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Abstract
Advanced mathematics, such as multiscale weighted colored subgraph and element specific persistent homology, and machine 
learning including deep neural networks were integrated to construct mathematical deep learning models for pose and bind-
ing affinity prediction and ranking in the last two D3R Grand Challenges in computer-aided drug design and discovery. D3R 
Grand Challenge 2 focused on the pose prediction, binding affinity ranking and free energy prediction for Farnesoid X recep-
tor ligands. Our models obtained the top place in absolute free energy prediction for free energy set 1 in stage 2. The latest 
competition, D3R Grand Challenge 3 (GC3), is considered as the most difficult challenge so far. It has five subchallenges 
involving Cathepsin S and five other kinase targets, namely VEGFR2, JAK2, p38-α, TIE2, and ABL1. There is a total of 26 
official competitive tasks for GC3. Our predictions were ranked 1st in 10 out of these 26 tasks.
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Introduction

With the availability of increasingly powerful computers 
and fast accumulating molecular and biomolecular data-
sets, one can dream of a possible scenario that all the major 
tasks of drug design and discovery can be conducted on 
computers [1–3]. Virtual screening (VS) is one of the most 
important aspects of computer-aid drug design (CADD) [4]. 
VS involves two stages, namely, the generation of differ-
ent ligand conformations (i.e., poses) when a compound is 
docked to a target protein binding site, and the prediction 
of binding affinities. It is generally believed that the first 
stage can be well resolved by available techniques, such as 

molecular dynamics (MD), Monte Carlo (MC), and genetic 
algorithm (GA) [5–7]. However, The development of scor-
ing function (SF) for binding affinity prediction with high 
accuracy still remains a formidable challenge. In general, 
current SFs can be classified into four different categories, 
namely force-field-based ones, knowledge-based ones, 
empirical-based ones and machine learning-based ones 
[8]. Among them, force-field-based SFs, such as COM-
BINE [9] and MedusaScore [10], emphasize the physical 
description of protein and ligand interactions in the solvent 
environment, including van der Walls (vdW), electrostat-
ics, hydrogen bonding, solvation effect, etc. Typical Knowl-
edge-based SFs represent the binding affinity as the linear 
sum of pairwise statistical potentials between receptor and 
ligand atoms. KECSA [11], PMF [12], DrugScore [13], and 
IT-Score [14] are some of the well-known examples. The 
empirical-based SFs, in fact, make use of multiple linear 
regression to construct a linear combination from different 
physical-descriptor components such as vdW interaction, 
hydrophobic, hydrogen bonding, desolvation, dipole, etc. 
The renowned candidates for empirical-based SFs include 
X-Score [15], PLP [16], and ChemScore [17], etc.

Recently, machine learning including deep learning 
has emerged as a major technique in CADD. By using 
advanced machine learning algorithms, such as random for-
est (RF) and deep convolutional neural network, the machine 
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learning-based SFs can characterize the non-additive con-
tributions of functional groups in protein–ligand binding 
interactions [18]. Such a characterization can help machine 
learning-based SFs consistently maintain their accuracy in 
binding affinity predictions for a variety of protein–ligand 
complexes [19–23]. However, the performance of machine 
learning-based SFs depends crucially on the training data 
quality and statistic distribution. Additionally, it also 
depends on selected features that might or might not accu-
rately and completely describe the protein–ligand binding 
interactions. We assume that the intrinsic physics of inter-
est of complex biomolecules and interactions lies on low-
dimensional manifolds or subspaces embedded in a high-
dimensional data space. Based on this hypothesis, we have 
recently proposed several low-dimensional mathematical 
models that dramatically reduce the structural complexity 
of protein–ligand complexes and give rise to surprisingly 
accurate predictions of various bimolecular properties. For 
example, we proposed a multiscale weighted colored graph 
(MWCG) model to simplify protein structures and analyze 
their flexibility [24]. The essential idea of this method is to 
use the graph theory to represent the interactions between 
atoms in a molecule in an element-level collective manner. 
The MWCG approach has been shown to be over 40% more 
accurate than the Gaussian network model on a set of 364 
proteins [24].

In addition to graph theory simplification, we have also 
developed the topological abstraction of complex protein 
structures. In order to describe the topological changes such 
as the opening or closing of ion channels, the folding or 
unfolding of proteins, and the subtle change in binding site 
after the protein–ligand binding, we take the advantage of 
topological methods to study the connectivity of different 
molecular components in a space [25] which can represent 
important topological entities such as independent compo-
nents, rings and higher dimension faces. However, since the 
conventional topology and homology are metric or coordi-
nate free, they capture very little biomolecular geometric 
information and thus are unable to efficiently characterize 
biomolecular structures. Persistent homology (PH) is a new 
branch in algebraic topology. It embeds the geometric infor-
mation into topological invariants. By changing a filtration 
parameter such as the radius of atoms PH creates a family 
of topological spaces for a given set of atoms. As a result, 
the topological properties of a given biomolecule can be 
systematically analyzed and recorded in terms of topologi-
cal invariants, i.e., the so-called Betti numbers, over the fil-
tration process. The resulting barcodes monitor the “birth” 
and “death” of isolated components, circles, and cavities 
at different geometric scales. The persistent homology 
framework together with practical algorithms was intro-
duced by Edelsbrunner et al. [26] and formal mathematical 
theories were developed by Zomorodian and Carlsson [27]. 

