Data-Independent Memory Hard Functions:
New Attacks and Stronger Constructions

Jeremiah Blocki', Ben Harsha!, Siteng Kang?,
Seunghoon Lee!, Lu Xing', and Samson Zhou?

L Purdue University
2 Penn State University
3 Indiana University

Abstract. Memory-hard functions (MHFs) are a key cryptographic primitive
underlying the design of moderately expensive password hashing algorithms
and egalitarian proofs of work. Over the past few years several increasingly
stringent goals for an MHF have been proposed including the requirement
that the MHF have high sequential space-time (ST) complexity, parallel
space-time complexity, amortized area-time (aAT) complexity and sustained
space complexity. Data-Independent Memory Hard Functions (iMHFs) are
of special interest in the context of password hashing as they naturally resist
side-channel attacks. iIMHFSs can be specified using a directed acyclic graph
(DAG) G with N =2" nodes and low indegree and the complexity of the
iMHF can be analyzed using a pebbling game. Recently, Alwen et al. [ABH17]
constructed an DAG called DRSample which has aAT complexity at least
.Q(N 2 /logN ) Asymptotically DRSample outperformed all prior iMHF con-
structions including Argon2i, winner of the password hashing competition
(aAT cost O (N 1‘767))7 though the constants in these bounds are poorly
understood. We show that the the greedy pebbling strategy of Boneh et
al. [BCS16] is particularly effective against DRSample e.g., the aAT cost is
(’)(N 2 logN ) In fact, our empirical analysis reverses the prior conclusion of
Alwen et al. that DRSample provides stronger resistance to known pebbling
attacks for practical values of N <22*. We construct a new iMHF candidate
(DRSample+BRG) by using the bit-reversal graph to extend DRSample. We
then prove that the construction is asymptotically optimal under every MHF
criteria, and we empirically demonstrate that our iMHF' provides the best
resistance to known pebbling attacks. For example, we show that any parallel
pebbling attack either has aAT cost w(N?) or requires at least 2(IN) steps
with £2(IN/logN) pebbles on the DAG. This makes our construction the first
practical iIMHF with a strong sustained space-complexity guarantee and imme-
diately implies that any parallel pebbling has aAT complexity 2(N?/logN).
We also prove that any sequential pebbling (including the greedy pebbling
attack) has aAT cost Q(N 2) and, if a plausible conjecture holds, any parallel
pebbling has aAT cost 2(NloglogN/logN) — the best possible bound for an
iMHF. We implement our new iMHF and demonstrate that it is just as fast
as Argon2. Along the way we propose a simple modification to the Argon2
round function which increases an attacker’s aAT cost by nearly an order
of magnitude without increasing running time on a CPU. Finally, we give
a pebbling reduction which proves that in the parallel random oracle model



(PROM) the cost of evaluating an iMHF like Argon2i or DRSample+BRG is
given by the pebbling cost of the underlying DAG. Prior pebbling reductions
assumed that the iMHF round function concatenates input labels before
hashing and did not apply to practical iMHFs such as Argon2i, DRSample
or DRSample+BRG where input labels are instead XORed together.

1 Introduction

Memory Hard Functions (MHFS) are a key cryptographic primitive in the design of
password hashing algorithms and egalitarian proof of work puzzles [Leell]. In the
context of password hashing we want to ensure that the function can be computed
reasonably quickly on standard hardware, but that it is prohibitively expensive to
evaluate the function millions or billions of times. The first property ensures that
legitimate users can authenticate reasonably quickly, while the purpose of the latter
goal is to protect low-entropy secrets (e.g., passwords, PINs, biometrics) against brute-
force offline guessing attacks. One of the challenges is that the attacker might attempt
to reduce computation costs by employing customized hardware such as a Field Pro-
grammable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC).
MHEFs were of particular interest in the 2015 Password Hashing Competition [Pin14],
where the winner, Argon2 [BDK16], and all but one finalists [FLW14,SJAA T 15, Pes14]
claimed some form of memory hardness.

Wiener defined the full cost of an algorithm’s execution to be the number of
hardware components multiplied by the duration of their usage e.g., if the algorithm
needs to allocate £2(N) blocks of memory for (2(IV) time steps then full evaluation
costs would scale quadratically. At an intuitive level a strong MHF' f(-) should have the
property that the full cost [Wie04] of evaluation grows as fast as possible in the running
time parameter IN. Towards this end a number of increasingly stringent security criteria
have been proposed for a MHF' including sequential space-time complexity, parallel
space-time complexity, amortized area-time complexity (aAT) and sustained space-
complexity. The sequential (resp. parallel) space-time complexity of a function f(-)
measures the space-time cost of the best sequential (resp. parallel) algorithm evaluating
f() ie., if a computation runs in time ¢ and requires space s then the space-time cost
is given by the product st. The requirement that an hash function has high space-time
complexity rules out traditional hash iteration based key-derivation functions like
PBKDF2 and berypt as both of these functions be computed in linear time O(N) and
constant space O(1). Blocki et al. [BHZ18] recently presented an economic argument
that algorithms with low space-time complexity such as berypt and PBKDF2 are
no longer suitable to protect low-entropy secrets like passwords i.e., one cannot
provide meaningful protection against a rational attacker with customized hardware
(FPGA,ASIC) without introducing an unacceptably long authentication delay. By
contrast, they argued that MHFs with true cost £2(N?) can ensure that a rational
attacker will quickly give up since marginal guessing costs are substantially higher.

The Catena-Bit Reversal MHF [FLW14] provably optimal sequential space-time
complexity 2(N?) — the space-time complexity of any sequential algorithm run-
ning in time N is at most O(N?) since you cannot allocate more than N blocks of



memory in time N. However, Alwen and Serbinenko [AS15] showed that the parallel
of this MHF is just O(N'5). Even parallel space-time complexity has limitations
in that it doesn’t amortize nicely. The stronger notion of Amortized Area-Time
(aAT) complexity (and the asymptotically equivalent notion of cumulative memory
complexity (cmc)) measures the amortized cost of any parallel algorithm evaluating
the function f(-) on m distinct inputs. Alwen and and Serbinenko [AS15] gave a
theoretical example of a function f(-) with the property that the amortized space-time
cost of evaluating the function on m= \/(N ) distinct inputs is approximately m times
cheaper than the parallel space-time cost i.e., evaluating the function on the last m—1
inputs is essentially free. This is problematic in the context of password hashing where
the attacker wants to compute the function f(-) multiple times i.e., on each password
in a cracking dictionary. The amortization issue is not merely theoretical. Indeed,
the aAT complexity of many MHF candidates is significantly lower than O(N?) e.g.,
the aAT complexity of Balloon Hash [BCS16] is just O(N°/3) [AB16,ABP17] and
for password hashing competition winner Argon2i [BDK16] the aAT cost is at most
O(N'767) [AB16,AB17,ABP17,BZ17].

The scrypt MHF, introduced by Percival in 2009 [Per09], was proven to have
cme/aAT complexity £2(N?) in the random oracle model [ACPT17]. However, it is
possible for an scrypt attacker to achieve any space-time trade-off subject to the con-
straint that st=(2(N?) without penalty e.g., an attacker could evaluate scrypt in time
t=(N?) with space s=0O(1). Alwen et al. [ABP18] argued that this flexibility poten-
tially makes it easier to develop ASICs for scrypt, and proposed the even stricter MHF
requirement of sustained space complexity which demands that any (parallel) algorithm
evaluating the function f(-) requires at least ¢ time steps in which the space usage
is > s — this implies that aAT > st. Alwen et al. [ABP18] provided a theoretical con-
struction of a MHF with maximal sustained space complexity i.e., evaluation requires
space s=§2(N/logN) for time t=(2(NN). However, there are no practical constructions
of MHFs that provide strong guarantees with respect to sustained space complexity.
Data-Independent vs Data-Dependent Memory Hard Functions. Memory
Hard Functions can be divided into two categories: Data-Independent Memory
Hard Functions (iMHFs) and Data-Dependent Memory Hard Functions (dAMHFES).
Examples of dMHFs include scrypt [Per09], Argon2d [BDK16] and Boyen’s halt-
ing puzzles [Boy07]. Examples of iMHFs include Password Hashing Competition
(PHC) [PHC16] winner Argon2i [BDK16], Balloon Hashing [BCS16] and DRSam-
ple [ABH17]. In this work we primarily focus on the design and analysis of secure
iMHFs. iMHFs are designed to resist certain side-channel attacks e.g., cache tim-
ing [Ber05] by requiring that the induced memory access pattern does not depend
on the (sensitive) input e.g., the user’s password. By contrast, the induced memory
access for a dMHFs is allowed to depend on the function input.

Alwen and Blocki [AB16] proved that any iMHF has aAT complexity at most
O(N?loglogN/logN ), while the AMHF scrypt provably has aAT complexity £2(N?)
in the random oracle model — a result which cannot be matched by any iMHF.
However, the aAT complexity of a AMHF may be greatly reduced after a side-channel
attack. If a brute-force attacker is trying to find z <m s.t. f(x)=y and the attacker
also has learned the correct memory access pattern induced by the real input z* (e.g.,



via a side-channel attack) then the attacker can quit evaluation f(x) immediately
once it is clear that the induced memory access pattern on input x=£z* is different.
For example, the aAT complexity of scrypt (resp. [Boy07]) after a side-channel attack
is just O(N) (resp. O(1)).

Hybrid Modes. Alwen and Blocki [AB16,AB17] showed that the aAT complexity
of most iIMHFs was significantly lower than one would hope, but their techniques
do not extend to MHFs. In response, the Argon2 spec [KDBJ17] was updated to
list Argon2id as the recommended mode of operation for password hashing instead
of the purely data-independent mode Argon2i. Hybrid independent-dependent (id)
modes, such as Argon2id [KDBJ17], balance side-channel resistance with high aAT
complexity by running the MHF in data-independent mode for N/2 steps before
switching to data-dependent mode for the final N/2 steps. If there is a side-channel
attack then security reduces to that of the underlying iMHF (e.g., Argon2i), and if
there is no side-channel attack then the function is expected to have optimal aAT
complexity 2(N?). We remark that, even for a hybrid mode, it is important to ensure
that the underlying iMHF is a strong as possible a side-channel attack on a hybrid
“id” mode of operation will reduce security to that of the underlying iMHF.

1.1 Related Work

MHF Goals. Dwork et al. and Abadi et al. [DGN03, ABMWO05] introduced the
notion of a memory-bound function where we require that any evaluation algorithm
results in a large number of cache-misses. Ren and Devadas recently introduced
a refinement to this notion called bandwidth-hardness [RD17]. To the best of our
knowledge Percival was the first to propose the goal that a MHF should have high
space-time complexity [Per09] though Boyen’s AMHF construction appears to achieve
this goal [Boy07] and the notion of space-time complexity is closely related to the
notion of “full cost” proposed by Wiener [Wie04]. Metrics like space-time complexity
and Amortized Area-Time Complexity [AS15, ABH17] aim to capture the cost of
the hardware (e.g., DRAM chips) the attacker must purchase to compute an MHF
— amortized by the number of MHF' instances computed over the lifetime of the
hardware components. By contrast, bandwidth hardness [RD17] aims to capture the
energy cost of the electricity required to compute the MHF once. If the attacker uses
an ASIC to compute the function then the energy expended during computation
will typically be small in comparison with the energy expended during a cache-miss.
Thus, a bandwidth hard function aims to ensure that any evaluation strategy either
results in {2(IV) cache-misses or w(N) evaluations of the hash function.

In Appendix A we argue that, in the context of password hashing, aAT complexity
is more relevant than bandwidth hardness because the “full cost” [Wie04] can scale
quadratically in the running time parameter IN. However, one would ideally want
to design a MHF' that has high aAT complexity and is also maximally bandwidth
hard. Blocki et al. [BRZ18] recently showed that any MHF with high aAT complexity
is at least somewhat bandwidth hard. Furthermore, all practical iMHFs (including
Catena-Bit Reversal [FLW14], Argon2i and DRSample) are maximally bandwidth
hard [RD17,BRZ18], including our new construction DRS+BRG.



Graph Pebbling and iMHFs. An iMHFs fg g can be viewed as a mode of
operation over a directed acyclic graph (DAG) G=(V =[N],E) which encodes data-
dependencies (because the DAG is static the memory access pattern will identical for
all inputs) and a compression function H(-). Alwen and Serbinenko [AS15] defined
fa,u(x)=labg g (N) to be the label of the last node in the graph G on input z.
Here, the label of the first node labg, i (1) = H(1,z) is computed using the input
x and for each internal node v with parents(v)=wvy,...,us we have

IabG7H’I(v) :H(v,labg)Hﬂ:(vl),...,laqu@ (1}5)) .

In practice, one requires that the maximum indegree is constant O(¢) so that the
function fg g can be evaluated in sequential time O(N). Alwen and Serbinenko [AS15]
proved that the cme complexity (asymptotically equivalent to aAT complexity) of the
function fg g can be fully described in terms of the black pebbling game — defined
later in Section 2.2. The result is significant in that it reduces the complex task
of building an iMHF with high aAT complexity to the (potentially easier) task of
constructing a DAG with maximum pebbling cost. In particular, Alwen and Serbinenko
showed that any algorithm evaluating the function fg g in the parallel random oracle

model must have cumulative memory cost at least Q(w X Uﬂc(G)), where HCHC(G)

is the cumulative pebbling cost of G (defined in Section 2.2), H:{0,1}*—{0,1}" is
modeled as a random oracle and w=|H (z)| is the number of output bits in a single hash
value. Similar, pebbling reductions have been given for bandwidth hardness [BRZ18]
and sustained space complexity [ABP18] using the same labeling rule.

While these pebbling reductions are useful in theory, practical iIMHF implementa-
tions do not use the labeling rule proposed in [AS15]. In particular, Argon2i, DRSample
and our own iIMHF implementation (DRSample+BRG) all use the following labeling
rule

|abG7H7$ (’U) = H(IabG7H7m(v1)® ...@Iabg_,H,m(v(;)) s

where v1,...,u5 = parents(v) and the DAGs have indegree 6 =2. The XOR labeling
rule allows one to work with a faster round function H : {0,1}* — {0,1}" e.g.,
Argon2i builds H :{0,1}3192 — {0,1}#192 using the Blake2b permutation function and
DRSample(+BRG) uses the same labeling rule as Argon2i. When we define fg g
using the above the pebbling reduction of [AS15] no longer applies. Thus, while we
know that the pebbling cost of DRSample (resp. Argon2i) is 2(N?/logN) [ABH17]
(resp. 2(N'75) [BZ17]). Technically, it had never been proven that DRSample (resp.
Argon2i) has aAT complexity 2(wN?/logN) (resp. £2(wN'") in the parallel random
oracle model.

Argon2i and DRSample. Arguably, two of the most significant iMHFs candidates
are Argon2i [BDK16] and DRSample [ABH17]. Argon2i was the winner of the re-
cently completed password hashing competition [Pin14] and DRSample [ABH17]
was the first practical construction of an iMHF with aAT complexity proven to
be at least Q(N 2 /logN ) in the random oracle model. In an asymptotic sense this
upper bound almost matches the general upper bound O(N?loglog N/logN) on
the aAT cost of any iMHF established by Alwen and Blocki [AB16]. A recent line
of research [AB16,AB17, ABP17,BZ17] has developed theoretical depth-reducing



attacks on Argon2i showing that the iMHF has aAT complexity at most (’)(N 1'767)4.
The DRSample [ABH17] iMHF modifies the edge distribution of the Argon2i graph
to ensure that the underlying directed acyclic graph (DAG) satisfies a combinato-
rial property called depth-robustness which is known to be necessary [AB16] and
sufficient [ABP17] for developing a MHF with high aAT complexity.

While the aAT complexity of DRSample is at least ¢; N2 /logN for some constant
¢1, the constant c in this lower bound is poorly understood — Alwen et al. [ABH17]
only proved the lower bound when ¢; =7 x 1076, Similarly, Argon2i has aAT com-
plexity at least co N7 /logIN [BZ17] though the constants from this lower bound are
also poorly understood®. On the negative side the asymptotic lower bounds do not
absolutely rule out the possibility of an attack that reduces aAT complexity by several
orders of magnitude. Alwen et al. [ABH17] also presented an empirical analysis of the
aAT cost of DRSample and Argon2i by measuring the aAT cost of these functions
against a wide battery of pebbling attacks [AB16, ABP17, AB17]. The results of this
empirical analysis was quite positive for DRSample indicated that DRSample was
not only stronger in an asymptotic sense, but that it also provided greater resistance
to other pebbling attacks than other iMHF candidates like Argon2i in practice.

Boneh et al. [BCS16] previously presented a greedy pebbling attack which reduced
the pebbling cost of Argon2i by a moderate constant factor of 4 to 5. The greedy
pebbling attack does not appear to have been included in the empirical analysis of
Alwen et al. [ABH17]. In a strict asymptotic sense the depth-reducing attacks of
Alwen and Blocki [AB16,AB17] achieved more substantial £2(N®2")-factor reductions
in pebbling cost, which may help to explain the omission of the greedy algorithm
in [ABH17]. Nevertheless, it is worth noting that the greedy pebbling strategy is a
simple sequential pebbling strategy which would be easy to implement in practice. By
contrast, there has been debate about the practical feasibility of implementing the more
complicated pebbling attacks of Alwen and Blocki [AB16] (Alwen and Blocki [AB17]
argued that the attacks don’t require unrealistic parallelism or memory bandwidth,
but to the best of our knowledge the attacks have yet to be implemented on an ASIC).

1.2 Contributions

Stronger Attacks We present a theoretical and empirical analysis of the greedy peb-
bling attack [BCS16] finding that DRSample has aAT complexity at most S N?/logN.
The greedy pebbling attack that achieves this bound is sequential, easy to implement
and achieves high attack quality even for practical values of N. In fact, for practical
values of N <224 we show that DRSample is more vulnerable to known pebbling
attacks than Argon2i, which reverses previous conclusions about the practical security
of Argon2i and DRSample [ABH17]. We next consider a defense proposed by Biryukov
et al. [BDK16] against the greedy pebbling attack which we call the XOR-extension
gadget. While this defense defeats the original greedy pebbling attack [BCS16], we

4 This latest attack almost matches the lower bound of Q(N 1'75) on the aAT complexity
of Argon2i.

5 Blocki and Zhou did not explicitly work out the constants in their lower bound, but
it appears that co~5x10~" [ABH17].



found a simple generalization of the greedy pebbling attack that thwarts this defense.
We also use the greedy pebbling attack to prove that any DAG with indegree two
has a sequential pebbling with aAT cost g NTQ.

We also develop a novel greedy algorithm for constructing depth-reducing sets, which is
the critical first step in the parallel pebbling attacks of Alwen and Blocki [AB16,AB17].
Empirical analysis demonstrates that this greedy algorithm constructs significantly
smaller depth-reducing sets than previous state of the art techniques [AB16,AB17,
ABH17], which leads to higher quality attacks [AB16] and leaving us in an un-
comfortable situation where there high quality pebbling attacks against all iMHF
candidates e.g., DRSample is susceptible to the greedy pebbling attack while Argon2i
is susceptible to depth-reducing attacks [AB16, AB17, ABH17].

New iMHF Candidate with Optimal Security We next develop a new iMHF
candidate DRSample+BRG by overlaying a bit-reversal graph [LT82,FLW14] on top
of DRSample, and analyze the new DAG empirically and theoretically. Interestingly,
while neither DAG (DRSample or BRG) is known to have strong sustained space
complexity guarantees we can prove that any parallel pebbling either has maximal sus-
tained space complexity (meaning that there are at least 2(IN) steps with 2(N/logN)
pebbles on the DAG) or has aAT cost at least w(N?). This makes our construction the
first practical construction with strong guarantees on the sustained space-complexity
— prior constructions of Alwen et al. [ABP18] were theoretical. DRSample+BRG is
asymptotically optimal with respect to all proposed MHF metrics including bandwidth
hardness (both BRG and DRSample are bandwidth hard [RD17,BRZ18]) and aAT
complexity (inherited from DRSample [ABH17]). We also show that our construction
optimally resists the greedy attack and any extensions. In particular, we prove sequen-
tial pebbling of the bit-reversal graph has cumulative memory cost (cmc) and aAT
cost at least 2(N?). This result generalizes a well known result that the bit-reversal
graph has sequential space-time cost £2(IN?) and may be of independent interest e.g.,
it demonstrates that Password Hashing Competition Finalist Catena-BRG [FLW14]
is secure against all sequential attacks.

Our empirical analysis indicates that DRSample+BRG offers strong resistance
to all known attacks, including the greedy pebbling attack, depth-reducing attacks
and several other novel attacks introduced in this paper. In particular, even for very
large N =22% (224 1KB blocks =16GB) the best attack had aAT cost over Jf—f — for

comparison any DAG with indegree two has aAT cost < Nfz.

We also show that the aAT/cmc of DRSample+BRG is at least 2 (N 2loglogN/log N )
under a plausible conjecture about the depth-robustness of DRSample. As evidence for
our conjecture we analyze three state-of-the-art approaches for constructing a depth-
reducing set, including the layered attack [AB16], Valiant’s Lemma [AB16, Val77]
and the reduction of Alwen et al. [ABP17], which can transform any pebbling with
low aAT cost (e.g., the Greedy Pebbling Attack) into a depth-reducing set. We show
that each attack fails to refute our conjecture. Thus, even if the conjecture is false

we would require significant improvements to state-of-the art to refute it.

Black Pebbling Reduction for XOR Labeling Rule While Alwen and Ser-
binenko showed that any algorithm evaluating the graph labeling function fg g



in the parallel random oracle model must have cumulative memory cost at least
? (w X HQC(G)) , their proof made the restrictive assumption that labels are computed

using the concatenation rule labg, g . (v) = H (v,labg, i 4 (v1),....labg g 2 (vs)). How-
ever, most practical IMHF implementations (e.g., Argon2i and DRSample(+BRG))
all follow the more efficient XOR labeling rule labg g, (v) = H (labg, i1, (v1) ... Blabg g . (v5))
where v1,...,u5 =parents(v) and the DAGs have indegree 6 =O(1). The XOR labeling
rule allows one to work with a faster round function H:{0,1}* —{0,1}*, e.g., Argon2i
builds H :{0,1}8192 — {0,1}8192 to speed up computation so that we fill more memory.
We extend the results of Alwen and Serbinenko to show that, for suitable DAGs,

fc, i has cumulative memory cost at least Q(w X HﬂC(G) / 6) when the XOR labeling

rule. The loss of ¢ is necessarily as the pebbling complexity of the complete DAG
Ky is Hyc(Kn):Q(NQ), but fr . has cme/aAT cost at most O(N) when defined
using the XOR labeling rule. In practice, all of the graphs we consider have §=0(1)
so this loss is not significant.

One challenge we face in the reduction is that it is more difficult to extract labels
from the random oracle query labg g, (v1)®...®labg g,z (vs) than from the query
labg, 1 2 (v1),--,labg, 1.2 (vs). Another challenge we face is that the labeling function
H'(x,y)=H(xz®y) is not even collision resistant e.g., H'(y,x)=H'(z,y). In fact, one
can exploit this property to find graphs G on N nodes where the function f¢ g is a con-
stant function e.g., Suppose we start with a DAG G'=(V'=[N—3],E’) on N —3 nodes
that has high pebbling cost HCHC(G’) and define G=(V=[N|,E=FE'U{(N-3,N—
2),(N—3,N—1),(N—4,N—2),(N—4,N—1),(N—2,N),(N—1,N)}) by adding di-
rected edges from node N —3 and N —4 to nodes N —2,N —1 and then adding directed
edges from N —2 and N —1 to node N. Note that for any input  we have labg 7 (N —
2)=H (labg, g (N —3)®labg g, (N —3)) =labg, i (N —1). It follows that

fcyH(IC) = |abG’H7I(N) :H(IabG,H,z(N—Q)EBIabG’Hym(N—l)) :H(Ow)

is a constant function. Thus, the claim that fg p has cumulative memory cost at
least .Q(w x 111, @)/ 5) cannot hold for arbitrary graphs.

