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Abstract

Motivation: Site directed mutagenesis is widely used to understand the structure and function of
biomolecules. Computational prediction of mutation impacts on protein stability offers a fast, eco-
nomical and potentially accurate alternative to laboratory mutagenesis. Most existing methods
rely on geometric descriptions, this work introduces a topology based approach to provide an en-
tirely new representation of mutation induced protein stability changes that could not be obtained
from conventional techniques.

Results: Topology based mutation predictor (T-MP) is introduced to dramatically reduce the geo-
metric complexity and number of degrees of freedom of proteins, while element specific persistent
homology is proposed to retain essential biological information. The present approach is found to
outperform other existing methods in the predictions of globular protein stability changes upon
mutation. A Pearson correlation coefficient of 0.82 with an RMSE of 0.92 kcal/mol is obtained on a
test set of 350 mutation samples. For the prediction of membrane protein stability changes upon
mutation, the proposed topological approach has a 84% higher Pearson correlation coefficient than
the current state-of-the-art empirical methods, achieving a Pearson correlation of 0.57 and an
RMSE of 1.09 kcal/mol in a 5-fold cross validation on a set of 223 membrane protein mutation
samples.

Availability and implementation: http://weilab.math.msu.edu/TML/TML-MP/

Contact: wei@math.msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction caused by the exposure to a large dose of mutagens in living organ-

Mutagenesis, as a basic biological process that changes the genetic
information of organisms, serves as a primary source for many kinds
of cancer and heritable diseases, as well as a driving force for natural
evolution (Kucukkal et al., 2015; Yue et al., 2005; Zhang et al.,
2012). For example, more than 60 human hereditary diseases are
directly related to mutagenesis in proteases and their natural inhibi-
tors (Puente et al., 2003). Additionally, mutagenesis often leads to
drug resistance (Martinez and Baquero, 2000). Mutation, as a result
of mutagenesis, can either occur spontaneously in nature or be

isms. In laboratories, site directed mutagenesis analysis is a vital ex-
perimental procedure for exploring protein functional changes in
enzymatic catalysis, structural supporting, ligand binding and sig-
naling (Fersht, 1978). Nonetheless, site directed mutagenesis ana-
lysis is both time-consuming and expensive. Additionally, site
directed mutagenesis measurements for one specific mutation ob-
tained from different experimental approaches may vary dramatic-
ally for membrane protein mutations (Guo et al., 2016).
Computational prediction of mutation impacts on protein stability
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is an important alternative to experimental mutagenesis analysis for
the systematic exploration of protein structural instabilities, func-
tions, disease connections and organism evolution pathways
(Guerois et al., 2002). A major advantage of these approaches is
that they provide an economical, fast and potentially accurate alter-
native to site directed mutagenesis experiments. Many state-of-the-
art methods have been developed in the past decade, including
I-Mutant (Capriotti et al., 2005), PoPMuSiC (Dehouck ez al., 2009),
knowledge-modified MM/PBSA approach (Getov et al., 2016),
Rosetta (high) protocols (Kellogg ez al., 2011), FoldX (3.0, beta 6.1)
(Guerois et al., 2002), SDM (Worth et al., 2011), DUET (Pires
et al., 2014), PPSC (Prediction of Protein Stability, version 1.0) with
the 8 (M8) and 47 (M47) feature sets (Yang et al., 2013),
PROVEAN (Choi et al., 2014), ELASPIC (Berliner et al., 2014),
STRUM (Quan et al., 2016) and EASE-MM (Folkman et al., 2016).
In general, computational approaches can be classified into three
major classes. Among them, physics based methods typically make
use of molecular mechanics (MM) or multiscale implicit solvent
models approaches. These approaches might offer physical insights
to mutagenesis. Empirical models are another class of methods that
utilize empirical functions and potential terms to describe protein
mutations. Model parameters are fit with a given set of experimental
data and the resulting model is used to predict new mutation
induced folding free energy changes. The last class of approaches is
knowledge based methods that invoke modern machine learning
techniques to uncover hidden relationships between protein stability
and protein structure as well as sequence. A major advantage of
knowledge based mutation predictors is their ability to handle in-
creasingly large and diverse mutation datasets. However, the per-
formance of these approaches highly depends on the training sets
and their results usually cannot be easily interpreted in physical
terms.

A common challenge for all existing mutation impact prediction
models is in achieving accurate and reliable predictions of mem-
brane protein stability changes upon mutation. As recently noted by
Kroncke et al, currently there is no reliable method for the predic-
tion of membrane protein mutation impacts on stability (Kroncke
et al., 2016). The membrane protein mutation dataset studied by
these authors has fewer than 250 data entries, which is too few for
most knowledge based methods, and involves 7 membrane protein
families, which might be too many for typical physics based methods
tuned to work with a specific membrane protein family.

A key feature of all existing structure based mutation impacts on
protein stability predictors is that they either fully or partially rely
on direct geometric descriptions which rest in excessively high
dimensional spaces resulting in large number of degrees of
freedom. In practice, the geometry can easily be over simplified.
Mathematically, topology, in contrast to geometry, concerns the
connectivity of different components in space (Kaczynski et al.,
2004), and offers the ultimate level of abstraction of data. However,
conventional topology incurs too much reduction of geometric in-
formation to be practically useful in biomolecular analysis.
Persistent homology, a new branch of algebraic topology, retains
partial geometric information in topological description, and thus
bridges the gap between geometry and topology (Edelsbrunner
et al., 2002; Zomorodian and Carlsson, 20035). It has been applied
to biomolecular characterization, identification and analysis via
topological fingerprints (Mate et al., 2014; Wang and Wei, 2016;
Xia and Wei, 2014, 2015a,b; Xia et al., 2015; Yao et al., 2009).
However, conventional persistent homology makes no distinction of
different atoms in a biomolecule, which results in a heavy loss of

biological information and limits its performance in protein classifi-
cation (Cang et al., 2015).