A zeroth dimensional version was also introduced earlier 
under the name of size function by Frosini and Landi [28]. 
Primitive applications of PH to computational biology has 
been reported in the literature [29–31]. Recently, we have 
developed a variety of advanced PH models to analyze the 
topology–function relationship in protein folding and protein 
flexibility [32], quantitative predictions of curvature energies 
of fullerene isomers [33, 34], protein cavity detection [35], 
and the resolving ill-posed inverse problems in cryo-EM 
structure determination [36]. In 2015, we introduced some 
of the first combinations of PH and machine learning for 
protein structural classification [37]. Topological descrip-
tors were further integrated with a variety of deep learning 
algorithms to achieve state-of-the-art analysis and prediction 
of protein folding stability change upon mutation [38], drug 
toxicity [39], aqueous solubility [40], partition coefficient 
[40], binding affinity [21, 22], and the virtual screening of 
active ligands and decoys [23].

In this paper, we report the performance of our math-
ematical deep learning models on pose and binding affinity 
prediction and ranking in the last two D3R Grand Chal-
lenges, namely D3R Grand Challenge 2 (GC2) and D3R 
Grand Challenge 3 (GC3). The GC2 was initiated in 2016 
and consisted of two stages. The first stage asked partici-
pants to predict the crystallographic poses of 36 ligands for 
the target of farnesoid X receptor (FXR). In addition, there 
were affinity ranking task for all 102 compounds and abso-
lute free energy prediction for two designated subsets of 18 
and 15 small molecules. In the second stage, participants 
were asked again to submit the affinity ranking and free 
energy after the release of 36 crystal structures. In GC2, we 
employed our mathematical deep learning models to select 
the best poses from docking software generated poses for 
binding affinity ranking and prediction tasks. Our models 
achieved the top place in affinity ranking for the free energy 
set 1 in stage 2.

In addition, our results for the latest Grand Challenge, 
i.e., GC3, are presented in this paper. The third Grand 
Challenge, took place in 2017, is the largest in terms of the 
number of competitive tasks since 2015. It consisted of five 
subchallenges. Subchallenge 1 was about Cathepsin S. It 
comprised two stages with tasks the same as ones in the 
GC2. There were 24 ligands with crystal structures and their 
binding energies spread three orders of magnitude for 136 
compounds. Subchallenge 2 focused on kinase selectivity. 
It has three kinase targets, namely VEGFR2, JAK2, and 
p38-� with their numbers of compounds being 85, 89, and 
72, respectively. This subchallenge only asked participants 
to submit affinity ranking for each kinase dataset. Subchal-
lenge 3 involved the binding affinity ranking and free energy 
prediction of target JAK2. It consisted of a relatively small 
dataset with 17 ligands having similar chemical structures. 
In subchallenge 4, there were 18 congeneric ligands with Kd 
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values for kinase TIE2. In addition to asking for the affin-
ity ranking of 18 compounds, subchallenge 4 asked partici-
pants to predict the free energies of two subsets with 4 and 
6 compounds, respectively. The last subchallenge in GC3 
concerned the binding affinity ranking of different mutants 
on protein ABL1. There were two compounds and five dif-
ferent mutation sites. Overall, our models performed well in 
GC3. Specifically, we obtained the first place in 10 out of a 
total of 26 predictive tasks.

Methods

In this section, we briefly describe our computation methods 
and algorithms developed for GC2 and GC3.

Ligand preparation

All ligands in Grand Challenges are provided in the 
SMILES string format. They are converted to the optimal 
3D structures and protonated at pH 7.5 using ligprep tool 
in Schrödinger software [41]. Before employing Autodock 
Vina [42] for docking, Gasteiger partial charges were added 
to these ligands via MGLTools v1.5.6 [43].

Protein structures selection and preparation

Except for subchallenge 1, all the receptor structures in GC3 
are supplied in the protein sequence format. We utilized the 
homology modeling task in Maestro of Schrödinger soft-
ware [44] to obtain 3D structure predictions. In addition, 
we make use of the crystal structures available in the Protein 
Data Bank (PDB) for each protein family (see the support-
ing information for a complete list). These collected pro-
tein structures were prepared using the protein preparation 
wizard provided in Schrödinger package [41] with default 
parameters except enabling the fillsidechains option.

Docking protocols

We use a number of docking protocols in GC2 and GC3. 
Among, a machine learning protocol was developed in our 
own lab. Motivated by earlier work [45], we carried out four 
different docking strategies, namely align-close, align-target, 
close-dock and cross-dock, to attain the best poses for bind-
ing affinity predictions. We also used induced fit docking 
(IFD) and unrestricted IFD in our pose predictions.

