rapidly finding approximate nearest neighbors (Gio-231

nis et al., 1999). More recently, locality sensitive hashing has been utilized has232

a form of blocking in entity resolution, where one tries to achieve scalability233

and avoid all-to-all record comparisons by placing records into “partitions” or234

“blocks” either using deterministic or probabilistic methods.235

Unlike other conventional forms of dimension reduction or blocking for en-236

tity resolution, LSH uses all the features of a record, and can be adjusted to237

ensure that blocks are manageably small, but then do not allow for further238

record linkage within blocks. For example, Vatsalan et al. (2014) introduced239

novel data structures for sorting and fast approximate nearest-neighbor look-up240

within blocks produced by LSH. Their approach gave a good balance between241

speed and recall, but their technique is very specific to nearest neighbor search.242

In other related work, Steorts et al. (2014) proposed clustering-based blocking243

schemes that are variants on LSH. The first, transitive locality sensitive hash-244

ing (TLSH) is based upon the community discovery literature such that a soft245

transitivity (or relaxed form of transitivity) can be imposed across blocks. The246

second, k-means locality sensitive hashing (KLSH) is based upon the information247

retrieval literature and clusters similar records into blocks using a vector-space248

representation and projections (KLSH had been used before in information re-249

trieval but never with entity resolution (Paulevé, Jégou and Amsaleg, 2010)).250

Steorts et al. (2014) showed that both KLSH and TLSH gave improvements251

over popular methods in the literature such as traditional blocking, canopies252

(McCallum, Nigam and Ungar, 2000), and k-nearest neighbors clustering.253

There are many variants of LSH and one popular form is min-wise hashing. All254

LSH methods are defined by a type of similarity and a type of dimension reduc-255

tion (Broder, 1997a). Recently, Shrivastava and Li (2014a) showed that min-wise256

hashing based approaches are superior to random projection based approaches257
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when the data is very sparse and feature poor. Furthermore, improvements in 258

computational speed can be obtained by using the recently proposed densifica- 259

tion scheme known as densified one permutation hashing (DOPH) (Shrivastava 260

and Li, 2014a,b). Specifically, the authors proposed an efficient substitute for 261

min-wise hashing, which only requires one permutation (or one hash function) 262

for generating many different hash values needed for indexing. In short, the 263

algorithm is linear (or constant) in the tuning parameters, making it very com- 264

putationally efficient. 265

2.2. Shingling 266

In entity resolution tasks, each record can be represented as a string of infor-
mation. For example, each record in the Syrian data set can be represented as
a short text description of the person who died in the conflict. In this paper,
we use a k-grams based shingle representation, which is the most common rep-
resentation of text data and naturally gives a set token (or k-grams). That is,
each record is treated as a string and is replaced by a “bag” (or “multi-set”)
of length-k contiguous sub-strings that it contains. Since we will use a k-gram
based approach to transform the records, our representation of each record will
also be a set, which consists of all the k-contiguous characters occurring in record
string. As an illustration, for the record BAKER, TED, we separate it into a
2-gram representation. The resulting set is the following:

BA, AK, KE, ER, RT, TE, ED.

In another example, consider Sammy, Smith, whose 2-gram set representation
is

SA, AM, MM, MY, YS, MS, SM, MI, IT, TH.

We now have two records that have been transformed into a 2-gram represen- 267

tation. Thus, for every record (string) we obtain a set ⊂ U , where the universe 268

U is the set of all possible k-contiguous characters. 269

2.3. Locality Sensitive Hashing 270

In this paper, we leverage LSH, which comes with sound mathematical for- 271

malism and guarantees. LSH is widely used in computer science and database 272

engineering as a way of rapidly finding approximate nearest neighbors (Indyk 273

and Motwani, 1998; Gionis et al., 1999). Specifically, the variant of LSH that we 274

utilize is scalable to large databases, and allows for similarity based sampling of 275

entities in less than a quadratic amount of time. 276

In LSH, a hash function is defined as y = h(x), where y is the hash code 277

and h(·) the hash function. A hash table is a data structure that is composed 278

of buckets (not to be confused with blocks), each of which is indexed by a hash 279

code. Each reference item x is placed into a bucket h(x). 280
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More precisely, LSH is a family of functions that map vectors to a discrete set,281

namely, h : RD → {1, 2, · · · ,M}, where M is in finite range. Given this family282

of functions, similar points (entities) are likely to have the same hash value283

compared to dissimilar points (entities). The notion of similarity is specified by284

comparing two vectors of points (entities), x and y. We will denote a general285

notion of similarity by SIM(x, y). In this paper, we only require a relaxed version286

LSH, and we define this below. Formally, a LSH is defined by the following287

definition below:288

Definition 1. (Locality Sensitive Hashing (LSH)) Let x1, x2, y1, y2 ∈ RD289

and suppose h is chosen uniformly from a family H. Given a similarity metric,290

SIM(x, y), H is locality sensitive if SIM(x1, x2) ≥ Sim(y2, y3) then PrH(h(x1) =291

h(x2)) ≥ PrH(h(y1) = h(y2)), where PrH is the probability over the uniform292

sampling of h.293

The above definition is sufficient condition for a family of functions to be294

LSH. While many popular LSH families satisfy the aforementioned property, we295

only require this condition for the work described herein. For a complete review296

of LSH, we refer to Rajaraman and Ullman (2012).297

2.4. Minhashing298

One of the most popular forms of LSH is minhashing (Broder, 1997b), which299

has two key properties — a type of similarity and a type of dimension reduction.300

The type of similarity used is the Jaccard similarity and the type of dimension301

reduction is known as the minwise hash, which we now define.302

Let {0, 1}D denote the set of all binary D dimensional vectors, while RD
refers to the set of all D dimensional vectors (of records). Note that records can
be represented as a binary vector (or set) representation via shingling, BoW,
or combining these two methods. More specifically, given two record sets (or
equivalently binary vectors) x, y ∈ {0, 1}D, the Jaccard similarity between x, y ∈
{0, 1}D is