In the present work, we introduce element specific persistent
homology (ESPH), interactive persistent homology and binned bar-
code representation to retain essential biological information in the
topological simplification of biological complexity. We further inte-
grate ESPH and machine learning to analyze and predict mutation
induced protein stability changes. The essential idea of our topo-
logical mutation predictor (T-MP) is to use ESPH to transform the
biomolecular data in the high-dimensional space with full biological
complexity to a space of fewer dimensions and simplified biological
complexity, and to use machine learning to deal with massive and
diverse datasets. A distinct feature of the present T-MP is that the
prediction results can be analyzed and interpreted in physical terms
to shed light on the molecular mechanism of protein folding energy
changes upon mutation. Additionally, machine learning models
might be adaptively optimized according to the performance ana-
lysis of ESPH features for different types of mutations. We demon-
strate that the performance of proposed T-MP matches or excesses
that of other existing methods.

2 Materials and methods

2.1 Persistent homology characterization of proteins
Unlike physics based models which describe protein structures in
terms of covalent bonds, hydrogen bonds, electrostatic and van der
Waals interactions, persistent homology, on the other hand charac-
terizes the geometric space of protein structures in terms of a se-
quence of topological spaces each corresponding to a spatial scale.
The topological features at different spatial scales implicitly describe
atomic interactions, such as strong or weak hydrogen bonds, and
van der Waals interactions. Additionally, topological characteriza-
tion shows not only pairwise interactions, but also higher order pat-
terns, such as hydrophobic networks. Such properties of persistent
homology methods motivate us to develop a topology based repre-
sentation parallel to the geometric one in physical models.

The natural language of persistent homology is topological in-
variants, i.e. the intrinsic features of the underlying topological
space. More specifically, independent components, rings and cav-
ities are topological invariants in a given dataset and their numbers
are called Betti-0, Betti-1 and Betti-2, respectively, as shown in the
left column of Figure 1. Loosely speaking, simplicial complexes are
generated from discrete data points according to a specific rule such
as Vietoris-Rips complex, Céch complex, or alpha complex.
Specifically, a O-simplex is a vertex, a 1-simplex is an edge, a
2-simplex is a triangle and a 3-simplex represents a tetrahedron, see
the middle column of Figure 1. Algebraic groups built on these
simplicial complexes are used in simplicial homology to practically
compute Betti numbers of various (topological) dimensions.
Furthermore, persistent homology creates a series of homologies
through a filtration process, in which the connectivity of a given
dataset is systematically reset according to a scale parameter, such
as an ever-increasing radius of every atom in a protein, see the right
column of Figure 1. As a result, the birth, death and persistence of
topological invariants over the filtration give rise to the barcode rep-
resentation of a given dataset (Ghrist, 2008). When persistent hom-
ology is used to analyze three dimensional (3D) protein structures,
one-dimensional (1D) persistent homology barcodes are obtained as
topological fingerprints (TFs) (Cang et al., 2015; Mate et al., 2014;
Xia and Wei, 2014; Yao et al., 2009).
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Fig. 1. An illustration of topological invariants (Left column), basic simplexes
(Middle column) and simplicial complex construction in a given radius of fil-
tration (Right column). Left column: a point, a circle, an empty sphere and a
torus are displayed from left to right. Betti-0, Betti-1 and Betti-2 numbers for
point are, respectively, 1,0 and 0, for the circle 1, 1, and 0, for the empty
sphere 1, 0, and 1, and for the torus 1,2 and 1. Two auxiliary rings are added
to the torus explain Betti-1=2. Middle column: Four typical simplexes are
illustrated. Right column: lllustration of a set of ten points (top chart) at a
given filtration radius (middle chart) and the corresponding simplicial com-
plexes (bottom chart), where there are one 0-simplex, three 1-simplexes, one
2-simplex and one 3-simplex

(a)

Fig. 2. An illustration of persistent homology barcode changes from wild type
to mutant proteins. (a) The wild type protein (PDB:1ey0) with residue 88 as
Gly. (b) The mutant with residue 88 as Trp. (¢) Wild type protein barcodes for
heavy atoms within 6 A of the mutation site. Three panels from top to bottom
are Betti-0, Betti-1 and Betti-2 barcodes, respectively. The horizontal axis is
the filtration radius (A). (d) Mutant protein barcodes obtained similarly as
those for the wild type

As an illustration, we consider the persistent homology analysis
of a wild type protein (PDB:1ley0) and its mutant. The mutation
(G88W) occurred at residue 88 from Gly to Trp is shown at Figure
2a and b. In this case, a small residue (Gly) is replaced by a large one
(Trp). We carry out persistent homology analysis of a set of heavy
atoms within 6 A from the mutation site. Persistent homology barco-
des of the wild type and the mutant are respectively given in Figure
2¢ and d, where the three panels from top to bottom are for Betti-0,
Betti-1 and Betti-2, respectively. Since the set of atoms included in
the wild type and the mutant is the same except for that in the muta-
tion site, the obvious difference in persistent homology barcodes is
induced by the mutation. The increase of residue size results in
tighter pattern of Betti-O bars where there are fewer relatively long
bars and more Betti-1 and Betti-2 bars in a shorter distance scale are
observed.