Protocol 1: machine learning based docking

We developed a machine learning-based scoring function to 
select the poses generated by GOLD [46], GLIDE [47], and 
Autodock Vina [42]. Given a ligand target, we at first formed 
a training data of complexes taken from the PDB. The cri-
teria for such selections are based on the similarity coeffi-
cient, measured by fingerprint 2 (FP2) in Open Babel v2.3.1 
[48], of ligand in the complex. Then, we utilized docking 
software packages such as GOLD, GLIDE, and Autodock 
Vina to re-dock ligands to protein in those selected com-
plexes. A variety of docking poses was distributed into 10 
different RMSD bins as follows: [0,1], (1,2], ..., (9,10] Å. In 
each bin, we clustered decoys into 10 clusters based on their 
internal similarities. The docking poses having the smallest 
free energy were selected as the candidate for their clusters. 
As a result, one may end up with a total of 100 poses for 
each given complex. We employed all these decoy poses 
to form a training set with labels defined by their RMSDs. 
Our topological based deep learning models were utilized to 
learn this training set. Finally, we employed this established 
scoring function to re-rank the poses of the target ligand 
produced by docking software packages.

Protocol 2: align‑close

In the align-close method, we select ligand available in the 
PDB that has the highest chemical similarity to the target 
ligand. Here, the similarity score was measured by finger-
print 2 (FP2) in Open Babel v2.3.1 [48]. It is also noted that 
all the processed structures in this procedure were conducted 
in the Schrödinger suite 2017-4 [49]. A ligand was aligned to 
its similar candidates by the flexible ligand alignment task in 
Schrödinger’s Maestro [50, 51]. Then, the resulting aligned 
ligand is minimized to the co-crystal structure of the most 
similar ligand by Prime in Schödinger package [49, 52, 53].

Protocol 3: align‑target

In the align-target protocol, the homology modeling tool in 
Maestro was used to construct protein 3D structures from 
given sequences, and the aligned ligands obtained from the 
align-close procedure are minimized with respect to cor-
responding receptors.

Protocol 4: close‑dock

The fourth docking strategy is called as close-dock. Based on 
previous docking methods, one can identify the most similar 
structure in the PDB to a given D3R ligand. This procedure 
also gives us the corresponding co-crystal structure, i.e., the 
so-called closet receptor. In the close-dock approach, Autodock 
Vina is used to docki the target ligand to its corresponding 
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closet receptor. The best pose is selected based on Autodock 
Vina’s energy scoring.

Protocol 5: cross‑dock

The next approach in our docking methods is named cross-
dock. This is basically a cross docking method in which the 
close receptors are the co-crystal structures of the ligands 
having the similar chemical characteristics to the interested 
ligand. In the cross-docking procedure, we use Autodock 
Vina to dock the D3R ligands to their close receptors. Those 
poses that have the smallest binding energies are selected as 
the best poses.

Protocol 6: constraint‑IFD

Similarly to the align-target protocol, we used the homology 
modeling module in Maestro to generate 3D structure from a 
given sequence. For the docking procedure, we employed the 
induced fit docking (IFD) [54–56] in Maestro with restrict-
ing docking poses to the closet ligands with a tolerance of 
3 Å. The best pose was selected due to the ranking from IFD.

Protocol 7: free‑IFD

This protocol is exactly the same protocol as Constraint-
IFD except for no constraint during the run of induced-fit 
docking.

Multiscale weighted colored subgraph 
representation

Weighted colored subgraph (WCS) method describes inter-
molecular and intramolecular interactions as pairwise atomic 
correlations [24]. To apply the WCS for analyzing the pro-
tein–ligand interactions, we convert all the atoms and their 
pairwise interactions at the binding site of a protein–ligand 
complex with a cutoff distance d into a colored subgraph 
G(Vd,E) with vertices Vd and edge E. As such, the ith atom 
is labeled by its position �i , element type �i and co-crystal 
type �i . Thus, we can express vertices Vd as

where  = {C, N, O, S, P, F, Cl, Br, I} contains all the 
commonly occurring element types in a complex, and 
 = {0, 1} a bipartite graph label that if the ith atom 
belongs to protein then �i = 0 , otherwise �i = 1 . Hydrogen 
element is omitted since it does not present in the crystal 
structures of most protein–ligand complexes. To describe 
pairwise interactions between the protein and the ligand, 

(1)

Vd =
{
(�i, 𝛼i, 𝛽i)

|||�i ∈ ℝ
3, 𝛼i ∈ , 𝛽i ∈  ,

‖‖‖�i − �j
‖‖‖

< d for some 1 ≤ j ≤ N such that 𝛽i + 𝛽j = 1, i = 1, 2,… ,N
}
,

we define an ordered colored set  = {(�, 0)(��, 1)} . 
Here, � ∈ {C, N, O, S} is a heavy atom in the protein, and 
�� ∈ {C, N, O, S, P, F, Cl, Br, I} is a heavy atom in the 
ligand. With that setting, it is trivial to verify that set  
has a total 36 partitions or subgraphs. For example, a parti-
tion 1 = {(C, 0)(O, 1)} contains all bipartite pairs CO in 
the complex with the first atom is a carbon in the protein 
and the second atom is an oxygen in the ligand. For each set 
of element pairs k , k = 1, 2,… , 36 , a set of vertices Vk

 is 
a subset of Vd containing all atoms that belong to a pair in 
k . Therefore, the edges in such WCS describing potential 
pairwise atomic interactions are defined by

where ‖‖‖�i − �j
‖‖‖ defines a Euclidean distance between ith and 

jth atoms, � indicates the type of radial basic functions (e.g., 
� = L for Lorentz kernel, � = E for exponential kernel), � is 
a scale distance factor between two atoms, and � is a param-
eter of power in the kernel (i.e., � = � when � = E , � = � 
when � = L ). The kernel Φ�

�,�
 characterizes a pairwise cor-

relation satisfying the following conditions

Commonly used radial basis functions include general-
ized exponential functions

and generalized Lorentz functions

where ri and rj are, respectively, the van der Waals radius of 
the ith and jth atoms.

