Journal of Computer-Aided Molecular Design (2019) 33:71-82
https://doi.org/10.1007/5s10822-018-0146-6

@ CrossMark

Mathematical deep learning for pose and binding affinity prediction

and ranking in D3R Grand Challenges

Duc Duy Nguyen' - Zixuan Cang' - Kedi Wu' - Menglun Wang' - Yin Cao' - Guo-Wei Wei

1,2,3

Received: 28 April 2018 / Accepted: 3 August 2018 / Published online: 16 August 2018

© Springer Nature Switzerland AG 2018

Abstract

Advanced mathematics, such as multiscale weighted colored subgraph and element specific persistent homology, and machine
learning including deep neural networks were integrated to construct mathematical deep learning models for pose and bind-
ing affinity prediction and ranking in the last two D3R Grand Challenges in computer-aided drug design and discovery. D3R
Grand Challenge 2 focused on the pose prediction, binding affinity ranking and free energy prediction for Farnesoid X recep-
tor ligands. Our models obtained the top place in absolute free energy prediction for free energy set 1 in stage 2. The latest
competition, D3R Grand Challenge 3 (GC3), is considered as the most difficult challenge so far. It has five subchallenges
involving Cathepsin S and five other kinase targets, namely VEGFR2, JAK2, p38-a, TIE2, and ABL1. There is a total of 26
official competitive tasks for GC3. Our predictions were ranked 1st in 10 out of these 26 tasks.
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Introduction

With the availability of increasingly powerful computers
and fast accumulating molecular and biomolecular data-
sets, one can dream of a possible scenario that all the major
tasks of drug design and discovery can be conducted on
computers [1-3]. Virtual screening (VS) is one of the most
important aspects of computer-aid drug design (CADD) [4].
VS involves two stages, namely, the generation of differ-
ent ligand conformations (i.e., poses) when a compound is
docked to a target protein binding site, and the prediction
of binding affinities. It is generally believed that the first
stage can be well resolved by available techniques, such as
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molecular dynamics (MD), Monte Carlo (MC), and genetic
algorithm (GA) [5-7]. However, The development of scor-
ing function (SF) for binding affinity prediction with high
accuracy still remains a formidable challenge. In general,
current SFs can be classified into four different categories,
namely force-field-based ones, knowledge-based ones,
empirical-based ones and machine learning-based ones
[8]. Among them, force-field-based SFs, such as COM-
BINE [9] and MedusaScore [10], emphasize the physical
description of protein and ligand interactions in the solvent
environment, including van der Walls (vdW), electrostat-
ics, hydrogen bonding, solvation effect, etc. Typical Knowl-
edge-based SFs represent the binding affinity as the linear
sum of pairwise statistical potentials between receptor and
ligand atoms. KECSA [11], PMF [12], DrugScore [13], and
IT-Score [14] are some of the well-known examples. The
empirical-based SFs, in fact, make use of multiple linear
regression to construct a linear combination from different
physical-descriptor components such as vdW interaction,
hydrophobic, hydrogen bonding, desolvation, dipole, etc.
The renowned candidates for empirical-based SFs include
X-Score [15], PLP [16], and ChemScore [17], etc.
Recently, machine learning including deep learning
has emerged as a major technique in CADD. By using
advanced machine learning algorithms, such as random for-
est (RF) and deep convolutional neural network, the machine
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learning-based SFs can characterize the non-additive con-
tributions of functional groups in protein—ligand binding
interactions [18]. Such a characterization can help machine
learning-based SFs consistently maintain their accuracy in
binding affinity predictions for a variety of protein—ligand
complexes [19-23]. However, the performance of machine
learning-based SFs depends crucially on the training data
quality and statistic distribution. Additionally, it also
depends on selected features that might or might not accu-
rately and completely describe the protein—ligand binding
interactions. We assume that the intrinsic physics of inter-
est of complex biomolecules and interactions lies on low-
dimensional manifolds or subspaces embedded in a high-
dimensional data space. Based on this hypothesis, we have
recently proposed several low-dimensional mathematical
models that dramatically reduce the structural complexity
of protein-ligand complexes and give rise to surprisingly
accurate predictions of various bimolecular properties. For
example, we proposed a multiscale weighted colored graph
(MWCG) model to simplify protein structures and analyze
their flexibility [24]. The essential idea of this method is to
use the graph theory to represent the interactions between
atoms in a molecule in an element-level collective manner.
The MWCG approach has been shown to be over 40% more
accurate than the Gaussian network model on a set of 364
proteins [24].

