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Abstract: Restricted latent class models (RLCMs) have recently gained prominence in educa-

tional assessment, psychiatric evaluation, and medical diagnosis. In contrast to conventional

latent class models, the restrictions on RLCM parameters are imposed using a design matrix,

in order to respect practitioners’ scientific assumptions. The design matrix, called the Q-matrix

in the cognitive diagnosis literature, is usually constructed by practitioners and domain experts;

however, it remains subjective and can be misspecified. To address this problem, researchers

have proposed estimating the Q-matrix from sample data. However, the fundamental learn-

ability of the Q-matrix and the model parameters remains underexplored. As a result, studies

often impose stronger than needed (or even impractical) conditions. Here, we propose sufficient

and necessary conditions for the joint identifiability of the Q-matrix and the RLCM parameters

under different types of RLCMs. The proposed identifiability conditions depend only on the

design matrix, and are easy to verify in practice.
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1. Introduction

Latent class models are widely used as statistical tools in social and biological

sciences to model the relationship between a set of observed responses and a set of

discrete latent attributes of interest. This study focuses on a family of restricted latent

class models (RLCMs), which play a key role in, for example, cognitive diagnosis in

educational assessment (e.g., Junker and Sijtsma, 2001; Henson et al., 2009; Rupp

et al., 2010; de la Torre, 2011), psychiatric evaluation (Templin and Henson, 2006;

Jaeger et al., 2006; de la Torre et al., 2017), online testing and learning (Wang et al.,

2016; Zhang and Chang, 2016; Xu et al., 2016), and disease etiology diagnosis and

scientifically structured clustering of patients (Wu et al., 2017, 2018).

In contrast to conventional latent class models, the parameters of RLCMs are con-

strained using a design matrix, often called the Q-matrix in the cognitive diagnosis

literature (Rupp et al., 2010). The Q-matrix encodes practitioners’ understanding of

how the responses depend on the underlying latent attributes. Various RLCMs have

been developed, each with their own cognitive diagnostic assumptions (e.g., DiBello

et al., 1995; de la Torre and Douglas, 2004; Templin and Henson, 2006; von Davier,

2008; Henson et al., 2009), including the basic deterministic input noisy output “And”

gate (DINA) model (Junker and Sijtsma, 2001), which serves as a basic submodel for

more general cognitive diagnostic models. See Section 2 for a review of these models.

Despite the popularity of RLCMs, the fundamental identifiability of such models
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remains a challenge, as noted in the literature (DiBello et al., 1995; Maris and Bechger,

2009; Tatsuoka, 2009; DeCarlo, 2011; von Davier, 2014). Existing results related to the

identifiability of unrestricted latent class models in statistics (Teicher, 1967; Goodman,

1974; Gyllenberg et al., 1994; Allman et al., 2009) cannot be applied directly to RLCMs,

owing to the structural constraints induced by the Q-matrix. Recent works have ex-

amined the identifiability of RLCM parameters for the basic DINA model (Chen et al.,

2015; Xu and Zhang, 2016; Gu and Xu, 2018) and general RLCMs (Xu, 2017; Gu and

Xu, 2019, 2020), assuming that the Q-matrix is prespecified and correct.

However, the Q-matrix, specified by scientific experts when constructing the di-

agnostic items, can be misspecified. Moreover, in an exploratory analysis of newly

designed items, much or all of the Q-matrix may not be available. Here, a misspecifica-

tion of the Q-matrix could lead to a serious lack of fit for the model, and thus inaccurate

inferences on the latent attribute profiles of the individuals. Therefore, it is desirable to

estimate the Q-matrix and the model parameters jointly from the response data (e.g., de

la Torre, 2008; DeCarlo, 2012; Liu et al., 2012; de la Torre and Chiu, 2016; Chen et al.,

2018). A reliable and valid estimation and inference on the Q-matrix requires that we

ensure the joint identifiability of the Q-matrix and the associated model parameters.

Such joint identifiability has been studied recently by Liu et al. (2013) and Chen et al.

(2015) under the DINA model, and by Xu and Shang (2018) under general RLCMs.

Nevertheless, most of these works focus on developing sufficient conditions for joint
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identifiability, and thus often impose stronger than needed or sometimes impractical

constraints on the experimental design of a cognitive diagnosis.

Therefore, the necessary and sufficient conditions (or minimal requirements) for

the joint identifiability of the Q-matrix and the model parameters remains an open

problem. This study addresses this problem, contributing to the literature as follows.

First, under the DINA model, we derive the necessary and sufficient conditions for

the joint identifiability of the Q-matrix and the associated DINA model parameters.

Our necessary and sufficient conditions are succinctly and neatly written as three al-

gebraic properties of the Q-matrix, which we summarize as completeness (Condition

A), distinctness (Condition B), and repetition (Condition C); please see Theorem 1

for details. These three conditions require that the binary Q-matrix is complete by

containing an identity submatrix, has all columns distinct other than the part of the

identity submatrix, and repeatedly contains at least three entries of one in each column.

In addition to guaranteeing identifiability, these conditions give the minimal require-

ments for the Q-matrix and DINA model parameters to be estimable from the observed

responses. The identifiability result can be applied directly to the deterministic input

noisy output “Or” gate (DINO) model (Templin and Henson, 2006), owing to the du-

ality of the DINA and DINO models (Chen et al., 2015). The derived identifiability

conditions also serve as necessary requirements for joint identifiability under general

RLCMs, which include the DINA model as a submodel.
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Second, we propose sufficient and necessary conditions for a weaker notation of iden-

tifiability, the so-called generic identifiability, under both the DINA model and general