In the graph theory or network analysis, centrality is 
widely used to identify the most important nodes [57]. 
There are various types of centrality such as degree cen-
trality [58], closeness centrality [59], harmonic centrality 
[60], etc. Specifically, while the degree centrality is meas-
ured as a number of edges upon a node, closeness and 
harmonic centralities depend on the length of edges and 
are defined as 1∕

∑
j

����i − �j
��� and 

∑
j 1∕

����i − �j
���, respec-

tively. Our centrality used in the current work is an 

(2)
E
�,�,�

k
=
{
Φ�

�,�

(‖‖‖�i − �j
‖‖‖
)|||
(
(�i, �i)(�j, �j)

)
∈ k; i, j = 1, 2,… ,N

}
,

(3)Φ�

�,�

(‖‖‖�i − �j
‖‖‖
)
= 1 as

‖‖‖�i − �j
‖‖‖ → 0,

(4)Φ�

�,�

(‖‖‖�i − �j
‖‖‖
)
= 0 as

‖‖‖�i − �j
‖‖‖ → ∞.

(5)ΦE
𝜏,𝜅

= e−(‖�i−�j‖∕𝜏(ri+rj))
𝜅

, 𝜅 > 0,

(6)

ΦL
𝜏,𝜈

(‖‖‖�i − �j
‖‖‖
)
=

1

1 +
(‖‖‖�i − �j

‖‖‖∕𝜏(ri + rj)
)𝜈 , 𝜈 > 0,
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extension of the harmonic formulation by our correlation 
functions

where wij is a weight function assigned to each atomic pair. 
In the current work, we choose wij = 1 if �i + �j = 1, other-
wise wij = 0, for all calculations to reduce dimension of the 
parameter space. To describe a centrality for the whole graph 
G(Vk

,E
�,�,�

k
), we take into account a summation of the 

node’s centralities

Since we have 36 choices of the set of weighted colored 
edges k, we can obtain corresponding 36 bipartite subgraph 
centralities �k,�,�,� . By varying kernel parameters (�, �, �), 
one can achieve multiscale centralities for multiscale 
weighted colored subgraph (MWCS) [24]. For a two-scale 
WCS, we obtain a total of 72 descriptors for a protein–ligand 
complex.

Algebraic topology based molecular signature

The geometry of biomolecular systems together with the 
complex interaction patterns allows us to build topological 
spaces upon the systems which facilitate powerful topologi-
cal analysis. The topological analysis provides us a descrip-
tion of the molecular system that captures a collection of 
key aspects of the system including the multiscale descrip-
tion of geometry, the characterization of interaction network 
in an arbitrary dimension, and the important physical and 
chemical information, which ensures the success of the 
downstream machine learning modeling. In this section, we 
first briefly describe the background of persistent homol-
ogy. Then, we demonstrate how to apply it to biomolecular 
systems to obtain a rich but concise description.

Persistent homology

We describe the theory of persistent homology in the frame-
work of simplicial homology in a geometric sense where 
topological spaces are represented by collections of points, 
edges, triangles, and their higher-dimensional counterparts. 
A k-simplex is a collection of (k + 1) affinely independent 
points in ℝn with n ≥ k. If the vertices of a simplex is a sub-
set of the vertices of another simplex, it is called a face of the 
other simplex. Simplices of various dimensions are building 

(7)

�
k,�,�,�

i
=

|Vk |∑

j=1

wijΦ
�
�,�

(‖‖‖�i − �j
‖‖‖
)
, ((�i, �i)(�j, �j)) ∈ k,

∀i = 1, 2,… , |Vk
|,

(8)�k,�,�,� =

|Vk |∑

j=1

�
k,�,�,�

j

blocks of a simplicial complex which is a finite collection 
of simplices satisfying two conditions: (1) the faces of any 
simplex in the complex are also in the complex and (2) the 
intersection of two simplices in the complex is either empty 
or a common face of the two. A simplicial complex can be 
used to discretely represent or approximate a topological 
space. Given a simplicial complex X, a k-chain is a formal 
sum of all the k-simplices in X which is defined as

where �i is a k-simplex in X and ai is a coefficient in a coef-
ficient set of choice such as a finite field ℤp with a prime 
p. The set of all k-chains with the addition operator in the 
coefficient group forms a group called the kth chain group 
denoted k(X). The chain groups of different dimensions are 
connected by a collection of homeomorphisms called the 
boundary operators forming a chain complex,

It suffices to define the boundary operator on simplices, and 
then, such a definition can be extended to general chains.

where v0,… , vk are vertices of the k-simplex � and 
[v0,… , v̂i,… , vk] means the codim-1 face of � be omitting 
the vertex vi. The boundary operator has an important prop-
erty that

With the boundary operators, we can define boundary 
groups and cycle groups which are subgroups of chain 
groups. The kth boundary group is defined to be the image 
of �k+1 denoted k(X) = Im(�k+1). The kth cycle group is 
defined to be the kernel of �k denoted k(X) = Ker(�k). It 
can be seen that k(X) ⊆ k(X) following the property in 
Eq. (12). Then, the kth homology group is defined to be the 
quotient group

Intuitively, the kth homology group contains elements asso-
ciated to k dimensional holes which are not boundaries of 
(k + 1)-chains to characterize the topology.