In addition to graph theory simplification, we have also
developed the topological abstraction of complex protein
structures. In order to describe the topological changes such
as the opening or closing of ion channels, the folding or
unfolding of proteins, and the subtle change in binding site
after the protein—ligand binding, we take the advantage of
topological methods to study the connectivity of different
molecular components in a space [25] which can represent
important topological entities such as independent compo-
nents, rings and higher dimension faces. However, since the
conventional topology and homology are metric or coordi-
nate free, they capture very little biomolecular geometric
information and thus are unable to efficiently characterize
biomolecular structures. Persistent homology (PH) is a new
branch in algebraic topology. It embeds the geometric infor-
mation into topological invariants. By changing a filtration
parameter such as the radius of atoms PH creates a family
of topological spaces for a given set of atoms. As a result,
the topological properties of a given biomolecule can be
systematically analyzed and recorded in terms of topologi-
cal invariants, i.e., the so-called Betti numbers, over the fil-
tration process. The resulting barcodes monitor the “birth”
and “death” of isolated components, circles, and cavities
at different geometric scales. The persistent homology
framework together with practical algorithms was intro-
duced by Edelsbrunner et al. [26] and formal mathematical
theories were developed by Zomorodian and Carlsson [27].
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A zeroth dimensional version was also introduced earlier
under the name of size function by Frosini and Landi [28].
Primitive applications of PH to computational biology has
been reported in the literature [29-31]. Recently, we have
developed a variety of advanced PH models to analyze the
topology—function relationship in protein folding and protein
flexibility [32], quantitative predictions of curvature energies
of fullerene isomers [33, 34], protein cavity detection [35],
and the resolving ill-posed inverse problems in cryo-EM
structure determination [36]. In 2015, we introduced some
of the first combinations of PH and machine learning for
protein structural classification [37]. Topological descrip-
tors were further integrated with a variety of deep learning
algorithms to achieve state-of-the-art analysis and prediction
of protein folding stability change upon mutation [38], drug
toxicity [39], aqueous solubility [40], partition coefficient
[40], binding affinity [21, 22], and the virtual screening of
active ligands and decoys [23].

In this paper, we report the performance of our math-
ematical deep learning models on pose and binding affinity
prediction and ranking in the last two D3R Grand Chal-
lenges, namely D3R Grand Challenge 2 (GC2) and D3R
Grand Challenge 3 (GC3). The GC2 was initiated in 2016
and consisted of two stages. The first stage asked partici-
pants to predict the crystallographic poses of 36 ligands for
the target of farnesoid X receptor (FXR). In addition, there
were affinity ranking task for all 102 compounds and abso-
lute free energy prediction for two designated subsets of 18
and 15 small molecules. In the second stage, participants
were asked again to submit the affinity ranking and free
energy after the release of 36 crystal structures. In GC2, we
employed our mathematical deep learning models to select
the best poses from docking software generated poses for
binding affinity ranking and prediction tasks. Our models
achieved the top place in affinity ranking for the free energy
set 1 in stage 2.

In addition, our results for the latest Grand Challenge,
i.e., GC3, are presented in this paper. The third Grand
Challenge, took place in 2017, is the largest in terms of the
number of competitive tasks since 2015. It consisted of five
subchallenges. Subchallenge 1 was about Cathepsin S. It
comprised two stages with tasks the same as ones in the
GC2. There were 24 ligands with crystal structures and their
binding energies spread three orders of magnitude for 136
compounds. Subchallenge 2 focused on kinase selectivity.
It has three kinase targets, namely VEGFR2, JAK2, and
p38-a with their numbers of compounds being 85, 89, and
72, respectively. This subchallenge only asked participants
to submit affinity ranking for each kinase dataset. Subchal-
lenge 3 involved the binding affinity ranking and free energy
prediction of target JAK2. It consisted of a relatively small
dataset with 17 ligands having similar chemical structures.
In subchallenge 4, there were 18 congeneric ligands with Kd
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values for kinase TIE2. In addition to asking for the affin-
ity ranking of 18 compounds, subchallenge 4 asked partici-
pants to predict the free energies of two subsets with 4 and
6 compounds, respectively. The last subchallenge in GC3
concerned the binding affinity ranking of different mutants
on protein ABL1. There were two compounds and five dif-
ferent mutation sites. Overall, our models performed well in
GC3. Specifically, we obtained the first place in 10 out of a
total of 26 predictive tasks.

Methods

In this section, we briefly describe our computation methods
and algorithms developed for GC2 and GC3.

Ligand preparation

All ligands in Grand Challenges are provided in the
SMILES string format. They are converted to the optimal
3D structures and protonated at pH 7.5 using LIGPREP tool
in Schrodinger software [41]. Before employing Autodock
Vina [42] for docking, Gasteiger partial charges were added
to these ligands via MGLTools v1.5.6 [43].

Protein structures selection and preparation

Except for subchallenge 1, all the receptor structures in GC3
are supplied in the protein sequence format. We utilized the
homology modeling task in Maestro of Schrodinger soft-
ware [44] to obtain 3D structure predictions. In addition,
we make use of the crystal structures available in the Protein
Data Bank (PDB) for each protein family (see the support-
ing information for a complete list). These collected pro-
tein structures were prepared using the protein preparation
wizard provided in Schrodinger package [41] with default
parameters except enabling the FILLSIDECHAINS option.