The above example exploited the absence of the explicit term v in labg g,,(v) to
produce two nodes that always have the same label. However, we can prove that if
the DAG G=(V =[N],E) contains all edges of the form (i,i+1) for i <N then any
algorithm evaluating the function fg g in the parallel random oracle model must have
cumulative memory cost at least 2 (w XHKUC(G) / 6). Furthermore, the cumulative
memory cost of an algorithm computing fe m on m distinct inputs must be at least
Q(mw X HC”C(G)). We stress that all of the practical iIMHFs we consider including
Argon2i and DRSample(+BRG) satisfy this condition.

Sequential Round Function We show how a parallel attacker could reduce aAT
costs by nearly an order of magnitude by computation of the Argon2i round func-
tion in parallel. For example, the first step to evaluate the Argon2 round function
H(X,Y) is to divide the input R= X ®Y € {0,1}3%? into 64 groups of 16-byte
values Ry, ...,Re3 € {0,1}12® and then compute (Qo,Q1,...,Q7)«BP(Ro,...,R7),...,



(Q56,Q56,---,Q63)<BP(Rs6,--.,Re3). Each call to the Blake2b permutation BP can
be trivially evaluated in parallel, which means that the attacker can easily reduce the
depth of the circuit evaluating Argon2 by a factor of 8 without increasing the area of
the circuit i.e., memory usage remains constant. The issue affects all Argon2 modes of
operation (including data-dependent modes like Argon2d and Argon2id) and could po-
tentially be used in combination with other pebbling attacks [AB16,AB17] for an even
more dramatic decrease in aAT complexity. We also stress that this gain is independent
of any other optimizations that an ASIC attacker might make to speed up compu-
tation of BP e.g., if the attacker can evaluate BP four-times faster than the honest
party then the attacker will be able to evaluate the round function H 8 x4 =32-times
faster than the honest party. We propose a simple modification to the Argon2 round
function by injecting a few additional data-dependencies to ensure that evaluation is
inherently sequential. While the modification is simple we show it increases a parallel
attacker’s aAT costs by nearly an order of magnitude. Furthermore, empirical analysis
indicates that our modifications have negligible impact on the running time on a CPU.

Implementation of our iMHF We develop an implementation of our new
iMHF candidate DRSample+BRG, which also uses the improved sequential Ar-
gon2 round function. The source code is available on an anonymous Github reposi-
tory https://github.com/antiparallel-drsbrg-argon/Antiparallel- DRS-BRG. Empirical
tests indicate that the running time of DRSample+BRG is equivalent to that of
Argon2 for the honest party, while our prior analysis indicates the aAT costs, energy
costs and sustained space complexity are all higher for DRSample+BRG.

2 Preliminaries

In this section we will lay out notation and important definitions required for the
following sections.

2.1 Graph Notation and Definitions

We use G = (V,E) to denote a directed acyclic graph and we use N = 2" to
denote the number of nodes in V = {1,..., N}. Given a node v € V, we use
parents(v) = {u : (u,v) € E} to denote the immediate parents of node v in G.
In general, we use ancestorsg (v) =, parents(v) to denote the set of all ancestors
of v — here, parentsZ (v) = parents(parents.;(v)) denotes the grandparents of v and
parents.f ' (v) = parents; (parents;(v)). When G is clear from context we will simply
write parents (ancestors). We use indeg(G) =max, |parents(v)| to denote the maximum
indegree of any node in G. All of the practical graphs we consider will contain each
of the edges (i,i+1) for i < N. Thus, there is a single source node 1 and a single sink
node N. Most of the graphs we consider will have indeg(G)=2 and in this case we
will use r(7) <i to denote the other parent of node i besides i—1. Given a subset
of nodes SCV we use G—.S to refer to the graph with all nodes in S deleted and
we use G[S]=G—(V'\S) to refer to graph obtained by deleting all nodes except S.
Finally, we use G<;=G[{1,...,k}] to refer to the graph induced by the first k& nodes.

Block depth-robustness: Block depth-robustness is a stronger variant of depth-
robustness. First, we define N(v,b) = {v —b+ 1,0 —b+2,..v} to be the set of
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b contiguous nodes ending at node v. For a set of vertices S C V, we also define
N(8,b) = U, eg N(v,b). We say that a graph is (e,d,b) block depth robust if, for
every set S CV of size |S| <e, depth(G— N(S,b)) >d. When b=1 we simply say
that the graph is (e,d) depth robust. It is known that highly depth robust DAGs
G have high pebbling complexity, and can be used to construct strong iMHFs with
high aAT complexity in the random oracle model [ABP17]. In certain cases, block
depth-robustness can be used to establish even stronger lower bounds on the pebbling
complexity of a graph [ABH17,BZ17]. Alwen et al. gave an algorithm DRSample
which (whp) outputs a DAG G that is (e,d,b) block depth robust with e=£2(N/logN),
d=(N) and b=12(logN) [ABH17].

Graph labeling functions: As mentioned in the introduction, an iMHF fg g can be
described as a mode of operation over a directed acyclic graph using a round function
H. Intuitively, the graph represents data dependencies between the memory blocks
that are generated as computation progresses and each vertex represents a value being
computed based on some dependencies. The function fg g () can typically be defined
as a labeling function i.e., given a set of vertices V =[N]={1,2,3,...,N}, a compression
function H=1{0,1}* —{0,1}™ (often modeled as a Random Oracle in security analysis),
and an input x, we “label” the nodes in V" as follows. All source vertices (those with no
parents) are labeled as ¢, ()= H (v,z) and all other nodes with parents v;,vs,...,u5 are
labeled £, (x) = Fy i (Cy, () lyy (),-..,0ws (z)) for a function F, (-) that depends on
H(). The output fg m(x) is then defined to be the label(s) of the sink node(s) in G.

In theoretical constructions (e.g., [AS15]) we often have F,, g (€y, () €y, (2),....0us (€)=
H(v,ly,(2),ly, (),...,Lps (x)) while in most real world constructions (e.g., Argon2i [BDK16])
we have Fy g (£y, (2),lv, (@), 0us () = H by, (2) By, (2)... B4y, (x)). To ensure that
the function fg zr can be computed in O(N) steps, we require that G is an N-node
DAG with constant indegree §.

2.2 iMHFs and the Parallel Black Pebbling Game

Alwen and Serbinenko [AS15] and Alwen and Tackmann [AT17] provided reduc-
tions proving that in the parallel random oracle model (PROM) the amortized
area time complexity of the function fg gz is completely captured by the (par-
allel) black pebbling game on the DAG G when we define when we instantiate
the round function as F,, g (€y, (),Luy (), ilis (1)) = H (0,00, (€) Ly, (7).l (X)).
However, practical constructions such as Argon2i use a different round function

FS?H (Lyy (2) Ly ().l () = H(@é L (a:)) In Section 6 we extend prior peb-

j=1%v;

bling reductions to handle the round function FS’?H, which justifies the use of pebbling
games to analyze practical constructions of iMHFESs such as Argon2i or DRSample.

Intuitively, placing a pebble on a node represents computing the corresponding
memory block and storing it in memory. The rules of the black pebbling game state
that we cannot place a pebble on a node v until we have pebbles on the parents of
node v i.e., we cannot compute a new memory block until we have access to all of
the memory blocks on which the computation depends. More formally, in the black
pebbling game on a directed graph G=(V,E), we place pebbles on certain vertices
of G over a series of ¢ rounds. A valid pebbling P is a sequence Py,P;,...,P; of sets
of vertices satisfying the following properties: (1) Py=1, (2) Yv € P;\ P,_; we have
parents(v) C P;,_1, and (3) Vo€V, 3i s.t. vEP,.



Intuitively, P; denotes the subset of data-labels stored in memory at time ¢ and
P;\ P,_1 denotes the new data-labels that are computed during round 7 — the second
constraint states that we can only compute these new data-labels if all of the necessary
dependent data values were already in memory. The final constraint says that we
must eventually pebble all nodes (otherwise we would never compute the output
labels for fg i). We say that a pebbling is sequential if Vi >0 we have |P;\ P,_1|<1
i.e., in every round at most one new pebble is placed on the graph. We use PI(G)
(resp. P(G)) to denote the set of all valid parallel (resp. sequential) black pebblings
of the DAG G. We define the space-time cost of a pebbling P=(P,...,P;) 6732'; to
be st(P) =t x maxj<;<;|P;| and the sequential space-time pebbling cost, denoted
IT+(G) =minpep,st(P), is the space-time cost of the best legal pebbling of G.

There are many other pebbling games one can define on a DAG including
the red-blue pebbling game [JWKS81] and the black-white pebbling game [Len81].
Red-blue pebbling games can be used to analyze the bandwidth-hardness of an
iMHF [RD17,BRZ18]. In this work, we primarily focus on the (parallel) black peb-
bling game to analyze the amortized Area-Time complexity and the sustained space
complexity of a memory-hard function.

Definition 1 (Time/Space/Cumulative Pebbling Complexity). The time,
space, space-time and cumulative complexity of a pebbling P = {P,...,P;} € ’Pg
are defined to be:

II,(P)=t HS(P)=riré?5<IBI I4(P)=IT,(P)-1I,(P)  I.(P)=) |P].
i€[t]

For ace{s,t,st,cc} the sequential and parallel pebbling complexities of G are defined as

I,(G)= min IT,(P)  and  Il(G)= min IT,(P) .
PEPg PeP),

Tt follows from the definition that for « € {s,t,st,cc} and any G, the parallel
pebbling complexity is always at most as high as the sequential, i.e., IT,(G) > Hﬂ(G),
and cumulative complexity is at most as high as space-time complexity, i.e., [T (G) >
11..(G) and IT1(G) > Il.(G). Thus, we have IT,((G) > IT..(G) > I1\.(G) and
11,4(G) > I11,(G) > IT.(G). However, the relationship between IT),(G) and IT.(G) is
less clear. It is easy to provide examples of graphs for which I7..(G) < IT, l‘t(G) 6. Al-
wen and Serbinenko showed that for the bit-reversal graph G=BRG,, with O(N =2")
nodes we have Hﬂt(G) =O(ny/n). In Section 4.2 we show that II..(G) = 2(N?),
thus, for some DAGs we have I1..(G)>II, sHt(G).

5 One example of such a graph G would be to start the pyramid graph A\, which has
O(k’2) nodes, a single sink node ¢ and append a path W of length k2 starting at this sink

node t. The pyramid graph requires 17, 1 ( Ak) =0O(k) space to pebble and has II.. ( Ak) <
I (Ak) < k3. Similarly, the path W requires at least Ht”(W) = II;(W) =k steps to
pebble the path (even in parallel). Thus, IT, llt(G) >k*. By contrast, we have ITe.(G) <

Il.. (Ak) +K3 < k3 4+ k% < k* since we can place a pebble on node t with cost Il.. (Ak)7
discard all other pebbles from the graph and then walk this pebble across the path.



Definition 2 (Sustained Space Complexity [ABP18]). For s€N the s-sustained-
space (s-ss) complexity of a pebbling P={Fy,...,P;} 6772; is: Iss(Pys)={i€[t]:| B >
s}. More generally, the sequential and parallel s-sustained space complexities of G
are defined as

IT,4(G,s)= min II(P,s) and HSHS(G,S): min [T (P)s) .
PePc PePg

We remark that for any s we have I1..(G) > II,(G,s) x s and Hl‘c(G) >
HSHS(G7S) X 8.
2.3 Amortized Area-Time Cost (aAT)

Amortized Area-Time (aAT) cost is a way of viewing the cost to compute an iMHF,
and it is closely related to the cost of pebbling a graph. Essentially, aAT cost represents
the cost to keep pebbles in memory and adds in a factor representing the cost to
compute the pebble. Here we require an additional factor, the core-memory ratio R,
a multiplicative factor representing the ratio between computation cost vs memory
cost. In this paper we are mainly focused on analysis of Argon2, which has previous
calculations showing R =3000 [BK15]. It can be assumed that this value is being
used for R unless otherwise specified. The formal definition of the aAT complexity
of a pebbling P=(F,...,Pr) of the graph G is as follows:

T T
aATz(P)= |P|+R) _|P\P, |
=1 =1

The (sequential) aAT complexity of a graph G is defined to be the aAT complexity
of the optimal (sequential) pebbling strategy. Formally,

aATR(G)= min aATg(G),and aATIz(G)= min aATR(P).
PEP(G) PePI(G)

One of the nice properties of aAT and Hc‘c complexity is that both cost metrics
amortize nicely i.e., if G™ consists of m independent copies of the DAG G then

aATl 5 (G™) =m x aAT! 4(G). We remark that aAT! (@) EHCHC(G), but that in most
cases we will have aAT!! 5(G) zHCHC(G) since the number of queries to the random

oracle is typically 0<H L (G)) We will work with I7, l‘C(G) when conducting theoretical

analysis and we will use aAT! r(G) when conducting empirical experiments, as the
constant factor R is important in practice. This also makes it easier to compare our
empirical results with prior work [AB17, ABH17].

2.4 Attack Quality

In many cases we will care about how efficient certain pebbling strategies are compared
to others. When we work with an iMHF, we have a naive sequential algorithm A/ for
evaluation e.g. the algorithm described in the Argon2 specifications [BDK16]. Typically,
the naive algorithm N is relatively expensive e.g., aAT z(N)=N?/2+RN. We say



that an attacker A is successful at reducing evaluation costs if aAT g(A) <aAT g(N).
Following [AB16] we define the quality of the attack as

N aATR(J\/)

AT—quaIIty(.A) = m,

which describes how much more efficiently A is able to evaluate the function compared

to V.

3 Analysis of the Greedy Pebbling Algorithm

In this section we present a theoretical and empirical analysis of the greedy pebbling
attack [BCS16] that reverses previous conclusions about the practical security of Ar-
gon2i vs DRSample [ABH17]. We prove two main results using the greedy algorithm.
First, we show that for any N node DAG G with indegree 2 and a unique topological
ordering, we have aATg(G) < % + RN — see Theorem 1. Second, we prove
that for any constant 17>0 and a random DRSample DAG G on N nodes, we have
II4(G) < (1+41)2N?/logN with high probability — see Theorem 2. We stress that
in both cases the bounds are explicit not asymptotic, and that the pebbling attacks
are simple and sequential.

Alwen and Blocki [AB16] previously had shown that any DAG G with constant
indegree has aAT! z(G) € O(N2loglogN/logN), but the constants from this bound
were not well understood and did not rule out the existence of an N node DAG
G with aAT!! r(G)>N?/2+RN for practical values of N e.g., unless we use more
than 16GB of RAM we have N < 224 for Argon2i or DRSample”. By contrast,
Theorem 1 immediately implies that aAT! r(G) < W + RN. Similarly, Alwen
et al. [ABH17] previously showed that with high probability a DRSample DAG G
has aAT! 5 (G) € 2(N?/logN), but the constants in this lower bound were not well
understood. On a theoretical side our analysis shows that this bound is tight i.e.,
aATl 1 (@) € O(N2/logN). Tt also proves that DRSample does not quite match the
generic upper bound of Alwen and Blocki [AB16].

Extension of the Greedy Pebbling Attack Our analysis leaves us in an uncomfortable
position where every practical iMHF candidate has high quality pebbling attacks
i.e., greedy pebble for DRSample and depth-reducing attacks for Argon2i. We would
like to develop a practical iMHF candidate that provides strong resistance against
all known pebbling attacks for all practical values of N <224 We first consider a
defense proposed by Biryukov et al. [BDK16] against the greedy pebbling attack.
While this defense provides optimal protection against the greedy pebbling attack,
we introduce an extension of the greedy pebbling attack which we call the staggered
greedy pebbling attack and show that the trick of Biryukov et al. [BDK16] fails to
protect against the extended attack.

" In Argon2, the block-size is 1K B so when we use N =2%* nodes the honest party would
require 16GB (= N x KB) of RAM to evaluate the MHF. Thus, we view 22* as a reasonable
upper bound on the the number of blocks that would be used in practical applications.



3.1 The Greedy Pebbling Algorithm

We first review the greedy pebbling algorithm, shown here as Algorithm 1.We first
introduce some notation

gc(v): For each node v< N we let gc(v) =max{w| (v,w) € E} denote the maximum
child of node v — if v < N then the set {w| (v,w) € E'} is non-empty as it contains
the node v+1. If node v has no children then set gc(v):=v.

x(i): This represents what we call the crossing set of the ith node. It is defined as
x(7) ={vjv <i A gc(v) >i}. Intuitively this represents the set of nodes v <4
incident to a directed edge (v,u) that “crosses over” node i i.e. u>1i.

Greedy Pebbling Strategy: Set GP(G) = P = (Py,...,Pn) where P, = x(i) for
each i < N. Intuitively, the pebbling strategy can be described follows: In round
1 we place a pebble on node ¢ and we then discard any pebbles on nodes v that
are no longer needed in any future round i.e., for all future nodes w > i we have
v ¢ parents(w) (equivalently, the greatest-child of node v is gc(v) <i¢). We refer the
reader to Algorithm 1 in the appendix for a formal algorithmic description.

We first prove the following general lower bound for any N node DAG with
indeg(G) < 2 that has a unique topological ordering i.e., G contains each of the
edges (i,i+1). In particular, Theorem 1 shows that for any such DAG G we have
IIu(G) 5 NTQ and I1..(G) S N? /4. We stress that this is twice as efficient as the naive
pebbling algorithm A which set P;={1,...,i} for each i <N and has cumulative cost

1, N)= NTZ Previously, the gold standard was to find constructions of DAGs G
with N nodes such that Ul‘c(G) 2 NTZ for practical values of N — asymptotic results

~
~

did not rule out this possibility even for N <240, Theorem 1 demonstrates that the

best we could hope for is to ensure I7, CHC (@) % NTZ for practical values of N.

Theorem 1. Let r: Nyg — N be any function with the property that r(i) <i—1
for all i € Nsg. Then the DAG G = (V,E) with N nodes V ={1,...,N} and edges
E={(i-1) : 1<i<N}U{(r(i),i) : 2<i<N} has u(G) < Y42 gng
[o(G) < NPH2N 40 aAT p(G) < 42N L RN

The full proof of Theorem 1 is in Appendix C. Intuitively, Theorem 1 follows from
the observation that in any pebbling we have |P;| <4, and in the greedy pebbling we
also have |P;| < N —i since there can be at most N —i nodes w such that w=r(v)
for some v >4 and other pebbles on any other node would have been discarded by
the greedy pebbling algorithm.

3.2 Analysis of the Greedy Pebble Attack on DRSample

We now turn our attention to the specific case of the IMHF DRSample. The DRSam-
ple distribution is defined formally in Algorithm 3 in the appendix. A DAG G sampled
from this distribution has edges of the form (4,i41) and (r(%),i) where each r(i) <7 is in-
dependently selected from some distribution. It is not necessary to understand all of the
details of this distribution to follow our analysis in this section as the crucial property
that we require is given in Claim 1 which is proved in Appendix C. Intuitively, Claim 1

follows because we have Pr[r(j)=1]~ F}gj X |j£i‘ for each node i< j in DRSample.




Claim 1 Let G be a randomly sampled DRSample DAG with N nodes and let Y; ;
be an indicator random variable for the event that r(j)<i for nodes i<j<N then
we have B[Y; ;| =Pr[r(j) <i]<1— %.

If P=(P,...,Pn)=GP(G), then we remark that x(7) can be viewed as an alternate
characterization of the set P, =x(i) of pebbles on the graph at time i. Lemma 1 now
implies that with high probability, we will have |P;| < (1+9)N/n during all pebbling
rounds.

Lemma 1. Given a DAG G on N =2" nodes sampled using the randomized DR-
Sample algorithm for any n>0 we have

2
Pr|max|x(i)| > (1+n) (Mﬂ <exp ( —2 N +nln2) :
% n 3n

Lemma 1, which bounds the size of max;|x(7)|, is proved in Appendix C. Intuitively,
the proof uses the observation that x(i) < Z;V:Z +1Yi; where Y, ; is an indicator
random variable for the event that r(j) <i. This is because x (i) is upper bounded
by the number of edges that “cross” over the node . We can then use Claim 1 and

standard concentration bounds to obtain Lemma 1.
Theorem 2, our main result in this section, now follows immediately from Lemma 1.

Theorem 2 states that, except with negligibly small probability, the sequential pebbling
cost of a DRSample DAG is at most (1+7) (%) +RN.

Theorem 2. Let G be a randomly sampled DRSample DAG with N =2" nodes then
for all n>0 we have

Pr [Hst(GP(G))> (1+7) <2nN2>} <exp< ;;N +nln2> .

Proof. Fix n>0 and consider a randomly sampled N-node DRSample DAG G. We
let P=GP(G). We observe that |P;|=x(i). By Lemma 1, except with probability

exp(w), we have

. 2N?2
Ny < (1) (%) (1)

We now obtain the final result by union bounding over ¢ < N. Assuming that Equation
1 holds for all <N, we have IT,(GP(G))<(1+n) (%) + RN as claimed. O

Discussion. Theorem 2 implies that the (sequential) aAT complexity of DRSample
is aATr(G) $2N?/logN € O(N?/logN), which asymptotically matches the lower
bound of £2(N?/logN) [ABH17]. More significant from a practical standpoint is that
the constant factors in the upper bound are given explicitly. Theorem 2 implies attack
quality at least g loiN since the cost of the naive pebbling algorithm is N2 /2. Thus, for
practical values of N <224 we will get high quality attacks and our empirical analysis




suggests that attack quality actually scales with log/N. On a positive note the pebbling
attack is sequential, which means that we could adjust the naive (honest) evaluation
algorithm to simply use N to use GP(G) instead because the greedy pebbling strategy
is sequential. While this would lead to an egalitarian function, the outcome is still
undesirable from the standpoint of password hashing where we want to ensure that
the attacker’s absolute aAT costs are as high as possible given a fixed running time N.

3.3 Empirical Analysis of the GP Attack

We ran the greedy pebbling attack against several iMHF DAGs including Argon2i,
DRSample and our new construction DRSample+BRG (see Section 4) and compare
the Attack Quality of greedy pebble with prior depth-reducing attacks. The results,
seen in Figure 2 (left), show that the GP attack was especially effective against the
DRSample DAG, improving attack quality by a factor of up to 7 (at n=24) when
compared to previous state-of-the-art depth-reducing attacks (Valiant, Layered, and
various hybrid approaches) [Val77, AB16, ABH17].

The most important observation about Figure 2 (left) is simply how effective
the greedy pebbling attack is against DRSample. We remark that attack quality
for DRSample with N =2" nodes seems to be approximately n — slightly better
than the theoretical guarantees from Theorem 2. While DRSample may have the
strongest asymptotic guarantees (i.e. aATI(@) = 2(N2/log N) for DRSample vs.
aATI (@) = O(NYT67) for Argon2i) Argon2i seems to provide better resistance to
known pebbling attacks for practical parameter ranges.

When testing the GP attack against Argon2i we found that, while the Greedy
Pebbling attack does sometimes outperform depth-reducing attacks at smaller values
of n, the depth-reducing attacks appear to be superior once we reach graph sizes that
would likely be used in practice. As an example, when n=20 we find that the attack
quality of the greedy pebbling attack is just 2.99, while the best depth-reducing
attack achieved attack quality 6.25 [ABH17].

3.4 Defense Against Greedy Pebbling Attack: Attempt 1 XOR extension

Biryukov et al. [BDK16] introduced a simple defense against the greedy pebbling
attack of Boneh et al. [BCS16] for iMHFs that make two passes over memory. Nor-
mally during computation the block B; /2 would be stored at memory location ¢
overwriting block B;. The idea of the defense is to XOR the two blocks B n/2 and
B; before overwriting block B; in memory. Biryukov et al. [BDK16] observed that this
defense does not significantly slow down computation because block B; would have
been loaded into cache before it is overwritten in either case. The effect of performing
this extra computation is effectively to add each edge of the form (i— %,z) to the DAG
G. In particular, this means that the greedy pebbling algorithm will not discard the
pebble on node i — % until round ¢, which is when the honest pebbling algorithm would
have discarded the pebble anyway. Given a graph G = (V,E) we use G® = (V,E?)
to denote the XOR-extension graph of G where E® =FEU{(i— i) | i> 5} It is

easy to see that I7), (GP(GP)) > W, which would make it tempting to conclude
that the XOR-extension defeats the greedy pebbling attack.