The theory described above computes the homology 
of various dimensions of a topological space to obtain a 
multidimensional characterization of the space. However, 
this is not enough for the cases where the objects are also 
multiscale. Therefore, instead of only computing homology 
for a fixed topological space, we can build a sequence of 

(9)c =
∑

i

ai�i,

(10)
…

�i+1
����������������������→ i(X)

�i
�������������→ i−1(X)

�i−1
����������������������→ …

�2
���������������→ 1(X)

�1
���������������→ 0(X)

�0
���������������→ 0.

(11)𝜕k(𝜎) =

k∑

i=0

(−1)i[v0,… , v̂i,… , vk],

(12)�k◦�k+1 = 0.

(13)k(X) = k(X)∕k(X).
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subspaces of the topological space and track how homol-
ogy evolves along this changing sequence. This sequence is 
called a filtration,

The filtration naturally induces an inclusion map connecting 
the homology groups of a certain dimension,

Then for a homology generator � ∈ k(Xi), it is said to be 
born at i if it is not an image of the inclusion map from 
k(Xi−1) and it is said to die at i + 1 if it mapped to the empty 
set or another homology generator that is born before i by 
the inclusion map from k(Xi). Persistent homology tracks 
how these homology generators appear and disappear along 
the course of the filtration resulting in a robust multiscale 
description of the original topological space. The birth and 
death of each generator can be represented by a half-open 
interval starting at the birth time and stopping at the death 
time. There are several visualization methods for collections 
of such intervals such as barcodes and persistence diagrams.

Topological description of molecular systems

To describe molecular systems using persistent homology, 
the atoms can be regarded as vertices and different construc-
tions of filtrations can reveal different topological aspects of 
the system.

To describe a complex protein geometry, an efficient fil-
tration using alpha complex [61] can be employed. To build 
an alpha filtration, a Voronoi diagram is first generated for 
the collection of points representing the atoms in the system. 
The final frame of the topological spaces at the end of the 
course of filtration is constructed by including a k-simplex 
if there is a nonempty intersection of the (k + 1) Voronoi 
cells associated to its (k + 1) vertices. The filtration of the 
space can be constructed by associating a subcomplex to 
each value of a filtration parameter � . The subcomplex asso-
ciated to � is defined as

where V(vi) is the Voronoi cell of vi and B�(vi) is an � ball 
centered at vi.

A more abstract construction of filtration via the Vieto-
ris–Rips complex can be used to address other properties of 
the system such as protein–ligand interactions. Given a set 
of points with a pairwise distance (not necessarily satisfying 
triangular inequality), the subcomplex associated to a filtra-
tion parameter � is defined to be

(14)� = X0 ⊆ X1 ⊆ ⋯ ⊆ Xm−1 ⊆ Xm = X.

(15)k(X0) → k(X1) → … → k(Xm−1) → k(Xm).

(16)
Xalpha(�) =

{
� ∈ X||� = [v0,… , vk], ∩i

(
V(vi) ∩ B�(vi)

)
≠ �

}

(17)
XRips(�) = {� ∈ X|� = [v0,… , vk], d(vi, vj) ≤ 2� for 0 ≤ i, j ≤ k},

where d is the predefined distance function and X is the col-
lection of all possible simplices. Tweaking the distance func-
tion can help emphasize on different properties of the sys-
tem. For example, in a protein–ligand complex, setting the 
distance between an atom from the protein and an atom from 
the ligand to the Euclidean distance while setting the dis-
tance between atoms from the same molecule to infinity will 
emphasize the interaction pattern between two molecules 
[21]. Also, we can assign values between atoms according 
to a specific distance of interest by using kernel functions as 
distances [21]. We have proposed element specific persistent 
homology, which is a family of persistent homology groups 
defined on various topological subspaces, to encode physical 
interactions into various topological invariants [21, 38]. By 
computing persistent homology on the subsets of the atoms, 
we can extract different chemical information. For example, 
the element specific persistent homology computation on 
the collection of all carbon atoms describes the hydropho-
bic network or the structural basis of the molecule while 
computation on the nitrogen and oxygen atoms characterizes 
the hydrophilic networks [21]. For the characterization of 
small molecules, we can use a multilevel element specific 
persistent homology to both describe the covalent bonds and 
noncovalent interactions in the molecule [23].

The element specific persistent homology results (bar-
codes) can be paired with machine learning models in sev-
eral ways. For example, Wasserstein metric can be applied 
to measure similarities among the barcodes of different 
proteins, which can be used with methods such as nearest 
neighbors and manifold learning [23]. The element specific 
persistent homology barcodes can also be turned into fixed 
length feature vectors by discretizing the range of barcode 
and counting the persistence, birth, and death events that fall 
in each subinterval. The statistics of element specific persis-
tent homology barcodes can also be used for featurization 
[23]. These fixed length features can be used with powerful 
machine learning methods such as the ensemble of trees and 
deep learning neural networks [21, 22]. The barcodes can 
also be transformed to representations similar to images and 
used in a 1-dimensional or a 2-dimensional convolutional 
neural networks [22, 23].

