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Block graphons (also called stochastic block models) are an important and widely studied class of models
for random networks. We provide a lower bound on the accuracy of estimators for block graphons with
a large number of blocks. We show that, given only the number & of blocks and an upper bound p on

2
the values (connection probabilities) of the graphon, every estimator incurs error §2 (min (p, vV %"2—))

in the 8, metric with constant probability for at least some graphons. In particular, our bound rules out
any non-trivial estimation (that is, with &, error substantially less than p) when k > n.,/p. Combined
with previous upper and lower bounds, our results characterize, up to logarithmic terms, the accuracy of
graphon estimation in the §, metric. A similar lower bound to ours was obtained independently by Klopp
etal
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1. Introduction

Networks and graphs arise as natural modelling tools in many areas of science. In many settings,
particularly in social networks, networks display some type of community structure. In these settings,
one may consider the nodes of the graph as belonging to one of k communities, and two nodes are
connected with a probability that depends on the communities they belong to. This type of structure is
captured in the k-block graphon model, also known as stochastic block models. The more communities
we allow in the model (or ‘types’ of nodes we consider), the richer the model becomes and the better we
can hope to describe the real world. One can think of a general graphon model as an oo-block graphon,
where each node is given a label in [0, 1] rather than {1, .. .,k}.

Given an observed network, graphon estimation is the problem of recovering the graphon model from
which the graph was drawn. In this article, we are concerned with the fundamental limits of graphon
estimation for block graphons. That is, given an n-node network that was generated from a k-block
graphon, how accurately can you recover the graphon? We consider the ‘non-parametric’ setting, where

*A preliminary version of this work appears as ArXiv report arXiv:1604.01871 [math.ST]. This work was done while the
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170 A. MCMILLAN AND A. SMITH

k may depend on n. Our lower bounds apply even to estimation algorithms that know the true number
of blocks k, though this quantity typically needs to be estimated.

In many real-world networks, the average degree of the network is small compared with the number
of nodes in the network. Graphons whose expected average degree is linear in n are called dense, while
graphons whose expected average degree is sublinear in n are referred to as sparse. In this work, we
prove a new lower bound for graphon estimation for sparse networks. In particular, our results rule
out non-trivial estimation for very sparse networks (roughly, where p = O(k*/n?)). An estimator is
non-trivial if its expected error is significantly better than an estimator that ignores the input and always
outputs the same model. It follows from recent work [1-3] that non-trivial estimation is impossible
when p = O(1/n). Ours is the first lower bound that rules out non-trivial graphon estimation for large
k. Previous work by Klopp et al. [4] provides other lower bounds on graphon estimation that are tight in
several regimes. In recent work [5] that is concurrent to ours, the same authors provide a similar bound
to the one presented here.

Block graphon models were introduced by Hoff ef al. [6] under the name latent position graphs.
Graphons play an important role in the theory of graph limits (see [7] for a survey) and the connection
between the graph model, and convergent graph sequences has been studied in both the dense and
the sparse settings [8—11]. Estimation for stochastic block models with a fixed number of blocks was
introduced by Bickel and Chen [12], while the first estimation of the general model was proposed by
Bickel et al. [13]. Since then, many graphon estimation methods, with an array of assumptions on the
graphon, have been proposed [14-24]. Gao et al. [19] provide the best known upper bounds in the
dense setting, while Wolfe and Olhede [23], Borgs et al. [25] and Klopp ef al. [4] give upper bounds for
the sparse case.

1.1 Graphons

DErFINITION 1 (Bounded graphons and W-random graphs) A (bounded) graphon W is a symmetric,
measurable function W : [0, 1]> — [0, 1]. Here, symmetric means that W(x,y) = W(y,x) for all
(x,y) € [0,1]%

For any integer n, a graphon W defines a distribution on graphs on n vertices as follows: Firstly,
select n labels £,,.. ., £, uniformly and independently from [0, 1] and form an n x n matrix H, where
H; = W(¢;,£;). We obtain an unlabelled, undirected graph G by connecting the ith and jth nodes with
probability H;; independently for each (i, j). The resulting random variable is called a W-random graph
and denoted G, (W).

For p = 0, we say a graphon is p-bounded if W takes values in [0, p] (that is, | W], < p).

We denote the set of graphs with n nodes by G,, the set of graphons by JV and the set of p-bounded
graphons by W,. If W is p-bounded, then the expected number of edges in G,(W) is at most p@) =
O(pn?). In the case that p depends on n and lim,,_.», o — 0, we obtain a sparse graphon.