J =
|x ∩ y|
|x ∪ y|

,

where | · | is the cardinality of the set.303

More specifically, the minwise hashing family applies a random permutation304

π, on the given set S, and stores only the minimum value after the permutation305

mapping, known as the minhash. Formally, the minhash is defined as hminπ (S) =306

min(π(S)), where h(·) is a hash function.307

Given two sets S1 and S2, it can be shown by an elementary probability308

argument that309

Prπ(hminπ (S1) = hminπ (S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

, (1)
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where the probability is over uniform sampling of π. It follows from Equation 1 310

that minhashing is a LSH family for the Jaccard similarity. 311

Remark: In this paper, we utilize a shingling based approach, and thus, our 312

representation of each record is likely to be very sparse. Moreover, Shrivastava 313

and Li (2014c) showed that minhashing based approaches are superior compared 314

to random projection based approaches for very sparse datasets. 315

2.4.1. Densified One Permutation Hashing (DOPH) 316

LSH has been utilized for more than two-decades, where one can use LSH to 317

reduce the computational cost of entity resolution. More specifically, the main 318

idea is to only match records which have the same hash values, known as block- 319

ing or indexing. One major issue with LSH is that the step of creating blocks 320

(hash buckets) is expensive because it requires several hash computations (Liang 321

et al., 2014; Steorts et al., 2014). However, it was recently shown that the several 322

minwise hashes of data can be computed in data reading time using the tech- 323

nique of Densified One Permutation Hashing (DOPH). Subsequent works (Shri- 324

vastava and Li, 2014a,b) improved the statistical properties of DOPH. (Wang, 325

Shrivastava and Ryu, 2017) illustated that using DOPH one can get significant 326

improvements over LSH, which leads to the fastest approximate near-neighbor 327

search algorithm. In this paper, we use the most recent variant of DOPH, which 328

is significantly faster in practice compared to minwise hashing. Since we use a 329

shingle based representation for textual data, DOPH is ideal for our proposed 330

algorithm because the cost for blocking is the same as the data reading cost, 331

which is about 100 times faster than traditional minwise hashing. Through- 332

out the rest of the paper, when we refer to minwise hashing will refer to the 333

DOPH algorithm for computing minhashes. Further details of LSH and DOPH 334

can be found in the aforementioned papers. In addition, we specify another rea- 335

son for using LSH as the only blocking mechanism which suits our purpose in 336

section 3.6.4. 337

3. Unique Entity Estimation 338

In this section, we provide notation used throughout the rest of the paper and 339

provide an illustrative example. We then propose our estimator, which is unbi- 340

ased and has provably low variance. In addition, random sampling is a special 341

case of our procedure as explained in section 3.5. Finally, we present our unique 342

entity estimation algorithm in section 3.3. 343

3.1. Notation 344

The problem of unique entity estimation can be reduced to approximating the
number of connected components in a corresponding graph. Given a data set
with size M , we denote the records as

R = {Ri|1 ≤ i ≤M, i ∈ Z}.
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Next, we define

Q(Ri, Rj) =

{
1, if Ri, Rj refer to the same entity .

0, otherwise.
.

Let us represent the data set by a graph G∗ = (E, V ), with vertices E, V. Let
vertex Vi correspond to record Ri and vertex Vj correspond to record Rj . Then
let edge Eij represent the linkage between records of Ri and Rj (or vertex Vi
and Vj). More specifically, we can represent this by the following relationship:

V = {Ri|1 ≤ i ≤M, i ∈ Z}, and E = {(Ri, Rj)|∀ 1 ≤ i, j ≤M, Q(Ri, Rj) = 1}.

3.2. Illustrative Example345

In this section, we provide an illustrative example of how six records are mapped346

to a graph G∗. Consider record 3 (John) and record 5 (Johnathan) which cor-347

respond to the same entity (John Schaech). In G∗, there is an edge E35 that348

connect these records, denoted by V3 and V5. Now consider records 2, 4, and349

6, which all refer to the same entity (Nicholas Cage). In G∗, there are edges350

E24, E26, and E46 that connect these records, denoted by V2, V4, and V6. Ob-351

serve that each connected component in G∗ is a unique entity and also a clique.352

Therefore, our task is reduced to estimating the number of connected compo-353

nents in G∗.354

Fig 1: A toy example of mapping records to a graph, where vertices represent
records and edges refer to the relation between records.

3.3. Proposed Unique Entity Estimator355

In this section, we propose our unique entity estimator and provide assumptions356

that are necessary for our estimation procedure to be practical (scalable).357
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Since we do not observe the edges of G∗ (the linkage), inferring whether 358

there is an edge between two nodes (or whether two records are linked) can be 359

costly, i.e., O(M2). Hence, one is constrained to probe a small set S ⊂ V × V 360

with |S| � O(M2) of pairs and query if they have edges. The aim is to use 361

the information about S to estimate the total number of connected components 362

accurately. More precisely, given the partial graph G′ = {V,E′}, where E′ = 363

E ∩ S, one wishes to estimate the connected components n of G∗ = {V,E}. 364

One key property of our estimation process is that we do not make any 365

modeling assumptions of how duplicate records are generated, and it is not 366

immediately clear how we can obtain unbiased estimation. For sake of simplicity, 367

we first assume the existence of an efficient (sub-quadratic) process that samples 368

a small set (near-linear size) of edges S, such that every edge in the original 369

graph G∗ has (reasonably high) probability p of being in S. Thus, set S, even 370

though small, contains p fraction of the actual edges. For sparse graphs, as in the 371

case of duplicate records, such a sampler will be far more efficient than random 372

sampling. Based on this assumption, we will first describe our estimator and 373

its properties. We then show why our assumption about existence of adaptive 374

sampler is practical by providing an efficient sampling process based on LSH 375

(Section 3). 376

Remark: It is not difficult to see that random sampling is a special case when 377

p = |S|
O(M2) which, as we show later, is a very small number for any accurate 378

estimation. 379

Our proposed estimator and corresponding algorithm obtains the set of vertex 380

pairs (or edges) S through an efficient (adaptive) sampling process and queries 381

whether there is an edge (linkage) between each pair in S. Respectively, after 382

the ground truth querying, we observe a sub-sampled graph G′, consisting of 383

vertices returned by the sampler. Let n′i be the number of connected component 384

of size i in the observed graph G′, i.e., n′1 is the number of singleton vertices, 385

n′2 is the number of isolated edges, etc. in G′. It is worth noting that every 386

connected component in G′ is a part of some clique (maybe larger) in G∗. Let 387

n∗i denote the number of connected components (clique) of size i in the original 388

(unobserved) graph G∗. 389

Observe that under the sampling process, any original connected component, 390

say C∗i (clique), will be sub-sampled and can appear as some possibly smaller 391

connected component in G′. For example, a singleton set in G∗ will remain 392

the same in G′. An isolated edge, on the other hand, can appear as an edge 393

in G′ with probability p and as two singleton vertices in G′ with probability 394

1− p. A triangle can decompose into three possibilities with probability shown 395

in figure 2. Each of these possibilities provides a linear equation connecting n∗i 396

to n′i. These equations up to cliques of size three are 397

E[n′3] = n∗3 · p2 · (3− 2p) (2)

E[n′2] = n∗2 · p+ n∗3 · (3 · (1− p)2 · p) (3)

E[n′1] = n∗1 + n∗2 · (2 · (1− p)) + n∗3 · (3 · (1− p)2). (4)
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Since we observe n′i, we can solve for the estimator of each n∗i and compute398

the number of connected components by summing up all n∗i .399

Fig 2: A general example illustrating the transformation and probabilities of
connected components from G∗ to G′.