Docking protocols

We use a number of docking protocols in GC2 and GC3.
Among, a machine learning protocol was developed in our
own lab. Motivated by earlier work [45], we carried out four
different docking strategies, namely align-close, align-target,
close-dock and cross-dock, to attain the best poses for bind-
ing affinity predictions. We also used induced fit docking
(IFD) and unrestricted IFD in our pose predictions.

Protocol 1: machine learning based docking

We developed a machine learning-based scoring function to
select the poses generated by GOLD [46], GLIDE [47], and
Autodock Vina [42]. Given a ligand target, we at first formed
a training data of complexes taken from the PDB. The cri-
teria for such selections are based on the similarity coeffi-
cient, measured by fingerprint 2 (FP2) in Open Babel v2.3.1
[48], of ligand in the complex. Then, we utilized docking
software packages such as GOLD, GLIDE, and Autodock
Vina to re-dock ligands to protein in those selected com-
plexes. A variety of docking poses was distributed into 10
different RMSD bins as follows: [0,1], (1,2], ..., (9,10] A.In
each bin, we clustered decoys into 10 clusters based on their
internal similarities. The docking poses having the smallest
free energy were selected as the candidate for their clusters.
As a result, one may end up with a total of 100 poses for
each given complex. We employed all these decoy poses
to form a training set with labels defined by their RMSDs.
Our topological based deep learning models were utilized to
learn this training set. Finally, we employed this established
scoring function to re-rank the poses of the target ligand
produced by docking software packages.

Protocol 2: align-close

In the align-close method, we select ligand available in the
PDB that has the highest chemical similarity to the target
ligand. Here, the similarity score was measured by finger-
print 2 (FP2) in Open Babel v2.3.1 [48]. It is also noted that
all the processed structures in this procedure were conducted
in the Schrodinger suite 2017-4 [49]. A ligand was aligned to
its similar candidates by the flexible ligand alignment task in
Schrodinger’s Maestro [50, 51]. Then, the resulting aligned
ligand is minimized to the co-crystal structure of the most
similar ligand by Prime in Schodinger package [49, 52, 53].

Protocol 3: align-target

In the align-target protocol, the homology modeling tool in
Maestro was used to construct protein 3D structures from
given sequences, and the aligned ligands obtained from the
align-close procedure are minimized with respect to cor-
responding receptors.

Protocol 4: close-dock

The fourth docking strategy is called as close-dock. Based on
previous docking methods, one can identify the most similar
structure in the PDB to a given D3R ligand. This procedure
also gives us the corresponding co-crystal structure, i.e., the
so-called closet receptor. In the close-dock approach, Autodock
Vina is used to docki the target ligand to its corresponding
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closet receptor. The best pose is selected based on Autodock
Vina’s energy scoring.

Protocol 5: cross-dock

The next approach in our docking methods is named cross-
dock. This is basically a cross docking method in which the
close receptors are the co-crystal structures of the ligands
having the similar chemical characteristics to the interested
ligand. In the cross-docking procedure, we use Autodock
Vina to dock the D3R ligands to their close receptors. Those
poses that have the smallest binding energies are selected as
the best poses.

Protocol 6: constraint-IFD

Similarly to the align-target protocol, we used the homology
modeling module in Maestro to generate 3D structure from a
given sequence. For the docking procedure, we employed the
induced fit docking (IFD) [54-56] in Maestro with restrict-
ing docking poses to the closet ligands with a tolerance of
3 A. The best pose was selected due to the ranking from IFD.

Protocol 7: free-IFD

This protocol is exactly the same protocol as Constraint-
IFD except for no constraint during the run of induced-fit
docking.

Multiscale weighted colored subgraph
representation

Weighted colored subgraph (WCS) method describes inter-
molecular and intramolecular interactions as pairwise atomic
correlations [24]. To apply the WCS for analyzing the pro-
tein—ligand interactions, we convert all the atoms and their
pairwise interactions at the binding site of a protein—-ligand
complex with a cutoff distance d into a colored subgraph
G(V4, E) with vertices V¢ and edge E. As such, the ith atom
is labeled by its position r; , element type ; and co-crystal
type f;. Thus, we can express vertices V¢ as

vi={@.a.plrer’ qec pes r-x

< d for some 1 < j < N such that f; +ﬁj =1,i=1,2, N}

ey
where C = {C,N, O, S, P, F, ClL, Br, I} contains all the
commonly occurring element types in a complex, and
S ={0,1} a bipartite graph label that if the ith atom
belongs to protein then §; = 0, otherwise §; = 1. Hydrogen
element is omitted since it does not present in the crystal
structures of most protein—ligand complexes. To describe
pairwise interactions between the protein and the ligand,
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we define an ordered colored set P = {(a,0)(a’, 1)}.
Here, a € {C, N, O, S} is a heavy atom in the protein, and
a € {C,N,0O,S,P,F,ClBr1} is a heavy atom in the
ligand. With that setting, it is trivial to verify that set P
has a total 36 partitions or subgraphs. For example, a parti-
tion P; = {(C,0)(0, 1)} contains all bipartite pairs CO in
the complex with the first atom is a carbon in the protein
and the second atom is an oxygen in the ligand. For each set
of element pairs P, k = 1,2, ..., 36, a set of vertices Vpk is
a subset of V¢ containing all atoms that belong to a pair in
P,.. Therefore, the edges in such WCS describing potential
pairwise atomic interactions are defined by