Greedy Pebble Extension: Given a graph G on N nodes let P=(P,...,Py) =
GP(G) and let Q = (Q1,...,Qn/2) = GP(G<n/2). Define GPE(G®) = (P1@7 P@)
where PJFN/2 1 =QiUPi /21 and Pze =P, for i < N/2. See Algorithm 2 in the
appendix for a formal algorithm presentation. Intuitively, the attack exploits the fact
that always ensure that we have a pebble on the extra node v € parents(N/2+v) at
time N/2+v—1 by using the greedy pebble algorithm to synchronously re-pebble
the nodes 1,...,N/2 a second time.

Theorem 3 demonstrates that the new generalized greedy pebble algorithm is
effective against the XOR-extension gadget. In particular, Corollary 2 states that we
still obtain high quality attacks against DRSample® so the XOR-gadget does not
significantly improve the aAT cost of DRSample.

Theorem 3. Let r:Nsg—N be any function with the property that r(i)<i for all
i1€Nsg and let G=(V,E) be a graph with N nodes V={1,..,N} and directed edges
E={(ii+1) | i<N}U{r(i)i | 1<i<N}. If P=GP(G) € P(G) and Qe P(G<ny/2)
then the XOR-extension graph G® of G has amortized Area-Time complexity at most

N/2
3RN
aATIR(G®) <> IR |+Z\Ql|+—

i=1
Corollary 1. Let r:Nso—N be any function with the property that r(i)<i for all
i1€Nsg and let G=(V,E) be a graph with N nodes V={1,..,N} and directed edges
E={(ii+1) | i< N}U{r(i),i | 1<i<N}. Then for the XOR-extension graph G®

2
we have aAT“R(G@) < SN 4+12N E12N+—3R2N.

The proof of Theorem 3 can be found in the appendix. One consequence of
Theorem 3 is that the XOR~extension gadget does not rescue DRSample from the
greedy pebble attack — see Corollary 2.

Corollary 2. Fixn>0 be a fized constant and let G=(V,E) be randomly sampled
DRSample DAG with N=2" nodes V={1,...,N} and directed edges E={(i,i+1) | i<
N}YU{r(i), | 1<i<N}. Then

3N2  N? 3RN —?N
Pr|aATl R (G®) > (1 - <exp( z——<+1+nn2) .
P|2ATIR(G) > (14) n  nn—1) + g | =P 3(n71)+ i
Proof. Fix n > 0 and let P = GP(G) where G is a randomly sampled DRSam-

2" N +nln2), we have

ple DAG. By Lemma 1, except with probability exp(

max; | P;| = max; x(i) < (14 n1)2Y which means that Zi:l [P < (1+n)¥. Simi-
larly, let Q=GP (G<n/2) be a greedy pebbling of the subgraph formed by the first
N/2 nodes in G. We remark that G</, can be viewed as a randomly DRSample
DAG with N/2=2""1 nodes. Thus, except with probability exp(3( -1 +(n— 1)1112)
we have max;< /2 |Q;| = max; (i) < (14n)-25 since the first N/2 nodes of G
form a random DRSample DAG with N/2=2""! nodes. This would imply that
EN/ 2 Qil < (1+n): =5 N . Putting both bounds together Theorem 3 implies that

ATl (G2) < (14) (T — il )+ 35N 0

n(n—1)




4 New iMHF Construction with Optimal Security

In this section we introduce a new iMHF construction called DRSample+BRG. The
new construction is obtained by overlaying a bit-reversal graph BRG,, [LT82] on
top of a random DRSample DAG. If G denotes a random DRSample DAG with
N/2 nodes then we will use BRG(G) to denote the bit-reversal overlay with N nodes.
Intuitively, the result is a graph that resists both the greedy pebble attack (which
is very effective against DRSample alone) and depth-reducing attacks (which DR-
Sample was designed to resist). An even more exciting result is that we can show
that DRSample+BRG is the first practical construction to provide strong sustained
space complexity guarantees. Interestingly, neither graph (DRSample or BRG) is
individually known to provide strong sustained space guarantees. Instead, several of
our proof exploits synergic properties of both graphs. We elaborate on the desirable
properties of DRSample+BRG below.

First, our new construction inherits desirable properties from both the bit-reversal
graph and DRSample. For example, I1\.(BRG(G)) > I1).(G) = 2(N? /logN). Simi-
larly, it immediately follows that BRG(G) is maximally bandwidth hard. In particular,
Ren and Devadas [RD17] showed that BRG,, is maximally bandwidth hard, and
Blocki et al. [BRZ18] showed that DRSample is maximally bandwidth hard.

Second, BRG(G) provides optimal resistance to the greedy pebbling attack —

Hllc(GP(BRG(G))) ~ N? /4. Furthermore, we can show that any c-parallel pebbling
attack P=(Py,...,P;) in which |P;11\ P;| <c has cost I1..(P) =Q(N2). This rules out
any extension of the greedy pebble attack e.g., GPE (Algorithm 2) is 2-parallel. In
fact, we prove that this property already holds for any c-parallel pebbling of the bit
reversal graph BRG,,. Our proof that I1..(BRG,,)={2(N?) generalizes the well-known
result that IT,(BRG,,)=2(N?) and may be of independent interest.

Third, we can show that any parallel pebbling P of BRG(G) either has I1..(P)=
n (N 2) or has maximal sustained space complexity Il (P,s) = £2(IN) for space
s=12(N/logN) i.e., there are at least {2(IV) steps with at least 2(IN/logN) pebbles on
the graph. To prove this last property we must rely on properties of both graphs G and
BRG,, i.e., the fact that DRSample is highly block-depth robust and the fact that edges
BRG,, are evenly distributed over every interval. This makes BRG(G) the first practical
construction of a DAG with provably strong sustained space complexity guarantees.

Finally, we can show that Hc”c (G)= Q(N YoglogN/logN ), matching the general
upper bound of Alwen and Blocki [AB16], under a plausible conjecture about the
block-depth-robustness of G. In particular, we conjecture that G is (e,d,b)-block

depth robust for e = 2 (%)7 d= 1 (%) and b = {2 (%)' In

the appendix, we also show how to construct a constant indegree DAG G’ with
HCHC(G’ )=102(N?loglogN/logN) from any (e,d)-depth robust graph by overlaying a
superconcentrator on top of G [Pip77]. However, the resulting construction is not
practically efficient. For the bit reversal overlay G’ =BRG(G) we require the slightly
stronger assumption that G is block-depth-robust. As evidence for the conjecture

we show that known attacks require the removal of a set .S of e= Q(%) to
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achieve depth(G—S) < Tl Thus, we would need to find substantially improved

depth-reducing attacks to refute the conjectures.

Bit-Reversal Graph Background: The bit reversal graph was originally pro-
posed by Lenguer and Tarjan [LT82] who showed that any sequential pebbling
has maximal space-time complexity. Forler et al. [FLW14] previously incorporated
this graph into the design of their iMHF candidate Catena which received special
recognition at the password hashing competition [PHC16]. While we are not focused
on sequential space-time complexity the bit reversal graph has several other useful
properties that we exploit in our analysis (see Lemma 2).

Local Samplable. We note that one benefit of DRS+BRG is that it is locally
samplable, a notion mentioned as desirable in [ABH17]. Specifically, we want to be
able to compute the parent blocks with time and space O(log|V'|) with small constants.
DRS+BRG meets this requirement. Edges sampled from DRSample were shown
to be locally navigable in [ABH17], and each bit-reversal edge a simple operation
called requires one bit reversal operation, which can easily be computed in O(log|V|).
The formal description of the bit-reversal overlay graph BRG(G) is presented in
Definition 4 and is presented in algorithmic form in Algorithm 4 in the appendix.

The Bit-Reversal DAG Given a sequence of bits X =x; ozg0-+x,, let ReverseBits(X) =
Xp0Xy_10--0x1. Let integer(X) be the integer representation of bit-string X starting

at 1 so that integer({0,1}")=[2"] i.e., integer(0™)=1 and integer(1™)=2". Similarly,

let bits(v,n) be the length n binary encoding of (v—1) mod2™ e.g., bits(1,n) =0"
and bits(2",n)=1" so that for all v €[2"] we have integer(bits(v,n))=wv.

Definition 3. We use the notation BRG,, to denote the bit reversal graph with 27+!
nodes. In particular, BRG, = (V =[2""|,E=FE\UE,) where Ey:={(i,i+1) : 1<
i < 2"t} and By := {(2,2" +y) : x = integer(ReverseBits(bits(y,n)))}. That is,
FEs5 contains an edge from node x < 2™ to node 2™ +y in BRG,, if and only if
x =integer(ReverseBits(bits(y,n))).

Claim 2 states that the cumulative memory cost of the greedy pebbling strategy
GP(BRG,) is at least N2+ N.

Claim 2 IT..(GP(BRG,))>N?+N

Proof. Let P=(Py,...,Pan) = GP(BRG,,). We first note that for all i <N we have
P,={1,...,i} since gc(i) >N — every node on the bottom layer [N] has an edge to
some node on the top layer [N +1,2N]. Second, observe that for any round i > N
we have |(P;\ P;4+1)N[N]| <1 since the only pebble in [N] that might be discarded
is the (unique) parent of node . Thus,

2N N N
SRS i+ S (N—it ) =N(N+1) . O
=1 =1 =1

Thus, we now define the bit-reversal overlay of the bit reversal graph on a graph
G1. If the graph G; has N nodes then BRG(G1) has 2N nodes, and the subgraph
induced by the first N nodes of BRG(G1) is simply Gf.



Definition 4. Let Gy =(V1=[N],E1) be a fired DAG with N =2" nodes and BRG,,=
(V=[2N],E) denote the bit-reversal graph. Then we use BRG(G1) = (V,EUE}) to
denote the bit-reversal overlay of Gy.

In our analysis, we will rely heavily on the following key-property of the bit-reversal
graph from Lemma 2.

Lemma 2. Let G = BRG,, and N =2" so that G has 2N nodes. For a given b,
partition [N into 5oy =2° intervals

Iy=[(k—1)2""", k2P —1],

each having length 277, for 1<k<2°. Then for any interval I of length 20t with
IC[N+12N], there exists an edge from each Iy, to I, for 1 <k<2b.

Proof of Lemma 2. Let I be any interval of length 2°, with I C[N+1,2N]. Note that
every 2% length bitstring appears as a suffix in I. Thus, there exists an edge from
each interval containing a unique 2° length bitstring as a prefix. It follows that there
exists an edge from each Iy to I, for 1 <k<2b O

As we will see, the consequences of Lemma 2 will have powerful implications
for the pebbling complexity of G=BRG(G1) whenever the underlying DAG G is
(e,d,b)-block-depth-robust. In particular, Lemma 3 states that if we start with pebbles
on a set |P;| < e/2 then for any initially empty interval I of O(N/b) consecutive
nodes in the top-half of G we have the property that H :=G —J,cp [r—b+1,7]
is an (e/2,d,b)-block-depth-robust graph that will need to be completely re-pebbled
(at cost at least H(UC(H )>ed/2) just to advance a pebble across the interval I. See
Appendix C for the proof of Lemma 3.

Lemma 3. Let Gy = (V4 = [N], E) be a (e,d,b)-block depth-robust graph with
N =2" nodes and let G=BRG(G}) denote the bit-reversal extension of Gy with 2N
nodes V(G) = [2N]. For any interval I = [N+i+1,N+i+1+4¥] C [2N] and any

S C[1,N+4] with |S| < £, ancestorsg_s(I) is (§,d,b)-block depth-robust.

Lemma 4. Let G be a (e,d,b)-Block Depth Robust DAG with N = 2" and let
G' =BRG(G) be the bit reversal overlay of G. Let PePI(G") be a legal pebbling of G’
and let t,, be the first time where vE€ P, . Then for allv>1 such that €’ :=|P;

’
and vng?’QéZe , we have

U+N|§§

t

v N+ 3%:58 —1

P>
j_;w 1Pi|=
Proof of Lemma 4. Let v< N — %ﬁ,’e be given such that the set S= P, has
size at most € =S| <e/4 and set b’ = 2. Consider the ancestors of the interval
I=[N+v+1,N+v+8Y] in the graph G’ —S. Note that IS =0 since v is the
maximum node that has been pebbled at time tx,. We have

H:=G- U [z—b"+1,2] Cancestorg:—s(I)
z€S



because for any node u € V(G) if u¢|J,cglr—b +1,2] then [u,u+b' —1]NS =2
which implies that there exists an “S-free path” from u to I by Lemma 2. Thus,

H will have to be repebbled completely at some point during the time interval

; 32Ne’ ~ 8N
Lot Nty Ny g2Ne! _1} since 2575 > ==,

Since b = 46—:, >b we note that the ¢’ intervals of length & we are removing can be
covered by at most [V//ble’=[e/(4€')]e’ <(e/4)+€ <e/2 intervals of length e. Hence,
Lemma 3 implies that H is still (e/2,d,b)-Block Depth Robust and, consequently, we
have that HCHC(H )>ed/2 by [ABP17]. We can conclude that

tv+N+ 325\676/ -1
S IRl ez, 5

J=tuinN

4.1 Sustained Space Complexity (Tradeoff Theorem)

We prove that for any parameter e= (’)( ) the cumulative pebbling cost of any

N
logN
parallel (legal) pebbling P is has cost least IT(P)=2(N3/(elogN)), or there are at
least 2(NN) steps with at least e pebbles on the graph i.e., IT5; .(P)={2(N). Note that

the cumulative pebbling cost rapidly increases as e decreases e.g., if e=+v/N /logN
then any pebbling P for which 1 s(P,e)=0(N) must have IT(P)=2(N%).

To begin we start with the known result that (with high probability) a randomly
sampled DRSample DAG G is (e,d,b)-Block Depth Robust with e = 2(N/logN),
b=12(logN), and d=2(N) [ABH17]. Lemma 5 now implies that the DAG is also
(€/,d,b)-block-depth robust for any suitable parameters €' and ¥'. Intuitively, if we
delete €’ intervals of length &' >b then we can cover these deleted intervals with at

most €' (% +1) intervals of length b, as illustrated in Figure 1. The formal proof of

Lemma 5 is in the appendix.

Lemma 5. Suppose that a DAG G is (e,d,b)-Block Depth Robust and that parameters
e and V' satisfies the condition that e’(%/) +e'<5. Then G is (¢, d,b')-Block Depth
Robust, and for all S with size |S| < €' the graph H = G —|J,cglr —b" +1,2] is
(%,d,b) -Block Depth Robust.

Together Lemma 4 and Lemma 5 imply that we must incur pebbling cost £2(ed) to
pebble any interval of .Q(]\g—:') consecutive nodes in the top-half of BRG(G) starting
from any configuration with at most ¢’ <e/4 pebbles on the graph.

Theorem 4, our main result in this subsection, now follows because for any peb-
bling P IT!(BRG(G)) and any interval I of Q(JZ—:') nodes in the top-half of G we
must either (1) keep at least e’ pebbles on the graph while we walk a pebble accross

the first half of the interval I, or (2) pay cost §2(ed) to re-pebble a depth-robust
graph. Since there are £2(£) such disjoint intervals we must either keep |Pj| > ¢/

> e2db

pebbles on the graph for 2(N) rounds, or pay cost Hl‘c(P) >
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Fig. 1: Intervals | J, gz — 0 +1,2] and |J, g [z —b+1,2] when ¥’ =10 and b= 3.
Observe that (J, g [x—b+1,2] D, cglz—b"+1,2] over the integers.

Theorem 4. Let G be any (e,d,b)-Block Depth Robust DAG on N =2" nodes, and

G’ = BRG(G) be the bit reversal overlay of G. Then for any pebbling P € ITI(G)
and all ¢ < §, we have either HﬂC(P) > ‘éi‘g’, or IIss(Pe') > % —0o(N) i.e., at least

L —o(N) rounds i in which |P;|>¢ .

Corollary 3 follows immediately from Theorem 4.

Corollary 3. Let G be any (% ,caN,cslogN ) -Block Depth Robust DAG on N =2"

nodes for some constants ¢1,c2,c3>0 and let G'=BRG(G) be the bit reversal overlay

of G. Then for any €' < 4%5\, and any pebbling P€PI(G") we have either Hl‘c(P) >

2 3
%, or I(Pe’) > —0(N) i.e., at least & —o(N) rounds j in which |P;|>¢'.

Remark 1. Alwen et al. previously proved that for constants ¢; =2.4x 1074, ¢;=0.03
and c3 =160 a randomly sampled DAG G from DRSample will be (ﬁgjj\\f, ,coN cslog N ) -

Block Depth Robust except with negligible probability [ABH17]. Thus, with high
probability Corollary 3 can be applied to the bit reversal overlay BRG(G). Notice also

that as €’ decreases, the lower bound on H(‘;lc(P) increases rapidly e.g., if a pebbling
does not have at least £2(N) steps with at least ¢/ :Q(\/N ) pebbles on the graph,

then I7).(P) = 2(N25).

A Conjectured (tight) Lower Bound on HCHC(BRG(G)). The idea behind
the proof of Theorem 5 in the appendix is very similar to the proof of Theo-
rem 4 — an attacker must either keep e/2 pebbles on the graph most of the
time or the attacker must pay (2 (edb) to repebble an (e, d)-depth (2(b) times.
In fact, a slightly weaker version (worse constants) of Theorem 5 follows as a
corollary of Theorem 4 since Hllc(P) > e/ x II;5(P,e’). Under our conjecture that
DR-Sample DAGs are (c¢; NloglogN/logN,co Nloglog N /logN c3log N /loglog N )-block
depth-robust graph, Theorem 5 implies that H(‘;lc(BRG(G)) =2(N%oglogN/logN).
In fact, any pebbling must either keep £2(NloglogN/logN) pebbles on the graph for
~ N/4 steps or the pebbling has cost 2(N2loglogN).

Theorem 5. Let Gy be an (e,d,b)-block depth-robust graph with N =2" nodes. Then

11).(BRG(G)) = min (Y, 2.



Evidence for Conjecture. In Appendix I we present evidence for our conjecture
on the (block)-depth robustness of DRSample. We show that all known techniques
for constructing depth-reducing sets fail to refute our conjecture. Along the way we
introduce a general technique for bounding the size of a set S produced by Valiant’s
Lemma®. In this attack we partition the edges into sets E,...,F,, where F; contains
the set of all edges (u,v) such that the most significant different bit of (the binary
encoding of) u and v is i. By deleting j of these edge sets (e.g., by removing one node
incident to each edge) we can reduce the depth of the graph to N/27. In Corollary 7
we show that for any edge distribution function r(v) <v we have

%—121'—171
EHElH:g"_Z Z Pr[2" ' +m>v—r(v) >m]
j=0 m=0

where the value of the random variable | E;| will be tightly concentrated around its
mean since for each node v the edge distribution function r(v) is independent.

4.2 (Nearly) Sequential Pebblings of BRG,, have Maximum Cost

In this section, we show that for any constant ¢>1 any c-parallel pebbling P of BRG,,
must have cost Il.c(P)=12(N?). A pebbling P=(P},...,P;) is said to be c-parallel if
we have |P; 41\ P;| <c for all round i <t. We remark that this rules out any natural
extension of the greedy pebbling attack e.g., the extension from the previous section
which defeated the XOR, extension graph G® was a c¢=2-parallel pebbling. We also
remark that our proof generalizes a well-known result of [LT82] which implied that
I1,(BRG,)= Q(N 2) for any sequential pebbling. For parallel pebblings it is known

that IT l,‘ = O(N 1'5) [AS15] though this pebbling attack requires parallelism c¢=+/N.

Tt is easy to show (e.g., from Lemma 2) that starting from a configuration with
| P;| <e pebbles on the graph, it will take $2(IN) steps to advance a pebble O(e) steps
on the top of the graph. It follows that II,,(BRG,,) :.Q(N 2). The challenge in lower
bounding IT..(G) as in Theorem 6 is that space usage might not remain constant
throughout the pebbling. Once we have proved that IT..(G)=§2(N?) we then note
that any c-parallel pebbling P can be transformed into a sequential pebbling @ s.t.
I1..(Q) <cx I (P) by dividing each transition P; — P, into ¢ transitions to ensure
that |Q;\Q;j—1| <1. Thus, it follows that IT..(P) :.Q(N 2) for any c-parallel pebbling.

8 In the appendix we also analyze the performance of Valiant’s Lemma attack against
Argon2i. Previously, the best known upper bound was that Valiant’s Lemma yields
a depth-reducing set of size e = O(%) for any DAG G with constant indegree.
For the specific case of Argon2i this upper bound on e was significantly larger than the
upper bound —e = @(dl%) — obtained by running the layered attack [AB17,BZ17].
Nevertheless, empirical analysis of both attacks surprisingly indicated that Valiant’s
Lemma yields smaller depth-reducing sets than the layered attack for Argon2i. We show
how to customize the analysis of Valiant’s Lemma attack to a specific DAG such as DR~
Sample or Argon2i. Our theoretical analysis of Valiant’s Lemma explains these surprising
empirical results. By focusing on Argon2i specifically we can show that, for a target
depth d, the attacker yields a depth-reducing set of size e = @(dl%) < O(%L
which is optimal and matches the performance of the layered attack [BZ17].



Theorem 6. Let G=BRG,, and N=2". Then II..(G)=2(N?).

The full proof of Theorem 6 can be found in Appendix G. Briefly, we introduce a
potential function @ and then argue that, beginning with a configuration with at
most O(e) pebbles on the graph, advancing the pebble e steps on the top of the
graph either costs 2(Ne) (i.e., we keep 2(e) pebbles on the graph for the £2(N)
steps required to advance the pebble e steps) or increases the potential function by
£2(Ne) i.e., we significantly reduce the number of pebbles on the graph during the
interval. Note that the cost £2(Ne) to advance a pebble e steps on the top of the
graph corresponds to an average cost of £2(IV) per node on the top of the graph. Thus,
the total cost is 2(N?). Lemma 6, which states that it is expensive to transition
from a configuration with few pebbles on the graph to a configuration with many
well-spread pebbles on the graph, is a core piece of the potential function argument.

Lemma 6. Let G=BRG,, for some integer n>0 and N=2". Let P=(Fy,....P,) €
P(G) be some legal sequential pebbling of G. For a given b, partition [N] into 251, =on—b
intervals I, = [(m—1)2b+1,m>< 2b] , each having length 2°, for 1 <2 <2"°. Suppose

that at time i, at most 21)’% of the intervals contain a pebble with b >b and at time
J, at least Qu% of the intervals contain a pebble. Then
N? S 2YN

5 Empirical Analysis

We empirically analyze the quality of DRS+BRG by subjecting it to a variety of
known depth-reducing pebbling attacks [AB16, AB17] as well as the “new” greedy
pebbling attack. We additionally present a new heuristic algorithm for construct-
ing smaller depth-reducing sets, which we call greedy depth reduce. We extend
the pebbling attack library of Alwen et al. [ABH17] to include the greedy peb-
bling algorithm [BCS16] as well as our new heuristic algorithm. The source code
is available on a (currently anonymous) Github repository https://github.com/
NewAttacksAndStrongerConstructions/EC2019_submission.