Unfortunately, this process quickly becomes combinatorial, and in fact, is at400

least #P hard (Provan and Ball, 1983) to compute for cliques of larger sizes. A401

large clique of size k can appear as many separate connected components and402

the possibilities of smaller size components it can break into are exponential403

(Aleksandrov, 1956). Fortunately, we can safely ignore large connected compo-404

nents without significant loss in estimation for two reasons. First, in practical405

entity resolution tasks, when M is large and contains at least one string-valued406

feature, it is observed that most entities are replicated no more than three or407

four times. Second, a large clique can only induce large errors if it is broken408

into many connected components due to undersampling. According to Erdos409

and Rényi (1960), it will almost surely stay connected if p is high, which is the410

case with our sampling method.411

Assumption: As argued above, we safely assume that the cliques of sizes
equal to or larger than 4 in the original graph would retain their structures,
i.e., ∀i ≥ 4, n∗i = n′i. With this assumption, we can write down the formula for
estimating n∗1, n∗2, n∗3 by solving Equations 2–4 as,

n∗3 =
E[n′3]

p2 · (3− 2p)
, n∗2 =

E[n′2]− n∗3 · (3 · (1− p)2 · p)
p

(5)

n∗1 = E[n′1]− n∗2 · (2 · (1− p))− n∗3 · (3 · (1− p)2) (6)

It directly follows that our estimator, which we call the Locality Sensitive Hash-
ing Estimator (LSHE) for the number of connected components is given by

LSHE = n′1 + n′2 ·
2p− 1

p
+ n′3 ·

1− 6 · (1− p)2 · p
p2 · (3− 2p)

+
M∑
i=4

n′i. (7)

imsart-generic ver. 2013/03/06 file: chen17unique.tex date: May 26, 2018



Chen, Shrivastava, and Steorts/Unique Entity Estimation with Application to Syria 13

3.4. Optimality Properties of LSHE 412

We now prove two properties of our unique entity estimator, namely, that it 413

is unbiased and that is has provably lower variance than random sampling ap- 414

proaches. Here we have assumed independence of sampling. Our sampler relying 415

on LSH, described in Section 3.6, will have even better variance due to favorable 416

correlations. Please see (Spring and Shrivastava, 2017a; Luo and Shrivastava, 417

2017; Chen, Xu and Shrivastava, 2018; Luo and Shrivastava, 2018) for more 418

details. Those discussions are out of the scope of this paper. 419

Theorem 1. Assuming ∀i ≥ 4, n∗i = n′i, we have

E[LSHE] = n unbiased (8)

V[LSHE] = n∗3 ·
(p− 1)2 · (3p2 − p+ 1)

p2 · (3− 2p)
+ n∗2

(1− p)
p

(9)

The above estimator is unbiased and the variance is given by Equation 9. 420

Theorem 2 proves the variance of our estimator is monotonically decreasing 421

with p. 422

Theorem 2. V[LSHE] is monotonically decreasing when p increases in range 423

(0, 1]. 424

The proof of Theorem 2 directly follows Lemma 1, which is immediately 425

given. 426

Lemma 1. First order derivative of V[LSHE] is negative when p ∈ (0, 1]. 427

Note that when p = 1, V[LSHE] = 0 which means the observed graph G′ is 428

exactly the same as G∗. For detailed proofs of unbiasedness and Lemma ??, see 429

Appendix ??. 430

3.5. Adaptive Sampling versus Random Sampling 431

Before we describe our adaptive sampler, we briefly quantify the advantages of
an adaptive sampling over random sampling for the Syrian data set by com-
puting the differences between their variances. Let p be the probability that an
edge (correct match) is sampled. On the Syrian data set, our proposed sampler,
described in next section, empirically achieves p = 0.83, by reporting around
450,000 sampled pairs (O(M)) out of the 63 billion possibilities (O(M2)). Sub-
stituting this value of p, the corresponding variance can be calculated from
Equation 9 as

n∗3 · 0.07 + n∗2 · 0.204.

Turning to plain random sampling of edges, in order to achieve the same

sample size above leads to p as low as 4.5×105
6.3×1010 ' 6.9×10−6. With such minuscule

p, the resulting variance is

n∗3 · 6954620166 + n∗2 · 144443.
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Thus, the variance for random sampling is roughly 7× 105 times the number of432

duplicates in the data set and 1 × 1011 the number of triplets in the data set.433

In section 4, we illustrate that two other random sampling based algorithms434

of (Chazelle, Rubinfeld and Trevisan, 2005) and (Frank, 1978) also have poor435

accuracy compared to our proposed estimator. The poor performance of random436

sampling is not surprising from a theoretical perspective, and illustrates a major437

weakness empirically for the task of unique entity estimation with sparse graphs,438

where adaptive sampling is significantly advantageous.439

3.6. The Missing Ingredient: (K,L)-LSH Algorithm440

Our proposed methodology, for unique entity estimation, assumes that we have441

an efficient algorithm that adaptively samples a set of record pairs, in sub-442

quadratic time. In this section, we argue that using a variant of LSH (Section 2.1)443

we can construct such an efficient sampler.444

As already noted, we do not make any modeling assumptions on the gener-445

ation process of the duplicate records. Also, we cannot assume that there is a446

fixed similarity threshold, because in real datasets duplicates can have arbitrar-447

ily large similarity. Instead, we rely on the observation that record pairs with448

high similarity have a higher chance of being duplicate records. That is, we as-449

sume that when two entities Ri and Rj are similar in their attributes, it is more450

likely that they refer to the same entities (Christen, 2012).2 We note that this451

probabilistic observation is the weakest possible assumption, and almost always452

true for entity resolution tasks because linking records by a similarity score is453

one simple way of approaching entity resolution (Christen, 2012; Winkler, 2006;454