Nonetheless, the above topological representation of proteins
does not contain sufficient biological information, such as bond
length distribution of a given type of atoms, hydrogen bonds, hydro-
phobic and hydrophilic effects, to offer an accurate model for

mutation induced protein stability change predictions. To character-
ize chemical and biological properties of biomolecules, we introduce
element specific persistent homology (ESPH). Instead of labeling
every atom as in many physics based methods, we distinguish differ-
ent element types of biomolecules in constructing persistent hom-
ology barcodes. For proteins, commonly occurring element types
include C,N, O, S and H. Among them, hydrogen atoms are often
absent from PDB data and sulfur atoms are too few to be statistic-
ally significant in most proteins. Therefore, we focus on the ESPH of
C,N and O elements in protein characterization.

2.2 Topological descriptors

The most important issue in mutation induced protein stability
change analysis is the interactions between the mutation site and the
rest of the protein. To describe these interactions, we propose inter-
active persistent homology adopting the distance function DI
(Ai,A;) describing the distance between two atoms A; and A;
defined as

00, if Loc(A;) = Loc(4;),

DI(A;,A)) = { (1)

DE(A;, 4;), otherwise,

where DE(, ) is the Euclidean distance between the two atoms and
Loc(+) denotes the location of an atom which is either in a mutation
site or in the rest of the protein. In the persistent homology compu-
tation, Vietoris-Rips complex (VC) and alpha complex (AC) are
used for characterizing first order interactions and higher order pat-
terns respectively. To characterize interactions of different kinds, we
construct persistent homology barcodes on the atom sets by select-
ing one certain type of atoms in mutation site and one other certain
type of atoms in the rest of the protein. We denote the set of barco-
des from one persistent homology computation as V{) f/ﬁ' where
p € {VC,AC} is the complex used, d € {DI, DE} is the distance
function, b € {0, 1,2} represents topological dimensions, o« € {C, N,
O} is the element type selected in the rest of the protein, and f € {C,
N, O} is the element type selected in the mutation site. y € {M, W}
denotes whether the mutant protein or the wild type protein is used
for the calculation. The proposed approach ends up with a total of
54 sets of persistent homology bar codes VXS;;DI'O, where o, 8 = C,
N,O;y =M, W and V""", where o, f=C,N,0; y=M, W;
b =1,2). These barcodes are capable of revealing the molecular
mechanism of protein stability. For example, interactive ESPH barc-
odes generated from carbon atoms are associated with hydrophobic
interaction networks in proteins. Similarly, interactive ESPH barco-
des between nitrogen and oxygen atoms correlate to hydrophilic
interactions and/or hydrogen bonds as shown in Figure 3.
Interactive ESPH barcodes are also able to reveal other bond infor-
mation; notwithstanding, they cannot always be interpreted as cova-
lent bond, hydrogen bonds, or van der Waals bonds in general. In
fact, interactive ESPH barcodes provide an entirely new representa-
tion of molecular interactions.

Features are extracted from the groups of persistent homology
barcodes. For the 18 groups of Betti-0 ESPH barcodes, though they
cannot be literally interpreted as bond lengths, they can be used to
effectively characterize biomolecular interactions. Interatomic dis-
tance is a crucial parameter for interaction strength. One can classify
hydrogen bonds with donor-acceptor distances of 2.2-2.5A as
strong and mostly covalent, 2.5-3.2 A as moderate and mostly elec-
trostatic, and 3.2-4.0 A as weak and electrostatic (Jeffrey, 1997).
Their corresponding energies are about 40-14, 15-4 and less than
4 kcal/mol, respectively (Jeffrey, 1997). To differentiate the inter-
action distances between various element types, we propose binned
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Fig. 3. An illustration of element specific persistent homology (ESPH) indicat-
ing the hydrophilic network (Left) and hydrophobic network (Right) at a muta-
tion site. a: Hydrophilic network showing the connectivity between nitrogen
atoms of the mutation residue (blue) and oxygen atoms of the rest of the pro-
tein (red). b: Hydrophobic network showing the connectivity between carbon
atoms of the rest of the protein (black) and of the mutation residue (yellow).
The red circle labels a hexagon ring and the blue filling indicates a cavity.
c: The ESPH Betti-0 barcodes of the hydrophilic network in (a). Betti-0 barco-
des show not only the number and strength of hydrogen bonds, but also the
hydrophilic environment. Specifically, the shortest four bars can be directly
interpreted as conventional hydrogen bonds, while other bars contributing
the degree of hydrophilicity at the mutation site. d: The ESPH Betti-0, Betti-1
and Betti-2 barcodes of the hydrophobic network in (b). The bar in the red cir-
cle is due to the hexagon ring in (b) and the bar in the blue circle is due to the
cavity in (b)

barcode representation by dividing interactive ESPH barcodes (the
Betti-0 barcodes obtained with Rips complex with interactive dis-
tance DI) into a number of equally spaced bins, namely
[0,0.5],(0.5,1],...,(5.5,6]A. The death value of bars is counted in
each bin resulting in 12*18 features. Such representation enables us
to precisely characterize hydrogen bond, van der Waals, electro-
static, hydrophilic and hydrophobic interactions. For the higher
order Betti numbers, the emphasis is given on patterns of both short
and long distance scales. Seven features are computed for each group
of barcodes for Betti-1 or Betti-2 (the barcodes obtained with alpha
complex using the Euclidean distance) which are summation, max-
imum and average bar length as well as maximum and minimum
birth and death values resulting in 7%36 features. To contrast the
interactive ESPH barcodes of wild type protein and mutant, we also
take the differences between the features described above, which
gives rise to a total of 702 features.