Machine learning algorithms

The machine learning methods used in our prediction fall 
into two categories, ensemble of trees and deep learning. 
A schematic illustration of our mathematical deep learning 
modeling is given in Fig. 1.

Ensemble of trees

The basic building block of this type of methods is a deci-
sion tree which identifies key features to make decisions 
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at the nodes of the tree. Due to its simple structure, it is 
usually considered as a weak learner especially in the case 
of highly nonlinear problems or applications with high 
dimensional features. Ensemble of trees methods build 
models consisting of a collection of decision trees with the 
assumption that grouping the weak learners can improve 
the learning capability. We mainly used random forest and 
gradient boosting trees for our prediction. Random forest 
builds uncorrelated decision trees with each tree being 
trained on a resampling of the original training set (boot-
strap). On the contrary, gradient boosting trees add one 
tree to the collection at a time along the direction of the 
steepest descent of the loss of the current collection. As 
these two models attempt to reduce error in two different 
ways, they behave differently in the bias-variance trade-
off where the random forest is better at lowering bias and 
gradient boosting trees focus more on reducing variance. 
Therefore, a higher level bagging of models of different 
kinds can further improve the performance. The ensemble 
learning methods are also robust and overfitting can be 
reduced by learning partial problems. For example, each 
tree can be trained with a random subset of the training 
data and a subset of the features and the model complex-
ity can be constrained by setting maximum tree depth. 
Both our graph theory based models [20, 62] and algebraic 
topology based models [21, 23] achieve top-class perfor-
mance with the ensemble of trees methods.

Deep learning

When the feature is complex or there is some underly-
ing dimension in the feature space, deep learning models 
can further imporve the performance of the predictor. For 

example, a spatial dimension associated to the filtration 
parameter lies in the persistent homology representation 
of protein–ligand systems. This enables the usage of the 
powerful convolutional neural networks (CNNs) which 
have been extremely successful in the field of computer 
vision and image analysis. The neural networks we used 
in the prediction are in the category of feedforward net-
works where the signal from the previous layer undergoes 
a linear transformation to the current layer, then the cur-
rent layer applies a nonlinear activation function and sends 
the signal to the next layer. Classical deep neural networks 
are constructed by stacking fully connected layers where 
every pair of neurons in two adjacent layers are connected. 
Different rules of neuron connections and parameter shar-
ing have resulted in a number of powerful deep learning 
models that flourish in various application domains. CNNs 
take advantage of the feature structure where there are 
spatial dimensions and only allow local connections with 
the parameters shared along the spatial dimensions which 
significantly lowers the dimension of the parameter space. 
Also, the flexibility of neural networks allows learning 
different but related tasks together by sharing layers, i.e., 
a type of multi-task learning. We applied convolutional 
neural networks and multi-task learning in our predictions 
which further advanced the capability of our models [22, 
23].

To make use of both MWCG and algebraic topology fea-
tures, we carried out two different schemes for the energy 
prediction. In the first approach, we used random forest to 
learn the biomolecular structure represented by MWCG, 
and used CNNs with topological features. The final predic-
tions for this method was the consensus results between the 
energy values predicted by two aforementioned machine 

Fig. 1   Illustration of mathemati-
cal learning prediction using 
deep learning and/or ensemble 
of trees
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learning strategies. We name this method EP1. In the sec-
ond approach, MWCG and topological features were mixed 
and fed into the CNNs model. The energy value predicted 
by these deep learning networks was submitted. We name 
this model EP2. We employed available PDBbind data sets 
(http://pdbbi​nd.org.cn) as the training data.

Results and discussion

Here, we provide the results of our mathematical deep learn-
ing models in two recent Grand Challenges, i.e., GC2 and 
GC3.

Grand Challenge 3

There are five subchallenges in GC3 involving a total of 12 
affinity prediction submissions and 2 pose prediction chal-
lenges, resulting in 26 different competitive tasks. Our sub-
missions were ranked 1st in 10 of these 26 tasks as shown 
in Table 1 for additional information. While we employed 
align-close, align-target, close-dock and cross-dock proto-
cols for pose generations in subchallenges 1–4, we applied 
constraint-IFD and free-IFD procedures for kinase mutants 
in subchallenge 5. The combination of MWCS and algebraic 
topological descriptors was utilized as the features in the 
random forest and deep learning methods. Also, we were 
interested in seeing how the docking features can enhance 
our mathematical descriptors by including the Autodock 
Vina scoring terms in some submissions. In fact, these 
additional docking features did not improve our available 
models. The following is the detailed discussion of our per-
formance for each subchallenge task.

Subchallenge 1

The protein target for this challenge is Cathepsin S. There 
are 24 ligand–protein co-crystal structures and 136 ligands 
having binding data (IC50s). There are two stages in this 
subchallenge. Stage 1 asks participants to submit pose pre-
dictions, affinity rankings, and energy predictions. Stage 2 
asks similar tasks except for pose predictions. Co-crystal 
structures were released for the second stage.