We consider the estimation problem: given parameters n and p, as well as a graph G ~ G,(W)
generated from an unknown p-bounded graphon W, how well can we estimate W?

A natural goal is to design estimators that produce a graphon W that is close to W in a metric such as
L,. This is not possible, because there are many graphons that are far apart in L,, but that generate the same
probability distribution on graphs. If there exists a measure-preserving map ¢ : [0, 1] — [0, 1], such
that W(¢ (x), ¢ (y)) = W(x,y) for all x,y € [0, 1], then G,(W) and G,(W’) are identically distributed.
The converse is trueAif we instead only require W(¢(x), ¢ (¥)) = W’(x,y) almost everywhere. Thus,
we wish to say that W approaches the class of graphons that generate G,(W). To this end, we use the
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WHEN IS NON-TRIVIAL ESTIMATION POSSIBLE FOR GRAPHONS AND STOCHASTIC BLOCK MODELS? 171

following metric on the set of graphons,

BW.W)= if [wy —w|,. (1.1
measure-preserving
where Wy (x,y) = W(¢(x),¢(y)) and ¢ ranges over all measurable, measure-preserving maps. Two
graphons W and W’ generate the same probability distribution on the set of graphs if and only if
8,(W, W") = 0 (see Lovész [7], for example).
Existing upper bounds for graphon estimation are based on algorithms that produce graphons of a
particular form, namely block graphons, also called sfochastic block models (even when it is not known
that the true graphon is a block graphon).

DEFINITION 2 (k-block graphon (stochastic block models)) For k € N, a graphon is a k-block graphon
if there exists a partition of [0, 1] into k measurable sets I, . .., I;, such that W is constant on [; x ; for
alliandj.

We can associate a graphon of this form to every square matrix. Given a k x k symmetric matrix M,
let W[M] denote the k-block graphon with blocks I; = (2, 1] that takes the value M;; on I; x I;.

k Tk

1.2 Main result

We are concerned with the problem of estimating a graphon, W, given a graph sampled from G,(W).
A graphon estimator is a function W : G, — W that takes as input an n node graph, that is generated
according to W, and attempts to output a graphon that is close to W. The main contribution of this article
is the development of the lower bound

. - ) pk?
f E [6(W(G),W 2 —1 1.2
1% S&PGNG"(W)[ 2W(G), W)] = (mlﬂ (,0, pes ) (1.2)

Combined with previous work, we can give the following lower bound on the error of graphon estimators.

THEOREM 3 For any positive integer 2 <k <nand0 < p <1,

infsup [5 (W(G) W)] > @2 [ min ﬁth—kz (1.3)
W WP GG (W) 2 s - 101 10 n ng * *

where inf ; is the infimum over all estimators W : G, — G and supy, is the supremum over all k-block,
p-bounded graphons. If pn is non-decreasing and there exists a constant ¢ > 0, such that pn > c, then

- . 4k pk? P
infsup E [SZ(W{G), W)] > Q (mm (p, p‘/;—l— Vot ‘/;))

Note that £ and p may depend on n. That is, the theorem holds if we consider sequences p, and
k,. Our result improves on previously known results when p = O ( (f)m)—that is, when the graphs
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172 A. MCMILLAN AND A. SMITH

produced by the graphon are sparse. The upper bound

) N . k pk? plogk
infsup E [Sz(W(G), W)] <o (mm (p, p‘7/;—|— Vo=t ) (14)

by Klopp ef al. [4] implies that our lower bound is almost tight. In particular, if k is constant and p is
within the designated range then the lower bound in Theorem 3 is tight.

When p = O (ﬁ—;), Theorem 3 implies that the error is £2(p), which is the error achieved by the

trivial estimator W = 0. That is, in the sparse setting, the trivial estimator achieves the optimal error.
To the authors” knowledge, this is the first result that completely rules out non-trivial estimation in the
case where K is large. Recent concurrent work ([5]) provides similar bounds.

The bound
. - 4
lgf sup Gmg(w][az('w’ W)l = 2 (p‘/_) (1.5)

is due to previous work of Klopp ef al. [4] and the bound

. . . )
f E [5(W,W Q L 1.6
1{; S:-IVIJGMG"(W)[Z( W) = (mm (,0,\/:)) (1.6)

for constant k follows from the results of Mossel ef al. [1] and Banerjee [26]. We give details on how to
derive (1.6) from their results in the Appendix.