2.3 Auxiliary descriptors

While the topological descriptors give a thorough examination of
the atomic arrangements and connectivities, some other crucial
properties are not explicitly characterized. Additionally, due to the
diverse quality of the structures examined, some higher level descrip-
tors such as residue level descriptors can enhance the robustness of
the model. Therefore, we include some auxiliary descriptors from
the aspect of geometry, electrostatics, amino acid types composition
and amino acid sequence. The distance from an atom to the muta-
tion site is defined as the shortest distance between this atom to any
atom of the mutation site. The distance from a residue to the muta-
tion site is the shortest distance between any pair of atoms contain-
ing one atom from this residue and one atom from the mutation site.
In the following descriptions of features, an atom or a residue is
near the mutation site if they are within a distance of 10 A from the
mutation site.

RREC aEERE W
[

Topological
Auxiliary
features
Compute PH
and generate

features

£\
— [

Training and

Classify atoms
into element
specific groups

Original
proteins

prediction

Fig. 4. Flowchart for topology based predictions of protein folding stability
changes upon mutation

The geometric descriptors contain surface area and van der
Waals interaction. The area of solvent excluded surface is assigned
to each atom and are summed over various selections of atoms based
on their locations and element types. The van der Waals interaction
is quantified with Lenard-Johns potential and is computed on each
atom by contrasting against all other heavy atoms with a cutoff of
40 A. The features are generated similarly as surface area.

The electrostatics descriptors are consisted of atomic partial
charge, Coulomb interaction and atomic electrostatic solvation en-
ergy. Coulomb interactions are computed on each atom by contrast-
ing against all other atoms with a cutoff of 40 A. The features are
generated similarly as surface area with additional summation of ab-
solute values for partial charge and Coulomb interaction.

The high level descriptors include neighborhood amino acid
composition and predicted pKa shifts. Amino acid types are divided
into § non-overlapping groups, i.e. hydrophobic, polar, positively
charged, negatively charged and special case groups. The count and
percentage of amino acids of each group near the mutation site are
collected. The sum, average and variance of surface area, weight,
volume and hydropathy scores of the nearby amino acids are also
computed. The pKa values for the ionizable amino acids are calcu-
lated and characterized for each amino acid type and for each loca-
tion including the mutation site, C-terminal, N-terminal.

The sequence descriptors describe the secondary structure and
residue conservation score collected from Position-specific scoring
matrix (PSSM). The secondary structure of the mutation site is cate-
gorized from the structure. Since the global minimization of the mu-
tant structures is not performed, the preference score of the
mutation site to be in each type of secondary structure is quantified
based only on sequence to further describe the favorability of each
type of secondary structure at the mutation site for the mutant. The
conservation scores derived from PSSM describes the favorability of
the mutation from an evolutionary point of view.

Details of auxiliary features can be found in Section 2 of
Supplementary Material and a detailed list of all the auxiliary fea-
tures can be found in Supplementary Table S5.

2.4 Gradient boosting trees regressor

The topological features and the auxiliary features are ideally suited
for being used as machine learning features to predict protein stabil-
ity changes upon mutation. Figure 4 shows a schematic illustration
of our T-MP. We have examined a number of machine learning al-
gorithms, including decision tree learning, random forest and gradi-
ent boosted regression trees (GBRTs) (Friedman, 2001), and found
very similar results from these algorithms for the above binned inter-
active ESPH barcodes. For example, GBRTs are able to integrate
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weak learners to form a strong predictor. GBRTs uncover the cou-
pling or nonlinear dependence among highly interactive topological
features by choosing an appropriate maximum tree depth.
Additionally, GBRTs bypass the normalization of the topological
feature vectors, and thus allow mixed attributes of different topo-
logical measures and physical units. Finally, GBRTs can effectively
avoid overfitting by lowering the learning rate and carrying out sub-
sampling, which is important in dealing with small training datasets,
such as datasets for membrane protein mutations.

2.5 Datasets and preprocessing

Four globular protein datasets and one membrane protein dataset
are used to validate the proposed method. A dataset of 2648 muta-
tion instances in 131 proteins, called $2648 set collected by
(Dehouck et al., 2009) and its subset containing 350 mutation in-
stances involving 67 proteins, named S350 set are used to compare
the performance with other methods. A larger dataset containing
3421 mutation instances in 150 proteins called Q3421 set collected
by (Quan et al., 2016) is used to further validate the method on a
more diverse situation. To test the ability of the method on predict-
ing new data, we constructed a testing set containing 293 mutation
instances named T293 set by manually collecting the data with ref-
erences published on or after year 2009 when 52648 set was con-
structed to mimic the blind test situation. The detailed list of T293
set can be found in Supplementary Material. A collection of 223 mu-
tation instances in 7 membrane proteins called M223 set (Kroncke
et al.,2016) is used to benchmark the method on membrane protein
mutations. Mutation induced protein stability changes are originally
obtained from the ProTherm database (Bava et al., 2004). When
multiple records for the same mutation are found, a scheme same as
Quan et al. (2016) and Dehouck et al. (2009) is applied. Each data-
set is associated to one machine learning task. S2648 set, Q3421 set
and M223 set are used for 5-fold cross validation. S350 set is tested
with models trained on S2468 set excluding S350 set. T293 set is
tested with models trained on S2648 set. There is no overlap be-
tween T293 set and S2648 set.