Fellegi and Sunter, 1969).455

The similarity between entities (records) naturally gives us a notion of adap-456

tiveness. One simple adaptive approach is to sample records pairs with probabil-457

ity proportional to their similarity. However, as a prerequisite for such sampling,458

we must compute all the pairwise similarities and associated probability values459

with every edge. Computing such a pairwise similarity score is a quadratic oper-460

ation (O(M2)) and is intractable for large datasets. Fortunately, recent work has461

shown that (Spring and Shrivastava, 2017b,a; Luo and Shrivastava, 2017; Chen,462

Xu and Shrivastava, 2018; Luo and Shrivastava, 2018) it is possible to sample463

pairs adaptively in proportion to the similarity in provably sub-quadratic time464

using LSH, which we describe in the next section.465

3.6.1. (K,L)-LSH Algorithm and Sub-quadratic Adaptive Sampling466

We leverage a very recent observation associated with the traditional (K,L)467

parameterized LSH algorithm. The (K,L) parameterized LSH algorithm is a468

popular similarity search algorithm, which given a query q, retrieves element x469

from a preprocessed data set in sub-linear time (O(KL)�M) with probability470

2The similarity metric that we use to compare sets of record strings is the Jaccard similarity.
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1− (1−J (q, x)K)L. Here, J denotes the Jaccard similarity between the query 471

and the retrieved data vector x. Our proposed method leverages this (K,L)- 472

parameterized LSH Algorithm, and we briefly describe the algorithm in this 473

section. For complete details refer to (Andoni and Indyk, 2004). 474

Before we proceed, we define hash maps and keys. We use hash maps, where 475

every integer (or key) is associated with a bucket (or a list) of records. In a 476

hash map, searching for the bucket corresponding to a key is a constant time 477

operation. Please refer to algorithms literature (Rajaraman and Ullman, 2012) 478

for details on hashing and its computational complexity. Our algorithm will 479

require several hash maps, L of them, where a record Ri is associated with 480

a unique bucket in every hash map. The key corresponding to this bucket is 481

determined by minwise hashes of the record Ri. We encourage readers to refer 482

to (Andoni and Indyk, 2004) for implementation details. 483

More precisely, let hij , i = {1, 2, ..., L} and j = {1, 2, ..., K} be K × L 484

minwise hash functions (Equation 1) with each minwise hash function formed 485

by independently choosing the underlying permutation π. Next, we construct L 486

meta-hash functions (or the keys) Hi = {hi,1, hi,2, ..., hi,K}, where each of the 487

Hi’s is formed by combining K different minwise hash functions. For this variant 488

of the algorithm, we need a total of K × L functions. With such L meta-hash 489

functions, the algorithm has two main phases, namely the data pre-processing 490

and the sampling pairs phases, which we outline below. 491

• Data Preprocessing Phase: We create L different hash maps (or hash 492

tables), where every hash values maps to a bucket of elements. For every 493

record Ri in the dataset, we insert Rj in the bucket associated with the 494

key Hi(Rj), in hash map i = {1, 2, ..., L}. To assign K-tuples Hi (meta- 495

hash) to a number in a fixed range, we use some universal random mapping 496

function to the desired address range. See (Andoni and Indyk, 2004; Wang, 497

Shrivastava and Ryu, 2017) for details. 498

• Sample Pair Reporting: For every record Rj in the dataset and from 499

each table i, we obtain all the elements in the bucket associated with key 500

Hi(Rj), where i = {1, 2, ..., L}. We then take the union of the L buckets 501

obtained from the L hash tables, and denote this (aggregated) set by A. 502

We finally, report pairs of records (Ri, Rj), where R ∈ A. 503

Theorem 3. The (K,L)-LSH Algorithm reports a pair (Ri, Rj) with probability 504

1−(1−J (Ri, Rj)
K)L, where J (Ri, Rj) is the Jaccard Similarity between record 505

pairs (Ri, Rj). 506

Proof: Since all the minwise hashes are independent due to an independent 507

sampling of permutations, the probability that both Ri and Rj belong to the 508

same bucket in any hash table i is J (Ri, Rj)
K . Note from equation 1, each meta- 509

hash agreement has probability J (Ri, Rj). Therefore, the probability that pair 510

(Ri, Rj) is missed by all the L tables is precisely (1−J (Ri, Rj)
K)L, and thus, 511

the required probability of successful retreival is the complement. 512

The probabilistic expression 1− (1−J (Ri, Rj)
K)L is a monotonic function 513

of the underlying similarity Sim(q, y) associated with the LSH. In particular, 514
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higher similarity pairs have more chance of being retrieved. Thus, LSH provides515

the required sampling that is adaptive in similarity and is sub-quadratic in516

running time.517

3.6.2. Computational Complexity518

The computational complexity for sampling with M records is O(MKL). The519

procedure requires computing KL minwise hashes for each record. This step is520

followed by adding every record to L hash tables. Finally, for each record, we ag-521

gregate L buckets to form sample pairs. The result of monotonicity and adaptiv-522

ity of the samples applies to any value of K and L. We choose O(K×L)� O(M)523

such that we are able to get samples in sub-quadratic time. We further tune K524

and L using cross-validation to limit the size of our samples. In section 5.3,525

we evaluate the effect of varying K and L in terms of the recall and reduction526

ratio. (For a review of the recall and reduction ratio, we refer to (Christen,527

2012).) We address the precision at the very end of our experimental procedure528

to ensure that the recall, reduction ratio, and precision of our proposed unique529

entity estimation procedure are all as close to 1 as possible while ensuring that530

the entire algorithm is computationally efficient. For example, on the Syrian531

data set, we can generate 450,000 samples in less than 127 sec with an adaptive532

sampling probability (recall) p as high as 0.83. (Note: the preprocessing is of533

the order of data loading cost using the (K,L)-LSH Algorithm). On the other534

hand, computing all pairwise similarities (63 billion) takes more than 8 days on535

the same machine with 28 cores capable of running 56 threads in parallel. We536

refer to (Sadosky et al., 2015) regarding specific comparisons of traditional and537

advanced blocking methods. Specifically, figures 1–3 illustrate variants of block-538

ing, which perform extremely poorly on the Syrian data set for two reasons.539

The first is that the recall and the precision are both extremely low for entity540

resolution to be practical. The second reason is that under further inspection541

the blocks sizes are too large to manage for entity resolution problems at scale.542

Hence, our focus in this paper is one the variant that we find works the best543

under standard entity resolution evaluation metrics. Next, we describe how this544

LSH sampler is related to the adaptive sampler described earlier in Section 3.3.545

3.6.3. Underlying Assumptions and Connections with p546

Recall that we can efficiently sample record pairs Ri, Rj with probability 1 −547