r—n|)] (@ Aot ) € Piij=1.2.... ,N},

¢ = {or(] )

where ”ri - er defines a Euclidean distance between ith and

Jjth atoms, o indicates the type of radial basic functions (e.g.,
o = L for Lorentz kernel, ¢ = E for exponential kernel), 7 is
a scale distance factor between two atoms, and ¢ is a param-
eter of power in the kernel (i.e., { =k wheno =E,{ =v
when ¢ = L). The kernel @7 characterizes a pairwise cor-
relation satisfying the following conditions

(T | S

o2 of) =0 -] -

Commonly used radial basis functions include general-
ized exponential functions

CDEK = ¢ (Ir- f”/f(ri"'ri))x, k>0, 5)

and generalized Lorentz functions

(If’v(‘ri—er): 1 -, v>0,
1+ (Hri - rj“/r(rl- + rj)>

(6)
where r; and r; are, respectively, the van der Waals radius of
the ith and jth atoms.

In the graph theory or network analysis, centrality is
widely used to identify the most important nodes [57].
There are various types of centrality such as degree cen-
trality [58], closeness centrality [59], harmonic centrality
[60], etc. Specifically, while the degree centrality is meas-
ured as a number of edges upon a node, closeness and
harmonic centralities depend on the length of edges and
are defined as 1/}, ”r,- - rj” and Y, 1/|Tri - rj“, respec-

tively. Our centrality used in the current work is an
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extension of the harmonic formulation by our correlation
functions

Vi

oo = Y wor (|le-x). (@ bx@p) e P
j=1

Vi= L2V, ™

where w;; is a weight function assigned to each atomic pair.
In the current work, we choose wy = 1if g, + ﬂj =1, other-
wise wy; = 0, for all calculations to reduce dimension of the
parameter space. To describe a centrality for the whole graph

G(Vpk,E‘;,’T’g), we take into account a summation of the
k
node’s centralities

IVl

=

k,o,T,v Mj/f,o',‘r,v (8)

1

~.
Il

Since we have 36 choices of the set of weighted colored
edges P,, we can obtain corresponding 36 bipartite subgraph
centralities 4*°7". By varying kernel parameters (¢, 7, v),
one can achieve multiscale centralities for multiscale
weighted colored subgraph (MWCS) [24]. For a two-scale
WCS, we obtain a total of 72 descriptors for a protein—ligand
complex.

Algebraic topology based molecular signature

The geometry of biomolecular systems together with the
complex interaction patterns allows us to build topological
spaces upon the systems which facilitate powerful topologi-
cal analysis. The topological analysis provides us a descrip-
tion of the molecular system that captures a collection of
key aspects of the system including the multiscale descrip-
tion of geometry, the characterization of interaction network
in an arbitrary dimension, and the important physical and
chemical information, which ensures the success of the
downstream machine learning modeling. In this section, we
first briefly describe the background of persistent homol-
ogy. Then, we demonstrate how to apply it to biomolecular
systems to obtain a rich but concise description.

Persistent homology

We describe the theory of persistent homology in the frame-
work of simplicial homology in a geometric sense where
topological spaces are represented by collections of points,
edges, triangles, and their higher-dimensional counterparts.
A k-simplex is a collection of (k + 1) affinely independent
points in R” with n > k. If the vertices of a simplex is a sub-
set of the vertices of another simplex, it is called a face of the
other simplex. Simplices of various dimensions are building

blocks of a simplicial complex which is a finite collection
of simplices satisfying two conditions: (1) the faces of any
simplex in the complex are also in the complex and (2) the
intersection of two simplices in the complex is either empty
or a common face of the two. A simplicial complex can be
used to discretely represent or approximate a topological
space. Given a simplicial complex X, a k-chain is a formal
sum of all the k-simplices in X which is defined as

c= Z a,0;, 9)

where o, is a k-simplex in X and g, is a coefficient in a coef-
ficient set of choice such as a finite field Z, with a prime
p. The set of all k-chains with the addition operator in the
coefficient group forms a group called the kth chain group
denoted C,(X). The chain groups of different dimensions are
connected by a collection of homeomorphisms called the
boundary operators forming a chain complex,

ai+l ai ai—l 62 al 00
C(X)—> C_|(X)—— ...— C;(X)—> Cy(X)— 0.
(10
It suffices to define the boundary operator on simplices, and
then, such a definition can be extended to general chains.

k
0u(0) = (=1 Vs .., oo vy, (11
i=0

where v, ...,v, are vertices of the k-simplex o and
[Vgs ---» Vjs ..., ;] means the codim-1 face of o be omitting
the vertex v;. The boundary operator has an important prop-

erty that

0,00, =0. (12)
With the boundary operators, we can define boundary
groups and cycle groups which are subgroups of chain
groups. The kth boundary group is defined to be the image
of d,,, denoted B (X) = Im(d, ). The kth cycle group is
defined to be the kernel of d, denoted Z,(X) = Ker(d,). It
can be seen that B,(X) C Z,(X) following the property in
Eq. (12). Then, the kth homology group is defined to be the
quotient group

H (X) = Z,(X)/ Bi(X). (13)
Intuitively, the kth homology group contains elements asso-
ciated to k£ dimensional holes which are not boundaries of
(k + 1)-chains to characterize the topology.