In order to examine the performances of scoring func-
tions on the binding affinity when the ligand pose errors do 
not contribute to the final outcome, D3R organizers evalu-
ated the accuracy of all submitted methods on 19 ligands 
having crystallographic poses. With this setting, our models 
attained the first places for the following tasks: free energy 
set in stage 1, scoring and free energy set in stage 2. It is 
worth mentioning that only stage 2 has the experimental 
structures. Stage 1 is still affected by the pose prediction 
errors. That explains why our predictors performed decently 

for scoring task in stage 1 with the best Kendall’s � = 0.23, 
but they achieved a state-of-the-art result for the same task in 
stage 2 with the best Kendall’s � = 0.54 (receipt ID 6jekk). 
Figure 2 depicts the ranking of all participants on the affin-
ity ranking of 19 ligands in stage 2. The best free energy 
predictions on the ligands with experiment structures were 
also attained by our predictions. Particularly, in stage 1, our 
prediction with receipt ID fomca obtained RMSEc = 0.33 
kcal/mol. In stage 2, we accomplished RMSEc = 0.29 kcal/
mol with receipt ID v4jv4. Those results support that our 
mathematical deep learning models indeed gain a better 
performance when no pose prediction errors are involved.

Subchallenge 2

In this subchallenge, there are 3 kinase families, namely 
VEGFR2, JAK2, and p38-α with number of ligands being 
85, 89 and 72, respectively. The challenge is to rank affinities 
of all ligands in each kinase family. Our predictors do not 
perform well on these datasets. Our best result is the second 
place on the active/inactive classification of VERGFR2 set. 
Our best Matthews correlation coefficient (MCC) on such 
task is reported to be 0.48 from receipt ID rtv8m.

Subchallenge 3

The third subchallenge involves the kinase JAK2 which 
already appeared in the second one. However, this challenge 
only comprises 17 compounds with small changes in chemi-
cal structure. Subchallenge 3 consists of two tasks, namely 
affinity ranking and relative binding affinity predictions. 
We obtained the first place on the binding energy prediction 
with the centered RMSE as low as RMSEc = 1.06 kcal/mol 
(receipt ID 4u5ey). On the affinity ranking, the performance 
of our models is unremarkable. However, we still manage to 
sit at the second place on the active/inactive classification 
with Mathew correlation coefficient = 0.23 with receipt ID 
yqoad.

Subchallenge 4

Similar to the third subchallenge, the fourth one consists 
of 18 ligands with small changes in chemical structures. 
However, the new protein family, TIE2, is considered. The 
tasks are still to give an affinity ranking for 18 ligands and 
absolute or relative binding energies for two subsets of 4 and 
6 compounds. It is interesting to see that our model perform 
extremely well for the TIE2 dataset. We achieve the first 
place for all the evaluation metrics taken into account for this 
subchallenge. Specifically, for the affinity ranking exclud-
ing Kds > 10 μM, our model, receipt ID uuihe, produces 
the best Kendall’s � and Spearman correlation coefficient 
among all of the participants with values being 0.57 and 

http://pdbbind.org.cn
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0.76, respectively. When one is interested in active/inactive 
classification by including compounds having Kds > 10 μM, 
our model, receipt ID uuihe, is still ranked the first place 
with MCC = 0.78. On the absolute free energy predictions, 
the top results are still produced by our models. Specifically, 
on Set 1, our predictor with receipt ID vwbp8 was ranked the 
first place with MCC = 1.0. On Set 2, our model with receipt 
ID 5g8ed attained the RMSEc = 1.02 kcal/mol which is the 
lowest among all submissions.

Subchallenge 5

The last subchallenge in the GC3 measures the accuracy of 
models on the binding affinity change prediction upon the 

mutation. ABL1 is the protein target for this subchallenge, 
and there are two compounds and five mutants. The chal-
lenge is to predict the ranking of all mutants for each of two 
ligands. Our models perform pretty decently for this task. 
Our best submission has receipt ID rdn3k which achieves the 
best Kendall’s tau ( � = 0.52 ) for affinity ranking excluding 
Kds > 10 μM.

Grand Challenge 2

The second Grand Challenge had 36 ligands with crystal 
structures and binding data for 102 ligands. All these com-
pounds bind to the FXR target. The predictive tasks are the 
same as those of Subchallenge 1 in GC3. Specifically, GC2 

Table 1   Overview of all 26 predictive tasks in D3R GC3

Our predictions were ranked 1st in the tasks marked by golden stars
DP docking protocol

Dataset Task Best submission ID Method description

Pose prediction
Cathepsin stage 1A Pose prediction 5addj DP 3
Cathepsin stage 1B Pose prediction Not participate
Affinity rankings excluding Kds > 10 μM
Cathepsin stage 1 Scoring m7oq4 Pose prediction: DP 5, energy prediction: EP1
Cathepsin stage 1 Free energy ranking 4ekn8 Pose prediction: DP 5, energy prediction: EP1
Cathepsin stage 2 Scoring yf20t Pose prediction: DP 5, energy prediction: EP2
Cathepsin stage 2 Free energy ranking 8br4d Pose prediction: DP 5, energy prediction: EP2
VEGFR2 Scoring rtv8m Pose prediction: DP 5, energy prediction: EP1
JAK2 SC Scoring 2ozdx Pose prediction: DP 2, energy prediction: EP2
p38-α Scoring msyrx Pose prediction: DP 5, energy prediction: EP2
JAK2 SC3 Scoring a6kw3 Pose prediction: DP 5, energy prediction: EP1