5.1 Greedy Depth Reduce

We introduce a novel greedy algorithm for constructing a depth-reducing set S such
that depth(G —S) <d;4. Intuitively, the idea is to repeatedly find the node v € V(G)\ S
that is incident to the largest number of paths of length d;4; in G—95 and add v to
S until depth(G—5) <d4:. While we can compute incident(v,diq), the number of
length dy4; paths incident to v, in polynomial time using dynamic programming, it will
take O(Ndy4) time and space to fill in the dynamic programming table. Thus, a naive
implementation would run in total time O(Ndy4e) since we would need to recompute
the array after each iteration. This proves not to be feasible in many instances we
encountered e.g. N =224, digt =216 and e~6.4x10° and we would need to run the
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algorithm multiple times in our experiments. Thus, we adopt two key heuristics to
reduce the running time. The first heuristic is to fix some parameter d’ <d;g (we used
d' =16 whenever d;4; > 16) and repeatedly delete nodes incident to the largest number
of paths of length @’ until depth(G—S) <dy4. The second heuristic is to select a larger
set TCV(G)\S of k nodes (we set k=400x218-/2 in our experiments) to delete
in each round so that we can reduce the number of times we need to re-compute
incident(v,d;q). We select T in a greedy fashion: repeatedly select a node v (with
maximum value incident(v,d’)) subject to the constraint dist(v,T") <r for some
radius  (we used =8 in our experiments) until |T'| >k or there are no nodes left
to add — here dist(v,T") denotes the length of the shortest directed path connecting
v to T in G—S. In our experiments we also minimized the number of times we
need to run the greedy heuristic algorithm for each DAG G by first identifying the
target depth value df,; =27 with j € [n] which resulted in the highest quality attack
against G when using other algorithms (Valiant’s Lemma/Layered Attack) to build
the depth-reducing set S. For each DAG G we then ran our heuristic algorithm with
target depths dyge =27 x dyy for each j€{—1,0,1}. We refer the reader to Appendix
E and Algorithm 5 for a more detailed discussion of our heuristic algorithm.

Figure 3 explicitly compares the performance of our greedy heuristic algorithm
with prior state-of-the art algorithms for constructing depth-reducing sets. Given a
DAG G (either Argon2i, DRSample or DRS+BRG) on N =2" nodes and a target
depth d;4; we run each algorithm to find a (small) set S such that depth(G—5) <d;g;.
The figure on the left (resp. right) plots the size of the depth-reducing set e=|S| vs.
the size of the graph NV (logscale) when the target depth dyg =8 (resp. dig =16). Our
analysis indicates that our greedy heuristic algorithm outperforms all prior state-of-the
art algorithms for constructing depth-reducing sets including Valiant’s Lemma [Val77)
and the layered attack [AB16]. In particular, the greedy algorithm consistently outputs
a depth-reducing that is 2.5 to 5 times smaller than the best depth-reducing set found
by any other approach — the improvement is strongest for the DRSample graph.

5.2 Comparing Attack Quality

We ran each DAG G (either Argon2i, DRSample or DRS+BRG) with N = 2"
nodes against a battery of pebbling attacks including both depth-reducing at-
tacks [AB16,AB17] and the greedy pebble attack. In our analysis we focused on graphs
of size N =2" with n ranging from n € [14,24], representing memory ranging from
16MB to 16GB. Our results are shown in Figure 2. While DRSample provided strong
resistance to depth-reducing attacks (right), the greedy pebbling attack (left) yields
a very high quality attack (for n>20 the attack quality is ~n) against DRSample.
Similarly, as we can see in Figure 2, Argon2i provides reasonably strong resistance
to the greedy pebble attack (left), but is vulnerable to depth-reducing attacks (right).
DRS+BRG strikes a healthy middle ground as it provides good resistance to both
attacks. In particular, even if we use our new greedy heuristic algorithm to construct
the depth-reducing sets (right), the attack quality never exceeds 6 for DRS+BRG.
In summary, DRS+BRG provides the strongest resistance to known pebbling attacks
for practical parameter ranges n € [14,24].



As Figure 2 (right) demonstrates attack quality almost always improves when we
use the new greedy algorithm to construct depth-reducing sets. The one exception
was that for larger Argon2i DAGs prior techniques (i.e., Valiant’s Lemma) outperform
greedy. We conjecture that this is because we had to select the parameter d’ <dyy, for
efficiency reasons. For DRSample and DRS+BRG the value dj,, was reasonably small
i.e., for DRSample we always had d},, <16 allowing us to set d'=dj,,. We believe that
the greedy heuristic algorithm would outperform prior techniques if we were able to
set d’ ~dy,, and that this would lead to even higher quality attacks against Argon2i.
However, the time to pre-compute the depth-reducing set will increase linearly with d’.

Greedy Pebble vs. Greedy Depth-Reduce vs.
Prior Depth-Reducing Attacks Prior Depth Reducing Attacks
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Fig. 2: Attack Quality for Greedy Pebble and Greedy Depth Reduce
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6 Pebbling Reduction

Alwen and Serbinenko [AS15] previously showed that, in the parallel random or-
acle model, the cumulative memory complexity (cmc) of an iMHFES fg i can be

characterized by the black pebbling cost I, L (G) of the underlying DAG. However,
their reduction assumed that the output of f¢ g (z):=labg i, (NN) is the label of
the last node N of G where labels are defined recursively using the concatenation
rule labg g . (v) := H(v,labg, 1,4 (v1),...,labg, i,z (vs)) where vy,...,v5 = parentsg(v). I
To improve performance, real world implementations of iMHFs such as Argon2i,
DRSample and our own implementation of BRG(DRSample) use the XOR labeling
rule labg m,.(v) := H (labg m 5 (v1)®Blabg m,.(v2) ®...8labg f 5 (vs)) so that we can
avoid Merkle-Damgard and work with a faster round function H:{0,1}* —{0,1}*
instead of requiring H :{0,1}0+Dw {0, 11,

We prove that in the parallel random oracle model, the cumulative memory com-
plexity of fa m is still captured by HJ;L(G) when using the XOR labeling rule (under
certain restrictions discussed below that will hold for all of the iMHF constructions we
consider in this paper). We postpone a fully formal definition of cumulative memory
complexity cmc to Appendix H as it is identical to [AS15]. Intuitively, one can consider
the execution trace Trace g g u(x)={(0:,Q;)}'._, of an attacker A7 () (z;R) on input
value x with internal randomness R. Here, ); denotes the set of random oracle queries
made in parallel during round ¢ and o; denotes the state of the attacker immediately
before the queries Q; are answered. In this case, cmc(Trace 4 g,z (2)) = _;|os| sums
the memory required during each round in the parallel random oracle model®. For a
list of distinct inputs X = (1,22,....¢m), let f55;(X) be the ordered tuple f'5(X)=
(fo.u(x1),fa.m(x2), . fG 1 (Tm)). Then the memory cost of a f3'y; is defined by

e (f75) =minEleme(Trace 4 1 (+)]

where the expectation is taken over the selection of the random oracle H(-) as well
as the internal randomness R of the algorithm A. The minimum is taken over all
valid inputs X = (21,22,...,Zr,) with z; #xz; for i <j and all algorithms ARG that
compute fGXfL}(X ) correctly with probability at least ¢ and make at most g queries
for each computation of f¢ m(x;). Let G*™ be a DAG with mN nodes, including
m sources and m sinks.

Theorem 7, our main result, states that cmc,(f57) > 55 -H(‘;lc(G). Thus,

85
the cost of computing fo m on m distinct inputs and constant indegree graphs

G is at least 2 (mxwxﬂl‘c(G)) — here, we assume that H : {0,1}* — {0,1}".
We remark that for practical IMHF constructions we will have indegree ¢ € {2,3}

so that cme, ((f5'5) = 2 (HCHC(G)>. The é-factor loss is necessary. For example,

9 Given a constant R which represents the core/memory area ratio we can define
aAT! g (Trace s r 1 (2)) =cmc(Tracea,r,u(2))+ R ,|Qi|. We will focus on lower bounds
on cmc since the notions are asymptotically equivalent and lower bounds on aAT
complexity.



the complete DAG K has maximum pebbling cost HC”C(K ~N) > N(N—-1)/2, but
emey.e(frn ) =O(Nw) when we use the XOR labeling rule!®

Theorem 7. Let G be a DAG with N nodes, indegree § > 2, and parents(u) #
parents(v) for all pairs u#veV, and let fo u be a function that follows the XOR
labeling rule, with label size w. Let H be a family of random oracle functions with
outputs of label length w and H = (Hy,H>), where Hy,Hy € H. Let m be a number

of parallel instances such that mN < 2v/32, ¢ < 2%/32 be the mazimum number of

gmN+1 2m2N?
ST mIN? =N T 3w N - Lhen

queries to a random oracle, and let §>2_“’/ 2

Cqu,G( C>¥<,7}-lI)Z 85 cc

As in [AS15] the pebbling reduction relies on an extractor argument to show
that we can find a black pebbling P=(P,...,P;) s.t. |P;|=0(|o;|/w). The extractor
takes a hint h of length |h| =|o;|+h2 and then extracts ¢ distinct random oracle
pairs (z1,H(x1)),...,(z¢,H (z¢)) by simulating the attacker. Here, one can show that
£>hy/w+$2(|P;|), which implies that |o;|=2(w|P;|) since a random oracle cannot
be compressed.

There are several additional challenges we must handle when using the XOR
labeling rule. First, in [AS15] we effectively use an independent random oracle
H,(-)=H(v,") to compute the label of each node v — a property that does not hold
for the XOR labeling rule we consider. Second, when we use the XOR labeling it is
more challenging for the extractor to extract the value of labels from random oracle
queries made by the (simulated) attacker. For example, the random oracle query
the attacker must submit to compute labg fr ,(v) is now @f:llabg, 1,(v;) instead
of (vlabg g4 (v1),-.labg i (v5)) — in the later case it is trivial to read each of the
labels for nodes w1, ...,vs. Third, even if H is a random oracle the XOR labeling
rule uses a round function F(z,y)=H (x®y) that is not even collision resistant e.g.,
F(z,y)=F(y,z). Because of this, we will not be able to prove a pebbling reduction
for arbitrary DAGs G.

In fact, one can easily find examples of DAGs G where cmc(fg, i) < Hﬂc(G) ie.,
the cumulative memory complexity is much less than the cumulative pebbling cost
by exploiting the fact that labg g, (u) =labg, i (v) whenever parents(u)=parents(v).
For example, observe that if parents(N)={u,v} and parents(u)=parents(v) then

fgﬁH(x) = Iabngﬁx(N) :H(IabG’ny(u)EBIabng@(v)) :H(Ow) R

so that f¢ m(z) becomes a constant function and any attempt to extract a pebbling
from an execution trace computing fo m would be a fruitless exercise!
For this reason, we only prove that cmc(fg,x) :Q(HEC(G) xw) when G=(V =

[N],E) satisfies the unique parents property i.e., for any pair of vertices u=# v we

19 In particular, if we let L, =labx (V) =H(Ly—1P...®L1) denotes the label of node v
given input x then the prelabel of node v is Y, =prelaby, 7 . (v)=Li—1®...®L1. Given
only Y, we can obtain L, =H(Y,) and Y41 =Y, ® L,. Thus, cmcg,c(fry,m) = O(Nw)
since we can compute fx g (xz)=Ly in linear time with space O(w).



have parents(v)# parents(u). We remark that any DAG which contains all edges of
the form (i,i+1) with ¢ <N will satisfy this property since v—1¢ parents(u). Thus,
Argon2i, DRSample and DRSample+BRG all satisfy the unique parents property.

Extractor: We argue that, except with negligible probability, a successful execu-
tion trace must have the property that |o;| = 2(w|P;|) for each round of some legal
pebbling P. Our extractor takes a hint which include o; (to simulate the attacker),
the set P; and some (short) additional information e.g., to identify the index of
the next random oracle query ¢, where the label for node v will appear as input.
To address the challenge that the query ¢, =labg, i, (v) ®labg, i »(u) we increase
both the size of the hint and the number of labels being extracted e.g., our hint
might additionally include the pair (u,labg g, (1)) which allows us to extract both
labg mr,2(v) and labg, g, (w) from ¢,. Our extractor will attempt to extract labels for
each node v € P; as well as for a few extra sibling nodes such as u, which means that
we must take care to ensure that we never ruin the extracted label labg fr . (v) by
submitting the random oracle query @leui to H(). If G satisfies the unique parents
property then we can prove that whp our extractor will be successful. It follows that
|o;| = 2(w|P;|) since the hint must be long enough to encode all of the labels that we
extract.

7 An Improved Argon2 Round Function

In this section we show how a parallel attacker could reduce aAT costs by nearly an
order of magnitude by computing the Argon2i round function in parallel. We then
present a tweaked round function to ensure that the function must be computed
sequentially. Empirical analysis indicates that our modifications have negligible impact
on the running time performance of Argon2 for the honest party (sequential), while the
modifications will increase the attackers aAT costs by nearly an order of magnitude.
Review of the Argon2 Compression Function. We begin by briefly reviewing
the Argon2 round function G:{0,1}8%92 — {0,1}%992 which takes two 1KB blocks X
and Y as input and outputs the next block G(X,Y). G builds upon a second function
BP :{0,1}12% — {0,1}128, which is the Blake2b round function [SAAT15]. In our
analysis we treat BP as a blackbox. For a more detailed explanation including the
specific definition of BP, we refer the readers to the Argon2 specification [BDK16].

To begin, G takes the intermediate block R=X@®Y (which is being treated as
an 8x8 array of 16 byte values Ry,...,Rg3), and runs BP on each row to create a
second intermediate stage Q). We then apply BP to @ column-wise to obtain one
more intermediate value Z: Specifically:

(QOana"'aQ7)<_BP(ROaR17"'7R7> (ZO5Z87~-~>Z56)<_BP(Q07Q87"'7Q56)
(Q8,Qo,---,Q15)BP(Rs,Ry,...,R15) (Z1,Z9,....257)BP(Q1,Q9,.-..Q57)

(Q56,Q57:--,Q63) ¢ BP(Rs6.Rs7,-..Re3)  (Z7,215,-...263) < BP(Q7.Q15,---,.Q63)
To finish, we have one last XOR, giving the result G(X,Y)=R&Z.



ASIC vs CPU AT cost. From the above description, it is clear that computation
of the round function can be parallelized. In particular, the first (resp. last) eight
calls to the permutation BP are all independent and could easily be evaluated
in parallel i.e., compute BP(Ro,R1,...,R7),...,BP(Rs6,Rs57,...,Re4) then compute
BP(Qo,Qs,--,Q56),--- . BP(Q7,Q15,...,Q63) in parallel. Similarly, XORing the 1KB
blocks in the first (R=X®Y) and last (G(X,Y)=R@ Z) steps can be done in
parallel. This if we let t43/C (resp. t55Y) denote the time to compute BP on an
ASIC (resp. CPU) we have t357¢ ~ 2t427¢ whereas t57V ~ 16 x tgEY since the
honest party (CPU) must evaluate each call to BP sequentially. Suppose that the
MHF uses the round function G to fill N blocks of size 1KB e.g., N =2% is 1GB.
Then the total area-time product on an ASIC (resp. CPU) would approximately be
(ADSICN) x (14570 N) m 2N2 x AASICHSIC (resp. (ACTUN) x (16(SEN) where

AASTC (yesp, AASICY s the area required to store a 1KB block in memory on an ASIC

mem mem
(resp. CPU). Since memory is egalitarian we have AA5TC ~ ACPU whereas we may

have té;gl Ck tgf; U. If we can make G inherently sequential then we have t5°7¢ ~
16t421¢, which means that the new AT cost on an ASIC is 16N? x AASIC1ASIC which
is eight times higher than before. We remark that the change would not necessarily
increase the running time NV x tSP U on a CPU since evaluation is already sequential.
We stress that the improvement (resp. attack) applies to all modes of Argon2 both
data~-dependent (Argon2d,Argon2id) and data-independent (Argon2i), and that the

attack could potentially be combined with other pebbling attacks [AB16, BCS16].

Remark 2. We remark that the implementation of BP in Argon2 is heavily optimized
using SIMD instructions so that the function BP would be computed in parallel on
most computer architectures. Thus, we avoid trying to make BP sequential as this
would slow down both the attacker and the honest party i.e., both t55U and ¢33/

would increase.

Inherently Sequential Round Function. We present a small modification to
the Argon2 compression function which prevents the above attack. The idea is simply
to inject extra data-dependencies between calls to BP to ensure that an attacker
must evaluate each call to BP sequentially just like the honest party would. In short,
we require the first output byte from the i—1" call to BP to be XORed with the
i" input byte for the current (i*") call, as shown in Figure 4.

In particular, we now compute G(X,Y) as:

(Qo,Q1,--,Q7)BP(Ro,Ry,....Rr) (Z0,28,..,256)BP(Q0,Qs,;.--,@s6)
(Qs8,Q9,...,Q15)BP(Rs,Ry®Qo,...,R15) (Z1,29,....Z57)BP(Q1,Qo® Zo,....Q57)

(Q56,Q57;---,Qe63)BP(Rs6,R57,....,R6a®Qug)  (Z7,215,...,263)«BP(Q7,Q15,--,Qe3D Zs)

where, as before, R=X @Y and the output is G(X,)Y)=ZBR.

We welcome cryptanalysis of both this round function and the original Argon?2
round function. We stress that the primary threat to passwords is brute-force attacks
(not hash inversions/collisions etc...) so increasing evaluation costs is arguably the
primary goal.



Implementation and Empirical Evaluation To determine the performance
impact this would have on Argon2, we modified the publicly available code to include
this new compression function. The source code is available on an anonymous Github
repository https://github.com/antiparallel-drsbrg-argon/Antiparallel- DRS-BRG. We
then ran experiments using both the Argon2 and DRS+BRG edge distributions, and
further split these groupings to include/exclude the new round function for a total
of four conditions. For each condition, we evaluated 1000 instances of the memory
hard function in single-pass mode with memory parameter N = 220 blocks (i.e.,
1GB=N x 1KB). In our experiments, we interleave instances from different conditions
to ensure that any incidental interference from system processes affects each condition
equally. The experiments were run on a desktop with an Intel Core 15-6600K CPU
capable of running at 3.5GHz with 4 cores. After 1000 runs of each instance, we
observed only small differences in runtimes, ( 3%) at most. The exact results can
be seen in Table 1 along with 99% confidence intervals. The evidence suggests that
there is no large difference between any of these versions, and that the anti-parallel
modification would not cause a large increase in running time for legitimate users.

Table 1: Anti-parallel runtimes with 99% confidence

Argon2i DRS+BRG
Current [1405.5414+1.036 ms|1445.275+1.076 ms

Anti-parallel|1405.278 +1.121 ms|1445.01740.895 ms
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Appendix

A Amortized Area-Time Complexity vs. Bandwidth
Hardness

The Amortized Area-Time Complexity [AS15, ABH17] metric aims to capture the
cost of the hardware (e.g., DRAM chips) the attacker must purchase to compute an
MHF — amortized by the number of MHF instances computed over the lifetime of


https://password-hashing.net/
http://eprint.iacr.org/2015/136

that hardware. By contrast, bandwidth hardness [RD17] aims to capture the energy
cost of the electricity required to compute the MHF once. If the attacker uses an
ASIC to computer the function then the energy expended during computation will
typically be small in comparison with the energy expended during a cache-miss. Thus,
a bandwidth hard function aims to ensure that any evaluation strategy incurs a large
number £2(n) of cache-misses during computation.

We argue that, in the context of password hashing, the Amortized Area-Time
Complexity metric is more appropriate. In particular, our goal is to mazimize the
attackers cost per password guess given a fixed bound /N on the maximum acceptable
running time e.g., N might be constrained by user patience since larger values of N cor-
respond to larger authentication delays. Suppose that we fix N =220 and assume that
we operate over 1KB blocks as in Argon2i so that the total memory consumed is 1GB.

1. Tt cost approximately 0.3nJ per Byte transferred on an ASIC so if we optimisti-
cally assume that the attacker has to transfer 1GB of data to/from cache then the
attacker will consume 0.3 (8.33x10~8 kWh) per evaluation. If we optimistically
assume that the attacker pays $0.12 per kWh of electricity!! then it will cost
~$1x10~® per evaluation (password guess).

2. By contrast if we suppose that the attacker is able to purchase a 1GB DRAM chip
for as little as $5 and that the DRAM chip lasts for up to 2 years under constant
utilization then the attacker will be able to compute the MHF approximately
6.3 107 times over the lifetime of the DRAM chip — it takes approximately 1 sec-
ond to evaluate the Argon2i iMHF with N =220 blocks (1GB of memory) [BDK16].
Thus, if we amortize the cost of the DRAM chip over the total number of guesses
then the cost per guess is approximately one order of magnitude higher ~1x107".

3. If we increase memory consumption to N =222 1KB blocks (4GB) then the
bandwidth costs increases to ~$4x 10~® (linear scaling), while the capacity costs
increase to ~1.26x 10~¢ (quadradic scaling). To see this why this occurs we note
that the attacker would need to pay 4x$5 for four 1GB DRAM chips. Thus, the
cost of the memory chips increased. However, even though the attacker purchased
more DRAM the total number of instances we can evaluate in 2 years still
decreases to 1.58 x 107 because it now takes takes 4 seconds per MHF evaluation.
In this case we remark that the cost per evaluation due to hardware costs (aAT
complexity) exceeds the energy costs by nearly two orders of magnitude.

Furthermore, Blocki et al. [BRZ18] recently demonstrated that any MHF with
high Amortized Area-Time complexity must have relatively high bandwidth cost as
well. Thus, we chose to focus on Amortized Area-Time Complexity in this paper.
Ideally, an MHF would have high Amortized Area-Time Complexity and high band-
width cost. We remark that our construction DRSample+BRG has high bandwidth
costs 2 in addition to having high aAT complexity.

' The figure $0.12 is based on the average price of electricity in the United States, but
the attacker might chose to locate in a state/country where electricity is cheaper.

12 Blocki et al. proved that DRSample in particular has asymptotically maximum bandwidth
cost. Our iMHF' construction inherits this property automatically as it contains the
graph DRSample.



B The DRSample(+BRG) Algorithm

Algorithm 1: Greedy Pebble.
Input :DAG G=(V,E) of

size |V|=N €Nx, with edge set E={(i,i+1) | i<N}IU{(r(7),5) | i <N}
Output A legal pebbling P of G

Function GP(G=(V,E)):

Py :={v|parents(v) =0}

i:=1

while | JP;#V do
SafeToDiscard := {v|gc(v) <i}
P;:=(P;—1U{v|parents(v) € P;_1})\SafeToDiscard
14—1+1

end

return P

Algorithm 2: Greedy Pebble Extension.
Input :DAG G=(V,E) of size

|V]=N=2" with edge set E={(i,i+1) | i< N}U{(r(¢),i) | 1<i<N}
Output A legal pebbling P® of G®

Function GPE(G=(V,E)):

P:=GP(G)

QZ:GP(GSN/Q)

i:=1 for i=1 to N/2-1 do
P®P=P,
Pi?N/g_leiURurN/%l

end

Py ={N}

return P

Here we provide the original unmodified version of the DRSample algorithm,
which is used in the construction of DRS+BRG. It can be seen in Algorithm 3. The
algorithm samples a random DAG G which was proven to be (£2(N/logN),£2(N))-

depth-robust with high probability. The algorithm to sample a random DRS+BRG
DAG G is presented in Algorithm 4.



Algorithm 3: An algorithm for sampling depth-robust graphs.
Function DRSample(neN>2):

Vi=[v]

Bi={(12)}

for ve[3,n] and i€[2] do // Populate edges
| E:=EU{(GetParent(v,i),v)} // Get "™ parent
end

return G:=(V,E).
Function GetParent(v,i):

if =1 then
u:=1—1
else
g'+[1,]logy(v) | +1] // Get random range size.
g::min(v,Zg’) // Don’t make edges too long.
r<[max(g/2,2),9] // Get random edge length.
end

return v—r

Algorithm 4: An algorithm for sampling depth-robust graphs.