= | =

1.3 Techniques: combinatorial lower bounds for &,

Our proof of the main theorem will involve Fano’s lemma. As such, during the course of the proof, we
will need to lower bound the packing number, with respect to §,, of a large set of k-block graphons.
While easily upper bounded, little is known about lower bounds on §,. To the authors’ knowledge, this
work gives the first lower bound for the packing number of W, with respect to 8,. We will also give a
combinatorial lower bound for the §, metric that is easier to handle than the metric itself.

To understand our technical contributions, it helps to first understand a problem related to graphon
estimation, namely that of estimating the matrix of probabilities H. Existing algorithms for graphon
estimation are generally analysed in two phases: firstly, one shows that the estimator W is close to
the matrix H (in an appropriate version of the §, metric) and then uses (high probability) bounds on
8,(W, W[H]) to conclude that W is close to W. Klopp et al. [4] show tight upper and lower bounds on
estimation of H. One can think of our lower bound as showing that the lower bounds on estimation of
H can be transferred to the problem of estimating W.

The main technical difficulty lies in showing that a given pair of matrices A, B lead to graphons that
are far apart in the §, metric. Even if A, B are far apart in, say, £,, they may lead to graphons that are
close in §,. For consistency with the graphon formalism, we normalize the £, metric on k x k matrices,
so that it agrees with the L, metric on the corresponding graphons. For a k x k matrix A,

1 172
1Al = (5 22 43) " = IWIAIL. (1.7)

ijelk]
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WHEN IS NON-TRIVIAL ESTIMATION POSSIBLE FOR GRAPHONS AND STOCHASTIC BLOCK MODELS? 173
As an example of the discrepancy between the £, and 8, metrics, consider the matrices
1 0
A=10 1
1 0

=

1 10

and B={|1 1 0

0 01

The matrices A and B have positive distance in the £, metric, |[A — B, = %, but §,(W[A], W[B]) = 0.

One can get an upper bound on §,(W[A], W[B]) by restricting attention in the definition of §, to

functions ¢ that permute the blocks ;. This leads to the following metric on k£ x k matrices, which
minimizes over permutations of the rows and columns of one of the matrices:

def

8,(A,B) = min [|A, — B||,, (1.8)
TFESE

where A, is the matrix with entries (A, ); = As()0()- This metric arises in other work (e.g. [7]), and it
is well known that

8,(WIAL W[B)) < &,(4, B). (1.9)

To prove lower bounds, we consider a new metric on matrices, in which we allow the rows and
columns to be permuted separately. Specifically, let

5A.B)E min |A,.— B, (1.10)

o, TESE

where A, ; is the k x k matrix with entries (A, ;) = Ay ()-
LeEmMA 1 (Lower bound for §,) For every two k x k matrices A, B,
§z(A,B) < 8,(WIA], W[B]). (L.11)

Because 32 is defined ‘combinatorially’ (that is, it involves minimization over a discrete set of size

about 2%™"¥ instead of over all measure-preserving injections), it is fairly easy to lower bound 32 (A, B)
for random matrices A, B using the union bound.

In particular, it allows us to give bounds on the packing number of W, with respect to the 8, metric.
If (£2, d) is ametric space, € > Oand T C §2, then we define the e-packing number of T to be the largest
number of disjoint balls of radius e that can fit in 7', denoted by M (e, T, d). The following proposition
will be proved after the proof of Theorem 3.

ProposITION 1 There exists C > 0 such that the Cp-packing number of W,, equipped with §,, is 22 ),
that is M(Cp, W,, 8,) = 2942,

Finally, we note that these techniques extend directly to the §, metric, for p € [1, co]. That is, we

may define &, c‘:‘p and c‘:‘p analogously to the definitions above and obtain the bounds

§F(A, B) < §,(WI[A], W[B]) < c‘;‘p(A,B), (1.12)

along with similar lower bounds on the packing number.
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174 A. MCMILLAN AND A. SMITH

1.4 Related work

Work on graphon estimation falls broadly into two categories: estimating the matrix H and estimating
the graphon W. When estimating H, the aim is to produce a matrix that is close in the £, metric to the
true matrix of probabilities H that was used to generate the graph G. When estimating the graphon, our
aim is to minimize the §, distance between the estimate and the true underlying graphon W that was
used to generate G.