The theory described above computes the homology
of various dimensions of a topological space to obtain a
multidimensional characterization of the space. However,
this is not enough for the cases where the objects are also
multiscale. Therefore, instead of only computing homology
for a fixed topological space, we can build a sequence of
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subspaces of the topological space and track how homol-
ogy evolves along this changing sequence. This sequence is
called a filtration,

g=X,CX,cCX,,CX,=X. (14)

The filtration naturally induces an inclusion map connecting
the homology groups of a certain dimension,

H.(Xy) = H (X)) = ... > H(X,,_)) = H(X,,). (15)

Then for a homology generator 6 € H,(X;), it is said to be
born at i if it is not an image of the inclusion map from
H,(X;_,) and it is said to die ati + 1if it mapped to the empty
set or another homology generator that is born before i by
the inclusion map from H,(X;). Persistent homology tracks
how these homology generators appear and disappear along
the course of the filtration resulting in a robust multiscale
description of the original topological space. The birth and
death of each generator can be represented by a half-open
interval starting at the birth time and stopping at the death
time. There are several visualization methods for collections
of such intervals such as barcodes and persistence diagrams.

Topological description of molecular systems

To describe molecular systems using persistent homology,
the atoms can be regarded as vertices and different construc-
tions of filtrations can reveal different topological aspects of
the system.

To describe a complex protein geometry, an efficient fil-
tration using alpha complex [61] can be employed. To build
an alpha filtration, a Voronoi diagram is first generated for
the collection of points representing the atoms in the system.
The final frame of the topological spaces at the end of the
course of filtration is constructed by including a k-simplex
if there is a nonempty intersection of the (k + 1) Voronoi
cells associated to its (k + 1) vertices. The filtration of the
space can be constructed by associating a subcomplex to
each value of a filtration parameter e. The subcomplex asso-
ciated to e is defined as

Xapna(€) = {0 € X|o = [vg. ... v]. 0 (V) NB.(v)) # 0}

(16)
where V(v;) is the Voronoi cell of v; and B,.(v;) is an € ball
centered at v;.

A more abstract construction of filtration via the Vieto-
ris—Rips complex can be used to address other properties of
the system such as protein-ligand interactions. Given a set
of points with a pairwise distance (not necessarily satisfying
triangular inequality), the subcomplex associated to a filtra-
tion parameter ¢ is defined to be

Xrips(€) = {0 € X[o = [vy, ..., v ], d(v;,v;) < 2¢ for0 < i,j <k},
a7
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where d is the predefined distance function and X is the col-
lection of all possible simplices. Tweaking the distance func-
tion can help emphasize on different properties of the sys-
tem. For example, in a protein—ligand complex, setting the
distance between an atom from the protein and an atom from
the ligand to the Euclidean distance while setting the dis-
tance between atoms from the same molecule to infinity will
emphasize the interaction pattern between two molecules
[21]. Also, we can assign values between atoms according
to a specific distance of interest by using kernel functions as
distances [21]. We have proposed element specific persistent
homology, which is a family of persistent homology groups
defined on various topological subspaces, to encode physical
interactions into various topological invariants [21, 38]. By
computing persistent homology on the subsets of the atoms,
we can extract different chemical information. For example,
the element specific persistent homology computation on
the collection of all carbon atoms describes the hydropho-
bic network or the structural basis of the molecule while
computation on the nitrogen and oxygen atoms characterizes
the hydrophilic networks [21]. For the characterization of
small molecules, we can use a multilevel element specific
persistent homology to both describe the covalent bonds and
noncovalent interactions in the molecule [23].

The element specific persistent homology results (bar-
codes) can be paired with machine learning models in sev-
eral ways. For example, Wasserstein metric can be applied
to measure similarities among the barcodes of different
proteins, which can be used with methods such as nearest
neighbors and manifold learning [23]. The element specific
persistent homology barcodes can also be turned into fixed
length feature vectors by discretizing the range of barcode
and counting the persistence, birth, and death events that fall
in each subinterval. The statistics of element specific persis-
tent homology barcodes can also be used for featurization
[23]. These fixed length features can be used with powerful
machine learning methods such as the ensemble of trees and
deep learning neural networks [21, 22]. The barcodes can
also be transformed to representations similar to images and
used in a 1-dimensional or a 2-dimensional convolutional
neural networks [22, 23].

