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ABSTRACT: Aerobic C—H functionalization of benzene and
a series of electron-rich and electron-poor arenes has been
demonstrated using a Pt(II) aqua complex supported by a
sulfonated CNN-chelating pincer ligand in wet 2,2,2-trifluor-
oethanol (TFE) solutions at 20 °C and ambient pressure of air
or O,. The reaction results in Pt(IV) aryl hydroxo complexes
and a Pt(IV) trifluoroethoxo complex as two major products, in
a 1:1 molar ratio, along with minor Pt(II) products of the arene
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and pincer ligand oxidative C—C coupling.

elective oxidative functionalization of hydrocarbon C—H

bonds using O, an inexpensive and enwronmentally
benign reagent, is an attractive and challenging practical goal.'
Soluble platinum complexes may be good candidates to serve
as catalysts in such reactions potentially incorporating the three
major steps A—C shown in Scheme 1.°~"* Previous successful

Scheme 1. Aerobic CH Functionalization by LPt"(H,0)

A
+R-H

LPtI(H,0) (LPYR)Y + H*

+0.50,
with or without

R-X + H,0 redox-mediators

X=Cl,0H, ete. (L)PtV(R)OH

attempts have relied exclusively on the use of redox medlators
such as heteropolyacids,”'*'* CuCl,,'>'° or FeCl,,"* with the
mediator being responsible for O, activation (Scheme 1B).
Notably, all the known systems are marked with low (<60%)
selectivity with respect to the product RX due to concurrent
CH activation of RX* and the ability of some mediators to
oxidize RX.”'* The latter can be avoided in mediator-free
systems. For example, the di(pyridine)methanesulfonate
(dpms) ligand enables direct O, activation at a Pt(Il) center
in complexes 1 and 2 (Chart 1) in hydroxylic solvents'*'” and
the Pt(IV) alkyls resulting from oxidation of 1 undergo highly
selective C(sp®)—O reductive elimination. Nevertheless, Pt'
complexes of the dpms series have not been used in the
catalytic fashion outlined in Scheme 1. Complexes 1 and 2 are
inert in CH activation, whereas complex 3, which breaks allylic
CH bonds in olefinic substrates,'® does not allow for
subsequent O, activation.

To overcome the above limitations, a series of Pt(II)
complexes such as 4 (Chart 1) were introduced recently.'”*’
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electron-poor ArH, 1,2-F,CgHj, 1,2-Cl,CgHy, are less reactive

Chart 1. Sulfonated Dipyridine Pt(II) Complexes for CH
and O, Activation along with Arenes 5 Studied in This
Work
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/p'”\o/)/ﬁ 6e, Ar = 3,5-Bu,CeH;
Ar N/ 6f, Ar=3,4-Cl,CoHs

6g, Ar = 3,4-F,CgH3

Complex 4 is a metallacyclic analogue of the phenyl complex 2
but, in contrast to 2, 4 is an efficient catalyst for the H/D
exchange between (deuterio-) poly(methyl)benzenes and
2,2,2-trifluoroethanol (TFE) or TFE-d at 20—80 °C (eq 1).

C¢Hg + nCECH,OD — CH,_, D, + nCECH,OH (1)

In this work we demonstrate that CH activation of benzene
and aromatic substrates Sc—g by 4 can be followed by O,
activation with the derived anionic Pt(II) aryl intermediates,
such as 6, likely responsible for the latter step. The reaction
leads to two types of major isolable Pt(IV) products, arene-
derived hydroxo complexes 7 and the trifluoroethoxo hydroxo
complex 8. A minor Pt(II) species 9 also forms, resulting from
oxidative C—C coupling of the arene and 4 (Scheme 2; C4Hy
as the substrate). Since the aryl hydroxo Pt(IV) complexes 7
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Scheme 2. Oxidation of C4Hy and Complex 4 by O, in TFE Solutions™

path b o path a
0,8—0
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7
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LPt'(H,0) === LPtVPh(H) LPt'Ph- LPtVPh(O,H) — LPtVPh(OH) + 8

fast

are inert toward C—O reductive elimination, similarly to all
other known Pt(IV) aryl hydroxo complexes,”*" step C in
Scheme 1 could not be completed.

Earlier we found that the phenyl complex 2 can be
quantitatively oxidized to Pt(IV) phenyl hydroxo derivatives
when its aqueous or methanol solutions are exposed to O, for
40—48 h at 20 °C."” If we consider the analogy between 2 and
4, if 4 is to serve as a catalyst in aerobic oxidations, this type of
reaction would be undesirable. To probe the reactivity of 4
toward O,, we exposed a dry TFE solution of 4 to O, gas at 21
°C and 1 atm. About 50% of 4 was consumed after 3 h;
however, the Pt(IV) complex 8 had not formed; the main
reaction product(s) were purple NMR-silent species (Figures
S7 and $8).”** The formation of the purple species could be
reversed by introducing S00 mM of water (Figures S9 and
S10). The Pt(IV) complex 8 appeared in our reaction
mixtures, either dry or wet, only after about 24 h in a low
3% yield (Scheme 2, path b). Altogether, these observations
suggest a much lower reactivity of 4 toward O,, in comparison
to 2, with a possible involvement of paramagnetic Pt
intermediates.” To simplify analysis of our reaction mixtures
by means of '"H NMR spectroscopy, wet TFE solutions
containing 0.150 M of water were used in our subsequent
experiments.