Gao ef al. [19] studied the problem of estimating the matrix of probabilities H, given an instance
chosen from W when p = 1. They proved the following minimax rate for this problem when W is a
k-block graphon:

k? logk
n? n’

1
infsup E [— (1.13)

M@G) - H" ] <
5t H G~Ga(H) | n? 2
where the infinimum is over all estimators M from G, to the set of symmetric n x n matrices, the
supremum is over all probability matrices H generated from k-block graphons. Klopp ef al. [4] extended
this result to the sparse case, proving that forallk <nand0 < p <1,

R 2
@G) —H||2] >0 (mjn ( p (i—z + %)p)) (1.14)

where the supremum is over all probability matrices H generated from k-block, p-bounded graphons.

Klopp et al. [4, Corollary 3] also studied the problem of estimating the graphon W. They proved
that equation (1.4) holds for any k-block, p-bounded graphon, W, with £ < n. They also exhibited the
first lower bound (known to us) for graphon estimation using the §, metric. They proved that equation
(1.5) holds for p > 0 and k < n.

The related problems of distinguishing a graphon with £ > 1 from an Erdos—Rényi model with the
same average degree (called the distinguishability problem) and reconstructing the communities of a
given network (called the reconstruction problem) have also been widely studied. This problem is closely
related to the problem of estimating H. Recent work by Mossel ef al. [1] and Neeman and Netrapalli [3]
establish conditions under which a k-block graphon is mutually contiguous to the Erdos—Rényi model
with the same average degree. Contiguity essentially implies that no test could ever definitely determine
which of the two graphons a given sample came from. There is a large body of work on algorithmic and
statistical problems in this area, and we have only cited work that is directly relevant here.

infsup E I:i

¥ g G~GyH) | n?

2. Lower bound for the §, metric

As mentioned earlier, the main technical contribution of this article is lower bounding the 8, metric by
the more combinatorial 8, metric. In this section, we will prove the inequality given in Lemma 1.

PROPOSITION 2 Let W, W’ be k-block graphons with blocks I; = [=*,£) and 7 : [0,1] — [0,1] be a

k *k
measure-preserving map. Then there exists a probability distribution P’ on S, such that

Iw. —wl; = E, [IW.. -] @.1)

o, r~F

where the expectation is taken over o, T selected independently according to PP.
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Proof. Leta; = % and p; = p(l; Nr! (I;)). Now, consider a k x k matrix P with P;; = kp;;. Noting that

> py =) =1/kand Y. p; = p(r~"(I))) = 1/k, we can see that P is doubly stochastic, that is,

the rows and columns of P sum to 1. Berkhoff’s theorem states that any doubly stochastic matrix can be
written as a convex combination of permutation matrices. Therefore, we have a probability distribution
Pon S suchthat P =3}, s P(o)o and ), s, P(0) = 1and

P () =j) =) (P()|o@) =j} = Py = kp;. 22

Taking expectations over o, T selected independently from P,
1
E [II Woe =W ||§] =) _POP@) Y =W, a:) — W@ )
a.T i

1
= Z EP(O’(I) = EJ)IP(‘{ (}) :j?)(w(al_, a}) _ W’(af’,ajf))z
L
= Z PPy (W(ai,a;) — W’(a;;,aj,))z
L

= [W. —w'[.
O

Proof of Lemma 1. Proposition 2 implies that for all measure-preserving maps = : [0,1] — [0, 1] and
matrices A and B we have

IWIAL, — WIB]I, > inf [WIAl,. —WIBI|,= inf |4,.—B|,=5@4B). (23)

Since this is true for any =, we have §,(W[A], W[B]) > 52 (A, B). O

3. Proof of main theorem

To prove the main theorem, we will use Fano’s lemma to find a constant that lower bounds the probability
that the estimation exceeds min | p, \/“:g , which then implies the appropriate lower bound on the
expected §; error. To that end, we aim to find a large set, T, of k-block graphons whose Kullback-Leibler
(KL) diameter and e-packing number with respect to §, with € = min (p, ‘/“:g ) can be bounded. Our

proof is inspired by that of Gao ef al. [19].

Suppose p, g are probability distributions on the same space. Then the (KL) divergence of p and g
is defined by D(p|lq) = [ (log -:-E)dp. For a collection T of probability distributions, the KL diameter
is defined by

de(T) = sup D(pllq). @.1)

pqeT
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176 A. MCMILLAN AND A. SMITH

The following version of Fano’s lemma is found in [27]. Recall that log M (e, T, d) is the size of the
largest e-packing of T (with distance d).

LeEMMA 2 (Fano’s inequality) Let (§2, d) be a metric space and {IP, |6 < £2} be a collection of probability
measures. For any totally bounded T C £2 and € > O,

A 2 di (P 1
inf sup P, (dQ(B(X),B) > i) >1— &, (3.2)
6 se 4 log M(e,T,d)

where the infimum is over all estimators and Py = {P; | 0@ € T}.