RLCMs. Generic identifiability implies that those parameters for which identifiability

does not hold live in a set of Lebesgue measure zero (Allman et al., 2009). The moti-

vation for studying generic identifiability is that the strict identifiability conditions are

sometimes too restrictive in practice. For instance, it is known that unrestricted latent

class models are not strictly identifiable (Gyllenberg et al., 1994), but are generically

identifiable under certain conditions (Allman et al., 2009). In RLCMs, the model pa-

rameters are forced by the Q-matrix-induced constraints to fall in a measure-zero subset

of the parameter space, and, thus, existing results for unrestricted models cannot be

applied directly. Moreover, the generic identifiability conditions needed to jointly iden-

tify the Q-matrix and the model parameters are unknown. Therefore, in this work,

we propose sufficient and necessary conditions for generic identifiability, and explicitly

characterize the nonidentifiable measure-zero subset. Our mild sufficient conditions

for generic identifiability under general RLCMs can be summarized as the following

properties of the Q-matrix: double generic completeness (Condition D), and generic

repetition (Condition E); see Theorem 4 for details. These two conditions require that

the binary Q-matrix contains two generically complete square submatrices with all di-

agonal elements equal to one, and (repeatedly) contains at least one entry of “1” other

than the part comprising these two submatrices.
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The rest of the paper is organized as follows. Section 2 introduces RLCMs and

reviews some popular models in cognitive diagnosis. Section 3 defines strict and generic

identifiability for RLCMs, and presents an illustrative example. Sections 4 and 5 contain

our main theoretical results for strict and generic identifiability for the DINA model

and general RLCMs, respectively. Section 6 concludes the paper. The proofs of the

theoretical results and additional simulation studies that verify the developed theory

are included in the online Supplementary Material. The Matlab code used to check the

proposed conditions is available at https://github.com/yuqigu/Identify_Q.

2. RLCMs for cognitive diagnosis

RLCMs are key statistical tools in cognitive diagnostic assessments that estimate indi-

viduals’ attribute profiles based on their response data in the assessment. Specifically,

consider a diagnostic test with J items. A subject (e.g., an examinee or a patient)

provides a J-dimensional binary response vector R = (R1, ..., RJ)> to the J items.

These responses are assumed to be dependent in a certain way on K unobserved latent

attributes. Under RLCMs, a complete set of K latent attributes is known as a latent

class or an attribute profile, denoted by a vector α = (α1, . . . , αK)>, where αk ∈ {0, 1}

is a binary indicator of the absence or presence, respectively, of the kth attribute.

RLCMs assume a two-step data-generating process. The first step uses a population

model for the attribute profile vector. We assume that the attribute profile follows a
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categorical distribution with population proportions p := (pα : α ∈ {0, 1}K)>, where

pα > 0, for all α ∈ {0, 1}K and
∑
α∈{0,1}K pα = 1.

The second step of the data-generating process follows a latent class model frame-

work, incorporating constraints based on the underlying cognitive processes. Given a

subject’s attribute profile α, his/her responses to the J items {Rj : j = 1, · · · , J} are

assumed to be conditionally independent, and each Rj follows a Bernoulli distribution

with parameter θj,α = P (Rj = 1 | α). Here, θj,α denotes the probability of a positive

response, and is also called an item parameter of item j. The collection of all item pa-

rameters, denoted by the item parameter matrix Θ = (θj,α)J×2K , is further constrained

by the design matrix Q. The Q-matrix is the key structure that specifies the relationship

between the J items and the K latent attributes. Specifically, the Q-matrix is a J ×K

binary matrix, with entries qj,k ∈ {1, 0} that indicate whether or not the jth item is

linked to the kth latent attribute. When qj,k = 1, we say attribute k is required by item

j. The jth row vector qj of Q gives the full attribute requirements of item j. Given an

attribute profile α and a matrix Q, we write α � qj if αk ≥ qj,k, for all k ∈ {1, . . . , K},

and α � qj if there exists k such that αk < qjk; similarly, we define the operations �

and �.

If α � qj, a subject with attribute pattern α possesses all attributes required by

item j specified by the Q-matrix, and is “capable” of answering item j correctly. On

the other hand, if α′ � qj, a subject with α′ misses some required attribute of item j,
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and is expected to have a smaller positive response probability than those of subjects

with α � qj. That is, the RLCMs we consider assume

θj,α > θj,α′ for any α � qj and α′ � qj. (2.1)

The monotonicity assumption in (2.1) is common to most RLCMs. Another common

assumption of RLCMs is that mastering these nonrequired attributes of an item does

not change the positive response probability to it; that is, θj,α = θj,α′ if α�qj = α′�qj,

where “�” denotes the elementwise multiplication operator (Henson et al., 2009). Under

the introduced setup, the response vector R has a probability mass function of the form

P(R = r | Q,Θ,p) =
∑

α∈{0,1}K
pα

J∏
j=1

θ
rj
j,α(1− θj,α)1−rj , r ∈ {0, 1}J , (2.2)

where the constraints on θj,α imposed by Q are made implicit.

Next, we review several popular cognitive diagnosis models, showing where they

fall within the family of RLCMs.

Example 1 (DINA model). The DINA model is one of the basic cognitive diagnosis

models (Junker and Sijtsma, 2001). The model assumes a conjunctive relationship

among attributes, which means that providing a positive response to an item requires

possessing all its required attributes, as indicated by the Q-matrix. For an item j

and a subject with attribute profile α, an ideal response under the DINA model is
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defined as ΓDINAj,α = I(α � qj), which indicates whether the subject is capable of

responding to item j. The uncertainty is incorporated at the item level in the slipping

parameter sj = P (Rj = 0 | Γj,α = 1), denoting the probability that a capable subject

slips the positive response, and the guessing parameter gj = P (Rj = 1 | Γj,α = 0),

denoting the probability that a noncapable subject coincidentally gives the positive

response by guessing. Then, the positive response probability for item j of class α is

θDINAj,α = (1 − sj)
Γj,αg

1−Γj,α

j . The DINA model has only two parameters (i.e., sj and

gj) for each item, regardless of the number of attributes required by the item. In the

following discussion, we denote s = (s1, . . . , sJ)> and g = (s1, . . . , sJ)>. Given a Q-

matrix, the DINA model parameters (Θ,p) can be expressed equivalently by (s, g,p).