(1 − J(Ri, Rj)
K)L. Since we are not making any modeling assumptions, we548

cannot directly link this probability to p, the probability of sampling the right549

duplicated pair (or linked entities) as required by our estimator LSHE. In the550

absence of any knowledge, we can get the estimate of p using a small set of551

labeled linked pairs L. Specifically, we we can estimate the value of p by counting552

the fraction of matched pairs (true edges) from L reported by the sampling553

process.554
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Note that in practice there is no similarity threshold θ that guarantees that 555

two record pairs are duplicate records. That is, it is difficult in practice to know 556

a fixed θ where J (Ri, Rj) ≥ θ ensures that Ri and Rj are the same entities. 557

However, the weakest possible and reasonable assumption is that high similarity 558

pairs (textual similarity of records) should have higher chances of being duplicate 559

records than lower similarity pairs. 560

Formally, this assumption implies that there exists a monotonic function
f of similarity J (Ri, Rj) such that the probability of any Ri, Rj being a
duplicate record is given by f(J (Ri, Rj)). Since our sampling probability 1 −
(1−J (Ri, Rj)

K)L is also a monotonic function of J (Ri, Rj), we can also write

f(J (Ri, Rj)) = g(1− (1− J (Ri, Rj)
K)L),

where g is f composed with h−1 which is the inverse of h(x) = 1− (1− xK)L. 561

Unfortunately, we do not know the form of f or g. 562

Instead of deriving g (or f), which requires additional implicit assumptions
on the form of the functions, our process estimates p directly. In particular,
the estimated value of p is a data dependent mean-field approximation of g, or
rather,

p = E[g(1− (1− J (Ri, Rj)
K)L)].

Crucially, our estimation procedure does not require any modeling assumptions 563

regarding the generation process of the duplicate records, which is significant 564

for noisy data sets, where such assumptions typically break. 565

3.6.4. Why LSH? 566

Although there are several rule-based blocking methodologies, LSH is the only 567

one that is also a random adaptive sampler. In particular, consider a rule-based 568

blocking mechanism, for example on the Syrian data set, which might block on 569

the date of death feature. Such blocking could be a very reasonable strategy for 570

finding candidate pairs. Note that it is still very likely that duplicate records 571

can have different dates of death because the information could be different or 572

misrepresented. In addition, such a blocking method is deterministic, and differ- 573

ent independent runs of the blocking algorithm will report the same set of pairs. 574

Even if we find reasonable candidates, we cannot up-sample the linked records 575

to get an unbiased estimate. There will be a systematic bias in the estimates, 576

which does not have any reasonable correction. In fact, random sampling to our 577

knowledge is the only known choice in the existing literature for an unbiased 578

estimation procedure; however, as already mentioned, random uninformative 579

sampling is likely to be very inaccurate. 580

LSH, on the other hand, can also be used as a blocking mechanism (Steorts 581

et al., 2014). It is, however, more than just a blocking scheme; it is a provably 582

adaptive sampler. Due to randomness in the blocking, different runs of sampler 583

lead to different candidates, unlike deterministic blocking. We can also average 584

over multiple runs to even increase the concentration of our estimates. The 585
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adaptive sampling view of LSH has come to light very recently (Spring and586

Shrivastava, 2017b,a; Luo and Shrivastava, 2017; Chen, Xu and Shrivastava,587

2018; Luo and Shrivastava, 2018). With adaptive sampling, we get much sharper588

unbiased estimators than the random sampling approach. To our knowledge, this589

is the first study of LSH sampling for unique entity estimation.590

3.7. Putting it all Together: Scalable Unique Entity Estimation591

We now describe our scalable unique entity estimation algorithm. As mentioned592

earlier, assume that we have a data set that contains a text representation593

of the M records. Suppose that we have a reasonably sized, manually labeled594

training set T . We will denote the set of sampled pairs of records given by our595

sampling process as S. Note, each element of S is a pair. Then our scalable entity596

resolution algorithm consists of three main steps, with the total computational597

complexity O(ML + KL + |S| + |T |). In our case, we will always have |S| �598

O(M2) and KL�M (in fact, L will be a small constant), which ensures that599

the total cost is strictly sub-quadratic. The complete procedure is summarized600

in Algorithm 1.601

1. Adaptively Sample Record Pairs (O(ML)): We regard each record602

Ri as a short string and replace it by an “n-grams” based representation.603

Then one computes K × L minwise hashes of each corresponding string.604

This can be done in a computationally efficient manner using the DOPH605

algorithm, which is done in data reading time. Next, once these hashes606

are obtained, one applies the sampling algorithm described in section 3607

in order to generate a large enough sample set, which we denote by S.608

For each record, the sampling step requires exactly L hash table queries,609

which are themselves O(1) memory lookups. Therefore, the computational610

complexity of this step is O(ML+KL).611

2. Query each Sample Pairs: Given the set of sampled pairs of records S612

from Step 1, for every pair of records in S, we query whether these record613

pairs are a match or non-match. This step requires, O(|S|), queries for the614

true labels. Here, one can use manually labeled data if it exists. In the615

absence of manually labeled data, we can also use a supervised algorithm,616

such as support vector machines or random forests, that is trained on the617

manually labeled set T (Section 5).618

(a) Estimate p: Given the sampled set of record pairs S, we need to
know the value of p, the probability that any given correct pair is
sampled. To do so, we use the fraction of true pairs sampled from the
labeled training set T . The sampling probability p can be estimated
by computing the fraction of the matched pairs of training set records
Tmatch appearing in S. That is, we estimate p (unbiasedly) by

p =
|Tmatch ∩ S|
|Tmatch|

.
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Algorithm 1 LSH-Based Unique Entity Estimation Algorithm

1: Input: Records R, Labeled Set T , Sample Size m
2: Output: LSHE
3: S = LSHSampling(R) (Section 3.6.1)
4: Get Tmatch be the linked pairs (duplicate entities) in T
5: p =

|Tmatch∩S||
|Tmatch|

6: Query every pair in S for match/mismatch (get actual labels). (Graph G′)
7: n′

1, n
′
2, n

′
3...n

′
M = Traverse(G′)

8: LSHE = Equation 7 (p , n′
1, n

′
2, n

′
3...n

′
M )

Fig 3: Overview of our proposed unique entity estimation algorithm.