Having demonstrated the ability of 4 to activate both CH
bonds of benzene and O, we set up benzene oxidation.
Stirring a solution of 4 in a 1/2 (v/v) mixture of C¢Hy and
TFE for 24 h under 1 atm of O, at 22 °C, under ambient light
or in the dark, resulted in ~85% conversion of 4 and formation
of a 1/1 mixture of two Pt(IV) hydroxo complexes: the phenyl
complex 7a (32% yield), a product of benzene activation, and
its trifluoroethoxo analogue 8 (32% yield)** (Scheme 2, path
a). Formation of 9a, a product of oxidative C—C coupling of
benzene and 4, was also observed in a low 4% yield. Notably,
Pt(IV) complexes 8 and 7a were both produced at a more than
1 order of magnitude faster average rate (path a) in
comparison to the formation of 8 in the absence of benzene
(path b) (Figure S6a,b), thus supporting the notion that not 4
but rather benzene-derived electron-richer species such as 6a
may be responsible for O, activation.

The identity of the new complex 7a as well as 10a, a PPh;
derivative of 9a, was confirmed by single-crystal X-ray
diffraction (Figure 1). The major product 7a, similar to 8,
features a meridional CNO coordination of the pincer ligand,
whereas in 10a and, as we assume, in 9a, the ligand
coordination mode is CNN.
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(b)

Figure 1. ORTEP drawing (50% probability ellipsoids) for (a) 7a and
(b) 10a,** a PPh; derivative of 9a. Hydrogen atoms and cocrystallized
solvent are omitted for clarity.

With these results on hand, we wanted to explore the
mechanism of the oxidation with O, of solutions of 4 in a wet
1/2 C¢D¢/TFE mixture. The reaction showed complex kinetics
with an induction period in the beginning (Figure S6b) and
inhibition by its product 8 but not 7 (Figures S6d, S27, and
S28). Next, we have found that the induction period can be
eliminated in the presence of either of 8 or 7b (Figure S6c,d).
These Pt(IV) hydroxo species may be acting as weak Bronsted
bases'” responsible for the formation of anionic Pt(II) aryls
such as 6b. In turn, the induction period increases to >24 h in
the presence of 0.3 equiv of CF;CO,H (Figure S31). Hence,
we speculate that the induction period is needed to raise the
basicity of the reaction mixture by producing a sufficient
concentration of Pt(IV) hydroxo species. In turn, the reaction
inhibition by 8 is related to the ability of 8, but not 7b, to form
with 4 the 1/1 adduct 11, as confirmed independently
(equilibrium constant K = 95 + 10 calculated as K
[11][D,0]/[4][8]).

We next found the rate law for the formation of 7b by
measuring initial rates of accumulation of 7b observed after the
reaction induction period. The rate law implies first order in
[CsD¢] and [4] but zero order in [O,]. By comparing the
observed reaction rate constants for C¢Hy/CF,CH,OH and
C¢Dy/CF;CH,OH systems, we found the deuterium kinetic
isotope effect of the reaction, kyy/kp = 1.6 + 0.1, which is the
same as in the H/D exchange reaction (1) catalyzed by 4."”

Next, by using additives able to affect the rates of some
radical reactions, we found that accumulation of the reaction
products 7b and 8 is not inhibited by 10 equiv of 2,6-di-tert-
butyl-4-methylphenol (BHT) but is about 1 order of
magnitude slower in the presence of 0.5 equiv of p-
hydroquinone. Remarkably, while BHT does not change the
reaction selectivity, p-hydroquinone additives caused the 7b/8
ratio to increase from 1/1 to 5/1. Formation of benzoquinone

DOI: 10.1021/acs.organomet.8b00662
Organometallics 2018, 37, 4177—-4180


http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.8b00662/suppl_file/om8b00662_si_001.pdf
http://dx.doi.org/10.1021/acs.organomet.8b00662