We further assume 1 − s � g (Xu and Zhang, 2016), which ensures that the DINA

model satisfies the monotonicity assumption (2.1). The identifiability results for the

basic DINA model are presented in Section 4.

Example 2 (GDINA model and General RLCMs). de la Torre (2011) extended the

DINA model to the generalized DINA (GDINA) model, which is formulated on the

basis that θj,α can be decomposed into the sum of the effects caused by the presence

of specific attributes and their interactions. Specifically, for an item j with q-vector

qj = (qj,k : k = 1, · · · , K), the positive response probability is

θGDINAj,α =
∑

S⊆{1,...,K}

βj,S
∏
k∈S

qj,k
∏
k∈S

αk. (2.3)
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Note that not all β-coefficients in the above equation are included in the model. For a

subset S of the K attributes {1, . . . , K}, βj,S 6= 0 only if
∏

k∈S qj,k = 1. We interpret

this as βj,∅ denoting the probability of a positive response when none of the required

attributes are present in α; when qj,k = 1, βj,{k} is included in the model, representing

the change in the positive response probability resulting from the mastery of a single

attribute k; when qj,k = qj,k′ = 1, βj,{k,k′} is included in the model, representing the

change in the positive response probability resulting from the interaction effect of mas-

tering both k and k′. Under the GDINA model, each θj,α models the main effects and all

interaction effects of the attributes measured by the item. We refer to these diagnostic

models as general RLCMs. Other popular general RLCMs include the log-linear cog-

nitive diagnosis model (LCDM; Henson et al., 2009) and the general diagnostic model

(GDM; von Davier, 2008). The identifiability results for general RLCMs are presented

in Section 5.

3. Definitions and examples of strict and generic identifiability

This section introduces the definitions of joint strict identifiability and joint generic

identifiability of (Q,Θ,p) for RLCMs, and gives an illustrative example.

Note that the monotonicity assumption stated in (2.1), is necessary for the iden-

tifiability of the Q-matrix, because, without it, Q 6= 1J×K with parameters (Θ,p)

is distinguished from Q̄ = 1J×K with the same parameters (Θ,p) under the general
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RLCM. The monotonicity constraints ensure that the constraints induced by Q 6= 1J×K

and Q̄ = 1J×K cannot be the same and, therefore, Q can be identified under additional

conditions; see Sections 4 and 5. In the following we assume the monotonicity assump-

tion introduced in Section 2 is satisfied.

Another common issue with the identifiability of the Q-matrix is label swapping.

In an RLCM setting, arbitrarily reordering the columns of a Q-matrix does not change

the distribution of the responses. As a result, it is only possible to identify Q up to

column permutation; thus, we write Q̄ ∼ Q if Q̄ and Q have an identical set of column

vectors, and write (Q̄, Θ̄, p̄) ∼ (Q,Θ,p) if Q̄ ∼ Q and (Θ̄, p̄) = (Θ,p).

We first define the identifiability of the Q-matrix and the model parameters (Θ,p).

We refer to this as joint strict identifiability.

Definition 1 (Joint Strict Identifiability). Under an RLCM, the design matrix Q joint

with the model parameters (Θ,p) are said to be strictly identifiable if for any (Q,Θ,p),

there is no (Q̄, Θ̄, p̄) � (Q,Θ,p) such that

P(R = r | Q,Θ,p) = P(R = r | Q̄, Θ̄, p̄) for all r ∈ {0, 1}J . (3.4)

In the following discussion, we write (3.4) simply as P(R | Q,Θ,p) = P(R | Q̄, Θ̄, p̄).

Despite being the most stringent criterion for identifiability, strict identifiability can

be too restrictive, ruling out many cases where (Q,Θ,p) are “almost surely” identifiable.
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3.1 Example of the generic identifiability phenomenon with Q4×2

In the literature on unrestricted latent class models, Allman et al. (2011) proposed and

studied the so-called generic identifiability of such models. Here, we introduce the

concept of generic identifiability for RLCMs as follows.

Definition 2 (Joint Generic Identifiability). Consider an RLCM with parameter space

ϑQ, which is of full dimension in Rm, with m corresponding to the number of free

parameters in the model. The matrix Q joint with the model parameters (Θ,p) are

said to be generically identifiable if the following set has Lebesgue measure zero in Rm:

ϑnon = {(Θ,p) : ∃(Q̄, Θ̄, p̄) � (Q,Θ,p), such that P(R | Q,Θ,p) = P(R | Q̄, Θ̄, p̄)}.

3.1 Example of the generic identifiability phenomenon with Q4×2

Here, we use an example to explain the difference between generic identifiability and

strict identifiability. Consider the Q-matrix Q4×2 in (3.5). Under the DINA model,

we prove that this Q-matrix, joint with the associated model parameters (s, g,p), is

generically identifiable (by part (b.2) of Theorem 2), but not strictly identifiable (by

Theorem 1).

Q4×2 =

1 0 1 0

0 1 0 1


>

. (3.5)

In particular, as long as the true proportions p = (p(00), p(01), p(10), p(11)) satisfy the

following inequality constraint, (Q4×2, s, g,p) is identifiable (see the proof of Theorem
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3.1 Example of the generic identifiability phenomenon with Q4×2

2 (b.2)):

p(01)p(10) 6= p(00)p(11). (3.6)

On the other hand, when p(01)p(10) = p(00)p(11), the model parameters are not identifi-

able, and there exist infinitely many sets of parameters that provide the same distri-

bution of the observed response vector. Here, the parameter space ϑQ = {(s, g,p) :

1 − s � g, p � 0,
∑
α pα = 1} is of full dimension in R11, where the nonidentifiable

subset ϑnon = {(s, g,p) : p(01)p(10) = p(00)p(11)} has Lebesgue measure zero in R11. We

use a simulation study to illustrate the generic identifiability phenomenon. Under the

Q4×2 in (3.5), consider the following two simulation scenarios:

(a) the true model parameters are set as gj = sj = 0.2 for j = 1, 2, 3, 4, and p(00) =

p(01) = p(10) = p(11) = 0.25, which violates (3.6);

(b) the true model parameters are generated randomly, which almost always satis-

fies (3.6). Specifically, we randomly generate 100 true parameter sets (s, g,p)

using the following generating mechanism: sj ∼ U(0.1, 0.3), gj ∼ U(0.1, 0.3) for

j = 1, 2, 3, 4, and p ∼ Dirichlet(3, 3, 3, 3). Here U(0.1, 0.3) denotes the uniform

distribution on [0.1, 0.3], and Dirichlet(3, 3, 3, 3) denotes the Dirichlet distribution

with parameter vector (3, 3, 3, 3).