If T is stored in a dictionary, then this step can be done on the fly 619

while generating samples. It only costs O(T ) extra work to create 620

the dictionary. 621

(b) Count Different Connected Components in G′ (O(M + |S|)): 622

The resulting matched sampled pairs, after querying every sample for 623

actual (or inferred) labels, form the edges of G′. We now have com- 624

plete information about our sampled graph G′. We can now traverse 625

G′ and count all sizes of connected components in G′ to obtain n′1, 626

n′2, n′3 and so on. Traversing the graph has computational complexity 627

O(M + |S|) time using Breadth First Search (BFS). 628

3. Estimate the Number of Connected Components in G∗ (O(1)): 629

Given the values of p, n′1, n′2, and n′3 we use equation 7 to compute the 630

unique entity estimator LSHE. 631

4. Experiments 632

We evaluate the effectiveness of our proposed methodology on the Syrian data 633

set and three additional real data sets, where the Syrian data set is only par- 634

tially labeled, while the other three data sets are fully labeled. We first perform 635

evaluations and comparisons on the three fully labeled data sets, and then give 636

an estimate of the documented number of identifiable victims for the Syrian 637

data set. 638

• Restaurant: The Restaurant data set contains 864 restaurant records 639

collected from Fodor’s and Zagat’s restaurant guides.3 There are a total 640

of 112 duplicate records. Attribute information contains name, address, 641

city, and cuisine. 642

• CD: The CD data set that includes 9,763 CDs randomly extracted from 643

freeDB.4 There are a total of 299 duplicate records. Attribute informa- 644

3Originally provided by Sheila Tejada, downloaded from
http://www.cs.utexas.edu/users/ml/riddle/data.html.

4https://hpi.de/naumann/projects/repeatability/datasets/cd-datasets.html.
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DBname Domain Size # Matching Pairs # Attributes # Entities

Restaurants Restaurant Guide 864 112 4 752
CD Music CDs 9,763 299 106 9,508
Voter Registration Info 324,074 70,359 6 255,447
Syria Death Records 354,996 N/A 6 N/A

Table 1: We present five important features of the four data sets. Domain
reflects the variety of the data type we used in the experiments. Size is the
number of total records respectively. # Matching Pairs shows how many pair
of records point to the same entity in each data set. # Attributes represents
the dimensionality of individual record. # Entities is the number of unique
records.

tion consists of 106 total features such as artist name, title, genre, among645

others.646

• Voter: The Voter data has been scraped and collected by (Christen,647

2014) beginning in October 2011. We work with a subset of this data set648

containing 324,074 records. There are a total of 68,627 duplicate records.649

Attribute information contains personal information on voters from North650

Carolina including full name, age, gender, race, ethnicity, address, zip code,651

birth place, and phone number.652

• Syria: The Syria data set comprises data from the Syrian conflict, which653

covers the same time period, namely, March 2011 – April 2014. This data654

set is not publicly available and was provided by HRDAG. The respective655

data sets come from the Violation Documentation Centre (VDC), Syrian656

Center for Statistics and Research (CSR-SY), Syrian Network for Human657

Rights (SNHR), and Syria Shuhada website (SS). Each database lists a658

different number of recorded victims killed in the Syrian conflict, along659

with available identifying information including full Arabic name, date of660

death, death location, and gender.5661

The above datasets cover a wide spectrum of different varieties observed in662

practice. For each data set, we report summary information in Table 1.663

5These databases include documented identifiable victims and not those who are missing
in the conflict. Hence, any estimate reported only refers to the data at hand.
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�

Id First Name Last Name Gender Date of Death Governorate Location

1 ���� ���� F 2011-10-23 Homs ���� ����������� �������
2 ���� ���� F 2011-10-23 Homs ��������
3 ���� F 2011-10-25 Homs ��� �������

������-��� �. ����\��\�� ���: ����������������������������� ��.�� ���: � ���� ����� ����

Fig 4: We show several death records in Syrian dataset from VDC, which allows
for public access to some of the data. All of the three records belong to the same
entity, labeled by human experts. Record 1 and 2 are similar in all attributes
while Record 1 and 3 are very different. Due to the variation in the data, records
that are very similar are likely to be linked as the same entity, however, it is
more difficult to make decisions when records show differences, such as record
1 and 3. This illustrates some of the limitations from deterministic blocking
methods discussed in Section 3.6.4.

4.1. Evaluation Settings 664

In this section, we outline our evaluation settings. We denote Algorithm 1 as the 665

LSH Estimator (LSHE). We make comparisons to the non-adaptive variant of 666

our estimator (PRSE), where we use plain random sampling (instead of adap- 667

tive sampling). This baseline uses the same procedure as our proposed LSHE, 668

except that the sampling is done uniformly. A comparison with PRSE quantifies 669

the advantages of the proposed adaptive sampling over random sampling. In ad- 670

dition, we implemented the two other known sampling methods, for connected 671

component estimation, proposed in (Frank, 1978) and (Chazelle, Rubinfeld and 672

Trevisan, 2005). For convenience, we denote them as Random Sub-Graph based 673

Estimator (RSGE), and BFS on Random Vertex based Estimator (BFSE) re- 674

spectively. Since the algorithms are based on sampling (adaptive or random), to 675

ensure fairness, we fix a budget m as the number of pairs of vertices considered 676

by the algorithm. Note that any query for an edge is a part of the budget. If 677

the fixed budget is exhausted, then we stop the sampling process and use the 678

corresponding estimate, using all the information available. 679

We briefly describe the implementation details of the four considered estima- 680

tors below: 681

1. LSHE: In our proposed algorithm, we use the (K,L) parameterized LSH 682

algorithm to generate samples of record pairs using Algorithm 3, where 683

recall K and L control the resulting sample size (section 5.3). Given K,L 684

as an input to Algorithm 1, we use the sample size as the value of the 685

fixed budget m. Table 2 gives different sample budget sizes (with the 686

corresponding K and L) and corresponding values of p for selected samples 687

in three real data sets. 688

2. PRSE: For a fair comparison, in this algorithm, we randomly sample 689

the same number of record pairs used by LSHE. We then perform the 690

same estimation process as LSHE but instead use p =
2m

M(M − 1)
, which 691

corresponds to the random sampling probability to get the same number 692
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of samples, which is m.693