Machine learning algorithms

The machine learning methods used in our prediction fall
into two categories, ensemble of trees and deep learning.
A schematic illustration of our mathematical deep learning
modeling is given in Fig. 1.

Ensemble of trees

The basic building block of this type of methods is a deci-
sion tree which identifies key features to make decisions
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Fig. 1 Illustration of mathemati-

cal learning prediction using
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at the nodes of the tree. Due to its simple structure, it is
usually considered as a weak learner especially in the case
of highly nonlinear problems or applications with high
dimensional features. Ensemble of trees methods build
models consisting of a collection of decision trees with the
assumption that grouping the weak learners can improve
the learning capability. We mainly used random forest and
gradient boosting trees for our prediction. Random forest
builds uncorrelated decision trees with each tree being
trained on a resampling of the original training set (boot-
strap). On the contrary, gradient boosting trees add one
tree to the collection at a time along the direction of the
steepest descent of the loss of the current collection. As
these two models attempt to reduce error in two different
ways, they behave differently in the bias-variance trade-
off where the random forest is better at lowering bias and
gradient boosting trees focus more on reducing variance.
Therefore, a higher level bagging of models of different
kinds can further improve the performance. The ensemble
learning methods are also robust and overfitting can be
reduced by learning partial problems. For example, each
tree can be trained with a random subset of the training
data and a subset of the features and the model complex-
ity can be constrained by setting maximum tree depth.
Both our graph theory based models [20, 62] and algebraic
topology based models [21, 23] achieve top-class perfor-
mance with the ensemble of trees methods.

Deep learning
When the feature is complex or there is some underly-

ing dimension in the feature space, deep learning models
can further imporve the performance of the predictor. For

example, a spatial dimension associated to the filtration
parameter lies in the persistent homology representation
of protein—ligand systems. This enables the usage of the
powerful convolutional neural networks (CNNs) which
have been extremely successful in the field of computer
vision and image analysis. The neural networks we used
in the prediction are in the category of feedforward net-
works where the signal from the previous layer undergoes
a linear transformation to the current layer, then the cur-
rent layer applies a nonlinear activation function and sends
the signal to the next layer. Classical deep neural networks
are constructed by stacking fully connected layers where
every pair of neurons in two adjacent layers are connected.
Different rules of neuron connections and parameter shar-
ing have resulted in a number of powerful deep learning
models that flourish in various application domains. CNNs
take advantage of the feature structure where there are
spatial dimensions and only allow local connections with
the parameters shared along the spatial dimensions which
significantly lowers the dimension of the parameter space.
Also, the flexibility of neural networks allows learning
different but related tasks together by sharing layers, i.e.,
a type of multi-task learning. We applied convolutional
neural networks and multi-task learning in our predictions
which further advanced the capability of our models [22,
23].

To make use of both MWCG and algebraic topology fea-
tures, we carried out two different schemes for the energy
prediction. In the first approach, we used random forest to
learn the biomolecular structure represented by MWCG,
and used CNNss with topological features. The final predic-
tions for this method was the consensus results between the
energy values predicted by two aforementioned machine
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learning strategies. We name this method EP1. In the sec-
ond approach, MWCG and topological features were mixed
and fed into the CNNs model. The energy value predicted
by these deep learning networks was submitted. We name
this model EP2. We employed available PDBbind data sets
(http://pdbbind.org.cn) as the training data.

Results and discussion

Here, we provide the results of our mathematical deep learn-
ing models in two recent Grand Challenges, i.e., GC2 and
GC3.

Grand Challenge 3

There are five subchallenges in GC3 involving a total of 12
affinity prediction submissions and 2 pose prediction chal-
lenges, resulting in 26 different competitive tasks. Our sub-
missions were ranked 1st in 10 of these 26 tasks as shown
in Table 1 for additional information. While we employed
align-close, align-target, close-dock and cross-dock proto-
cols for pose generations in subchallenges 1-4, we applied
constraint-IFD and free-IFD procedures for kinase mutants
in subchallenge 5. The combination of MWCS and algebraic
topological descriptors was utilized as the features in the
random forest and deep learning methods. Also, we were
interested in seeing how the docking features can enhance
our mathematical descriptors by including the Autodock
Vina scoring terms in some submissions. In fact, these
additional docking features did not improve our available
models. The following is the detailed discussion of our per-
formance for each subchallenge task.

Subchallenge 1

The protein target for this challenge is Cathepsin S. There
are 24 ligand—protein co-crystal structures and 136 ligands
having binding data (IC50s). There are two stages in this
subchallenge. Stage 1 asks participants to submit pose pre-
dictions, affinity rankings, and energy predictions. Stage 2
asks similar tasks except for pose predictions. Co-crystal
structures were released for the second stage.