We show numerically that in scenario (a), there exist multiple sets of valid DINA

parameters that give the same distribution of R; in scenario (b), the model (Q, s, g,p)
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3.1 Example of the generic identifiability phenomenon with Q4×2

(a) (b)

Figure 1: Illustration of nonidentifiability under Q4×2 in scenario (a).

is almost surely identifiable and estimable. In particular, corresponding to scenario (a),

Figure 1 (a) plots the true model parameters and the other two sets of valid DINA model

parameters (constructed based on the derivations in the proof of Theorem 2 (b.2)), and

Figure 1 (b) plots the marginal probabilities of all 24 = 16 response patterns under the

three sets of model parameters. We can see that despite these three sets of parameters

being quite different, they give the identical distribution of the four-dimensional binary

response vector.

Corresponding to scenario (b), we randomly generate B = 100 sets of true pa-

rameters (si, gi,pi), for i = 1, . . . , 100. Then, for each (si, gi,pi), we generate 200

independent data sets of size N , with N = 102, 103, 104, and 105, and then compute

the mean square errors (MSEs) of the maximum likelihood estimators (MLEs) of the

slipping, guessing and proportion parameters. To compute the MLEs of the model
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3.1 Example of the generic identifiability phenomenon with Q4×2

parameters for each simulated data set, we run the EM algorithm with 10 random

initializations, and choose the estimators that achieve the largest log-likelihood value

of the 10 runs. Figure 2 shows the box plots of MSEs associated with the B = 100

true parameter sets for each sample size N . As N increases, we observe that the MSEs

decrease to zero, indicating the (generic) identifiability of these randomly generated

parameters.

(a) MSE of p (b) MSE of s (c) MSE of g

Figure 2: Illustration of generic identifiability under Q4×2, which corresponds to simu-
lation scenario (b).

On the other hand, Figure 2 also shows that several parameter sets have MSEs that

are “outliers” that converge to zero more slowly than others do as N increases. This

happens because these sets of parameters fall near the nonidentifiability set Vnon =

{(s, g,p) : p(01)p(10) − p(00)p(11) = 0}, making it more difficult to identify them. To

illustrate this point, consider the scenario corresponding to the rightmost box plot in

Figure 2(a), with sample size N = 105. For each of the 100 sets of true parameters
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3.1 Example of the generic identifiability phenomenon with Q4×2

(si, gi,pi), we plot pi(00) · pi(11) and pi(01) · pi(01) as the x-axis and y-axis coordinates,

respectively (see Figure 3). Then, each point represents one set of true parameters

used to generate the data. Specifically, we plot these parameter sets using a red “∗”

if their corresponding MSEs are the 20% largest outliers in the rightmost box plot in

Figure 2(a); we plot the remaining 80% of the parameter sets using a blue “+”. One

can clearly see that as the true parameters become closer to the nonidentifiability set

Vnon = {(s, g,p) : p(01)p(10) − p(00)p(11) = 0} (represented by the straight reference

line drawn from (0, 0) to (0.17, 0.17)), the MSEs increase, and the MSEs converge

more slowly. Thus, under generic identifiability, when the true model is close to the

nonidentifiable set, the convergence of their MLEs becomes slow.

Figure 3: The effect of the generic identifiability constraint (3.6). Red “∗”s represent
parameter sets with the 20% largest MSEs in Figure 2(a), with N = 105; blue “+”s
represent the remaining parameter sets.
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3.1 Example of the generic identifiability phenomenon with Q4×2

Interestingly, the generic identifiability constraint (3.6) is equivalent to the state-

ment that the two latent attributes are not independent of each other. To see this, view

each subject’s two-dimensional attribute profile as a random vector taking values in a

2× 2 contingency table. Then, (3.6) states that the 2× 2 matrix of joint probabilities

of attributes mastery, p(00) p(01)

p(10) p(11)

 ,

has full rank, with nonzero determinant p(00)p(11)− p(01)p(10). Therefore, one row (resp.

column) of the matrix cannot be a multiple of the other row (resp. column), and hence

the two binary attributes can not be independent. Intuitively, this implies that the

DINA model essentially requires that each attribute is measured at least three times

for identifiability (as shown in Condition B in Theorem 1). In particular, consider those

attributes that are measured by only two items in the Q-matrix. If these attributes

are independent, then, intuitively, they provide an independent source of information

in which case the model is not identifiable. However, if these attributes are dependent,

then the dependency instead helps to identify the model structure.

Before stating the strict and generic identifiability results on (Q,Θ,p), we show

in the next proposition that any all-zero row vector in the Q-matrix can be dropped

without affecting the identifiability conclusion.

Proposition 1. Suppose the Q-matrix of size J ×K takes the form Q = ((Q′)>,0>)>,
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where Q′ is a J ′ × K submatrix containing J ′ nonzero q-vectors, and 0 denotes a

(J − J ′)×K submatrix containing these zero q-vectors. Let Θ′ be the submatrix of Θ

containing its first J ′ rows. Then, for any RLCM, (Q,Θ,p) are jointly strictly (gener-

ically) identifiable if and only if (Q′,Θ′,p) are jointly strictly (generically) identifiable.