Input :Size n€N>, of graph.
Output A DRS+BRG DAG, the first half sampled

from DRSample and the second generated by the Bit Reversal Graph

Function DRS+BRG(neN>7):
V=[2"]
E=0
DRS<+DRSample(N/2)
E:=FUDRS.E
for v€[N/2+1,N] do

b<v modN/2

E:=EU{reverse_bits(b),v}
end

C Missing Proofs

Reminder of Theorem 1. Let r:Nsg—N be any function with the property that
(i) <i—1 for all i€Nsq. Then the DAG G=(V,E) with N nodes V={1,....N} and

. N , NN . N2+2N
edges E = {52— 1,4) : 1<i< N}U{2(r(z),z) 1 2<i< N} has Iy (G) < 28 and
IIo(G) < 22N gpd aAT R(G) < 2N L RN



Proof of Theorem 1. We consider the greedy pebbling P = GP(G) € P(G). The
sequential pebbling finishes in N rounds and so the computation cost incurred is

im\f’i_l\R:RN . 2)

=1

Since the pebbling is sequential we observer that |P;| <i for each round i since we
can place at most ¢ new pebbles on the graph in ¢ rounds. Thus,

N/2 N/2

Z|PZ-|§Z¢:L2*8‘2N . (3)
i=0

i=0
Similarly, we also note that for each i we have
|P;| <|parents({N,...,i+1})|+1<N—i+1

since P; C{i}Uparents({N,...,i+1}). Thus, to analyze the last N/2 rounds, we look
from the opposite direction. |Py|=1,|Pn—1|=2,...,|Pn—i| <i+1. Thus we have:

N N

. N2+4+2N
Z|PZ-\_. > N—itl=—o=—. (4)
N/2 i=N/24+1

Combining equations 23 and 4 we have

V242N NN

HCC g 5
(@) 8 4
and N242N N242N
aATl(@) SQ% +RN= %+RN .
Finally, for the maximum space usage is max;|P;| <max;min{i,N —i+1} which is
achieved when i= f%} Thus, I1(G) < N72+N_ 0

Reminder of Claim 1. Let G be a randomly sampled DRSample DAG with N
nodes and let Y; ; be an indicator random variable for the event that r(j)<i for nodes

i1<j<N then we have E[Yi’j]:Pr[r(j)<i]§1—%.
Proof of Claim 1. Recall that DRSample select the parent node r(j) in several
stages. First, we partition all nodes v < j — 1 into logj buckets Bj, ..., Biog;j

where B) = [j —2—-2Yj—2) By =[j—2-20 -2 —-2-20) .. By =

[[—2-20—-2t — . —2kj—2-20_9b_ 2k 1)  and select a bucket By
uniformly at random from all logj buckets. Second, we select a node r(j) uniformly at
random from the bucket By. Note that if i <j—2—20—-21 — .. —2F=1 (or equivalently,

logy(j—i—1) > k) and we select the bucket By in step 1 then we cannot possibly
select () <i in step 2. Thus, as long as k <log(j—i—1) we will have r(j) >4 so

Prir(j) >i] > bg({o_g;_l)



, meaning that Pr[r(j) <i] <1-— % O

Reminder of Lemma 1. Given a DAG G on N =2" nodes sampled using the
randomized DRSample algorithm for any n>0 we have

Pr iy )|>(1+n)(2N )} §exp<_2?:7;N +nln2) .

Proof of Lemma 1. We let Y; ; denote and indicator random variable for the event

that 7(j) <7 and observe that x(@) < Z] H_lYZ j» since x (%) is upper bounded by the
number of edges that “cross” over the node i. Therefore, by linearity of expectation
and by Claim 1 it follows that

ZIE: y <1+Z< _loglj=i-1) _i,_1)>.

Jj=i+1 Jj=i+2 IOg]

We now define Qn to be the predicate that for all i <N we have that

N
log(j—i—1) 2N
1 E 1— < .
+] 1+2< logj ) ~ logN

It is straightforward to verify that the predicate Qn holds for N < 11 by direct
calculation for all possible cases. Having established our base cases we will argue
inductively that Qn — Q1 for all N >11 by induction. The following claim will be
useful

log(N+1)—log(N/2) _ 2(N+1)
Claim 3 If N>11 then {3 N+ g 10g(N+1g) < g (V1T

Proof. Observe that if N >11 then we also have N 26% and logN <N/3. Thus, we

have that
N\ 2NV+loeN N o N
N> ——— N>—>1
(N+1> —<N+1> Tes

N+1
2N log(N+1)—log(N/2) < 2(N+1)
logN log(N+1) “log(N+1)

N
< log () (2N +logN)+logN >0

O

Supposing that Qn holds for V>11 we do the following case analysis to show
that Q41 holds:

— For all i1 < % we rely on our inductive hypothesis to see that

N+1 .
log(j—i—1) 2N log(N+1)—log(N—1)
5 (e |

i5s ~ logN log(N+1)



Claim 3 now implies that

N+1 .
log(j—i—1) 2N log(N+1)—log(N —1)
1+ > (1— log] ) < i

P ~ logN log(N+1)
2N log(N+1)—log(N/2)
~ logN log(N+1)
2(N+1)
~log(N+1)’

— For all > %, we have that

! log R logj—log(j—i—1)
I+ Z =1+ Z log(N/2)

J=i+2 j=i+2
1 N+1 ]
<y
= oe(v2) 8 j:,rLj*ifl

(N+1)!
logN110g<(Ni)!(i+1)!)

L (N
logN—1 8\ i+1

N+1
=i logN —1
2(N+1)
~ log(N+1)

(whenever N >11)

It follows that 1—&—2?2;; (1— %) <1+ bg% < 1§g(é\1/v++li) for all i< N+1

so the predicate Q41 holds.

Therefore, we have that E[|x(i)]] < 2%
is the sum of independent random variables, we can use Chernoff Bounds with
p=2 ZZ;\; 1 E[Y; ;] to show that for any constant 7 we have

22N
3n '

Prljx(i)| > (1) ]<exp<

Now we union bound over all i <N to recover the original lemma statement. O

Reminder of Theorem 3. Let r:Nsg—N be any function with the property that
r(i)<i for all ieNs and let G=(V,E) be a graph with N nodes V={1,...N} and
directed edges E={(iyi+1) | i<N}U{r(i),i | 1<i<N}. If P=GP(G)eP(G) and
Q €P(G<ny2) then the XOR-extension graph G® of G has amortized Area-Time
complexity at most

N/2
3RN
aATIR(G®) <> IR |+Z\Ql|+—

=1



Proof of Theorem 3. We consider the pebbling P® = GPE(G) from Algorithm 2.
For i< N/2 we have P =P, where P=GP(G) is the greedy pebbling. We remark
that P =P; and P$/2+i71 =Q;UP;; njp—1 for i<N/2 and Pg={N}=Py where
P=GP(G) and Q=GP(G<n/2).

We first argue that the pebbling P® is legal. Legality of the first N/2 moves

follows directly from legality of the pebbling P for GP(G) since GQE N2 = G<nya-
For later rounds we consider the sets D; = Pfi NJ2-1 \Pf_?r NJ2—2 of new pebbles
placed during round i+ N/2 —1. To show that the pebbling is legal we want to
show that parents(D;) C Pﬁ Nj2—2° We note that the set D; contains exactly two
nodes D; ={i,i+ N/2—1}. First consider the node 4. Because i € Q;\Q;—1 and Q
is a legal pebbling of G< /2 we know that parents(i) C(Q;—1 C Pfi NJ2—2- Similarly,

any parent of node i+N/2—1 in G (i.e., possibly excluding node i—1) would be

contained in Py n/2—o C Pfi N/2—2° G® contains at most one additional parent of
node i+ N/2—1 i.e., node i —1. However, we have i—1 € Q;_; QPZ.?_N/Q_Q. Thus,

parents(ﬂ?N/Q_l\P@) C (Pryny2\Pitny2-1) gIDi?-N/Q—Q'
As demonstrated in the proof of Theorem 1 for P=GP(G) we have

N24+2N
aATl p(P) < %jLRN : (5)
Similarly, for Q@=GP(G<n/2) we have
N244N
aATl (@) < %6+RN/2 . (6)

By definition of P® we have

aATI (P®) < aATI z(P)+aATl £ (Q)
5N2+12N  3RN

< + .
=16 2

Reminder of Lemma 5. Suppose that a DAG G is (e,d,b)-Block Depth Robust and
that parameters € and b’ satisfies the condition that €’ % +e' <5. Then G is (¢/,d,b')-
Block Depth Robust, and for all S with size |S| < e’ the graph H=G —J ¢ [z —b"+1,2]
is (%,d,b) -Block Depth Robust.

Proof of Lemma 5. 1. Suppose that G is not (¢’,d,b')-Block Depth Robust. Then
there exists a set S with size |S|<¢’ such that depth(G—{J,g[z—b+1,2]) <d. Now,
let S’ be the set

b/
S’:{v—b’i|v€S and 0<i< {b-‘ ,ieZ}.
Then we can claim that |J, . g[z—b"+1,2] CUU,c g [r—b+1,7] since

ye U[I*blﬁ’l,llf] = JueS with u—b+1<y<u
zeS



/

b

/

b
— JieZ with 0<i< [J with
u—b(i+1)+1<y<u—bi

= yE U [t—b+1,z].
zeS’

But since G is (e,d,b)-Block Depth Robust, we have

d<depth <G— U [m—b—i—l,x])

zeS’

<depth <G U [zb'Jrl,x]) <d

€S
which is a contradiction.

2. By definition of S’, we have

v b e
n<|= <[ = f< =
|S|_[J|S|_<b+1>e <3

and depth(G—J,cq [v—b+1,2]) <depth(G—{J,cg[z—b +1,2]). Since we have only
deleted at most £ intervals of length b and the assumption that G is (e,d,b)-Block
Depth Robust, we can conclude that the subgraph H is itself still (g,d,b)—Block
Depth Robust. O

Reminder of Lemma 3. Let Gy = (V3 =[N],E) be a (e,d,b)-block depth-robust
graph with N =2" nodes and let G=BRG(G1) denote the bit-reversal extension of
G1 with 2N nodes V(G)=[2N]. For any interval I =[N+i+1,N+i+1+4¥] C[2N]
and any S C[1,N+4] with |S| <%, ancestorsg_gs(I) is (,d,b)-block depth-robust.
Proof of Lemma 3. Since, G is (e,d,b)-block depth-robust and |S| < § it follows
that H=G1 —Ugeglr—b+1,2] is (%,d,b) block depth-robust. Thus, it is sufficient
to argue that V' (H)Cancestorsg_s(I).

Consider any v € [1,N], either v € Upes[z—b+1,2] (ie., vgV(H)) or [v,0+3]
contains no vertices of S (i.e., v € V(H)). In the latter case, the graph G must
contain an edge of the form (z,y) with x € [v,er%] and y € I because Lemma 2
implies that for any interval I’ C [N] of length 2, there is an edge from I’ to I. Thus,
v€ancestorsg_s(I) since there is an S-free path from v to I via the edge (z,y). O

Reminder of Theorem 4. Let G be any (e,d,b)-Block Depth Robust DAG on

N =2" nodes, and G'=BRG(G) be the bit reversal overlay of G. Then for any pebbling
Pe H“(G) and all ¢’ < §, we have either HCHC(P) > 6624(3’, or I (Pe') > % —o(N)
i.e., at least & —o(N) rounds i in which |P;|>¢.

Proof of Theorem 4. Let P € PlI(G’) be a legal pebbling of G’ and let ¢, be the
first time where v€ P;, . Set b':= Zf;eb,. Partition the nodes (i.e., the top nodes of G’)




into /4 intervals Iy,...,I; /4 s.t. for each j <b'/4 the interval I; contains each of

the nodes [N+%+1,N+ 49“]. Let f; :NJr%fl)Jrl denote the first node

b

in interval I; and let ¢; ; :=t;, denote the first time where the node f; is pebbles.
Similarly, let m; =N+ w denote a node in the middle of the interval and
let ¢; m :=t.,,; denote the first time this node is pebbled. Notice that we must have
tim—tjf=>fi—m;> b—]\,’ since in any legal pebbling it will take at least f; —m; steps
to walk a pebble from f; to m;.

We remark that P either (1) keeps at least |Pj| > €’ pebbles during each round
J € [tj,ft;m) i, at least & rounds, or (2) for some j € [t ,t;,n] We drop below
|P;| < ¢ pebbles. In the second case Lemma 4 implies that

t
,U+N+32é\efel 1

S Blzed/2.

J=tv+N
We have at least %/71 disjoint intervals of length %V (possibly excluding the last

interval Iy /4).

1. If case (1) applies to at least %— 1 intervals, then we have 2% x (g—l) =

b/
T2 = —0o(N)=10(N) steps with at least e pebbles.

2. Otherwise, case (2) applies to at least % intervals and we must pay the cost

mir (§)d-ena®) . o

D New Argon2 Round Function

Figure 4, shown here, is a visual representation of the Argon2 round function with
added dependencies shown as arrows.

E Greedy Algorithm for Constructing Smaller
Depth-Reducing Sets

A recent line of work establishes a close connection between the aAT completixty of an
iMHF and the depth-robustness of and underlying DAG [AB16, ABP17, ABH17]. In
particular, if a DAG G is highly depth-robust then the corresponding iMHF provably
has high aAT complexity if and only if the underlying DAG G is depth-robust. Thus,
an improved algorithm for constructing smaller depth-reducing sets .S would likely
yield improved pebbling attacks against the DAG G. We introduce a new greedy
algorithm to construct small depth-reducing sets and demonstrate the advantage of
our new approach empirically.
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Fig. 4: Dependencies in round function calls with m=2'8kB of memory

Intuition Behind Greedy Depth Reduce At a high level the intuition behind Algorithm 5
is simple. Find the node v that is incident to the maximum number of length d paths
and delete it. Repeat until no length d paths are left. We use dynamic programming
to identify the node v that is incident to the maximum number of length d paths.

A dynamic programming method The subroutine CountPaths in Algorithm 5 uses
dynamic programming to compute the number of length paths that are incident to
each node v. To accomplish this task we fill in two dynamic programming tables.
Intuitively, PathsEndingAtNodev,i] (resp. PathsStartingAtNode[v,i]) denotes the
total number of directed paths of length ¢ (here, length is the total number of di-
rected edges on the path) that end (resp. begin) at node v. To fill in the dynamic
programming table we exploit the fact that

PathsEndingAtN ode[v,i] = Z PathsEndingAtNode[u,i—1] (7
(u,v)EE

Intuitively, Equation 7 follows because any path of length i that ends at node v
has the form P= P’ v where P’ is a directed path of length :—1 ending at some node
w and the graph contains the directed edge (u,v) € E from u to v. Similarly, any path
of length ¢ beginning at node v has the form P=v,P’ where P’ is a directed path of
length i—1 beginning at node w and the graph contains the directed edge (v,w)€ E.



Algorithm 5: An algorithm for a new depth-reducing attack.

Input :DAG G=([N],E) and target depth d
Output A depth-reducing set S

Function BuildDepthReducingSet(n€Nxo,d):

S=0

NodesInRadius:=

while depth(G—S)>d do
Incident PathsCount := CountPaths(G,S,d)
B:=SelectRemovalNodes(G,d,r.k,NodesInRadius)
S:=SUB

end

return S

Input :DAG G=([N],E) and set S of already deleted nodes and a depth d
Output An array IncidentPathsCount, where Incident PathsCount[v] denotes

the number of paths of length d incident to node v in the graph G—S.
Here, the length of a path is given by the number of edges in the path.
Function CountPaths(G, S, d):
for ve[N] do

PathsEndingAtNode[v,0]=1
PathsStarting AtNode[v,0) =1
end
for i=[1,d] do
for ve[N] do
PathsEndingAtNode[v,i|=3 " (uwyept athsEnding AtNode [u,i—1]
PathsStartingAtNode[v,i]| = (vwyepPathsStarting AtN ode [wyi—1]
end
end
for ve[N] do
Incident PathsCount[v]=
ZjZOPathsEndingAtN odelv,i] x PathsStarting At N ode[v,d—1]

end
return Incident PathsCount

Thus, we can use Equation 8 to compute the second array PathsStartingAtNode|v,i]

IncidentPathsStarting AtNode[v,i]| = Z Incident PathsStarting At Node[w,i—1] .
(v,w)EE
®)

Once we have computed both tables we can compute the total number of length
d paths incident to each node v as follows

d
Incident PathsCountlv] = ZPathsEndingAtN odelv,i] x Paths Ending At N ode[v,d—1]

i=0
9)



Intuitively, Equation 9 follows because each path of length d that is incident to v
has the form P=P,;,P, where P, is a length ¢ path ending at node v, P, is a length
j path beginning at node v and the total length of both paths is i+j=d.

We remark that both of the dynamic programming tables has size O(Nd) and
that it takes time O(INd) for the subroutine CountPaths to finish. If we want to reduce
space usage it is possible to reduce memory consumption to O(Nlogd) if we are
willing to increase our running time to O(Ndlogd). To further increase performance
a specific depth can be set i.e. look for the number of nodes with the highest number
of incident paths of some length. We use this method in the experiments shown in
Figure 2b and Figure 3. 13

Algorithm 6: A greedy algorithm to select multiple nodes to remove.
Input :DAG G=([N],E), depth d, radius r, k which denotes the number
of nodes that will be removed at one time and set NodesInRadius
of nodes that are in the radius of all the already deleted nodes.
Output A set of selected nodes to remove

Function SelectRemovalNodes(G, IncidentPathsCount, d,rk):
if r=0 then
| return {argmax.,(Incident PathsCount[v])}
SelectedCandidates = Select TopKnodes(Incident PathsCount)
for ve SelectedCandidates do
if v¢ NodesInRadius then
B:=BU{v}
‘ UpdateNodesInRadius(G,v,r,NodesInRadius)
end
return B

Function UpdateNodesInRadius(G, v, r, NodesInRadius):
while dist(u,v) <r or dist(v,u)<r do
if uw¢ NodesInRadius then

| NodesInRadius:=NodesInRadiusU{u}

end
Function SelectTopKnodes(Incident PathsCount,k):
‘ return Set of k largest nodes in Incident PathsCount

Challenges While the new greedy algorithm for constructing depth-reducing sets
yielded superior results (smaller depth-reducing sets for the same target depth d),
Algorithm 5 is more expensive computationally than previous approaches. In par-
ticular, the algorithm requires O(Nde) time in the full version to complete where
e is the size of the final depth reducing set that is returned. When N,d,e are all

13 This can be accomplished by discarding rows of the dynamic programming table from
memory and recomputing them later. At each point in time we keep logd rows of the
table in memory to ensure that each row will only need to be repebled.



large this approach is not always computationally feasible. Another challenge is that
Algorithm 5 requires O(Nd) space for the dynamic programming tables, which can
be problematic for larger target depths d e.g., when N =22* with target depth d=2'°
we would require terabytes of memory to store the dynamic programming table. We
remark that it is possible to reduce space usage to O(Nlogd) while maintaining
a running time of O(Nde) by strategically recomputing portions of the dynamic
programming table to reduce memory usage.

The result of the CountPaths subroutine is Incident PathsCount[v] an array which,
for each vertex v, counts the number of paths of length d incident to node v in graph
G —S. Here we can employ a heuristic to speed up computation. We note that nodes
close to nodes selected for removal in each round have a higher chance of being selected
in the next round of CountPaths. However, when node v has a large number of paths
of length d incident to it, the nodes that are close to v may also have a large number
of paths of length d which share many of the same paths. Thus, deleting nodes that
are close together might not contribute much to a decrease the depth of the remaining
graph. To counteract this we eliminate the nodes that are within a certain radius of
the deleted nodes as shown in UpdateNodesInRadius and SelectRemovalNodes. Thus
we add multiple nodes per round, yet do so strategically using this heuristic to help
increase depth more per node added to the depth reducing set.

E.1 Empirical Analysis

Figure 3 compares the performance of our new method with prior state-of-the art
techniques for constructing depth-reducing sets. As the figure shows our algorithm is
able to consistently construct significantly smaller depth-reducing sets. In particular,
the size of the depth-reducing sets we obtain are typically 2-3 times smaller than
prior approaches [ABH17,AB17]. Figure 2 compares the attack quality of our new
method with previous best depth-reducing attack. Our new method not only reduces
the size of the depth-reducing set, but also improves state-of-the art pebbling attacks.

F Candidate CMC-Optimal DAGs

In this section we present two candidate DAGs G which achieve the best possible lower
bound on Hﬂc(G) = 2(N?oglogN/logN) for constant indegree graphs under plausible
conjectures of the (block) depth-robustness of these DAGs. Our first results shows
that any (e,d)-depth-robust DAG G with e=d=2(NloglogN/logN) can be used to
construct a new graph G’ =superconc(G) s.t. G’ has HﬂC(G’ )=92(N?loglogN/logN)
by overlaying a superconcentrator on top of G. We first recall the definition of a
superconcentrator.

Definition 5. A graph G with O(N) vertices is a superconcentrator if there exists
IO with |I|=|0|=N such that for all S1 C 1,52 CO with |S1|=|S2|=k, there are
k wvertex disjoint paths from S1 to Ss.

It is well known that there exists superconcentrators with |I| =|O|= N, constant
indegree and O(N) nodes total e.g. [LT82, Pip77]. We now define the overlay of a
superconcentrator on a graph Gi.



Definition 6. Let Gy be a fired DAG with N nodes and Gy = (V,E) be a (a
priori fized) super-concentrator with N inputs I = {i1,....,in} CV and N outputs
O={o1,....,o0n} CV. We use G=superconc(G1) to denote the graph G=(V,EUF,UF5)
where F1 ={(0;,0i11) : 1<i<N} and Fo={(iy,iv) :(u,w)€E(G)}.

Theorem 8 ( [ABP17], Theorem 4). If G is (e,d)-depth robust, then H(‘;lc(G) >ed.

Lemma 7. Let G be an (e,d)-depth robust graph. Then for all S with |S| < §, it

follows that H(UC(G—S) >5d.
Proof. Observe that if G is (e,d)-depth robust and |S| < £, then G—5 is (£,d)-depth

robust. Thus, HCHC(G—S) > 5d by Theorem 8. O

Conjecture 1. Let G be a graph with N nodes sampled uniformly at random from
the DRSample distribution. Then with high probability, G is (e,d)-depth robust,

__ c1NloglogN __ caNloglogN
where e= T ToeN and d= “oeN for some constants c,co >0.

Theorem 9. Let G be an (e,d)-depth robust graph with N nodes. Then for G =
superconc(Gt), HCHC(G):.Q(min<N%262,W>),

Proof. Let P = (Py,...,P,) € PI(G) be a legal pebbling of G and let {oy,...,on}
denote the output nodes of the super-concentrator. For each node v € V(G), let
t, be the first time v is pebbled. Notice that ¢,, <%,,,, since G includes the edge
(04,0;41) for each i < N. Partition L into intervals of 2e consecutive output nodes
L1 ={01,...,09¢ },La ={02¢11,---,04¢ },-.. and use let v', ., = 09¢(i—1)+1 denote the first
node in interval L;, v}, ;;=02¢(i—1)+ denote the middle node, and vy, , = 02¢(i—1)4-2¢
denote the last node in the interval L;. We also use L'Z irst — {02¢(i—1)+15-02¢(i—1) ¢}
to denote the first e nodes on the interval L; and Ll = {02e(i—1)et1r02¢(i—1)+2¢ }
to denote the second half of the interval.

ti
We now lower bound Zi;t"i | P;|, the cost incurred during pebbling rounds

start

[y, v |- We consider two cases.
In case 1 we have |P;|>§ for all j€[t,,,,,,tv,..,]- In this case we have
t'Ui t'Ui
end mid e 2
> Bz 30 I (g, )52
J=t,i J=t,i

i i
v v
start start

where the last inequality follows from the observation that

(tvi A1ty ) >2e(i—1)+et1—2e(i—1)+1=¢ .

mi

In case 2 there exists some time j* € [t,: .t _d] such that |Pj-| < 5. Now we
note that we must completely re-pebble all nodes in the set ancestorsg_p,. [Lé““]

before round t,; . Let S={i1,...;ix }\ancestorsg_p,. [Li*st] be the inputs of G' that



are not ancestors of L% in the graph G —Pj- i.e., the nodes we don’t necessarily

is a super-concentrator, there are min(|S|,e) > |P;-
Li*st in G. It follows that there is a path from some node v €S to Ll*s* which avoids
Pj-, but this implies that v € ancestorsg_p,. [L1**]. Contradiction, by construction
S is disjoint from ancestorsq_ p,. [Li**"]! It follows that | S| <|Pj|.