3. RSGE (Frank, 1978): This algorithm requires performing breadth first694

search (BFS) on each randomly selected vertices. BFS requires knowing695

all edges (neighbors) of a node for the next step, which requires M − 1696

edge queries. To ensure the fixed budget m, we end the traversal when the697

number of distinct edge queries reaches the fixed budget m.698

4. BFSE (Chazelle, Rubinfeld and Trevisan, 2005): This algorithm699

samples a subgraph and observes it completely. This requires labeling all700

the pairs of records in the sampled sub-graph. To ensure same budget m,701

the sampled sub-graph has approximately
√

2m vertices.702

Remark: To the best of our knowledge there have been no experimental703

evaluations of the two algorithms of (Frank, 1978) and (Chazelle, Rubinfeld704

and Trevisan, 2005) in the literature. Hence, our results could be of independent705

interest in themselves.706

We compute the relative error (RE), calculated as

RE =
|LSHE− n|

n
,

for each of the estimators, for different values of the budget m. We plot the RE707

for each of the estimators, over a range of values of m, summarizing the results708

in figure 5.709

All the estimators require querying pairs of records compared to labeled710

ground truth data for whether they are a match or a non-match. As already711

mentioned, in the absence of full labeled ground truth data, we can use a super-712

vised classifiers such as SVMs as a proxy, assuming at least some small amount713

of labeled data exists. By training an SVM, we can use this as a proxy for labeled714

data as well. We use such a proxy in the Syrian data set because we are not able715

to query every pair of records to determine whether they are true duplicates or716

not.717

We start with the three data sets where fully labelled ground truth data718

exists. For LSHE, we compute the estimation accuracy using both the supervised719

SVM (Section 5) as well as using the fully labelled ground truth data. The720

difference in these two numbers quantifies the loss in estimation accuracy due721

to the use of the proxy SVM prediction instead of using ground truth labeled722

data. In our use of SVMs, we take less than 0.01% of the total number of the723

possible record pairs as the training set.724
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Fig 5: The dashed lines show the RE of the four estimators on the three real
data sets, where the y-axis is on the log-scale. Observe that LSHE outperforms
all other three estimators in one to two orders of magnitude. The standard
deviation of the RE for LSHE is also shown in the plots with the red error
bars, which is with respect to randomization of hash functions. In particular,
the PRSE performs unreliable estimation on the CD and Voter data sets. The
dashed and solid black lines represent RE of LSHE using ground truth labels
and a SVM classifier (y-axis is on the log scale). We discuss the LSHE + SVM
estimator in section 5 (solid black line).

4.2. Evaluation Results 725

In this section, we summarize our results regarding the aforementioned evalua- 726

tion metrics by varying the sample size m on the three real data sets (see figure 727

5).6 We notice that for the CD and Voter data sets, we cannot obtain any reliable 728

estimate (for any sample size) using PRSE. Recall that plain random sampling 729

almost always samples pairs of records that correspond to non-matches. Thus, it 730

is not surprising that this method is unreliable because sampling random pairs 731

is unlikely to result in a duplicate pair for entity resolution tasks. Even with 732

repeated trials, there are no edges in the specified sampled pairs of records, 733

leading to an undefined value of p. This phenomenon is a common problem in 734

random sampling estimators over sparse graphs. Almost all the sampled nodes 735

are singletons. Subsampling a small sub-graph leads to a graph with most sin- 736

gleton nodes, which leads to a poor accuracy of BFSE. Thus, it is expected that 737

random sampling will perform poorly. Unfortunately, there is no other baseline 738

for unbiased estimation of the number of unique entities. 739

From figure 5 observe that the RE for proposed estimator LSHE is approx- 740

imately one to two orders of magnitude lower than the other considered meth- 741

ods, where the y-axis is on the log-scale. Undoubtedly, our proposed estimator 742

LSHE consistently leads to significantly lower RE (lower error rates) than the 743

other three estimators. This is not surprising from the analysis shown in sec- 744

tion 3.5. The variance of random sampling based methodologies will be signifi- 745

cantly higher. 746

6For using the fasthash package for unique entity estimation, please see our reproducible
code with a tutorial that corresponds with our paper.
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Taking a closer look at LSHE, we notice that we are able to efficiently generate747

samples with very high values of p (see Table 2). In addition, we can clearly see748

that LSHE achieves high accuracy with very few samples. For example, for the749

CD data set, with a sample size less than 0.05% of the total possible pairs of750

records of the entire data set, LSHE achieves 0.0006 RE. Similarly, for the Voter751

data set, with a sample size less than 0.012% of the total possible pairs of records752

of the entire data set, LSHE achieves 0.003 RE.753

Also, note the small values of K and L parameters required to achieve the754

corresponding sample size. K and L affect the running time, and small val-755

ues KL � O(M2) indicate significant computational savings as argued in sec-756

tion 3.6.2757

As mentioned earlier, we also evaluate the effect of using SVM prediction as758

a proxy for actual labels with our LSHE. The dotted plot shows those results.759

We remark on the results for LSHE + SVM in section 5.760

Restaurant CD Voter

Size 1.0 2.5 5.0 10 0.005 0.01 0.02 0.04 0.002 0.006 0.009 0.013
p 0.42 0.54 0.65 0.82 0.72 0.74 0.82 0.92 0.62 0.72 0.76 0.82
K 1 1 1 1 1 1 1 1 4 4 4 4
L 4 8 12 20 5 6 8 14 25 32 35 40

Table 2: We illustrate part of the sample sizes (in % in TOTAL) for different
sets of samples generated by Min-Wise Hashing and their corresponding p in all
three data sets.

5. Documented Identifiable Deaths in the Syrian Conflict761

In this section, we describe how we estimate the number of documented identi-762

fiable deaths for the Syrian data set. As noted before, we do not have ground763

truth labels for all record pairs, but the data set was partially labeled with764

40,000 record pairs (out of 63 billion). We propose an alternative (automatic)765

method of labeling the sample pairs, which is also needed by our proposed esti-766

mation algorithm. More specifically, using the partially labeled pairs, we train767

an SVM. In fact, other supervised methods could be considered here, such as768

random forests, Bayesian Adaptive Regression Trees (BART), among others,769

however, given that SVMs perform very well, we omit such comparisons as we770

expect the results to be similar if not worse.771

To train the SVM, we take every record pair and generate k-grams repre-772

sentation for each record. Then we spilt the partially labeled data into training773

and testing sets, respectively. Each training and testing set contains a pair of774

records xk = [Ri, Rj ]. In addition, we can use a binary label indicating whether775

the record pair is a match or non-match. That is, we can write the data as776

{xk = [Ri, Rj ], yk} as the set difference of the k-grams of the strings of pairs of777

records Ri and Rj , respectively. Observe that yk = 1 if the Ri and Rj is labelled778
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as match and yk = −1 otherwise. Next, we tune the SVM hyper-parameters us- 779

ing 5-fold cross-validation, and we find the accuracy of SVM on the testing set 780