Therefore, without loss of generality, from now on, we only consider Q-matrices

without any zero q-vectors when discussing joint identifiability. We examine various

RLCMs that are popular in cognitive diagnosis assessment. In particular, in Section 4,

we present the sufficient and necessary conditions for the strict and generic identifiabil-

ity of (Q,Θ,p) under the basic DINA model. These identifiability results can also be

applied to the DINO model (Templin and Henson, 2006), owing to the duality between

the two models (Chen et al., 2015). Section 5 presents the sufficient and necessary con-

ditions for the generic identifiability of (Q,Θ,p) under general RLCMs, which include

the popular GDINA and LCDM models.

4. Identifiability of (Q,Θ,p) under the DINA model

Under the DINA model, Liu et al. (2013) first studied the identifiability of the Q-matrix

under the assumption that the guessing parameters g are known. Chen et al. (2015)

and Xu and Shang (2018) proposed a further set of sufficient conditions without needing

to assume known item parameters. An important requirement in these identifiability

studies is the completeness of the Q-matrix (Chiu et al., 2009). Under the DINA model,

18



the Q-matrix is said to be complete if it contains a K ×K identity submatrix IK up to

column permutation. Chen et al. (2015) and Xu and Shang (2018) require Q to contain

at least two complete submatrices IK for identifiability.

However, determining the minimal requirements on the Q-matrix for identifiability

remains an open problem. In the next theorem, we solve this problem by providing the

necessary and sufficient condition for the identifiability of (Q, s, g,p) under the earlier

assumption that pα > 0, for all α ∈ {0, 1}K (Xu and Zhang, 2016; Gu and Xu, 2018).

Theorem 1. Under the DINA model, the combination of Conditions A, B, and C is

necessary and sufficient for the strict identifiability of (Q, s, g,p):

A. The true Q-matrix is complete. Without loss of generality, assume the Q-matrix

takes the following form:

Q =

 IK

Q?

 . (4.7)

B. The column vectors of the submatrix Q? in (4.7) are distinct.

C. Each column in Q contains at least three entries equal to one.

In the Supplementary Material, we provide simulations that verify Theorem 1. In

particular, see simulation study I for the sufficiency of Conditions A, B, and C for joint

identifiability; also see simulation studies III and IV for the necessity of the proposed

conditions. Next, we compare our Theorem 1 with several existing results. First,
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although the same set of conditions is proposed in Gu and Xu (2018), they assumed

a known Q when examining the identifiability of the parameters (s, g,p). In contrast,

Theorem 1 studies the joint identifiability of (Q, s, g,p), which is theoretically much

more challenging, owing to the unknown Q-matrix, and therefore provides a much

stronger result than that in Gu and Xu (2018). In terms of estimation, Theorem

1 implies that we can consistently estimate both Q and (s, g,p), without worrying

that an incorrect Q-matrix is indistinguishable from the true Q. Second, Theorem 1

has much weaker requirements than those of the well-known identifiability conditions

resulting from a three-way tensor decomposition (Kruskal, 1977; Allman et al., 2011).

Specifically, these classical results require that the number of items J ≥ 2K + 1 for

(generic) identifiability. In contrast, the conditions in Theorem 1 imply that we need

the number of items J to be at least K + dlog2(K)e + 1 under the DINA model.

This is because, other than the identity submatrix IK , in order to satisfy Condition

B of distinctness, the Q-matrix needs only contain a further log2(K) items whose K-

dimensional q-vectors form a matrix with K distinct columns. For example, for K = 8,

the conditions in Allman et al. (2011) require at least 2K + 1 = 17 items, whereas our

Theorem 1 guarantees that the following Q with K + log2(K) + 1 = 12 items suffices
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for the strict identifiability of (Q, s, g,p) under DINA:

Q =



I8

0 0 1 1 1 0 1 1

0 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1

1 1 1 1 1 1 0 1


.

Conditions A, B, and C are the minimal requirements for joint strict identifiability.

When the true Q fails to satisfy one or more of these, Theorem 1 implies that there

must exist (Q, s, g,p) � (Q̄, s̄, ḡ, p̄) such that (3.4) holds. In this scenario, there are still

cases where the model is “almost surely” identifiable, though not strictly identifiable,

as illustrated by the example under Q4×2 in (3.5). On the other hand, there are also

cases where the entire model is never identifiable, as shown in simulation studies III

and IV in the Supplementary Material. Therefore, it is desirable to determine which

conditions guarantee the generic identifiability of (Q, s, g,p).

In the following, we discuss the necessity of Conditions A, B, and C under the

weaker notion of generic identifiability. First, Condition A is necessary for the joint

generic identifiability of (Q,Θ,p). If the true Q-matrix does not satisfy Condition A,

then under the DINA model, certain latent classes would be equivalent given Q, and

their separate proportion parameters can never be identified, not even generically (Gu
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and Xu, 2020). In certain scenarios where Condition A fails, one can find a different Q̄

that is not distinguishable from Q. Simulation study IV in the Supplementary Material

illustrates the necessity of Condition A.

Second, Condition B is also difficult to relax, and serves as a necessary condition

for generic identifiability when K = 2. Specifically, as shown in Gu and Xu (2018),

when K = 2, the only possible structure of the Q-matrix that violates Condition B

while satisfying Conditions A and C is

Q =

1 0 1 · · · 1

0 1 1 · · · 1


>

.

In addition, Gu and Xu (2018) prove that for any valid DINA parameters associated

with this Q, there exist infinitely many different sets of DINA parameters that lead

to the same distribution of the responses. Therefore, the model is not generically

identifiable.

Third, in contrast to Conditions A and B, for generic identifiability, Condition C

can be relaxed to a certain extent. The next theorem characterizes how the Q-matrix

structure in this case affects generic identifiability. For an empirical verification of

Theorem 2, see simulation study II in the Supplementary Material.