We now let S;={veV(G1) :i, €S} be the nodes in Gy corresponding to the
inputs SCV/(G). Note that |S1|=|S|. We have

t“ind Yend ed
Z |Pj| > Z B> TIL(G1—51)2
J=ti
efart
where the second to last inequality follows because we need to re-pebble every input
node that is not in S and we G contains a copy of G; overlayed on top of the inputs.
The last inequality follows from Lemma 7.
We have show that for each interval L; we have
t i

v
end

2 ed
> Ipzming 3.5y
2°2

Jj= =t i

s‘farf

Since there are at least [iJ such intervals, the total cost of pebbling G is at least

2e
L] Cotn e’ ed

Z|P|>Z Z |P|>(1>mm{2 2}. 0
=1 j=t
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If Conjecture 1 holds, then we can take e= Q(M) and d= Q(M> SO

logN logN
that I11L(G) = @ (X j2Ee ).

Corollary 4. Let Gy be a graph with N nodes sampled uniformly at random from
the DRSample distribution. If Conjecture 1 holds, then HC”C(superconc(Gl)) n (%)
with high probability.

However, a superconcentrator overlay is not the most practical construction. Before
we describe a more practical construction, we first set up some notation.

We now make a conjecture slightly stronger than Conjecture 1 and show it also
leads to an asymptotically cmc-optimal DAG may be easier for practical implement.

Conjecture 2. Let G be a graph with N nodes sampled uniformly at random from the
DRSample distribution. Then with high probability, G is (e,d,b)-block depth robust,

c1 NloglogN ca2 Nloglog N __ cslogN
where e= Tog NV , d= TogN and b= ToglogN for some constants cy,co,c3>0.

Reminder of Theorem 5. Let Gy be an (e,d,b)-block depth-robust graph with

N=2" nodes. Then I1).(BRG(G))>min(<¥ edb),



Proof of Theorem 5. Suppose Gy = (Vi = [N],E4) is (e,d,b)-block depth-robust
DAG with and let G=BRG(G1) be a graph with V' =[2N]. We partition the nodes
[N+1,2N] from the second half of G into [%J disjoint intervals of length %:

16NV 16N 32N
Jo= |:N+1,N+b:| J1= |:N+b+1,N+b:| your
and split each interval J; into F; = [N —&—%—1—17]\[ + 162]\7 —1—%}, the first half of

the interval, and L; = [N +16N 4 8N 11 N+ M] , the last half of the interval.

Similarly, partition the first half of G into disjoint intervals of length %: I = [1,%} Jo=
[ngl,g] ,--.. By Lemma 2, each L; is connected to all of the intervals {Ij}. For any
fixed 7 let tgqr¢ be first time the first node in F; is pebbled and let ¢;,5; be the first
time the last node in F; is pebbled. Note that either for all j € [tssart tiast], |Pj]> 5,
or there exists a j € [tstare,tiase) With [Pj| < 5.

In the first case, |Pj|> § for at least g steps, so that the cost of pebbling the
interval is at least 8ebN . In the second case, there exists a j € [tsart:tiast) With [P < 5.
Observe that L; has length %. Thus by Lemma 3, ancestorsg_p, (L;) is (g,d,b) block
depth-robust, so by Theorem 8, the cost to repebble ancestorsg_p, (L;) is at least %.

Hence, the cost to pebble each interval of length % is at least min(%,%).

Accounting for each of the 1—1’6 intervals, the total pebbling cost is at least min(— <),
O

Corollary 5. Let Gy be a graph with N nodes sampled uniformly at random from the

DRSample distribution. If Conjecture 2 holds, then HCHC(BRG(G’l)) :Q(Nilgg#>

with high probability.

G Sequential Complexity of the Bit Reversal Graph

In this section, we show that the bit reversal graph has high sequential cumulative
memory cost.

Definition 7. We say an interval I=[a,b] contains a pebble in round j if INP;#.
We also interchangeably say that we place a pebble on I in round j if INP;#0, but
_[ﬂf%71::®'

Reminder of Lemma 6. Let G=BRG,, for some integer n>0 and N =2". Let
P=(P,...,P,) €P(G) be some legal sequential pebbling of G. For a given b, partition
[N] into & = 27" intervals I, = [(z—1)2"+1,0x2°], each having length 2°, for

_N_
b/ +3

with b’ >b and at time j, at least 217’% of the intervals contain a pebble. Then

1<z <27, Suppose that at time i, at most of the intervals contain a pebble

N2 o 2b—b'N
|B|+...+|Pj|zw and (j—i)> T



Proof of Lemma 6. We say an interval I, is far from being pebbled at time k if both
I, 1ﬁPk =( and I, ﬁPk ={. Let z be the last pebbling round i < z < j in which \P |<
2b, - Since at most intervals contain pebbles at time z, there are at least
2N _ _N
b/ +3 T b/ 42
a pebble at time j. For each such interval I, at least 2° sequential pebbling steps are

necessary to place a pebble on Iz, since I,_1NP, =0 and each interval has length 2°.

Qb’ +3 2b’ 1
intervals I, that are far from being pebbled at time z, but also contain

b/
Thus, at least j—z> 21,]/\;2 20 =2""N gteps are necessary to reach round j. Hence,

2b— b’N N N2
|Pi|+...4+|Pj| > | Posa | +...+| P | > 5h¥E = QpTE O

Reminder of Theorem 6. Let G=BRG,, and N=2". Then II..(G) =Q(N2).
Proof of Theorem 6. We first let P€P(G) be a legal sequential pebbling of the bit
reversal graph G. Let ¢; denote the first time a pebble is placed on node i. We first
show that We can assume |Py| < 35 for all pebbling rounds k.

If [Py > £, then let 2 <k be the last time at which |P,| < & and note that
k—z>|Py|—|P.| > &, since at most one pebble can be added in each round in a

sequential pebbling. Thus, it follows that aAT(P)> (k— z) >( é\i)Q.

In the remainder of the proof we assume that | Py| < for all k£ and in particular,
| Py | <X 35- We define a sequence bo7b17 ,bix recurswely as follows. Let by >0 be the
largest integer such that at most Qbo ' of the &

intervals I9,...,19, _, contain pebbles

2b0 on—bg
at time yo=tx, where I :=[(x—1)-2% +1,2-2%] denotes the intervals that partition
the nodes [N] in the first layer of the bit reversal graph. Let b; >0 be the largest integer
so that at most 52 of the 2= intervals I1,... IQ,L y, with Il:=[(z—1)-2" +1,2-2%]
contain pebbles at time y1 =ty 4n/200, and in general, once bo7 ,b; have been

defined, let b;11 denote the largest integer so that at most P + = of the

2b1+1
intervals Ii! .. I;j[l,, .., contain pebbles at time y; 1 —tN+4N/250 4. +4N/2v: » Where

I =[(z—1)- 2001 4 1o 20041],

We halt the sequence whenever 22;02_””‘2]\[ >3N/4. We now prove two useful
claims. Claim 4, which follows from Lemma 6, lower bounds the initial pebbling cost.
In particular, if bp=0(1) is any constant then Claim 4 implies that aAT (P)=2(N?).
Lemma 6 also implies that if for any b; in our sequence we have b; = O(1) then
aAT(P)=2(N?). Thus, in the rest of the proof we can safely assume that for each
i<i* we have b; >4 so that N2~ 0 < N /4. In particular, this implies that y;« <ton and

i*—1 it —
> 2P HEN>N/2 [ and thus Y 2722 bi>078
i=0 =0
Claim 4
yo—1

Z| 1|*2b0+8 ’



Proof of Claim 4. The claim follows by setting b=by+1 and b’ =b+2 in Lemma 6. In
particular, at time j =1y we must have pebbles on at least 21)0% = 2,,% = Qu% of the
intervals 19=[(x—1)2"+1,2x 2°] — otherwise we could have selected a larger value

of by. Similarly, at time =0 we have no pebbles on the graph. Thus, by Lemma 6

yo—1 2 2
N N
D IBIZ g5 =g - O
i=1
Claim 5 lower bounds the elapsed time between two phases. In particular,
Yit1—Yi > %-

Claim 5 For all 0<i<i* we have y;41—y; > %.
Proof of Claim 5. Each of the nodes in
I:'=[N+4N (2704 427 1) N44(27P0 4. +270)]

are all pebbled for the first time during the time interval [y;,y; 1] — if =0 then set I:=
[N+1,N+4N2~%]. By Lemma 2, each interval I}, of the form I} = [(k—1)2% k x 2%
has an edge to 1. Hence, for each interval of the form I} = [(k—1)2" k x 2% there must
be some pebbling round j € [y;,yi+1] s.t. I}, contains a pebble at time j i.e., [P;NI}|>0.
We have 2% intervals of the form I}, and, by definition of b;, at most 217% of
these intervals I} contain pebbles at time y;. Let F' denote the set of all such intervals
I s.t. both of the intervals I; and I}, contain no pebbles at time y;. We note that

N _3 N

N

Finally, we note that each interval I}, in F will require 2% steps as it will need to be com-
pletely repebbled before we can place a pebble on the next interval I , ;. Thus, we have

. 3N
Z%'+1—yi22b’|F|ZT . O

We now define a potential function @ to help analyze the amortized cost of
2
pebbling during each interval [y;,y;+1]. In particular, we initially set @(yg) = Zgwfbo
and then prove that for each such interval we have

Yit1—1 N2
P(yi) = P(yiv1) + Z |Pt\ZW~
t=y;

It follows that

it L -1 yi1—1
7A@+Z Z |P)t| = Z(@(yz+1)¢(yz)+ Z |B|>

i=0 t=y; i=0 t=y;



=1
- Z 210+b
Nzl *—1 Y
99 22 '
=0
N2

We then separately prove that A® > —d(y,) which means that

yo—1 Yit1—1 yo—1 N2 N2
SIRIY Y IRIz YRl 02 3
i =y

where the last inequality follows because Claim 4 implies Zi’igl |P;| >P(yo)-

Case 1 (small increase):

Case 2 (decrease):

We now consider several cases based on the difference b; 1 —b;:

b; <bj+1 <b;+2. We consider two sub-cases: either in every round z € [y;,¥i+1)
we have |P,|> Ql,i%, or at some point z € [y;,y;+1) we have |P,| < 21,% In the
first sub-case, the cost of pebbling during rounds [y;,y;+1) is at least

Yit1—1

N 3N N N?
> IBI= (i - yl)gzwsz 1 I8 = 569

t=y;

To obtain a lower bound in the second sub-case we rely on the observation that
at time ;41 there must be pebbles on at least l—frauction of the intervals of length
201+l Now we set b= bir1+1 and V= b+2<b +5 in Lemma 6 to obtain the

lower bound
Yit1—1

N2 N2

> 1Pz s> i
t=y;

Note that we can apply Lemma 6 since we end with pebbles on at least
N/2bi+1+4 = N/2V'+1 of the intervals of length 2° at time y;,1 (otherwise, we
would have selected b; 11 =b) and start with pebbles on at most |P,| < 2bN+8 < ij,\_a 5
such intervals.
Thus, in this sub-case we have cost at least Zy’“_ P> QbN% In both sub-
cases we set D(y;+1):=D(y;) so that the potential function does not change i.e.,
D(yi) —D(Yit1) =0.
biy1=b;—k with k>1. In this case the pebbling costs will be quite large which
will allow us to “recharge” the potential function using excess CObtb We again
consider two subcases. In subcase one we assume that |P,| > for all
z € [Yi,yit+1) which immediately implies that

20 +1+6

Yi+1—1

3N N 3N?2 N?
Z [P > — 1 9016 = b A8 = b kAT

t=y:



In the second case we let z € [y;,y;+1) be the latest time for which | P,| < wa% By
setting b=b;11+1 and ¥/ =b+2=b;11+3 in Lemma 6 we obtain the lower bound

vialt N2 _ N? N2
Z 1Bl = oY+ 522b,+1+8 obi—k+8
t=y;

Note that we can apply Lemma 6 since at most \P | < W = 21)' — of the
intervals of size 2° are pebbled at time z and at least W = 2,,, 7 of these intervals
must be pebbled by time y;11 — otherwise we would have selected a larger b;4 1.

In both sub-cases we have

Yi+1—1 2k+2N2
E: 1P| > 510 9b;+10
t=y;

We will define @(y;41):=(y;)+ (282 1) .2 55,710 - Notice that while the potential
does increase significantly in this case we still have

Yit1—1

é(yz yz+1 Z |Pt| = 2b +10 °

t=y;

Case 3 (large increase): b;11 >b;+2. In this case we will simply define @(y;11)=P(y;) — % so that

trivially we have

Yit+1— 1 N2
Dy:)—P(yir1)+ Y 1Bl 2 3 -
t=y;

In particular, we don’t attempt to lower bound the pebbling costs in this case
and instead reduce the potential function.

In the final case the potential decreases, but, as we later prove in Lemma 8, we
maintain the invariant that @(y;) >0 which means that for any >0 we have

yo—1

P(yo) —P(yi) <P(yo) < ZIPt :

It remains to prove that the potential function never becomes negative. Lemma 8
shows that a stronger invariant holds.

Lemma 8. For each i we have $(y;) > 2£V+8

Proof of Lemma 8. Clearly, when i =0 we have &(yo) > 25\[% by definition. Now
suppose that the invariant holds at time ¢ and consider @(y;1). There are three cases.
In the first case (small increase) we have b; <b; 11 <b;+2. In this case we defined
D(yir1)=DP(y;). Tt follows that

N2 N?
P(yi+1) =P(yi) 2 2048 = i ¥E



In the second case (decrease) we have b; 11 =b; —k with k>0 where we had set

N2
D(yir1) = Pyi)+ (2k+2 -1) 26, +10
N2
_ k42
= o(y)+ (2" 1) o
2 N2
= Ppears T (ﬂyi)‘w)
N2
= 9biy148

In the third case (large increase) we have b; 11 >b;+2 and we defined @(y;+1)=
2
P(y;) — 5575 Thus,

N? N? N? N?
(p(yi+1) z 92b;+8 - 2b;+10 = 92bi+9 = 2bi114+6 °

O

This completes the proof of Theorem 6. O

Definition 8. A pebbling P=P;,... is c-parallel if | P11\ P;|<c for all i. We define
IS (G) to be the cumulative pebbling cost by any c-parallel pebbling.

Note that any c-parallel pebbling P places at most ¢ new pebbles in each step,
so that | P41\ P;| <c for all . Thus, each step P; in a c-parallel pebbling can be
emulated by a sequence of ¢ steps Qcit1,.--,Qc(i+1) in a sequential pebbling where
Qei=P; and Q(;i41)=Piy1 so that [Q;11\Q;| <1 for all j and |Qcit | <|Piyq| for
all 1<j<c. Thus, for any c-parallel pebbling P there exists a sequential pebbling
Q with IT..(Q) <cx I (P).

Remark 8. For any graph G and any integer ¢>1,
I (G) <cxIIL(Q) .

Corollary 6. Let G=BRG,, and N=2" for some integer n>0. In particular, for
any constant ¢>1 we have IIS(G)=2(I1..(G))=2(N?).

H Pebbling Reduction for XOR Labeling Rule

Alwen and Serbinenko [AS15] previously showed that, in the parallel random or-
acle model, cumulative memory complexity of an iMHFs fg i can be character-
ized by the black pebbling cost HC”C(G) of the underlying DAG. However, their
reduction assumed that the output of fo u is fo m(x) = labg u(N) is the la-
bel of the last node N of G where labels are defined recursively using the rule
labg g1, (v) = H(v,labg g5 (v1),..,1abg 1 o (v5)) where vy,...,v5 = parentsg (v). To im-
prove performance real world implementations of iMHFs such as Argon2i, DRSample
and our own construction BRG(DRSample) are defined using the XOR, labeling rule

5
labg, i1 (V) =H (@bbcﬂ,m(vz‘))



= H(labg, 1,2 (v1) ®labg 11, (v2) ©...labg, 11,2 (v5)),

where v1,...,v5 are the parents of node v.

In this section we prove that, in the parallel random oracle model, the cumula-
tive memory complexity of fg g is still captured by HCHC(G) when using the XOR,
labeling rule. There are several additional challenges we must handle when using
the XOR labeling rule. First, in [AS15] we effectively use an independent random
oracle H,(z)=H (v,x) to compute the label of each node v — a property that does
not hold for XOR labels. Second, even if H is a random oracle the hash function
F(x,y)=H(x®y) is used to generate the labels.

We remark that G is not even collision resistant e.g., F(x,y)=F(y,x). Because
of this we will not be able to prove a pebbling reduction for arbitrary DAGs G. In
fact, one can easily find examples of DAGs G where cmc(fg,n) < HEC(G) i.e., the
cumulative memory complexity is much less than the cumulative pebbling cost by
exploiting the fact that labg g, (u) =labg 5 (v) whenever parents(u)=parents(v). In
such a case if parents(N)={u,v} we would have

fG,H(CL') = IabG,H@(N) :H(IabG,H@(u)@lab(;,H,w(v)) :H(Ow) R

so that fa m(z) becomes a constant function!
For this reason we only prove that cmc(fe r) :Q(HyC(G) Xw) when G= (V=

[N],E) contains all of the edges of the form (i,i+1) with i< N. This ensures that
for any u < v we have parents(v) # parents(u) since v — 1 ¢ parents(u). Fortunately,
this happens to be true of all of the iMHFs we consider. We can use this to ar-
gue that it is not possible for an attacker to find a pair (z,v) # (2/,v’) such that
IabG,H,x/ (v’):IabG,Hw(v).

Definition 9 (XOR Labeling). Suppose G=(V,E) is a directed acyclic graph with
indegree § and a single sink node N. Given a family of random oracle functions
H={H,,Hs} with Hy,Hy:X*— X* over an alphabet X, we define the prelabel of
a node v € [N] as prelabg g, (i) : [N] = XV. We omit the subscripts G,H when the
dependency on the graph G and hash function H is clear. In particular, given an
input x the prelabel of node v is defined by

H(x), indeg(v) =0
prelabg 77 . (v) = ¢ labg, - (v—1), indeg(v)=1
EszllabaH,x(vi), indeg(v) > 1.

where vy,...,v5 are the parents of node v. The (H,x) XOR labeling of G is then defined
recursively by

Hy (Hy (1), indeg(v) =0
labg 7 ..(v) = Hs(labg g1, (v—1)), indeg(v)=1 .
H, (@lelabG’ny(vi)) indeg(v) > 1.

We then define fa u(x)=labg (V).



Lemma 9 states that, except with negligible probability, all nodes will have dis-
tinct labels and pre-labels as long as the original DAG satisfies the property that
parents(u) # parents(v) for all pairs u#v € V. The assumption that parents(u) #
parents(v) for all u#v €V is necessary so that each node in G has a unique prelabel
with high probability. Otherwise, we cannot accurately view the label of each node
as an independent strings. See Figure 5 for an example of a DAG whose prelabels
are not necessarily different.

Lemma 9. Suppose G = (V,E) is a DAG with N nodes, such that parents(u) #
parents(v) for all pairs w#v € V. Let H= (H1,Hs) be a family of random oracle
functions with outputs of label length w. Then

2N?

COLLISION| < .
I< 2v—N

Pr |

HeH

where COLLISION denotes the event Ja#b€ Vlabg m .(a)=labg m . (b)Vprelabg 4 . (a)=
prelabG,ny(b).

Proof of Lemma 9. Suppose without loss of generality that the nodes 1,...,N are in
topological order and let H be chosen uniformly at random from H. Let £,, be the
event that labg g, (a) =labg g, (b) for some a%#b with a,b<m. Let Py, be the event
that prelabg 5 . (a)=prelabg 5 ,.(b) for some a#b with a,b<m.

Consider an induction on m after observing that Pr[£;]=Pr[P;]=0. For any
veV,let r1(v),...,r5,(v) denote the parents of v with 1 (v) <r(v) <...<rs,. For
fixed i€V with i <m+1, prelabg fr . (1) =prelabg 5 ,(m+1) if and only if

95 5;
Prabe, .. (r; (i) =EPlabe . (rj (m+1)) .

j=1

Conditioned on —L,,, the probability that prelabg 5 . (i) =prelabg fr . (m+1) for
a fixed i <m+1 is at most 5 since labg a2 (r1(i)) = H (prelabg g, (r1(i))) is
essentially a uniformly random w bit string — the condition =L, that the first m
pre-labels are pairwise distinct rules out at most m possible values of labg g 4 (r1(3)).

Taking a union bound over all choices of ¢ <m we have

N
Pr[Pm+1|—|ﬁm/\—|'Pm} S m S Qu_N .

Conditioned on =Py, 11, it follows that for a fixed i <m+1, prelabg, f . (i) #
prelabg 5 ,(m+1). Hence, the probability that labg m (i) =labg m.(m+1) for a
fixed i <m+1 is at most 57— since we can view labg 17, (m+1) as a uniformly
random w bit string conditioning on the event that it is not equal to any of the m
prior labels labg, g 5 (1),....labg i .. (m). Taking a union bound over all choices of i <m,

m N
Pr[£m+1|_‘£'rrn/\_‘7jm+ﬂ < 2w _m < w_N

Thus, it follows that Pr[-PyA—Ly]< % u
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Fig.5: An example of a DAG without independent prelabels.

Technical Note: Argon2i actually defines the first two blocks according to a special
rule. Essentially, the labels of the first two nodes will be Hy(x,0) and the label of
the second node will be Hy(z,1), while the rest of the nodes will be defined as above.
We remark that Lemma 9 will still hold with this modification since the prelabels
for the first two nodes are guaranteed to be distinct.

H.1 Memory in the Parallel Random Oracle Model

Before describing our reduction, we formally recall the definition of cumulative mem-
ory complexity in the pPROM model. Let the state of an algorithm A7) at time i
to be o;, which contains the contents of the memory. Let A#() be a pROM attacker
AH() swho is given oracle access to a random oracle H : {0,1}* —{0,1}*. An execution
of A”C) on input z proceeds in rounds as follows. Initially, the state at time 0 is
09, which encodes the initial input x. At the beginning of round i the attacker is
given the initial state o;_; as well as the answers A;_; to any random oracle queries
that were asked at the end of the last round. The algorithm A7) may then perform
arbitrary computation and choose to update the memory, outputting a new state
0, along with a batch of queries Q; ={q’,qs,....q" }.

Erecution Trace. The execution trace of the algorithm AX() is defined by the se-
quence of memory states and queries made to the random oracle H. Formally, the
execution trace is Tracea g u(x) = {(04,Q;)}._;, where the trace Tracea g p(z) is
dependent on the algorithm A”(), random oracle H, internal randomness R, and
input value z. Then the cumulative memory cost of the execution trace is

cme(Traceq g (z)) = Z|ai\ .
i
Note that the attacker is not charged for space used for computation between queries.
This is justified since we will lower bound the cumulative memory cost. We say that
an execution trace Trace g m (%) is successful if the final output was correct i.e.,

fG,H(fE) = IabQH,x(N).

H.2 Ex-Post-Facto Pebbling

Let fo i be a function with random oracle H and underlying directed acyclic graph G.
We show that computation of fq i yields a legal black pebbling with high probability.
We first define an ez-post-facto pebbling for any computation of fg m using the
following terminology.



Definition 10. We say that random oracle query q targets node v if g=prelab(v).
We say that the node v is an input for query q if g=prelab(w) for some node w such
that v € parents(w). We use the predicate targets(q,v) (resp. input(q,v)) to indicate
that query q targets node v (resp. node v is an input for query q).