In order to examine the performances of scoring func-
tions on the binding affinity when the ligand pose errors do
not contribute to the final outcome, D3R organizers evalu-
ated the accuracy of all submitted methods on 19 ligands
having crystallographic poses. With this setting, our models
attained the first places for the following tasks: free energy
set in stage 1, scoring and free energy set in stage 2. It is
worth mentioning that only stage 2 has the experimental
structures. Stage 1 is still affected by the pose prediction
errors. That explains why our predictors performed decently
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for scoring task in stage 1 with the best Kendall’s 7 = 0.23,
but they achieved a state-of-the-art result for the same task in
stage 2 with the best Kendall’s 7 = 0.54 (receipt ID 6jekk).
Figure 2 depicts the ranking of all participants on the affin-
ity ranking of 19 ligands in stage 2. The best free energy
predictions on the ligands with experiment structures were
also attained by our predictions. Particularly, in stage 1, our
prediction with receipt ID fomca obtained RMSE_ = 0.33
kcal/mol. In stage 2, we accomplished RMSE_ = 0.29 kcal/
mol with receipt ID v4jv4. Those results support that our
mathematical deep learning models indeed gain a better
performance when no pose prediction errors are involved.

Subchallenge 2

In this subchallenge, there are 3 kinase families, namely
VEGFR?2, JAK2, and p38-a with number of ligands being
85, 89 and 72, respectively. The challenge is to rank affinities
of all ligands in each kinase family. Our predictors do not
perform well on these datasets. Our best result is the second
place on the active/inactive classification of VERGFR?2 set.
Our best Matthews correlation coefficient (MCC) on such
task is reported to be 0.48 from receipt ID rtv8m.

Subchallenge 3

The third subchallenge involves the kinase JAK2 which
already appeared in the second one. However, this challenge
only comprises 17 compounds with small changes in chemi-
cal structure. Subchallenge 3 consists of two tasks, namely
affinity ranking and relative binding affinity predictions.
We obtained the first place on the binding energy prediction
with the centered RMSE as low as RMSE, = 1.06 kcal/mol
(receipt ID 4uSey). On the affinity ranking, the performance
of our models is unremarkable. However, we still manage to
sit at the second place on the active/inactive classification
with Mathew correlation coefficient = 0.23 with receipt ID
yqoad.

Subchallenge 4

Similar to the third subchallenge, the fourth one consists
of 18 ligands with small changes in chemical structures.
However, the new protein family, TIE2, is considered. The
tasks are still to give an affinity ranking for 18 ligands and
absolute or relative binding energies for two subsets of 4 and
6 compounds. It is interesting to see that our model perform
extremely well for the TIE2 dataset. We achieve the first
place for all the evaluation metrics taken into account for this
subchallenge. Specifically, for the affinity ranking exclud-
ing Kds > 10 pM, our model, receipt ID uuihe, produces
the best Kendall’s 7 and Spearman correlation coefficient
among all of the participants with values being 0.57 and
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Table 1 Overview of all 26 predictive tasks in D3R GC3

Dataset Task Best submission ID Method description

Pose prediction

Cathepsin stage 1A Pose prediction Saddj DP 3

Cathepsin stage 1B Pose prediction Not participate

Affinity rankings excluding Kds > 10 pM

Cathepsin stage 1 Scoring m7o0q4 Pose prediction: DP 5, energy prediction: EP1
Cathepsin stage 1 Free energy ranking 4ekn8 Pose prediction: DP 5, energy prediction: EP1
Cathepsin stage 2 Scoring yf20t Pose prediction: DP 5, energy prediction: EP2
Cathepsin stage 2 Free energy ranking 8brdd Pose prediction: DP 5, energy prediction: EP2
VEGFR2 Scoring rtv8m Pose prediction: DP 5, energy prediction: EP1
JAK2 SC Scoring 20zdx Pose prediction: DP 2, energy prediction: EP2
p38-a Scoring msyrx Pose prediction: DP 5, energy prediction: EP2
JAK?2 SC3 Scoring abkw3 Pose prediction: DP 5, energy prediction: EP1
JAK2 SC3 Free energy ranking 4uSey Pose prediction: DP 2, energy prediction: EP2
TIE2S Scoring uuihe Pose prediction: DP 3, energy prediction: EP1
TIE2 Free energy ranking 5g8ed Pose prediction: DP 2, energy prediction: EP2
ABL1S Scoring rdn3k Pose prediction: DP 6, energy prediction: EP2
Active/inactive classification

VEGFR2 Scoring rtv8m Pose prediction: DP 5, energy prediction: EP1
JAK2 SC Scoring pm8re Pose prediction: DP 5, energy prediction: EP2
p38-a Scoring ZWj2r Pose prediction: DP 3, energy prediction: EP2
JAK2 SC3 Scoring yqoad Pose prediction: DP 3, energy prediction: EP1
JAK2 SC33 Free energy ranking 70j6z Pose prediction: DP 3, energy prediction: EP1
TIE2 Scoring uuihe Pose prediction: DP 3, energy prediction: EP1
TIE2S Free energy ranking vwbp8 Pose prediction: DP 3, energy prediction: EP1
ABL1 Scoring cdxt7 Pose prediction: DP 6, energy prediction: EP1
Affinity rankings for cocrystalized ligands