Theorem 2. Under the DINA model, (Q, s, g,p) is not generically identifiable if some

attribute is required by only one item.
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If some attribute is required by only two items, suppose the Q-matrix takes the following

form, after some column and row permutations:

Q =


1 0>

1 v>

0 Q?

 , (4.8)

where v is a vector of length K − 1, and Q? is a (J − 2)× (K − 1) submatrix.

(a) If v = 1, (Q, s, g,p) is not locally generically identifiable.

(b) If v = 0, (Q, s, g,p) is globally generically identifiable if either

(b.1) the submatrix Q? satisfies Conditions A, B, and C in Theorem 1; or

(b.2) the submatrix Q? has two submatrices IK−1.

(c) If v 6= 0,1, (Q, s, g,p) is locally generically identifiable if Q? satisfies Conditions

A, B, and C in Theorem 1.

Remark 1. We say (Q, s, g,p) is locally identifiable if, in a neighborhood of the true

parameters, there does not exist a different set of parameters that gives the same dis-

tribution of the responses. Local generic identifiability is a weaker notion than (global)

generic identifiability. Therefore, the statement in part (a) of Theorem 2 also implies

that (Q, s, g,p) is not globally generically identifiable.
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Remark 2. In scenario (b.1) of Theorem 2, the identifiable subset of the parameter

space is
{

(s, g,p) : ∃α1 = (0, α1
2, . . . , α

1
K),α2 = (0, α2

2, . . . , α
2
K) ∈ {0} × {0, 1}K−1,

such that pα1pα2+e1 6= pα2pα1+e1

}
, where ej is a J-dimensional unit vector, with the

jth element equal to one and all the others zero. In scenario (b.2) of Theorem 2, we

can write Q = (IK , IK , (Q
??)>)>, in which case, the identifiable subset is

{
(s, g,p) :

∀k ∈ {1, . . . , K},∃αk,1,αk,2 ∈ {0, 1}k−1 × {0} × {0, 1}K−k−1, such that pαk,1pαk,2+ek 6=

pαk,2pαk,1+ek

}
. The complements of these identifiable subsets in the parameter space

give the nonidentifiable subsets, which are both of measure zero in the DINA model

parameter space.

Next we discuss the generic identifiability of the DINA model in the special case of

K = 2. We have the following proposition.

Proposition 2. Under the DINA model with K = 2 attributes, (Q, s, g,p) is generically

identifiable if and only if the conditions in Theorem 1 or 2(b) hold.

Proposition 2 gives a full characterization of joint generic identifiability whenK = 2,

showing that the proposed generic identifiability conditions are necessary and sufficient

in this case. The following example discusses all possible Q-matrices with K = 2, such

that (Q, s, g,p) is not strictly identifiable, which proves Proposition 2 automatically.

Example 3. When K = 2, the discussions on Conditions A and B before Theorem 2

show that (Q, s, g,p) is not generically identifiable when A or B is violated. Therefore,
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we need only focus on cases where Condition C is violated and Conditions A and B are

satisfied. Specifically, when J ≤ 5, the Q-matrix can only take the following forms up

to column and row permutations:

Q1 =



1 0

0 1

1 1

0 1


, Q2 =



1 0

0 1

1 0

0 1


, Q3 =



1 0

0 1

1 0

0 1

0 1


.

By Theorem 2, Q1 falls in scenario (a); therefore, (Q1, s, g,p) is not locally generically

identifiable; that is, even in a small neighborhood of the true parameters, there exist

infinitely many different sets of parameters that give the same distribution of the re-

sponses. On the other hand, Q2 falls in scenario (b.2) and Q3 falls in scenario (b.1).

Therefore, (Q2, s, g,p) and (Q3, s, g,p) are both generically identifiable. In the case of

J > 5, any Q satisfying A and B while violating C must contain one of the above Qi

as a submatrix and include additional row vectors of (0, 1). By Theorem 2, any such Q

extended from Q1 is still not locally generically identifiable, and any such Q extended

from Q2 or Q3 is globally generically identifiable.
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5. Identifiability of (Q,Θ,p) under general RLCMs

Because the DINA model is a submodel of general RLCMs, Conditions A, B, and

C in Theorem 1 are also necessary for the strict identifiability of general RLCMs. For

instance, our proposed Conditions A, B, and C are weaker than the sufficient conditions

proposed by Xu and Shang (2018) for the strict identifiability of (Q,Θ,p) under general

RLCMs; and if their conditions are satisfied, the current conditions A, B, and C are

also satisfied. However, these necessary requirements may be strong in practice, and

cannot be applied to identify any Q that lacks some single-attribute items (i.e., lacks

some unit vector as a row vector). A natural question is whether Conditions A, B, and

C can be relaxed under the weaker notation of of generic identifiability. This section

addresses this question.

Under general RLCMs, the next theorem shows that Condition C (each attribute is

required by at least three items) is necessary for the generic identifiability of (Q,Θ,p),

contrary to the results for the DINA model, where Conditions A and B cannot be

relaxed, but Condition C can. Simulation studies VI and VII in the Supplementary

Material verify Theorem 3.

Theorem 3. Under a general RLCM, Condition C in Theorem 1 is necessary for the

generic identifiability of (Q,Θ,p). Specifically, when the true Q-matrix violates C,

for any model parameters (Θ,p) associated with Q, there exist infinitely many sets of
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(Q̄, Θ̄, p̄) � (Q,Θ,p) such that equation (3.4) holds. Thus, (Q,Θ,p) is not generically

identifiable.

Whereas Condition C is necessary, we next show that the other two conditions, A

and B, can be relaxed further for the generic identifiability of general RLCMs. Before

stating the result, we first introduce a new concept about the Q-matrix, called generic

completeness.

Definition 3 (Generic Completeness). A Q-matrix with K attributes is said to be

generically complete if, after some column and row permutations, it has a K × K

submatrix with all diagonal entries equal to one.

Generic completeness is a relaxation of the concept of completeness. In particular,

a Q-matrix is generically complete if, up to column and row permutations, it contains

a submatrix as follows: 

1 ∗ . . . ∗

∗ 1 . . . ∗
...

...
. . .