Organometallics

Communication

was also detected in the latter test. Reactions of Pt(II)
complexes such as [LPt"Ph]~ with O, in protic media typically
produce the hydroperoxo Pt(IV) intermediates LPt"VPh-
(O,H)*"~"” (Scheme 2, bottom). The latter may transfer
one oxygen atom from the peroxo ligand to a Pt(II) complex
to form 2 equiv of LPt"'Ph(OH) (reaction with [LPt"Ph]") or
1 equiv each of LPt'""Ph(OH) and LPt"V(OCH,CF,)(OH)
(reaction with TFE-derived [LPt"(OCH,CF;)]”). When p-
hydroquinone is present, we speculate that it efficiently
intercepts the reactive species LPt""Ph(O,H) to produce 1
equiv of LPt"Ph(OH) and benzoquinone (path b), thus
suppressing the formation of a second equivalent of Pt(IV)
products. If O, activation were done by [LPt"(OCH,CF,)]",
in the presence of p-hydroquinone the intermediate Pt(IV)
peroxo species LPt"(OCH,CF;)(O,H) would be selectively
reduced to 8 (path b), leading to 7b/8 ratios of less than 1/1,
which does not match our experimental observations. Hence,
on the basis of these observations, we propose that O,
activation is carried out predominantly by phenyl Pt(II)
intermediates such as 6b.

We next wanted to probe the identity of the Pt(II) phenyl
species responsible for O, activation in the oxidation reaction
in Scheme 2, path a. Assuming that the mer-CNO-coordinated
7a results from oxidation of the CNO-coordinated 6a, we
wanted to check if the minor reaction product, CNN-
coordinated 9a, may result from oxidation of 12a, a CNN-
coordinated isomer of 6a (Scheme 3). Complex 12a as a

Scheme 3. Oxidation with O, of Pt(I) Phenyl Complex 12a
in TFE

0,8—0°Li* 0,5—0o°Li* 0,8—a°
+0.50, / TFE ©
QSN PN -LiOH QSN ~OCH;CFs MeSOaH (aq) QSN -OH2
N 20°C,1Day (¢ @&
Li(12a) Li(13a) Ph ga N
80 % (NMR) >98% (NMR)

single oxidation product

lithium salt has been prepared independently and submitted to
aerobic oxidation in TFE. At 1 atm of O, and 20 °C, Li(12a) is
consumed with a half-life of ~2 h, reaching >95% conversion
after 1 day and producing the C—C coupled Pt(II) complex
Li[13a] in 80% yield.”> The latter, upon acidic workup, could
be converted quantitatively to 9a. Since 13a is the only
oxidation product of 12a, we assume that the CNN-
coordinated Pt(II) phenyl species 12a is not likely to be the
reaction intermediate leading to 7a and that 6a instead may be
responsible for the formation of 7a.

A plausible mechanism for reaction of LPt"(H,0) (4) with
benzene and O, is shown in Scheme 2 (bottom). During the
induction period the Pt(IV) hydroxo complex 8 is forming
slowly according to Scheme 2 (path b) and then, additionally,
in the reaction with benzene (Scheme 2, path a). When the
concentration of 8 is high enough, in the postinduction period,
CH activation of the arene to form a transient LPt'YPh(H) is,"”
most likely, the reaction rate determining step. It is followed by
“Pt"V(OH)”-assisted formation of LPt"Ph~ (6a) and subse-
quent fast O, activation by 6a leading to a Pt"¥ hydroperoxide.”
The latter transfers one of its peroxo oxygen atoms to a TFE
analogue'” of 4 to produce 7a and 8 in a 1/1 ratio.

The reaction in Scheme 2 is not limited to a single arene. We
explored aerobic oxidation of solutions of 4 in TFE containing
electron-rich and electron-poor disubstituted benzenes using
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their 1/2 (v/v) mixtures (Chart 1). In addition to 8, selective
(>90%) formation of a single Pt(IV) aryl complex 7c—f was
observed.”® The reaction was equally fast for benzene and o-
and m-xylenes (Sc,d) but noticeably slower for m-di-tert-
butylbenzene (Se), which has limited solubility in TFE (Table
S1). Even slower reaction rates were observed for electron-
poor o-dichlorobenzene (5f) and o-difluorobenzene (Sg).
Another difference between electron-rich and electron-poor
substrates is their Pt(IV) product ratio, 8/7, which is greater
than 1/1 for the electron-poor Pt(IV) aryl complexes 7f,g. We
assume that 7f,g form at a slower rate in comparison to 8
because the background oxidation of 4 to 8 (Scheme 2, path b)
becomes competitive with the arene activation (Scheme 2,
path a). Formation of C—C coupled products 9 could not be
detected in these slow oxidation reactions.

Overall, in this work we have demonstrated, for the first
time, the feasibility of consecutive activation of CH bonds of
various arenes at a Pt(I) center and O, activation by the
resulting Pt(II) aryl intermediates, leading to Pt(IV) aryl
hydroxo derivatives. Although the latter could not be engaged
in reductive C—O coupling in this system, our work may be
important in directing the future design and development of
catalytic systems for selective hydrocarbon CH functionaliza-
tion utilizing O,.
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