was 99.9%. With a precision as high a 0.99, we can reliably query an SVM and 781

now treat this as an expert label. 782

To understand the effect of using SVM prediction as a proxy to label queries 783

in our proposed unique entity estimation algorithm, we return to observing 784

the behavior in figure 5. We treat the LSHE estimator on the other three real 785

datasets as our baselineand compare to LHSE with the SVM component, where 786

the SVM prediction replaces the querying process (LSHE +SVM). Observe in 787

figure 5, that the plot for LSH (solid black line) and LSH+SVM (dotted black 788

line) overlap indicating a negligible loss in performance. This overlap is expected 789

given the high accuracy (high precision) of the SVM classifier. 790

5.1. Running Time 791

We briefly highlight the speed of the sampling process since it could be used 792

for on the fly or online unique entity estimation. The total running time for 793

producing 450,000 sampled pairs (out of a possible 63 billion) used for the 794

LSH sampler (Section 3.6.1) with K = 15 and L = 10 is 127 seconds. The 795

preprocessing cost is included in the 127 seconds. The preprocessing is of the 796

order of data loading cost using DOPH. (For further details on the benchmarking 797

performance of DOPH compared with other LSH methods, please see (Wang, 798

Shrivastava and Ryu, 2017)). On the other hand, it will take approximately take 799

8 days to compute all pairwise similarities across the 354,996 Syrian records. 800

Computing the pairwise similarities is just the first step for any known adaptive 801

sampling over pairs based on similarity assuming that we do not use the LSH 802

sampler. (Note: there are other ways of blocking (Christen, 2012; Sadosky et al., 803

2015), however as mentioned in Section 3.6.4 they are mostly deterministic (or 804

rule-based) and do not provide an estimate of the unique entities. 805

5.2. Unique Number of Documented Identifiable Victims 806

In the Syrian dataset, with 354,996 records and possibly 63 billion (6.3× 1010) 807

pairs, our motivating goal was to estimate the unique number of documented 808

identifiable victims. Specifically, in our final estimate, we use 452,728 sampled 809

pairs that are given by LSHE+SVM (K = 15, L = 10) which has approximately 810

p = 0.83 based on the subset of labeled pairs. The sample size was chosen to 811

balance the computational runtime and the value of p. Specifically, one wants 812

high values of p (for a resulting low variance of our estimate) and, to balance 813

running time, we limit the sample size to be around the total number of records 814

O(M), to ensure a near linear time algorithm. (Such settings are determined 815

by the application, but as we have demonstrated they work for a variety of real 816

entity resolution data sets). We chose the SVM as our classifier to label the 817

matches and non-matches. The final unique number of documented identifiable 818

victims in the Syrian data set was estimated to be 191,874±1772, very close to 819
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the 191,369 documented identifiable deaths reported by HRDAG 2014, where820

their process is described in Appendix ??.821

5.3. Effects of L, K, on sample size and p822

In this section, we discuss the sensitivity of our proposed method as we vary823

the choice of L, K, the sample size M , and p.824

We want both KL � M as well as the number of samples to be � M2, for825

the process to be truly sub-quadratic. For accuracy, we want high values of p,826

because the variance is monotonic in p, which is also the recall of true labeled827

pairs. Thus, there is a natural trade-off. If we sample more, we get high p but828

more computations.829

K and L are the basic parameters of our sampler (Section 3.6.1), which830

provide a tradeoff between the computationally complexity and accuracy. A831

large value of K makes the buckets sparse exponentially), and thus, fewer pairs832

of records are sampled from each table. A large value of L increases the repetition833

of hash tables (linearly), which increases the sample size. As already argued, the834

computational cost is O(MKL).835

To understand the behavior of K, L, p, and the computational cost, we836

perform a set of experiments on the Syrian dataset. We use n-gram of 2—5, we837

vary L from 5–100 by steps of 5 and K takes values 15,18,20,23,25,28,30,32,35.838

For all these combinations, we then plot the recall (also the value of p) and the839

reduction ratio (RR), which is the percentage of computational savings. A 99%840

reduction ratio means that the original space has been reduced to only having to841

look at a only 1% of total sampled pairs. Figure 6 shows the tradeoffs between842

reduction ratio and recall (or value of p). Every dot in the figure is one whole843

experiment.844

Regardless of the n-gram variation from 2–5, the recall and reduction ratio845

(RR) are close to 1 as illustrated in figure 6. We see that an n-gram of 3 overall846

is most stable in having a recall and RR close to 0.99. We observe that K = 15847

and L = 10 gives a high recall of around 83% with less than half a million pairs848

(out of 63 billion possible) to evaluate (RR ≥ 0.99999).849

6. Discussion850

Motivated by three real entity resolution tasks and the ongoing Syrian conflict,851

we have proposed a general, scalable algorithm for unique entity estimation.852

Our proposed method is an adaptive LSH on the edges of a graph, which in853

turn estimates the connected components in sub-quadratic time. Our estimator854

is unbiased and has provably low variance in contrast to other such estimators855

for unique entity estimation in the literature. In experimental results, it outper-856

forms other estimators in the literature on three real entity resolution data sets.857

Moreover, we have estimated the number of documented identifiable deaths to858

be 191,874±1772, which very closely matches the 2014 HRDAG estimate, com-859

pleted by hand-matching. To our knowledge, we have the first estimate for the860
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Fig 6: For shingles 2–5, we plot the RR versus the recall. Overall, we see the
best behavior for a shingle of 3, where the RR and recall can be reached at 0.98
and 1, respectively. We allow L and K to vary on a grid here. L varies from
5–100 by steps of 5; and K takes values 15, 18, 20, 23, 25, 28, 30, 32, and 35.
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number of documented identifiable deaths with a standard error associated with861

such an estimate. Our methods are scalable, potentially bringing impact to the862

human rights community, where such estimates could be updated in near real863

time. It could lead to further impact in public policy and transitional justice in864

Syria and other areas of conflict globally.865
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Supplementary Material878

Supplementary Article: Supplementary Material for “Unique Entity879

Estimation with Application to the Syrian Conflict”880

(doi: COMPLETED BY THE TYPESETTER; .pdf). This supplement consists881

of two parts. It offers more details about: (A) the Syrian data set and (B) our882

unique entity estimation proofs. in (A), we give details regarding the Syrian883

data set and the training data that is used. in (B), we give detailed proofs884

that our proposed estimator that is unbiased and has has provable low variance885

compared to random sampling. Refer to Chen, Shrivastava and Steorts (2018)886

for details.887
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