...

∗ ∗ . . . 1


,

where the off-diagonal entries “∗” are left unspecified. Note that any complete Q-matrix

is also generically complete, whereas a generically complete Q-matrix may not have any

single-attribute items.
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Using the concept of generic completeness, the next theorem gives sufficient condi-

tions for joint generic identifiability, and shows that under general RLCMs, the neces-

sary conditions A and B for strict identifiability are no longer necessary in the current

setting.

Theorem 4. Under a general RLCM, if the true Q-matrix satisfies the following Con-

ditions D and E, then (Q,Θ,p) is generically identifiable.

D. The Q-matrix has two nonoverlapping generically complete K × K submatrices

Q1 and Q2. Without loss of generality, assume the Q-matrix is in the following

form:

Q =


Q1

Q2

Q?


J×K

. (5.9)

E. Each column of the submatrix Q? in (5.9) contains at least one entry of one.

Remark 3. Under Theorem 4, the identifiable subset of the parameter space is {(Θ,p) :

det(T (Q1,ΘQ1)) 6= 0, det(T (Q2,ΘQ2)) 6= 0, and T (Q?,ΘQ?) · Diag(p) has distinct

column vectors}. Its complement is the nonidentifiable subset, and it has measure

zero in the parameter space ϑQ when Q satisfies Conditions D and E. Please see the

supplementary materials for the definition of the T -matrices (T (Q1,ΘQ1), etc.).
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Remark 4. The proof of Theorem 4 is based on the proof of Theorem 7 in Gu and

Xu (2020), who proposed the same Conditions D and E as sufficient conditions for the

generic identifiability of model parameters, given a known Q. We point out that though

D and E serve as sufficient conditions for generic identifiability, both when Q is known

and when Q is unknown, the generic identifiability results in these two scenarios are

different. In particular, Theorem 8 in Gu and Xu (2020) shows that when Q is known,

some attribute can be required by only two items for generic identifiability to hold (i.e.,

Condition C can be relaxed); in contrast, our current Theorem 3 shows that when Q is

unknown, Condition C indeed becomes necessary.

The proposed sufficient Conditions D and E weaken the strong requirement of Con-

ditions A and B, especially the identity submatrix requirement that may be difficult to

satisfy in practice. Simulation study V in the Supplementary Material verifies Theorem

4. Note that Conditions D and E imply the necessary Condition C that each attribute

is required by at least three items.

We next discuss the necessity of Conditions D and E. As shown in Section 3.2,

under DINA, the completeness of Q is necessary for the joint strict identifiability of

(Q, s, g,p). For general RLCMs, we have an analogous conclusion that the generic

completeness of Q, which is part of Condition D, is necessary for the joint generic

identifiability of (Q,Θ,p). This is stated in the next theorem.

Theorem 5. Under a general RLCM, generic completeness of the Q-matrix is necessary
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for the joint generic identifiability of (Q,Θ,p).

Furthermore, we show that Conditions D and E themselves are in fact necessary

when K = 2, indicating the difficulty of relaxing these further.

Proposition 3. For a general RLCM with K = 2, Conditions D and E are necessary

and sufficient for the generic identifiability of (Q,Θ,p).

We use the following example to illustrate the result of Proposition 3, which also

gives a natural proof of the proposition.

Example 4. When K = 2, a Q-matrix that satisfies the necessary Condition C, but not

Conditions D or E, can only take the following form Q1 or Q2, up to row permutations:

Q1 =


1 1

1 1

1 1

 , Q2 =



1 ∗

∗ 1

1 1

1 1


; Q̄2 =



1 1

1 1

1 1

1 1


.

The “∗”s in Q2 are unspecified values, and can be either zero or one. For Q1 with

J = 3, K = 2, and any parameters (Θ,p), there are 2J = 8 constraints in (3.4)

for solving (Θ̄, p̄) under Q1 itself, whereas the number of free parameters of (Θ̄, p̄) is

|{pα : α ∈ {0, 1}2} ∪ {θj,α : j ∈ {1, 2},α ∈ {0, 1}2}| = 2K + 2K × J = 16 > 8. For Q2

with J = 4, K = 2, and any associated (Θ,p), there are 2J = 16 constraints in (3.4) for
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solving (Θ̄, p̄), whereas the number of free parameters of (Θ̄, p̄) under the alternative

Q̄2 is 2K + J × 2K = 20 > 2J = 16. In both cases, there are infinitely many sets of

solutions of (3.4) as alternative model parameters. Therefore, neither (Q1,Θ,p) nor

(Q2,Θ,p) are generically identifiable.

6. Conclusion

In this work, we study the identifiability issue of RLCMs with unknown Q-matrices. For

the basic DINA model, we derive the necessary and sufficient conditions for the strict

joint identifiability of the Q-matrix and the associated model parameters. We also

study a slightly weaker identifiability notion, called generic identifiability, and propose

sufficient and necessary conditions for it under the DINA model and general RLCMs.

Statistical consequences of identifiability. In the setting of RLCMs, identifiabil-

ity naturally leads to estimability, in different senses, under strict and generic identifi-

ability. If the Q-matrix and the associated model parameters are strictly identifiable,

then Q and the model parameters can consistently be jointly estimated from the data. If

theQ-matrix and the model parameters are generically identifiable, then for true param-

eters ranging almost everywhere in the parameter space with respect to the Lebesgue

measure, the Q-matrix and the model parameters can consistently be jointly estimated

from the data.
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As pointed out by one reviewer, the analysis of identifiability is under an ideal

situation with an infinite sample size. Indeed, general identification problems assume

the hypothetical exact knowledge of the distribution of the observed variables, and

ask under what conditions one can recover the underlying parameters (Allman et al.,

2009). Next, we discuss the finite-sample estimation issue under the proposed iden-

tifiability conditions for strict identifiability, following a similar argument to that in