The PDB files of wild type proteins are downloaded from Protein
Data Bank (PDB) (Berman et al., 2000). For the mutation instances
in $2648 set, multimetric state is considered according to (Dehouck
et al., 2009) and instances related to biological assemblies are ob-
tained from either PDB or PISA server (Krissinel and Henrick,
2007). In the productive models, we only consider the chain where
mutation is made because that inter-domain interactions may con-
tribute differently to folding energy and this different contribution
cannot be sufficiently learned, whilst only the minority of the data
involves multimetric states. The protein part is extracted and saved
using the VMD software package (Humphrey ez al., 1996). The
missing heavy atoms and hydrogen atoms are added to the structure
using the Profix utility of Jackal software package (Xiang and
Honig, 2001). The mutant protein structure is obtained using Scap
utility from Jackal software package (Xiang and Honig, 2001) by
replacing the side chain of the mutation site with min option being
set to 4, in which case additional conformers obtained by perturbing
the conformers in the rotamer library are explored.

3 Software and resources

The machine learning models are built using scikit-learn software
package (Pedregosa et al., 2011). Specifically, the gradient boosting
trees regressor is used with the parameters: #_estimators = 20000,
max_ depth = 6, min_samples_split = 3, learning rate = 0.005,

subsample = 0.4, and max features = sqrt. All results shown in
this work if not specified are obtained with this configuration. The
pqr files containing the partial charge information of the proteins
are obtained from PDB2PQR software package (Dolinsky et al.,
2007) using the CHARMM27 force field. The surface area and solv-
ation energy are computed using our in-house online software pack-
ages ESES (Liu et al., 2017) and MIBPB (Chen ef al., 2011; Yu
et al., 2007; Zhou et al., 2006). The pKa values are predicted using
PROPKA software package (Li et al., 2005). The position-specific
scoring matrices are generated by the BLAST+ software package
(Johnson ez al., 2008) by searching the nr database. The secondary
structure and torsion angle prediction from sequences are obtained
using the SPIDER software package (Heffernan er al., 2015). The
persistent homology computation with VR complexes are carried
out using Javaplex software package (Adams ez al., 2014). The per-
sistent homology computation with alpha complexes are done using
Dionysus software package (Morozov, 2012) which uses CGAL li-
brary (Tran et al., 2017) for alpha shapes. Computational work in
support of this research was performed at Michigan State
University’s High Performance Computing Facility.

4 Results

4.1 General performance

For various tests shown in this section, 50 repeated runs are con-
ducted separately and the median values of the results are reported
to reasonably assess the performance of models with randomness. A
comparison of the performances of various methods is summarized
in Table 1. Pearson correlations coefficient (Rp) and RMSE for test

Table 1. Comparison of Pearson correlation coefficients (Rp) and
RMSEs (kcal/mol) of various methods on the prediction of mutation
induced protein stability changes of the S350 set and 5-fold cross
validation of mutation induced protein stability changes of the
S2648

Method $350 52648

nd Rp  RMSE nd R RMSE/
T-MP-2 350 0.82 092 2648 0.79 091
STRUM © 350 079 098 2647 077 094
T-MP-1 350 076 1.02 2648 075 098
mCSMP 350 073 1.08 2643  0.69  1.07
INPSP¢ 350 0.68 125 2648 0.56 126

PoPMuSiC 2.0° 350 0.67 1.16 2647 0.61 1.17
PoPMuSiC 1.0% 350 0.62 1.23 - - -
I-Mutant 3.0° 338 0.53 1.35 2636 0.60 1.19

Dmutant® 350 0.48 1.38

Automute® 315 0.46 1.42 - - -
CUPSAT? 346 0.37 1.46 - - -
Eris® 334 0.35 1.49 - - -

I-Mutant 2.0* 346 0.29 1.50 - - -

Note: T-MP-1 is our topological based mutation predictor that solely util-
izes structural information. T-MP-2 is our model that complements T-MP-1
with additional electrostatic, evolutionary and sequence information. The T-
MP methods are tested with 50 repeated experiments and the medians are
reported.

“Data directly obtained from Worth et al. (2011).

"Data obtained from Quan et al. (2016).

“The results reported in the publications are listed in the table, however, ac-
cording to Quan et al. (2016), the data from the online server has R,(RMSE)
of 0.59(1.28) and 0.70(1.13) for INPS and mCSM respectively in the task of
S350 set.