Cathepsin stage 1 Scoring 04kya Pose prediction: DP 5, energy prediction: EP2
Cathepsin stage 17 Free energy ranking fomca Pose prediction: DP 5, energy prediction: EP2
Cathepsin stage 2 Scoring 6jekk Pose prediction: DP 3, energy prediction: EP1
Cathepsin stage 2 Free energy ranking v4jv4 Pose prediction: DP 5, energy prediction: EP1

Our predictions were ranked 1st in the tasks marked by golden stars

DP docking protocol

0.76, respectively. When one is interested in active/inactive
classification by including compounds having Kds > 10 pM,
our model, receipt ID uuihe, is still ranked the first place
with MCC = 0.78. On the absolute free energy predictions,
the top results are still produced by our models. Specifically,
on Set 1, our predictor with receipt ID vwbp8 was ranked the
first place with MCC = 1.0. On Set 2, our model with receipt
ID 5g8ed attained the RMSE_ = 1.02 kcal/mol which is the
lowest among all submissions.

Subchallenge 5

The last subchallenge in the GC3 measures the accuracy of
models on the binding affinity change prediction upon the

mutation. ABL1 is the protein target for this subchallenge,
and there are two compounds and five mutants. The chal-
lenge is to predict the ranking of all mutants for each of two
ligands. Our models perform pretty decently for this task.
Our best submission has receipt ID rdn3k which achieves the
best Kendall’s tau (z = 0.52) for affinity ranking excluding
Kds > 10 pM.

Grand Challenge 2
The second Grand Challenge had 36 ligands with crystal
structures and binding data for 102 ligands. All these com-

pounds bind to the FXR target. The predictive tasks are the
same as those of Subchallenge 1 in GC3. Specifically, GC2
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Fig.2 Performance comparison of different submissions on affin-
ity ranking of 19 ligands having crystallographic poses in stage 2 of
subchallenge 1 of D3R GC3. All of our submissions are shown in the
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Fig.3 Performance comparison of different submissions on free energy prediction for free energy set 1 in stage 2 of D3R GC2. All of our sub-
missions are highlighted in the red color. Our best prediction having receipt ID 4rbjk achieved the top performance with Kendall’s 7 = 0.41

consisted of two stages. The first stage included (i) pose
prediction for 36 ligands; (ii) binding affinity ranking for 102
compounds; and (iii) absolute or relative free energy predic-
tions for two subsets of 18 and 15 ligands, respectively. The
second stage with released structures asked the same tasks
as in the previous one except for the pose prediction.

We employed the machine learning based scoring func-
tion to select the best poses for all prediction tasks, i.e.,
docking Protocol 1. The free energy values were predicted
by scheme EP1. Although our pose ranking power was not
impressive, the free energy predictions of our model per-
formed pretty well. Specifically, our submission with receipt

@ Springer

ID 5bvwx was ranked the second place in the free energy
set 1 of stage 1 with RMSE_ = 0.68 kcal/mol. In stage 2, our
models improved the accuracy of the energy prediction of
compounds in the aforementioned free energy set. In fact,
we obtained the first place in term of Kendall’s tau value
(7 = 0.41) with receipt ID 4rbjk. That was also the highest
Kendall’s tau value among all submissions in two stages for
the free energy set 1. Figure 3 plots the performance of all
submissions on the free energy set 1 in stage 2. Our submis-
sions are highlighted in the red color.
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Conclusion

In this work, we report the performances of our mathemati-
cal deep learning strategy on the binding affinity tasks in
D3R GC2 and across five subchallenges in D3R GC3. The
multiscale weighted colored graph and element specific per-
sistent homology representations are the main descriptors in
our models. We also employed a variety of machine learn-
ing algorithms including random forest and deep convolu-
tional neural networks for the energy predictions. Overall,
in GC2, our predictive models achieved the top place in free
energy prediction for free energy set 1 in stage 2. In GC3,
our submissions were ranked 1st in 10 out of 26 official
evaluation tasks. These results confirm the predictive power
and practical usage of our mathematical deep learning mod-
els in drug design and discovery. It is worthy to mention
that the docking accuracy is still a bottleneck of our affinity
prediction performance. We have tried a variety of dock-
ing protocols, namely align-close, align-target, close-dock,
cross-dock, constraint-IFD, and free-IFD, for pose selection
in GC3. However, none of them showed a dominant role in
binding affinity accuracy. In addition, when one excludes the
pose prediction error, Kendall’s tau of our model improves
from 0.21 to 0.54 on the affinity ranking of compounds in
Cathepsin S subchallenge. Therefore, the development of
a state-of-the-art docking protocol is the major task in our
roadmap to improve the accuracy of binding energy pre-
diction when crystallographic structures are not available.
Further improvement in the mathematical representations
of protein—ligand binding using differential geometry is also
under our consideration.
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