Proposition 1 in Xu and Shang (2018). Denote the true Q-matrix and model param-

eters by Q0 and η0 = (Θ0,p0), respectively. Consider a sample with N independent

and identically distributed (i.i.d.) response vectors R1,R2, . . . ,RN , and denote the

log-likelihood of the sample by `(Θ,p) =
∑N

i=1 logP(Ri | Q,Θ,p). Under a spec-

ified RLCM, a Q-matrix determines the structure of the item parameter matrix Θ

by specifying which entries are equal. For a given Θ, we can define an equivalent

formulation of it, a sparse matrix B, with the same size as Θ, as follows. Under a

general RLCM, such as the GDINA model in Example 2, the item parameters can

be parameterized as θj,α =
∑
S⊆{1,...,K} βj,S

∏
k∈S αk. Based on this, we define the

jth row of B as a 2K-dimensional vector collecting all of these β-coefficients; that is,

Bj = (βj,0, βj,1, . . . , βj,K , . . . , βj,12···K). Then, as long as the q-vector qj 6= 1K , the vector

Bj and the matrix B are both “sparse”. For the true Q0, we denote the corresponding

B-matrix by B0. Under a specified RLCM (e.g., DINA or GDINA), the identification

of Q0 is then implied by the identification of the indices of nonzero elements of B0. De-
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note the support of the true B0 and any candidate B by S0 and S, respectively. Define

Cmin(η0) = inf{S 6=S0, |S|≤|S0|}(|S0 \ S|)−1h2(η0,η), where h2(η0,η) denotes the Hellinger

distance between the two distributions of R, indexed by parameters η0 under the true

B0, and by η under the candidate B. Denote the Q-matrix and the model parame-

ters that maximize the log-likelihood `(Θ,p) subject to the L0 constraint |S| ≤ |S0| by

η̂ = (Θ̂, p̂), and denote the “oracle” MLEs of the model parameters obtained, assuming

Q0 is known, by η̂0 = (Θ̂
0
, p̂0). Then, we have the following finite-sample error bound

for the estimated Q-matrix and model parameters.

Proposition 4. Suppose Q0 satisfies the proposed sufficient conditions for joint strict

identifiability; then, Cmin(Θ0,p0) ≥ c0, for some positive constant c0. Furthermore,

P(Q̂ 6∼ Q0) ≤ P(η̂ 6= η̂0) ≤ c2 exp{−c1NCmin(Θ0,p0)}, (6.10)

where c1, c2 > 0 are some constants. That is, when the joint strict identifiability condi-

tions hold, the finite-sample estimation error has an exponential bound.

Proposition 4 shows that the estimation error decreases exponentially in N if the

model is identifiable. On the other hand, when the identifiability conditions fail to

hold, there exist alternative models that are close to the true model in terms of the

Hellinger distance. This would make the Cmin(Θ0,p0) in (6.10) equal to zero, instead of

being bounded away from zero, as shown in Proposition 4. Therefore, the finite-sample
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error bound in (6.10) becomes O(1) in this nonidentifiable scenario. In particular,

when the generic identifiability conditions are satisfied, Cmin(Θ0,p0) depends on the

distance between the true parameters and the nonidentifiable measure-zero subset of

the parameter space; as the true parameters become closer to this measure-zero set,

Cmin(Θ0,p0) decreases to zero, and a larger sample size may be needed to achieve a

prespecified level of estimation accuracy.

Potential extensions to other latent variable models. We briefly discuss poten-

tial extensions of the proposed theory to other latent variable models, such as RLCMs

with ordinal polytomous attributes (von Davier, 2008; Ma and de la Torre, 2016; Chen

and de la Torre, 2018), and multidimensional latent trait models (Embretson, 1991).

First, an RLCM with ordinal polytomous attributes can be viewed as an RLCM with

binary attributes and a constrained relationship among the binary attributes. For in-

stance, consider an ordinal attribute γ that can take C different values {0, 1, . . . , C−1};

then, γ can be equivalently viewed as a collection of C − 1 binary random variables

αγ := (α1, . . . , αC−1) with the following constraints. If αi = 0 for some i < C − 1, then

αj = 0, for all j = i + 1, . . . , C − 1. In other words, any pattern αγ with αi = 0 and

αj = 1, for some i < j is “forbidden” and constrained to have proportion zero. The vec-

tor of polytomous attributes can be augmented to a longer vector of binary attributes

using constraints in this fashion. Then, we can consider the RLCM with the augmented
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proportion parameters by constraining the proportions of the “forbidden” binary at-

tribute patterns to zero. In this scenario, it might be possible to extend the current

theory and develop identifiability conditions for the case of polytomous attributes.

Second, if a multidimensional latent trait model includes both continuous and dis-

crete latent traits, then the techniques used to establish the identifiability of the latent

class models in this study would also be useful when treating discrete latent variables.

For continuous latent variables, the techniques developed in Bai and Li (2012) for the

identifiability of the factor analysis model and those developed for traditional multi-

variate analyses (Anderson, 2009) would be helpful.

In practice, the proposed identifiability theory can serve as a foundation for de-

signing statistically guaranteed estimation procedures. Specifically, consider the set of

all Q-matrices that satisfy our identifiability conditions (A, B, and C under the DINA

model, or D and E under general RLCMs), and call it the “identifiable Q-set.” Then,

we can use likelihood-based approaches, such as that in Xu and Shang (2018), to jointly

estimate Q and the model parameters by constraining Q to the identifiable Q-set; al-

ternatively we can use Bayesian approaches to estimate Q, as in Chen et al. (2018).

Additionally, if under the DINA model, the Q-matrix does not contain a submatrix

IK , then according to Gu and Xu (2020), certain attribute profiles would be equiva-

lent and the strongest possible identifiability argument therein is the so-called p-partial

identifiability. In this scenario, it would be interesting to study the identifiability of
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the incomplete Q-matrix under the notion of p-partial identifiability. We leave this to

future research.

Supplementary Material

The online Supplementary Material contains proofs of Propositions 1 and 4 and

Theorems 1–5, as well as additional simulation results.
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