Number of samples successfully processed.
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Table 2. Pearson correlation coefficients and RMSEs in the unit of kcal/mol of auxiliary features for four tasks in the prediction of mutation
impacts on protein stability

Features S350 52648 Q3421 M223
Rp RMSE Rp RMSE Rp RMSE Rp RMSE

T-MP-2 0.817(0.002) 0.92(0.004) 0.789(0.005) 0.91(0.009) 0.803(0.008) 1.18(0.020) 0.575(0.019) 1.08(0.018)
T-MP-1 0.765(0.003) 1.02(0.006) 0.746(0.006) 0.98(0.009) 0.767(0.006) 1.27(0.014) 0.543(0.022) 1.11(0.020)
E-MP 0.760(0.003) 1.02(0.005) 0.721(0.005) 1.02(0.008) 0.733(0.009) 1.34(0.018) 0.525(0.026) 1.14(0.026)
G-MP 0.759(0.004) 1.03(0.006) 0.716(0.004) 1.03(0.007) 0.724(0.008) 1.37(0.015) 0.474(0.033) 1.17(0.027)
S-MP 0.609(0.005) 1.26(0.006) 0.616(0.006) 1.16(0.007) 0.581(0.006) 1.61(0.008) 0.379(0.029) 1.27(0.025)
H-MP 0.686(0.004) 1.14(0.006) 0.662(0.009) 1.11(0.013) 0.654(0.009) 1.50(0.016) 0.231(0.0438) 1.41(0.043)

Note: The medians of 50 repeated runs are reported with the standard deviation across the repeated runs in the parenthesis. Here S350 is a test and its predic-
tions are generated with a model trained with the training set $2648 excluding set S350. Results for $2648 are obtained from 5-fold cross validation. Similarly re-
sults for Q3421 and M223 are obtained from 5-fold validation. Here G-MP, E-MP, H-MP and S-MP denote mutation predictors derived respectively from

geometric features, electrostatic features, high level features and sequence features described in Section 2.3 and Supplementary Material.

set S350, and S5-fold cross validations for training set 52648, are
given for various methods, including ours. The proposed topology
based mutation predictor, labeled as T-MP-1, significantly outper-

Table 3. The performance of T-MP-2 model on different datasets
and validation methods

.. S350 $2648 3421 M223
forms other existing methods, except for STRUM (Quan et al., 2016). Q
STRUM is constructed by using various descriptors including geomet- Ms-fold  PS-fold  PLOO
i luti inf i its R RMSE
ric, evolutionary and sequence information and its Rpand RMSE are ) o) o) 201001 0577121 0.591.19 0.80/1.18  0.58/1.08

0.79 and 0.98 kcal/mol, respectively for test set S350, and 0.77 and
0.94 kcal/mol, respectively for cross validation of $2648 set (Quan
et al., 2016). STRUM’s excellent performance motivates us to con-
sider auxiliary features. To this end, we add features generated from
geometric, electrostatic and sequence information (see Supplementary
Material) to our T-MP-1 to construct T-MP-2. As shown in Table 1,
T-MP-2 has the best performance among all methods with Rp and
RMSE being 0.82 and 0.92 kcal/mol, respectively for test set S350,
and 0.79 and 0.91 kcal/mol, respectively for cross validation of S2648
set. A comparison between T-MP-1 and T-MP-2 indicates that geo-
metric, electrostatic and sequence features give rise to approximately
5% improvement over the original topological prediction, indicating
the importance of geometric, electrostatic and sequence information
to mutation predictions. However, as shown in Table 2, none of these
features has more predictive power than the present topological
descriptor.

It is important to understand whether the performance of T-MP-
2 was due to overfitting as more features had been used. To this end,
we carried out a feature importance analysis as shown in
Supplementary Table S6. Based on this analysis, we constructed two
new models with respectively 1000 and 800 top features for S2648
training set, excluding S350 test set, under the same parameter set-
ting. We found that for test set S350, Pearson correlations coeffi-
cient (Rp) and RMSE of results predicted by two new models were
unchanged. Similar behavior was found for other datasets used in
this work. Therefore, we conclude that the performance of our
method was not due to overfitting and the present method is robust
with respect to additional non-essential features.

Q3421 set and T293 set are used to further validate the proposed
method. In 5-fold cross validation of Q3421 set, Ry/RMSE (kcal/
mol) of 0.803/1.18 is obtained compared to 0.79/1.2 reported for
STRUM method (Quan ez al., 2016). For the prediction of T293 set,
the model is trained on S2648 set to mimic blind test. T-MP-2
achieves Rp/RMSE (kcal/mol)=0.721/1.94. The inferior perform-
ance compared to cross validation results is probably due to low
overlapping of proteins for the mutation samples in training and
testing sets. This observation suggests that, like all machine learning
methods, the present model will potentially generate relatively less

Note: The results on S350, Q3421 and M223 are the same as those in
Table 2. ‘M 5-fold’, ‘P 5-fold’ and ‘P LOO’ are respectively, mutation level
S-fold, protein level 5-fold and protein level leave one out. The first number is
PCC and the second number is RMSE in kcal/mol.

accurate predictions, when there is no mutation instance of similar
proteins in the training set.

Protein level 5-fold cross validation and leave-one-out cross val-
idation on S2648 set are conducted to test the performance of
T-MP-2 when testing and training set have no overlapping proteins.
In 5-fold cross validation, the 131 proteins are divided into 5
groups. Each time, mutation samples related to one group of pro-
teins are set as testing set with the rest of the samples being the train-
ing set. In leave-one-out cross validation, mutation samples related
to one protein is set as a testing set each time. The protein level 5-
fold and leave-one-out cross validations yield T-MP-2 performance
of Rp/RMSE (kcal/mol) of 0.57/1.21 and 0.59/1.19. This suggests
that, in the future, more data should be used once available, to cover
as various as possible proteins for the training set. A comparison
among various methods in Supplementary Table S2 shows that T-
MP-2 still outperforms other methods in this case. A collection of
performance of the present model, T-MP-2 is listed in Table 3. The
importance score for each feature and the linear dependency of the
target value on each feature are listed in Supplementary Table Sé6.