We remark that multiple nodes v could be the target of a query ¢ if two pre-labels
collide i.e., prelabg; f7 ,.(v) =prelabg p . (u), though Lemma 9 implies that that this only
happens with negligible probability when all nodes in G have a distinct set of parents.

We use A7) to extract a legal P = (P;,...,P;) € PI(G) from a successful exe-
cution trace. Given a successful execution trace Tracea r m(z) = {(0:,Q:)}i_, we
let T; = {v:3Jq € Q; s.t. targets(q,v)} be the set of targeted nodes in round i
and we let I; = {v: 3¢ € Q; s.t. input(q,v)} be the set of required input nodes
in round ¢. Given a node v and a round ¢ we define NextTargetRound(v,:) (resp.
NextRequiredRound(v,i)) to be the earliest round j > s.t. v € T} (resp. v € I).
We define R; = {v : NextRequiredRound(v,i) < NextTargetRound(v,i)} to de-
note the set of all nodes which are required as inputs for random oracle queries
before they are observed as outputs. Now to obtain the corresponding pebbling
BlackPebble! (Trace o g 1 (7)) = (Py,...,P:) where Py=0 and P,=R;N(T;UP,_;) for
each round 0<1¢<t.

Intuitively, at each time j, P; contains all nodes v whose label will appear as
input to a future random oracle query before the label appears as the output of a
random oracle query.

Definition 11. Given an execution trace Trace s g u(z)={(0:,Q:)}i_; we say that

a round i query q€Q; is lucky if for some nodes x and v € parents(x) we have :

— targets(q,x) (query q targets node x), and
— For all prior queries ¢’ € U;;lle we have targets(¢’,v) =0 i.e., v has not been
the target of any prior query.

We say that the output is lucky if the execution trace is successful, but the final node
N was never the target of a query i.e., targets(q,N)=0 for all QEU;:1Q3‘-

Observe that if there are no lucky guesses, then BlackPebble! (
Py,...,P; corresponds to a legal black pebbling.

Traces g,u(x))=

Theorem 10. Suppose G=(V,E) is a DAG with N nodes, such that parents(u)=
parents(v) for all pairs u#veV. and that A computes fa u correctly with probability

at least € while making at most g queries to the random oracle. Then with probability
2
at least e — zw‘ﬂfvthz - Qiji ~ the ex-post-facto pebbling extracted from A is a legal

pebbling and the event COLLISION from Lemma 9 does not occur.

Proof. Fix an execution trace Trace 4 g g (T)={(0:,Q:)}'_,. By Lemma 9 we have
that the probability of the event COLLISION that two nodes have the same label
or pre-label is at most % We now upper bound the probability that there
is a lucky query conditioning on the event that COLLISION does not occur. Let
NQ;={v : targets(¢’,v)=0 V¢ eU};lle} denote the set of nodes that were never
a target of any query ¢’ before round i.



Fixing a query ¢’ € Q; along with a node u we have
1

20_—N—-N2 "~

This follows because, if some v € parents(u) has never been the target of a prior random
oracle query, then we gave never submitted the query prelab(v) and we can essentially
view the label labg g, (v) = H (prelab(v)) as a uniformly random w-bit string that
is yet to be selected. The only restriction is that labg g, (v) must be distinct from
other known labels and that for any pair of nodes u;,us we have prelabg f . (u1)#
prelabg, f7 ,.(u2) since we condition on the event that the event COLLISION does not oc-
cur. These restrictions rule out at most N+ N? possible values of the label labg, g1,z (V).
Hence, for any constant w-bit string y€{0,1}", the string y@labe, i . (v) can essen-
tially be viewed as a w-bit string selected uniformly at random. More precisely, we can

view the prelabel prelab(u)=labg, g, (v)® (@iEparents(u)\{v}IabG7H7$ (z)) as a random

w-bit string which will be drawn from a set S C {0,1}* of at least 2¥ — N — N2 strings.
Thus, Prlprelab(u)=¢’ : parents(u)NNQ; #0] < m Union bounding over
all nodes u we have

Pr[targets(q,u) : parents(u)NNQ;#0] <

N
. ! .
Pr[3u : targets(q’,u)Aparents(u)NNQ; #0) < _N—NE
Finally, we can union bound over all ¢ queries to see that the probability there exists
a lucky query is at most

N
Pr[Fu,q : targets(q’,u)/\parents(u)ﬁNQ,»;«ré(Z]]g210_%\77_]\/,2 .
A similar argument shows that the probability of a lucky output on any query
q #prelab(N) is at most 27* — note that if ¢’ =prelab(v) for v <N then we already
know that ¢’ does not have lucky output since H (prelab(v)) =labg, m . (v) #labg, .5 (V)
as we assume that the event COLLISION does not occur. Thus, the probability of a
lucky query or lucky output is at most %—1—2_“’.

If there are no lucky queries, then for each node u €V and round ¢ such that
there exists g € Q; with targets(q,u), then for all nodes v € parents(u), there exists
a query ¢’ in some previous round j <7 with ¢’ €Q); and targets(¢’,u). Notably, let
z <1 be the last round in which there exists a query qp € @, with targets(go,v) —
which means that we have v € R, for any round z <y <4. Thus, by definition of
BlackPebble! (Trace 4 g 1 (T')) we have v € P, for any z <y <i because we never
discard pebbles ve R,,. It follows that parents(P;+1\FP;) C P;.

Furthermore, if the output is not lucky, then there exists a round j and a
query g€ @Q; such that targets(q,IN). By definition of BlackPebble! (Trace s r 1 (T))

this means that N € P;. Thus with probability at least € — QWZJ]VVTNQ - 2“{\7_2 ~

BlackPebble! (Trace 4 g 1(T)) is a legal black pebbling. O

H.3 Extractor Argument

We now argue that with high probability, the execution cost of an adversary that
computes an instance of fg g corresponds to the cumulative memory cost of its
ex-post-facto pebbling.



We now formally define the cost of computing a function based on its execution
trace.

Definition 12. The memory cost cost of a function fg g is defined by

emey e (fa m) :r}}inE[cmc(TraceAR,H(x))],

where the minimum is taken over all valid inputs x and all algorithms A making at
most q queries that compute fo m(x) correctly with probability at least e.

We now show that any algorithm A”() that computes a function that follows the
XOR labeling rule correctly with probability at least € has cost corresponding to the
cumulative cost of the resulting legal black pebbling, HC”C(G) The proof uses that
fact that if an attacking strategy does not yield a corresponding legal black pebbling,
then the attacking strategy can be modified to form an extractor for the labels of
a subset of nodes. Specifically, an extractor with access to the attacking strategy, the
state of the memory, and a few select hints can successfully predict a large number
of random bits, which cannot happen with high probability. The hints given to the
extractor describes the positions of the random bits, and ensure these bits remain
“random” (that is, we do not explicitly query these locations later).

In particular, the extractor uses the hints to simulate A®() but the hints do not
include the current state of memory o;.

Lemma 10. [DKW11] Let B be a series of random bits and let A be an algorithm
that receives a hint h€ H and can query B at specific indices. If A outputs a subset of k
indices of B that were previously not queried, as well as guesses for each of the bits, the
probability there exists some h€ H so that all the k guesses are correct is at most %

Theorem 11. Let G be a DAG with N nodes, mazximum indegree § > 2, and
parents(u) # parents(v) for all pairs u#veV, and let fo.u be a function that follows
the XOR labeling rule, with label size w. Let q<2%/32 be a number of queries to a
random oracle, 32logN <w, and § >9mw/242 2wq_NN+_1N2 + QEJXQN Then

>l (@),

Cchvﬁ(fG,H) =35 cc

where w s the size of each label.

Proof. Suppose by way of contradiction, that E[cmc(Trace 4 g m(z))] < %HCHC(G)
where Traceq gz () = {(0:,Q;)}l_, is a random execution trace of A”(). By as-

sumption we have

Pr [AH(')(a:)zfQH(x)} >e.

Similarly, we have Y,|Q;| <g since A () makes at most ¢ random oracle queries.
Consider a random execution trace Trace4 g () = {(04,Qi)}i_; of AT (z).
I
By Markov’s inequality we have Pr [cmc(Trace AR H(T))> %{g(c)} < 5. By Theo-

gN+1  2N%2
2w _N_—_N2 2w _ N

rem 10, with probability at least e— €/2>¢€/4 we get a successful



< ie., AH() that succeeds in
calculating fg pr(x)) and we can extract a legal black pebbling P = (P,,...,P;) =
BlackPebble! (Trace 4 p #(z)) from this execution trace and the event COLLISION

did not occur (i.e., all nodes have distinct labels and pre-labels). Let HCHC(P) > HCHC(G)

be the cumulative complexity of this pebbling.

I
If eme(Tracea,r,m(x)) < %B(P) then for some step ¢ we must have |o;| <

By construction of the pebbling, for each node v & P; we have

I
execution trace with cmc(Traceq g u(z)) < %(CS(G) @

| Pi]w
15 -

i, :=NextRequiredRound(v,i) <NextTargetRound(v,i) .

Let g, €Q;, denote the first query in which input(g,,v)=1. Assuming that the event
COLLISION did not occur (i.e., all nodes have distinct labels and pre-labels) there is
a unique node u, such that prelab(u,)=g,. We will let u, be the node targeted by
the query g,.

We would like to extract lab(v) from the query ¢,. However, under the XOR
labeling rule, the situation is complicated since lab(v) is not explicitly revealed

in the random oracle query ¢,, instead g, = lab(v) (@jeparents(uu)\{v}Iab(j)>. Let

A, = parents(u,) \ {v} denote the set of additional nodes whose labels are XORed
with lab(v). To solve the problem we order nodes in v € P; in increasing order by
NextRequiredRound(v,i). We then define the sets E;,C; by following the following
procedure: 1) Initialize P = P;,F;,C;=0 and j=0, 2) Select the first element v € P/
3) Update E; < E;U{v}, C; < CiU(A,\E;), set P/t =P7\ ({v}UA,) and increment
Jj. 4) repeat steps 2-3 until Pij is empty.

We let S=C;UP; where Cj is the final set output by the procedure above. Note
that |C;| < (6—1)|P;| where 6 is the indegree of the graph. This follows because each
time step 3 is executed we add at most |A,| <d—1 new nodes to C;. Furthermore,
we cannot execute step 3 more than |P;| times since we discard at least one node
(i.e., v) from P/ on each iteration. Similarly, we note that we must execute step 3

at least [|P;|/d] times so we have |E;|=|P;\C;i| > l%". Thus, |S|>|C;|+ [%1

We argue that an extractor using A7) can predict (|S|)w random bits using

|£§‘ w bits of information from the state of A7), along with the following hint, which

consists of three parts:

1. The sets S = C; U E; and |C;] itself is given as a hint to tell the extractor
which labels to extract. The size of this component of the hint is at most
|S|logN +|C;|logN bits.

2. For each node ve P,\C; the hint includes the index of the first query ¢, € Q;,
denote the first query in which input(q,,v) =1 as well as the target u, of this
query ¢q,. Since, there are at most g queries total it will take at most logyq bits to
encode the index of each query and log, N bits to encode the target of each query.
Thus, this component of the hint is at most | P;\ C;[logg+|P;\ C;|logN bits.

3. For each node veC; the hint includes lab(v). This component of the hint is at
most |C;|w bits.

4. For each v€ S, the index of the first query when lab(v) might be compromised.
Observe that if the extractor successfully predicts a random string at a location



v, but then lab(v) is later queried by the attacker, we cannot distinguish this
case at the end from the case that the extractor simply read lab(v) after making
the query. Effectively, the extractor is no longer predicting a random string. To
avoid this, the hint given to the extractor details queries that would compromise
the randomness of the desired locations. Formally, the hint is the minimal index
k such that g, = prelab(v), which yields returns the query H(q])=Ilab(v). This
component of the hint tells the extractor the locations of the random strings to

be predicted, and has size at most |S|logg bits.

We remark that the total length of the hint & is |S|(2logg+2logN )+ |C;|w+|o;| <

§(2logg+2logN ) +|Cs|lw+ ‘;;‘ , while the extractor will output |S|w > (|Ci|—|— P?lbw

random bits. Since we assume that logV' < 2 and ¢<2*/3? we have

1
|S|w—|h|> H\C’iw(l—%) —w/8>w/2 .

The extractor will simulate A”() starting from initial state o;. The extractor main-
tains a list L ={(v,lab(v)} of known labels — initially L= {(v,lab(v)) :v e C;} —
as well as a list Ly ={(v,prelab(v)} of known pre-labels — initially empty. In each
round j > ¢ we observe a new batch of random oracle queries ();. For each query
y€(Q); we check if the query is of interest.

1. If our hint indicates that y has some node v € P, \ C; as input then we will
compute lab(v) =y® (@jeparents(uv)\{v}Iab(j)) add (v,lab(v)) to our list — here
we rely on the fact that the hint contains the target u, of the query y to identify
parents(u,) and, to compute € parents(us)\ {v}lab(j), we rely on the fact that L
must contain each of the pairs (j,lab(j)) since parents(u,) C C;U{v}. In this case
we have prelab(u,) =y so we will also add the pair (u,,y) to Ly in this case.
If we happen to have (u,,lab(u,)) € L. for some node v then we write lab(u,)
on A’s response tape; otherwise we query H(y), add (u,,H(y)) to L and record
H(y) on A’s response tape.

2. If our hint indicates that y targets some node v € P; then we will look for
the pair (v,lab(v)) in our list L and write this response on A’s response
tape. Note that (v,lab(v)) must be in L because for any node v € P, we
have NextRequiredRound(v,i) < NextTargetRound(v,?). Thus, we will extract
(v,lab(v)) before the current round j > NextTargetRound(v,i). In this case we
have prelab(v) =y so we will add (v,y) to the list L.

3. If we have (v,y) € L. for some node v € C; then the extractor looks for a pair
(v,lab(v)) € L and writes the response lab(v) on A’s response tape. Note that we
must have (v,lab(v)) € L in this case. Clearly, if v € C; then (v,lab(v)) € L since
we start with all of these labels in L. If v€ P,\C; then y cannot the first query
to target v then we would have already added (v,lab(v)) in the previous case (If
y were first query to target v then we would be in case 2 since the hint encodes
the index of the first query to target v).

4. Otherwise, we simply query H(y) and write H(y) on A’s response tape.



After A#() finishes the extractor the list L will contain (v,lab(v)) for each node
v€C;UP;, but we may not have (v,prelab(v)) for each node. Thus, the extractor will
begin computing fg, i using the honest evaluation algorithm. As before the extractor
will check each random oracle query y to see if (v,y) € Lyre for some node veC;. If
so then extractor finds (v,lab(v)) € L and uses lab(v) as the output without querying
H(.). As we progress the extractor maintains a list (v,lab(v)) for each of the labels
computed so far, and the extractor immediately adds (v,prelab(v)) to Ly, once all
of the labels of the node in parents(v) are known. Finally, the extractor will output
(prelab(v),lab(v)) for each node ve P,UC;.

Assuming that we were able to extract a legal pebbling from the execution trace
Trace 4, g, m(x) the extractor will always succeed in extracting |S| input/output pairs
(prelab(v),lab(v)) without querying the random oracle at prelab(v) for each node
v€ P,UC;, and if all of the pre-labels are distinct then we have |\S| input/output pairs.

In general, the probability that our extractor can extract |S| input/output pairs
from our short hint will be at least

gN+1 IN?
W_N—-N2 2w_N

> 27w/2+2

3

€_ €
>
274
where € is the probability AH() correctly computes fa,m(z), § is an upper bound
I
on the probability that cmc(Trace s g nz) > WHZE(P), and 27,,(1,7\;t1]\,2 + QEJXZ;V upper
bounds the probability that we fail to extract a black pebbling or two labels/prelabels
collide — see Theorem 10.
However, by Lemma 10 the probability the extractor can successfully output |S|
input output pairs from a hint of size |S| is at most

27|S|w+|h\ §27w/2 .
This is a contradiction as it implies that

27w/2+2§ <27w/2' 0

€
4=

See Figure 6 for intuition.

Known Pairs: | Extractor

(v,lab(v)) &
(v, prelab(v))
H() — & H(")
%)
Memory: o; Memory: o; &
&
Attacker A Attacker A :‘::

Fig. 6: An extractor that uses the attacker to predict distinct outputs of random
oracle H(-).



Reminder of Theorem 7.

Let G be a DAG with N nodes, indegree § >2, and parents(u)= parents(v) for all
pairs u#veV, and let fa u be a function that follows the XOR labeling rule, with
label size w. Let H be a family of random oracle functions with outputs of label length
w and H=(Hy,Hs), where Hy,Hy €H. Let m be a number of parallel instances such
that mN <2¥/32 q<2v/32 be the mazimum number of queries to a random oracle,

€ —w/242 gmN+1 2m2N?
and let 7 >2 > so—mrnt—N T aomy - Lhen

s EMAW
cmcg,e GX,H)Z % 'Hﬂc(G)-

Proof of Theorem 7. [Sketch] The proof is quite similar to Theorem 11, except that
the number of nodes in G*™ is m/N. We need to show that the event COLLISION is
negligible as in Lemma 9. The proof is almost identical except that we need to add
a special case for all of the m sink nodes in G*™. We note that all of these source
nodes are guaranteed to have distinct pre-labels since the inputs X = (z1,22,...,Tm)
to each instance of fg g are distinct. With this observation we can easily adapt the
proof of Lemma 9 to conclude that

2m2N?
Pr[COLLISION] <
2% —mn

and we can adapt the proof of Theorem 10 to show that we extract a legal black
pebbling with probability at least

gmN+1 2m2N?
€— — )
20 _—m2N2—mN 2¥—mn

At this point the extractor argument follows the proof of Theorem 11 exactly. O

I Cryptanalysis of DRSample as Evidence for Conjectures

In this section of the appendix we provide strong evidence in support of our con-
jectures about the depth-robustness of DRSample. The first conjecture states that
DRSample is (e=c; NloglogN/logN,d = ¢s Nloglog N /log N )-depth robust for suitable
constants c¢y,c2,c3 >0, and the second (stronger) conjecture states that DRSample
is (e =1 Nloglog N/log N,d = co Nloglog N/log N,b = cslog N/loglog N')-block-depth
robust. We consider three different state-of-the-art depth-reducing attacks: the layered
attack [AB16], Valiant’s Lemma [Val77,AB16] and the pebbling reduction of Alwen et
al. [ABP17] which constructs a depth-reducing set S of size at most e=|S| < HCHC(G) /d
— we use the greedy pebble attack [BCS16] as our starting point since this is the best
known pebbling attack against DRSample. The layered attack [AB16] was originally
used to attack Argon2i and Balloon Hash, while Valiant’s Lemma [Val77, AB16] was
originally used to derive the general upper bound that any DAG G with constant
indegree is (e=c; NloglogN/logN,d = cyN/log? N) reducible for some constants ¢,
and ¢y — hence HC”C(G) =0O(N?loglogN/logN) by a result from [AB16].



We show that when we want to reduce the depth to just d=N/+/logN that each of
the above attacks require the removal of at least 2(NloglogN/logN) nodes. Along the
way we introduce a general framework for analyzing Valiant’s Lemma [Val77, AB16]
for a specific DAG and use our techniques to analyze the performance of the attack
against Argon2iA and Argon2iB. Interestingly, the performance ezactly matches the
performance of the layered attack against these graphs. This provides theoretical
justification to a surprising finding of Alwen et al. [AB17, ABH17] that the layered
attack seems to perform slightly worse than Valiant’s Lemma despite the fact that (at
the time) the best asymptotic upper bounds for the layered attack were much better.
Another interesting finding is that the performance of all three distinct attacks are
asymptotically equivalent despite the fact that the depth-reducing sets are chosen
in very different ways.

I.1 Valiant’s Lemma: Basic Setting and Observation

We introduce two variant’s of Valiant’s Lemma attack in Algorithm 7 and Algo-
rithm 8. Both algorithms start by partitioning the edges F into sets FEi.,...,E,, where
E;={(u,w) IMSDB(¥,,l,)=1} (resp. S;={u:(u,w) € E;}) is the set of all edges (u,v)
with the property that the most-significant different bit between the binary strings
L, and ¢, is i. Here, £, is the n bit binary string corresponding to the integer u—1
i.e. /1 =0". If the nodes are given in topological order then it is easy to show that
for any X C [n] we have depth(G—{J;c xSi) <N/2!XI. Algorithm 8 takes as input a
target depth d and selects the log,(N/d) smallest sets .S; to add to X to ensure the
depth of the graph depth(G—|J;cxSi) is at most d. By contrast, Algorithm 7 takes
as input a maximum size e and repeatedly finds ¢ € [n]\ X with minimum size |S;| to

add to X until we have we cannot find any ¢ € [n]\ X such that ‘UjEXU{i}Si’ <e. We
now introduce a general technique to analyze DAGs G=(V =[N],E) with edge set
E={(ii+1):1<i<N}U{(r(2),i): 1<i< N} for some predecessor function (i) <.

Definition 13. Let G=(V =[N],E) be a DAG with N =2" nodes. Define E; as
follows:

E;:={(u,w)€e E: MSDB({,, l,,)=i}.
Where £, is the n bit binary string corresponding to the integer u—1 i.e. {1 =0".

All of the DAGs G = (V = [N],E) we consider in this section have edge set
E={(ii+1):1<i<N}U{(r(i),i): 1<i< N} where () is a random predecessor of
the node 4 and the selection of the predecessor 7(i) can be viewed as an independent
choice for each node 4. Note that the function r(¢) <i varies for different constructions
e.g., Argon2iA Argon2iB and DRSample. Thus, we can split the set F; into two sets:

E;={(uw) € E:MSDB(¢,,¢,) =i}
={(v,u+1):MSDB(ly ly11) =1 }U{(r(v),0) :MSDB(£}(,y,l) =1}

~~

=:A; =:B;

We introduce an indicator random variable which checks whether MSDB(£;.(,y,0,) =1
or not.



Definition 14. Let G=(V,E) be a DAG and v€V be any node in the set V. Then
an indicator random variable X, ; to check MSDB is defined by

1 when MSDB({,Ly) =i
Xpi= .
0 otherwise

The following fact states that |A;|=27¢N for each i <n. The fact applies to all
DAGs we will analyze. Thus, to analyze the size of E; for a particular DAG it suffices
to focus on the set B;.

Fact 12 Let i <n be gwen and set A; =: {(v,v+1) : MSDB({,,ly+1) =i} then
|A;|=2""N.

Proof. Tt is clear that MSDB(/,,,¢,, 1) =1 if and only if v=2"1+2¢.k for any integer
0<k<27'N. Therefore, we have that |A;|=|{k:0<k<27'N,k€Z}|=2""N. O

Lemma 11 is a general tool which we will use to bound the size of B;.

Lemma 11. MSDB({,,4,) =i if and only if 2t yem >4, — Cr(v) > m where
Ly=7-2"1+m where 0<m <21 and j is a nonnegative odd integer.

Proof. If £,y < £, —m, then clearly MSDB(/,,),£,) will never be i. And if
Ly =Ly > 2!~ +m, then we have MSDB(¥,(y),fy) >i+1. Finally, if j is even, then the
i-th bit should be 0, which means that MSDB(£,.(,,y,¢,,) 7 because flipping the i-th bit
would increase the label which contradicts to the definition of the predecessor r(v). O

Ezample 1. Suppose that i = 3 and choose m = 3 < 2=! =4 and j = 3. Then
£,=3-2243 and the bit representation for ¢, is 1111. Then we observe that if Cryy 8
greater than or equal to 1100=1111—11=/,—m, then MSDB(/,,£,.(,,y) should be 1 or
2, which is not 3. Moreover, if £,y is less than 1000=1111-100—11=4¢,—2""1—m,
then MSDB(,,¢,(.) should be 4, which is not 3. Therefore, we have that to yield
MSDB(£y,4y()) =3, then we need to pick r(v) which satisfies 2=l m>4, —Ly () >m.