The following lemma gives us a way to easily upper bound the KL divergence between the
distributions induced by two different graphons.

LemMA 3 For any graphons 3 < W, W’ < 3, we have
D(G,(W)[|G,(W")) < 8n* |W — W' (3.3)

Proof. Let T be a variable denoting the choice of labels, so

P, (G) = f Pr(&)Pg,w)(G|T = £) de. 34)

£e[0,117

Now,

, PG (W}(G))
DGWING(W)) = ) Paum(G) In | 5=———
(G.(W) |G, (W) (;;ﬂ anon (G) In (Pc,,(wf)(G)

<> f Pr(£)Pg,w)(G|T = £)In (
£e[0,1]"

GelGp

Ps,om(G|IT = ¢) ) e
Ps,w (G|T = £)

= Pr(OODPg,w)(IT = O) [Py (1T = £) de,

£€[0,117

where the inequality follows from the log-integral inequality [28, Theorem 30.12.4]. Now, the probability
density function of T is the constant function 1, so it follows from Gao ef al. [19, Proposition 4.2] that

D(G,(W)IIG,(W)) <8 > (Wl &) — W'(£;, £)) de
[ CR)

=8y f (W, £;) — W' (€, £)))* de
£el0, 1]

ij=1
< 8n? f (W(x,y) — W(x,y)* dxdy
10,112

= 8n* |W — w'|..

610Z KB L0 Uo Jasn Aieiqi yljesH 211and Ag 0¥6Z601/691/Z/2 N0.liSqe-a|aie/elewl/w oo dno olwspese//:sdjy wolj papeocjumoq
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Recall that we are aiming to define a large set of k-block matrices that are close in KL divergence,

but that are e-far apart with respect to 8, (with € = min(p, %;)). The following lemma shows that
there exists a large set of matrices that are pairwise far in Hamming distance, even after every possible
permutation of the rows and columns. We will use this in the proof of Theorem 3 to define a large class

of k-block graphons that are pairwise far in the 8, metric and hence the 8, metric. This gives us a bound
on packing number.

LEMMA 4 There exists a set S of symmetric k x k binary matrices such that |S| = 22%> and, for every
B,B' e Sando,t € S, we have Ham(B, ., B') = Q(k?).

Proof. Fix permutations ¢ and 7, and consider two randomly chosen symmetric binary matrices B, B'.
Fori < j, let X; = 1if By = B; j and 0 otherwise so Xj; is a Bernoulli random variable with
E[X;] = 3. Thus, by a Chernoff bound,

2
2(5-16))
R K o)
IP(Ham(Bm,B) 4E)ZIP ZX,-}-SE <e 2 . (3.5)
i<j
Therefore, for randomly chosen B, B’,
2
P e 10)
P (Elcr,t s.t. Ham(B, ., B') < E) <e O (=29, (3.6)

For a constant ¢ > 0, consider the process that selects 2 binary matrices {B;}; uniformly at random
uniformly at random. The probability that all pairs are at Hamming distance at least k*/6 is at least
1 — 222242 Selecting c sufficiently small, we get that at least one such set S exists. O

We are not aware of an explicit construction of a large family of matrices that are far apart in 5>
metric; we leave such a construction as an open problem.

We now proceed to the proof of Theorem 3. We will use Lemma 4 to define a set T with packing
number 22¢")_ The elements of T are all close in || - [|oo norm, so using Lemma 3 we get a bound on the
KL diameter. We then directly apply these bounds via Fano’s lemma.

THEOREM 4 For any positive integer k <nand 0 < p <1,

infsup E [EQ(W(G) W)]>.Q min  p. /2 (3.7
W W G~Gn(W) ’ - ’ ’ ’

n2

where inf , is the infimum over all estimators W:G, — Gand sup,, is the supremum over all k-block,
p-bounded graphons.
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178 A. MCMILLAN AND A. SMITH

Proof. Let S be a set satisfying the conditions of Lemma 4 and let 7 = min(1, "‘p). For B € S, define

e

1
Qp=p [51 +cn(2B — 1)], (3.8)

where 1 is the all 1’s matrix and ¢ is some constant that we will choose later. That is, (Qg); = p[% +cnl
if B; = 1 and (Qg);j = p[% —cnlif Bj = 0.Let T = {W[Qg] | B € §}. Using Lemma 3, we conclude
that for all W, W’ € T, we have