4.2 Performance in various mutation situations

Figure 5 depicts detailed correlations between experimental muta-
tion impacts on protein stability and T-MP-2 predictions for 25 sub-
sets of 2648 mutations from the cross validation process on the
$2648 set. To this end, we adopt a standard classification that cat-
egorizes amino acid residues into hydrophobic (HYD), polar (POL),
positively charged (POS), negatively charged (NEG) and special case
(SPC) types. First, the majority of mutations lead to more unstable
structures (i.e. negative free energy changes), as they should be.
However, two mutations from POS to HYD and one mutation from
POS to POL lead to unusual stabilizing effects. Moreover, the most

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/33/22/3549/3965328
by Michigan State University-College of Law user
on 10 November 2017


Deleted Text:  
Deleted Text: ,

Topological protein stability changes predictor

3555

HYD POL POS NEG SPC
{0.76,0.95) (0.82,0.84) (0.79.0.99) {0.92,0.69 {0.83,0.89)

{0.73,0.94) (0.70,0.98) 10.88,0.56) (0.73,1.33) 10.13,0.939)

NEG
Ahonem

6
a i g i ¢ -
STl | |t | |
-4 . b D
.§_ {0.78,0.73) {0.75,0.65) (0.54.0.85) (0.67,0.77) 0.78,0.81
- 6 - - B ) i
g e E - e e L
o] ; i £
] & —g ‘.’ J w‘ “. o".
5 i << VN | < S | SRS, . IS, | .. N,
= (0.77,0.76)  _(0.73,0.94) _(0.651.25) _[0.76,0.68) _(0.82,0.68)
N EACS i ia lmae ~  mamanes)
Pl ’ L .‘ G i Wt o+
20 = : b
ﬁ {0.86,0.85) {0.78,0.75) (0.85,0.84) (0.65,0.97) {0.89,0.56)
& ¥ s A T i
o
&
45
g=]
@
A
o

')f. _‘,...*" .'}-x.". s

—4-202 46 -4-20246 -4-20246 -4-20246 -4-20246

Experimental Stability Change (kcal/mol)

SPC
tlowaa

Fig. 5. Correlations between experimental stability changes and predicted sta-
bility changes (kcal/mol) upon mutation for 25 subsets of the S2648 dataset.
All predictions are obtained from 5-fold cross validations. For each subfigure,
two numbers in brackets are Pearson correlation coefficients and RMSEs
(kcal/mol), respectively. The vertical residue label and horizontal residue label
are respectively for the wild type and the mutant such that the second subfig-
ure in the first row denotes a group of mutations from hydrophobic residues
to polar residues. The median is taken among 50 repeated experiments. The
amino acids are divided into 5 groups, HYD (hydrophobic), POL (polar), POS
(positively charged), NEG (negatively charged) and SPC (special case)
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Fig. 6. Comparisons of the Pearson correlation coefficients obtained with 9
sets of ESPH features for the S2648 dataset and its 24 subsets. The perform-
ance are the medians of 50 repeated runs

accurate prediction in terms of RMSE was for a set of negatively
charged residues being mutated to special case ones. Not surpris-
ingly, the worst performance is observed for mutations where little
geometric rearrangements happen such as when a negatively
charged residue is mutated to another residue of the same type. This
performance analysis provides a guidance of how confident the pre-
diction model is in different mutation situations.

4.3 Performance of features of various element
combinations

To facilitate the discussion of different features, we denote topo-
logical features extracted from the atom set containing atoms of

element type « in the rest of the protein and atoms of element type f
in the mutation site by F,4. Typically, a more important feature has
a higher predictive power. Therefore, it is interesting to analyze the
predictive powers of individual interactive ESPH features (i.e.
Fcc, FCN, FC07 FNC, FNN7 FN07 Foc, FQN7 Foo). In this analysis, we
consider 10-fold cross validations for the S2648 set and its subsets
due to the small size of some subsets. Random forest regression with
3000 trees is used to reduce computation time. In each analysis, we
use only one set of interactive ESPH features, such as hydrophobic
effects related feature Fcc. The left column in Figure 6 depicts our
findings based on the whole dataset of 2648 entries. It is found that
features associated to carbon atoms in the mutation site, i.e. F,c,
give rise to some of the best predictions with Pearson correlation co-
efficients being higher than 0.65 (blue color ones). In fact, Fcc gives
the best prediction, indicating the key importance of hydrophobic
interactions to mutations. Other features have similar performances
with Pearson correlation coefficients ranging from 0.55 to 0.58.