JAK2 SC3 Free energy ranking 4u5ey Pose prediction: DP 2, energy prediction: EP2

TIE2 Scoring uuihe Pose prediction: DP 3, energy prediction: EP1

TIE2 Free energy ranking 5g8ed Pose prediction: DP 2, energy prediction: EP2

ABL1 Scoring rdn3k Pose prediction: DP 6, energy prediction: EP2

Active/inactive classification
VEGFR2 Scoring rtv8m Pose prediction: DP 5, energy prediction: EP1
JAK2 SC Scoring pm8re Pose prediction: DP 5, energy prediction: EP2
p38-� Scoring zwj2r Pose prediction: DP 3, energy prediction: EP2
JAK2 SC3 Scoring yqoad Pose prediction: DP 3, energy prediction: EP1

JAK2 SC3 Free energy ranking 70j6z Pose prediction: DP 3, energy prediction: EP1

TIE2 Scoring uuihe Pose prediction: DP 3, energy prediction: EP1

TIE2 Free energy ranking vwbp8 Pose prediction: DP 3, energy prediction: EP1

ABL1 Scoring c4xt7 Pose prediction: DP 6, energy prediction: EP1
Affinity rankings for cocrystalized ligands
Cathepsin stage 1 Scoring 04kya Pose prediction: DP 5, energy prediction: EP2

Cathepsin stage 1 Free energy ranking fomca Pose prediction: DP 5, energy prediction: EP2

Cathepsin stage 2 Scoring 6jekk Pose prediction: DP 3, energy prediction: EP1

Cathepsin stage 2 Free energy ranking v4jv4 Pose prediction: DP 5, energy prediction: EP1
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consisted of two stages. The first stage included (i) pose 
prediction for 36 ligands; (ii) binding affinity ranking for 102 
compounds; and (iii) absolute or relative free energy predic-
tions for two subsets of 18 and 15 ligands, respectively. The 
second stage with released structures asked the same tasks 
as in the previous one except for the pose prediction.

We employed the machine learning based scoring func-
tion to select the best poses for all prediction tasks, i.e., 
docking Protocol 1. The free energy values were predicted 
by scheme EP1. Although our pose ranking power was not 
impressive, the free energy predictions of our model per-
formed pretty well. Specifically, our submission with receipt 

ID 5bvwx was ranked the second place in the free energy 
set 1 of stage 1 with RMSEc = 0.68 kcal/mol. In stage 2, our 
models improved the accuracy of the energy prediction of 
compounds in the aforementioned free energy set. In fact, 
we obtained the first place in term of Kendall’s tau value 
( � = 0.41 ) with receipt ID 4rbjk. That was also the highest 
Kendall’s tau value among all submissions in two stages for 
the free energy set 1. Figure 3 plots the performance of all 
submissions on the free energy set 1 in stage 2. Our submis-
sions are highlighted in the red color.

Fig. 2   Performance comparison of different submissions on affin-
ity ranking of 19 ligands having crystallographic poses in stage 2 of 
subchallenge 1 of D3R GC3. All of our submissions are shown in the 

red color. Our best prediction having receipt ID 6jekk achieved the 
top performance with Kendall’s � = 0.54

Fig. 3   Performance comparison of different submissions on free energy prediction for free energy set 1 in stage 2 of D3R GC2. All of our sub-
missions are highlighted in the red color. Our best prediction having receipt ID 4rbjk achieved the top performance with Kendall’s � = 0.41



81Journal of Computer-Aided Molecular Design (2019) 33:71–82	

1 3

Conclusion

In this work, we report the performances of our mathemati-
cal deep learning strategy on the binding affinity tasks in 
D3R GC2 and across five subchallenges in D3R GC3. The 
multiscale weighted colored graph and element specific per-
sistent homology representations are the main descriptors in 
our models. We also employed a variety of machine learn-
ing algorithms including random forest and deep convolu-
tional neural networks for the energy predictions. Overall, 
in GC2, our predictive models achieved the top place in free 
energy prediction for free energy set 1 in stage 2. In GC3, 
our submissions were ranked 1st in 10 out of 26 official 
evaluation tasks. These results confirm the predictive power 
and practical usage of our mathematical deep learning mod-
els in drug design and discovery. It is worthy to mention 
that the docking accuracy is still a bottleneck of our affinity 
prediction performance. We have tried a variety of dock-
ing protocols, namely align-close, align-target, close-dock, 
cross-dock, constraint-IFD, and free-IFD, for pose selection 
in GC3. However, none of them showed a dominant role in 
binding affinity accuracy. In addition, when one excludes the 
pose prediction error, Kendall’s tau of our model improves 
from 0.21 to 0.54 on the affinity ranking of compounds in 
Cathepsin S subchallenge. Therefore, the development of 
a state-of-the-art docking protocol is the major task in our 
roadmap to improve the accuracy of binding energy pre-
diction when crystallographic structures are not available. 
Further improvement in the mathematical representations 
of protein–ligand binding using differential geometry is also 
under our consideration.
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