D(G,(W)||G,(W") < 8n*(2cpn)® < 326K p, (3.9)

so dg (T) = O(c2k*p).
Let B, B’ € S and suppose o, 7 € S;. By construction,

1
| (WIQsD)oc — WIQw1|: = ZHam(B, o, B)(2pcn)’ = 2(Cp°n’). (3.10)
Thus by Corollary 2,

8:(W[Qs], W[Qp]) = §2(W[Qs], WIQp]) = $2(cpn). (3.11)

Therefore, there exists D > 0 such that if € = Dpcy = Dmin (cp, @), we have log M(e,T,8,) =

£2(k*). Fano’s lemma implies

252
6)31——0(”””1. (3.12)

inf su Pr(5 W.w) > <
v owr 2(W. W) = 3 Q(k2)

We can choose ¢ small enough that the right-hand side is larger than a fixed constant for all kK and n. By
Markov’s inequality, we have

2
ir}fsupE[&‘Q(W, W)] —Q@E =0 (min (p,‘/pk—z )) (3.13)
oW n

O

Proof of Proposition 1. During the course of the proof of Theorem 3, we construct 22¢” graphons in
W, that are pairwise at least £2(pcn) apart in the §, distance for any ¢ > 0 such that |cy| < % Therefore,

for some C > 0, the Cp-packing number of W, is at least 22", O
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Appendix. Proof of equation (1.6)

We show here how to derive the lower bound in (1.6) from the results of Mossel ef al. [1] and Banerjee
[26].

Let (£2,,F,) be a sequence of measurable spaces, each equipped with two probability measures,
P, and @Q,. We say P, and @, are mutually contiguous if for any sequence of events A,, we have
lim, ., P,(A,) — 0if and only if lim,, o, Q,(4,) — 0.

LEMMA A1 Let W, be a k-block graphon generated by a matrix with diagonal entries, p, and off-diagonal
entries, g. Let W, be the Erdos—Rényi model with the same expected degree as W,. If W, and W, are
mutually contiguous then

. - p—ql
infsup E [Sz(W(G), W)] >Q ( v ) (A1)

where inf ; is the infimum over all estimators W:G, — Gand sup,, is the supremum over all k-block,
max(p, g)-bounded graphons.

Proof. Lete = |p — ql, s0 &, (W, W,) = ,K“‘—;;”—zez + %ﬂez > C=, for some constant C. Suppose,
for sake of contradiction, that there exists W such that

sup Egc,a) [SZ(W(G), W)]

WewW,

is not £2 (ﬁ) Then there exists a subsequence {n,};ey such that

- (o
sup Egc,,n |8:W(G).W)| <

WeW,

Sl

610Z KB L0 Uo Jasn Aieiqi yljesH 211and Ag 0¥6Z601/691/Z/2 N0.liSqe-a|aie/elewl/w oo dno olwspese//:sdjy wolj papeocjumoq



WHEN IS NON-TRIVIAL ESTIMATION POSSIBLE FOR GRAPHONS AND STOCHASTIC BLOCK MODELS? 181

forallf e N.
The above inequality, combined with Markov’s inequality, implies
lim P, WG, W)= <] >0 A2
M FTG~Gn, (W) 2(W(G), I)_Eﬁ - (A.2)
and
lim Pr. -5(W(G)W)>C €150 (A3)
oo G~Gpy (W) i 2 2 P2} = 2 JE_ . .
By equation (A.3) and the contiguity of W, and W,,
lim P 50wy = S| S0 A4
A FT GG, (W) ) 2(W(G), Ws) = Eﬁ_ — U (A4)

Therefore, equations (A.2) and (A.4) imply that for large enough n, there exists a graph G such that
5(W(G), W) < %T;F and §,(W(G), W,) < %i; which implies that &,(W;, W;) < Ci;, which is a
contradiction. O

There are many results in the literature exploring when block graphons are contiguous with the
corresponding Erdos—Rényi model. The following table summarizes some of the known results in this
area and translates them into lower bounds on the graphon estimation problem via Lemma Al. Let
p = max(p, q).

Condition on p and g Lower bound on
for contiguity to hold Parameter regime estimation error Citation
np—q?<2p+q p = a/n,q = b/n for constants 2 (min (p, \/Z)) [1]
a,b, k=2
np—q° <2p+q pn — 00, pn = o(n), k =2 £2 (min (p, /%)) [26]
% <2logk—1 | p= c;;‘n, g = b/n for constants | 2 (min (‘—‘/";, "—";ﬂ)) [3]
a,
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