We further analyze individual interactive ESPH feature perform-
ance with respect to different types of mutations. The same classifi-
cation of residue types is used as discussed in Section 4.2. We use
HYD/POL to represent the situation in which a hydrophobic residue
is mutated to a polar residue and similar notations are used for other
situations. Our results are also presented in Figure 6. Firstly, for 9
sets of mutation data that involve hydrophobic residues, features
that involve carbon atoms in the mutation site (i.e. F,c) have a rela-
tively high predictive power. Note that carbon atoms play a major
role in hydrophobic interactions and changes in hydrophobic resi-
dues can be captured by the changes in Betti-0, Betti-1 and Betti-2
barcodes involving carbon atoms. In fact, other topological features
do a good job in predicting hydrophobic residue involved mutations
because this set of mutations leads to significant changes in topo-
logical invariants. Secondly, all features that involve nitrogen atoms
in the mutation site (i.e. F,N) have a better predictive power for all
positively charged residues (POS/POS). This occurs because three
positively charged residues can be distinguished by their numbers of
nitrogen atoms, which in turn, can be captured by Betti-0 barcodes
(i.e. VV lcl\? L9) Features constructed from oxygen atoms in the muta-
tion site (i.e. F,0) have the least prediction power for this dataset.
Thirdly, for mutations from one negatively charged residue to an-
other negatively charged residue (i.e. NEG/NEG), features con-
structed from nitrogen atoms in protein and oxygen atoms in the
mutation site (i.e. Fxo) have the worst predictive power. In fact,
none of other topological features does a good job either. This poor
performance might be due to negligible mutation induced changes in
geometry, topology and structural stability. In this case, small
changes in free energies are most likely caused by electrostatic redis-
tribution, which is relatively insensitive to the present topological
description. Fourthly, all of the 9 types of features have a similar
predictive power for the NEG/HYD dataset. Finally, small data size
is hardly a pivotal factor in 10-fold cross validations, although all of
the 7 lowest prediction datasets have relatively small data sizes.
Note that data sizes in all of the three best predictions (HYD/POS,
HYD/NEG, SPC/POS) are fewer than 45 instances.

4.4 Performance on membrane proteins

We also examine performance of the proposed topological methods
on a challenge problem identified by Kroncke et al. (2016). The pro-
posed method is tested with 5-fold cross validations of a set of 223
mutation instances of membrane proteins in 7 protein families
named M223 dataset (Kroncke et al., 2016). A comparison of
Pearson correlation coefficients and RMSEs over a number of
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Table 4. Comparison of Pearson correlation coefficients (Rp) and
RMSEs (kcal/mol) of various methods for the M223 dataset ob-
tained from 5-fold cross validation in the prediction of mutation im-
pacts on protein stability

Method Rp RMSE Method Rp RMSE
T-MP-2 0.57 1.09 PROVEAN 026 423
T-MP-1 0.54  1.12  Rosetta-MPddG ~ 0.19 -
Rosetta-MP 0.31 - Rosetta (low)® 0.18 -
Rosetta (High)®  0.28 - SDM 0.09  2.40
FoldX 026  2.56

Note: Except for the present results for T-MP-1 and T-MP-2, all other re-
sults are adopted from Kroncke et al. (2016). The results of Rosetta methods
are obtained from Supplementary Figure S1 of Kroncke et al. (2016) where
RMSE is not given. The results of other methods are obtained from
Supplementary Table S1 of Kroncke ez al. (2016). The results of the machine
learning based methods are not listed since those servers are not trained on
membrane protein datasets. Among the methods listed, only Rosetta methods
have terms describing the membrane protein system. The results reported for
T-MP methods are the median values of 50 repeated experiments.

“High resolution.

"Low resolution.

methods is shown in Table 4. The machine learning based methods
are not listed as they are trained on soluble protein datasets. As
noted by Kroncke et al, there is no reliable method for the prediction
of membrane protein mutation impacts on stability at present
(Kroncke et al., 2016). Nevertheless, our topology based approaches
significantly outperform other existing physical or empirical meth-
ods. When auxiliary features are used together with topological fea-
tures, a 5% improvement in Pearson correlation coefficient is found.
Compared with Rosetta-MP, which achieves the best performance
with terms designed for membrane proteins (Kroncke et al., 2016),
the present T-MP-2 has a 84% higher Pearson correlation coeffi-
cient. Nonetheless, Kroncke et al’s statement about membrane pro-
tein mutation impact on stability predictions still holds as the best
Pearson correlation coefficient is only 0.57 and the best RMSE is
over 1kcal/mol. We therefore call for further methodology develop-
ments to improve the predictions of membrane protein stability
changes upon mutation.

5 Conclusion

Contrary to geometry that dominates most biomolecular descriptions,
topology is rarely implemented in quantitative analysis of biomolecu-
lar science, due to its high level of abstraction and dramatic reduction
of biologic information. This article introduces element specific per-
sistent homology to appropriately simplify biomolecular complexity
while effectively retain essential biological information in the predic-
tions of mutation impacts on protein stability. Extensive numerical
experiments indicate that element specific persistent homology offers
some of the most efficient descriptions of protein mutations that can-
not be obtained by other conventional techniques.

The advantages of the proposed element specific persistent hom-
ology are mainly twofold. Firstly, element specific persistent hom-
ology is able to effectively extract unique features, such as loops and
cavities associated with set of elements, from complex geometric
space. The spatial scale and significance of each identified feature
can also be reflected by feature’s birth and death over the persistent
homology filtration. Secondly, in addition to the faithful character-
ization of localized pairwise interactions, element specific persistent
homology is able to offer a unique description of non-local many-

body interactions, such as hydrophobic networks, in terms of high
dimensional topological invariants. Such information can be easily
picked up by machine learning methods and further boost the per-
formance of the present model.

While persistent homology is good at direct description of the
biomolecular structures, some additional assistance may be needed
for specific applications. For the mutation problem studied in this
work, the electrostatics is characterized with continuum solvent
model and Coulomb equation, whereas the amino acid sequences
are handled by traditional bioinformatics tools. Therefore, it would
be interesting to see the development of persistent homology based
tools for the analysis of electrostatics and amino acid sequences in
the future work. Having been demonstrated to be a powerful tool
for the prediction of mutation impact on protein stability, persistent
homology is expected to bring potential improvements when ex-
tended to the applications in other complex biological problems.
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