When the function r(v) is random we expected size of the set B; is given in
Corollary 7. While |B;| is a random variable it is easy to show that |B;| will be close
to its expectation because the values r(v) are independently chosen for each vertex v.

Corollary 7. The expected value of the size of the set B; is given by

N )
;—12171_1

E[Bill=>_ Y Pr[27' +m>l,—L)>m]

j=0 m=0
where £, =(2j+1)-2" +m. Furthermore, | B;| is tightly concentrated around its mean
7)
Ve
In particular, if B[|B;|] > log? N then, except with negligible probability, we have

LE[|B;|| <|B;| <2E[|B;|]. IfE[| B[] < p for any upper bound p>log>N then, except
with negligible probability | B;| <2u.

. E[| B;|]
e ElIB:] 1
Pr[|Bi|>2]E[|Bi|]]<(1) cand Pr||B| < SE[Bi]| <



Proof. Recall an indicator random variable from Definition 14. Clearly, we have
| B;] :Zszle,i~ Taken together with Lemma 11, we conclude that

N N N
E[|B;[|=E ZXM] =Y E[X,i]=Y Pr[MSDB((,(),t)=i]
v=1 v=1 v=1
2—17121'71 1
= Z Pr[MSDB(4,(,),ty) =]
j=0 m=0
%7121‘71_1
= Pr [21_1+m2€v —gr(v) > m]
j=0 m=0

provided by £, =(2j+1)-2""!+m. Moreover, one can observe that X ;,~-, Xy ;’s are
all independent. Then applying a multiplicative Chernoff bound, we have
e ) E[|B;]]

P B> 2E]1Bil] < (

and

E[|B;] E[|B;]]

et (B

Now we have the following Lemma from [AB16] which is essentially equivalent
to Valiant’s Lemma [Val77]:

Lemma 12 ( [AB16], Lemma 6.1). Given a DAG G with m edges and depth
depth(G) <d=2" there is a set of m/i edges such that by deleting them we obtain a
graph of depth at most d/2.

Lemma 13 ( [AB16], Lemma 6.2). Let G=(V,E) be an arbitrary DAG of size
|[V|=N=2" with indeg(G)=4. Then for every integer t>1 there is a set SCV of
size |S| < bgt(‘sﬁ such that depth(G—S) <2"~t. Furthermore, there is an efficient
algorithm to find such S.

Applying this lemma to well-known graphs such as Argon2i-A, B, and DRSample,
one should be able to get the reducibility of such graphs. We are going to argue that
the results by applying Valiant’s lemma matches the known results for Argon2i and
DRSample, with the interesting observation that layered attack against DRSample
is not effective based on the upcoming analysis. To see this, we need the following
algorithm (Algorithm 7) from invoking Lemma 12 and Lemma 13:

1.2 Analysis on Argon2i (Improved Results)

Theorem 13. Let G be Argon2i-A with N nodes and let S = Valiant(G,e) with
€2> NlogN. Then with high probability, depth(G—S)=O((N/e)*logN).



Algorithm 7: An algorithm to sample a depth-reducing set.
Input :DAG G=(V(G),E(G)) with |V(G)|=N=2", and a target size e.
Output A depth-reducing set S with |S|<e to remove

Function Valiant(G, e):

for i<n do
E;:={(u,w)|MSDB(uw)=1i}
Si ={ul(u,v) € E;}

end
S:=0
X:=0

while |S|<e do
i=argmin,, |E;| // Find smallest |E;| that hasn’t been picked yet
S=8US;
X=S

end

return S

Proof. In Argon2i-A, the edge distribution is uniformly random. In particular, for
v>1 the predecessor r(v) is chosen uniformly at random from the set {1,...,u—2}.
By Corollary 7, we have

N .
§—1217171
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< Z /2 2 d] 2
= 1o 20 ]—&—21 1—|—m 2i=l4m
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because for a positive decreasing function f, we have >, f(k) < fo t)dt. Moreover,
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. . N_
In(2%-j+2i"14m)] >
==
0
_11 [N—T_l—i—m] 1

2i—1_|_m ZZID[:H_

N-2
2i=1m
which leads to

9i—1_1 . .

1 N-2¢ 2i—1
E[| B[] < “In| 14—
[Bill< [ n[ +2’1+m]+2ll+m}




271 N2 9i—1 1 N—2i-1
0

2 2i-14m 2i-14m 2i—1
— ~~
<in[14+ 222 | <[ A7 when m=0
N 271 it N
i—1,
<2 ln[Qz 1]+ /0 5 Tm ——dm 4= ln[22 1]—1—1

<[2i1n(2i~14m)]2 " =2i~1In2

.1 N N
§21,—1.510g2 |:2Z 1:|—|—2’L 1+210g2 |:221:|+1

-~

<2i=1.1log, N
<2 Mog,N
Therefore, we can argue that with high probability, we have |B;| <2E[| B;|] < 2'logN

for each i>1+loglogN by Corollary 7 and with high probability |B;| < 2log®N for
each i <loglogN. Taken together, for i <log, N, with high probability we have

: N
|E;| <2'log, N + 5 for i>1-+loglogN

We also observe that, except with negligible probability, we have
loglog N
Z | B;| <log? N (loglogN) =n>logn. .
i=1
The algorithm will find the j smallest sets Ej, ..., E;; to delete such that

1 |Ei| < e to reduce the depth to d = N/2/. We can achieve this when

n—logon j n—logon | j
2 27 2 + 2]

i~ (n—logyn)/2. Then we will delete all sets in the interval |
. Hence, with high probability, the total number of deleting edges is

n—loggn+tj n—loggn+tj loglog'
2 2
N
€= E : | Ex| < § 2k10g2N+27€+ E | Bl
__n—loggn—j _ n—loggn—j i—1
k,fz k7+ i

J
n—loggn—j —n+loggn+j _
:Z 2 +klog2N+N-2 2 ¥ +n2logn
k=0

r+102g2 n+j 41

<2 T i og, N 4272 +nlogn

n _ logomn

=25 "F 541 | Jog N 4210827 | 1 p2logn

=n =n

1 /N 5y/nN
=VN-— -2-2n+n?logn <
vn Vd

which implies that d=O( (&)”)InN. 0




Theorem 14. Let G be Argon2i-B with N nodes and let S = Valiant(G,e) with
e3> N?. Then with high probability, depth(G—S)=0O((N/e)?).

Proof. In Argon2i-B, we have

Prir(i) =)= Pr. [z(l—f\i) e(j—Lj]} :\/1_;:1_\/1_?

since i(l—ﬁ—i) €(j—1,5] is equivalent to N 1—% §x<N\/l—%. Similarly, we

have
2 \/ a—1 \/ b—1
Prla<r(i) <b] xfﬁw{Z(l N2>e(a Lb 1]} ; :

Therefore, in Argon2i-B, we have

N )
;712»71_1

E“B'LH: Z Z PF[MSDB(ET(v)aév):i] where €U=(2j—|—1)-2i71+m

= Z Z Pr[21_1+m2£v—ﬁr(v)>m]

= Pr27 +m>v—r(v)>m]

Prlv—2""1—m <r(v) <v—m)]

T A W
\/2’1+m+1 \/m+1
N v v

N
=51

2
. 1
= (\/2“1+m+17\/m+1) E ——
m=0 im0 V22 m

(2

where

N

o dj 1
@< | —————r—
0 V2042 4m V2T 4m

N
_l /2 2T m | +*/2i—1—|—m

2i—1 2i71+m

0



< VN+2-14m—2-14+m 2 14m
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VN+2i-14m
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7St \/N+21 1+m
BB Y (VI Tamrioying) Y2
m=0
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i—1 .
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Therefore, since V3N -2i—1 > log? N for any i > 0, by Corollary 7 we can argue
that with high probability, we have |B;| < 2E[|B;|] < 2V3N-2i-1 = V6N -2 for
1>2+2loglogN. Taken together, for ¢ <log, N, with high probability we have

Eig\/é(\/ﬁJr]Q\Z).

Our goal is to find j smallest sets to delete to make smallest E; when d=N, / 27, We
can achieve this when i=n/3. Then we will delete all sets in the interval [§ —2,% + 4 2.
Hence, the total number of deleting edges is

N
es 3 BIsve 3 (VEEg)
| | -
J J
= VB 2% 23 (8 4) Gy (B
k=0 k=0
§22Tn*%+% 1 <2%+%+1

which implies that
63 S 113 .22n+j — 113 _N2 .

Therefore, we can conclude that d=0O ( ( % ) 3) . O



I.3 Analysis on DRSample

In DRSample which has been introduced in [ABH17] and is specified in Algo-
rithm 3 in the appendix. To see how the distribution r(v) is defined consider
partitioning the set of all potential predecessors u into buckets DY, D3, --- where
DY :={u:27 ! <dist(u,v) <2} where dist(u,v)=v—u. Intuitively, to sample r(v) we
first select a bucket D} with 7 <log,v uniformly at random and then select a parent
u=r(v) uniformly at random from this bucket DY i.e., (r(v),v) € DY, or equivalently,
subject to the constraint that 201 < dist(r(v),v) <2!. We remark that the pebbling
attacks of Alwen and Blocki [AB16] have cost O(Ne+ N+/Nd). If we wanted to

obtain an attack with cumulative cost O(N 2loglogN/log N ) then we would need a
2

depth-reducing set S of size e < lefg# such that depth(G—S5) < N“;jfgli;’fvm. We

show that no known techniques for producing depth-reducing sets will produce a set

S which satisfy both criteria. We first consider an attack based on Valiant’s Lemma.
Here, we consider the variant of the attack (Algorithm 8) which is guaranteed

to find S s.t. depth(G—S5) < %. As Theorem 15 shows that with high probabil-

ity |S] = Q(%) — of course we would need to ensure that depth(G—S) <
N (loglogN)?

2N <K ﬁ is even smaller to obtain an attack with cost o(N?loglogN/logN).

Algorithm 8: An algorithm to sample a depth-reducing set.
Input :DAG G=(V(G),E(G)) with |V(G)|=N=2", and a target size e.
Output A depth-reducing set S with depth(G—S)>d to remove

Function Valiant2(G, d):

for i<n do
E;:={(u,0)|MSDB(u,v) =1}
Si :={ul(u,w)€E;}

end
S:=0
X=0

while depth(G—S)>d do
i=argmin,gy|F;| // Find smallest |E;| that hasn’t been picked yet
S=S5US;
X=S

end

return S

Theorem 15. Let G be a randomly sampled DRSample DAG with N nodes and let
S =Valiant2 (G,IN) with e=|S|. Then there exist constants ¢; and ca such that
og

Jloe N
o M NloglogN NloglogN
with high probability, % <e< %.



Proof. Similar to Argon2i-A and B, we have that [A;|=3 N As stated before, from
Lemma 11 we have that
Pr[MSDB(£, () ,ly) =i]|=Pr[2" "' +m>v—r(v) >m)].

Now observe that if m is large, i.e., m=2'"1—1, then there is up to only one bucket to
select which satisfies the inequality 201 +m >v—r(v) >m. Similarly, if m=2!"7+1,
then there are totally up to j buckets to select which satisfies the inequality. Taken
together with the assumption that v>+/N, we can compute the expectation

- ) .
) Z i—i+1 =] i—i+1 =]
EHBz”S 2 ’N'@S E 27 'N'llogN
i—0 j=0 2

ANGR L 2N 827022 N
: n 2i—1 ~n
7=0

<3

Therefore, we can argue that with high probability, we have |B;| < % Taken
together, for < <log, N, with high probability we have

12N N
B+
n 20
Our goal is to find j smallest sets to delete to make smallest E; when d=N/27. We
can achieve this when i=n. Then we will delete all sets in the interval [n—j+1n].

Hence, the total number of deleting edges is

n n
12N N
k=n—j+1 k=n—j+1

< 2N Nyt
n

N\ 12N j
=logy (7 ) T2

N\ 12N N
=log, ’l —t—.

Putting d= 2L = —~_ we have that

v\ flogN’
12N
e<logyy/n-———++/n
n
NloglogIV
oot
- logN
for some constant ¢>0.

Now, in terms of the lower bound, one can observe that the number of bucket
in each case is lower bounded by j—1 buckets if m=2""741. Hence, we have that

i—2

j—i i=j—1 i i—j—1
BBl =) 27N >223 TN oW



7—2 P
N N 2'—i—1_ N
:72 i—j— 1)2J i+l _ 27, .7127
n _ 2i-1 2n
=0 ——
>1/2
which, by Corollary 7, leads to

N N

B>+

| | - + 21

with high probability since E[|B;|]= 5 N o> 1og2N Again, our goal is to find j smallest

sets to delete to make smallest E; when d=N, /27. We can achieve this when i=n.

Then we will delete all sets in the interval [n—j+1,n]. Hence, the total number of
deleting edges is

e> Z |Ey| > Z <4n Qk)

k=n—j+1 k=n—j+1
i—1
N 3 :
>4 NGy ik
> g

N\ N .

N N N

Putting d= 2L = —2~_ we have that

Vvn 4/ logN ’

N
ezloggﬁ-—+\/ﬁ—1

1 N loglogN
>1 —_—
082 f logV
Hence, one can conclude that Valient’s lemma, fails to do better than e={2 (%)
even when the target depth is just d= % O

Therefore, we can safely conclude that DRSample is optimally resistant to Valient’s
Lemma.

I.4 Layered Attack against DRSample

Next we consider the layered attack of Alwen and Blocki [AB16] for constructing

depth-reducing sets and show that it fails to produce a set S of size e < % s.t.
g

2
depth(G—95)< Jmﬁ)ggli?;f,m as required to obtain a pebbling attack with cumulative

cost at most eN+ N+ Nd :0(%). In fact, Lemma 14 and Corollary 8 show

that the layered attack fails to produce such an effective depth-reducing set S.
Before introducing Lemma 14, define an algorithm which samples the depth-
reducing set from layered attack (Algorithm 9).



Algorithm 9: An algorithm to sample the depth-reducing set from layered

attack.

Input :DAG G=(V(G)=[N],E(Q)) with |[V(G)|=N=2" and
E(G)=Ul{(i—1,),(r(5),i)}U{(1,2)}, the number of layer A, and a gap g

Output A depth-reducing set S to remove

Function Layered(G, A, g):

for i=1 to A do
Lii={kez|i-D[] <k<i[X1)
E;:={veL; st. r(v)eL;}

end

So 1= U;‘zlEi
return S=51US>

Lemma 14. Let G be a randomly sampled DRSample DAG with N nodes, \,g>0
be given such that Nlogh> N, and S=Layered(G,\,g). Then with high probability,

N | Nlog(N/2)) <|8/< N | 8Nlog(N/))
g 4log\ Ty logh
Proof. The probability that the predecessor of the node v is in the same layer has
the following upper and lower bound. Note that we could get the lower bound by
only considering the case that v lies in the second half of the layer.
log(IN/2A N/X) log(N/A
MSPT[T(’U) in the same layer] < og(. /) < og( / )
log(iN/ ) log(iN/ ) logi

Then we have

depth(G—S)=X-g and
N Nlog(N
s Ty et
)\ logi

N N /\ N
<—+—-8—="1 Th 1
=3 )\81g>\ 0g<)\) <Theorem 17
_N 8Nlog(N/\)

g logA

Now, when it comes to lower bounds, from the condition Alog > N, we have that
A2 > N which is equivalent to A > N/\. Hence, this leads to
log(N/2A)

5127 Zbg*

N N log(N/Q/\)
A4 log(id)



_ N A-1 Nlog(N/2))

g A 2log\
S N N log(N/2))
g 4logA
which proves the lemma. O

Corollary 8 demonstrates demonstrates that the layered attack fails to produce an
N3loglogN

effective depth-reducing set to obtain a pebbling with cost o( TN

) for any
settings of the parameters A and g.

Corollary 8. Let G be a randomly sampled DRSample DAG with N nodes. Then
. . o7 N N loglogN
with high probability for all \,g>0 s.t. Ag< Josn we have |S|> e where S

is the depth reducing set generated by the layered attack with parameters A and g.
Proof. By Lemma 14, with high probability for any \,g we have
N Nlog(N/2X)

S
| |_ 4log\
If we want |S] < % then we must have g > 1og1ig ~ due to the & & term. To
-9 <X <
ensure that depth(G—295) < Josw we also require that Ag < \/@ Thus, we have
A< MogloeN "Byt this implies that
logt®*N

Nlog(N/2)\) . Nlogglﬁ)gglog]v _, NloglogN

1512 4log\ NloglogN 8log N
g 410%('%7%\1) g

Corollary 9 shows that the layered attack and Valiant’s Lemma generate com-

parable sizes of the depth reducing set when we have target depth d=—2— despite
\/logN

generating the depth-reducing sets in very different ways. In fact, for any constant
¢>0 we could also achieve target depth N/log°N with |S|=O(NloglogN/logN).

Corollary 9. Let G be a randomly sampled DRSample DAG with N nodes. Then
there exist A,g >0 such that the layered attack on yields a depth-reducing set S of size

19| = (M) s.t. depth(G—S) < —X

logN \/logN *
Proof. Let g = log N and \ = N/ log> N. Then by Lemma 14 we have |S| =
O MPE2 ) and depth(G— )= .y 0

1.5 Analysis of GreedyPebble Attack along with [ABP17]

Alwen et al. [ABP17] proved that any DAG G that is (e,d)-depth robust has cumulative

pebbling cost at least HCHC(G) > ed. Their argument was by contradiction. In particular,
for any target depth d>0 they show how to transform any legal pebbling P e P!l(G)



into a depth-reducing set S of size at most | S| SHl‘C(P)/d s.t. depth(G—S) <d. Thus,
one natural approach to construct a depth-reducing set would be to find an efficient
pebbling PPl (G) and this transformation to yield S. We focus on the Greedy Peb-
bling of DRSample since this is the most-effective pebbling of the DAG that is known.
Once again, if we set our target depth d= -~ we can show that with high probability

logN
Nloglog N
logN

matches the performance of the layered attack and Valiant’s lemma, but does not yield

a sufficiently small set to obtain a depth-reducing attack [AB16] with cost o (%) .
g

Recall that the GreedyPebble configuration is GP(G) = (P, ,P,) € PI(G)
where P, = {i} U {j s.t. gc(j) > i}. Here gc(j) = max{v : j € parents(v)}. Let
Si = P,UPqgUPiioqg U UPpqgU- for i < d and consider the interval
I, =[i+(k—1)d,i+kd]. We can observe that if gc(v) € I, then v will be discarded
before reaching P, 4. Therefore, we have that S; =Ug{i+kd}U{v|gc(v)—v>d—m,}
where m,, denotes the distance between i+ (k—1)d and v. We provide such algorithm
to sample the minimum depth-reducing set in Algorithm 10.

the size of our depth-reducing set S is e:@( ) Thus, the transformation

Algorithm 10: An algorithm to sample the minimum depth-reducing set
from greedypebble.
Input :DAG G=(V(G),E(G)) with |V(G)|=N=2", and a target depth d.
Output A depth-reducing set S to remove

Function GPDR(G, d):
P:=GP(G) // A legal pebbling P from Algorithm 1.
S:=V(G)
for i=0 to d—1 do
Si:=P,UP;qdUP;2qU-
if |S;| <|S| then
| S=S;
end
return S

Theorem 16. Let G be a randomly sampled DRSample DAG with N nodes and
let S= GPDR(G,\/%). Then there ezists a constant c1,c2>0 such that with high
og

.- c1 NloglogN c2 Nloglog N
probability, S <|S|I< B s

Proof. Let Y, be the random variable representing the event that v—r(v) >m, where
r(v) is the predecessor of v. That is, we have that

v 1 ifv—r(v)>m,
Y710 otherwise
Similarly, define the random variable Z,, as follows:

7 1 ifY,=1 and gc(r(v))=v
Y710 otherwise



Then we have that the expectation of the size of the set {v|gc(v)—v>d—m,} equals
to the sum of the value E[Z,] over the nodes v, which leads to

E[S;]] = +ZE

In DRSample, when v lies between the interval [u—2F+1 —|—1 u—2F 1], the size of
the bucket is 2 and the probability that r( )=uvis héu 5% - Moreover, the fact that

u—2F1 41 <v<u—2F+1 implies & <

2k—u v°

1 1 1 2
Prfr(u) =] = —— — < ——
rr(w)=v]= logu 2% ~ logu u—v’

. Taken together, we have

With the choice of d= Joan” we would get

loglogN
-loglogN:(’)<Og o8 )

<
~ logN logN

because logIV >8loglogN for large N. Therefore, we have

4 1
Pr{Z,[Y,] 21— loglogN > 5

and

N (N\ 1 N
>4 (22 ). 2 Prlo— o
> d+(4> 5 r[v r(v) >djv> 2}
>E+ E .l.logv—logd
—d 4/ 2 logv



S E n g 1 loglogN S NloglogN
—d 4 log(N/2) — logN
Now, we can simply get the upper bound by replacing Z, by Y, if we assume that

gc(r(v)) =v always happens in the best scenario. Assuming that Y, =1 for every

N
v< foa s We have

EISi < 3+ E[Y,

N N
<
—d JrlogNJr Z
v>N/logN

1

COnbldeI‘ng (1), spht the interval with length d and consider the case v € [z,x+d].
If 24 & <v<z+5Lr, then at least log(d/2") buckets overlap [z,2+d]. If b, denotes
the total number of buckets before v, then we have

b, —log(d/2%) 1 log(d/2¢) 1 log(d/2%)
by by - logN

E[Y,] <

d
2t

, we would get
N

when v e (x—i— 57T+ 57 1] Since We have £ such v’s and we have at most % such

[z,z+d]’s, with the choice of d=

log

0= 3 mmsy) g (-2

v>N/logN
logN — 1oglogN —1
=N|S"=—
[Z Z 2ilogN
1 loglog NV 1 ady)
=N —
[2 logN ;21 logN (; 21>]
_ NloglogN _ 2N NloglogN
~ 2logN  logN logN  /)°

Taken together, we finally have

N N
BT+ 3
v>N/logN

N NloglogN
=logN+——+0( ————
BN+ logN * ( logN )
:O<NloglogN) .

logN

logN
Chernoff bound argument. O

Therefore, we can conclude that E[|S;|] :8<M) and the rest follows from the



_ __ N NloglogN
Remark 4. If d= \/@>> TogN

implies that we cannot remove below (2( o
3

1.6 The Summation of 1/log

t

We show that Ei:Q%gi €0
reducing attacks.

Lemma 15. For s>1, we have Y ;_, 27 <

Proof. We can prove this by induction:

— (Base Case) 2<4-2 when s=1and 2+

, we still have that E[|S;]] ZQ(

NloglogN

NloglogN
logN

), which

) nodes to achieve that target depth.

(t/logt) a fact that is useful for our analysis of depth-

5
4.2

22

: :4§8:4-% when s=2.

— (Induction Hypothesis) Suppose that >'_, 2 <. 2% for t>2.

— (Induction Step) Then we have

t+1 i t 21‘
i=1

2

i=1 v
t
<4.=

<4+

)

2t+1
+ t+1
2t+1

—<
t+1

2t+1
t+1

because we have

2t
(1):»4~?§3

-

1

2t+1

t+1

—=4.28(t4+1) < 3¢-20H

= 4¢-2t+4.

2t <6t-2¢

4.2t <2t.9¢

—2<t.
Lemma 16. For s>1, we have 25:2@ <4.

Proof. By Lemma 15 we have

21 [ 11
e
g logi |log2  log3

1
fee

9s
log2s *

L
log7

J+

1 1
o [10g23_1 +...+10g(28_1)} +log25
< 2 n 22 4ot 2s—1 + 1
~log2  log22 log2s—1  log2s
s=1g; S ot s S
L e . i
log2 s log2 —i log2 s log2s



Lemma 17. Fort>2, we have 5" <8 IL

Z2g

Proof. We can write t=2°+k where 0<k<2® and s>1. With the similar technique
from Lemma 16, we have

L[l 1],
— logi |log2 = log3

1 1 1
o [long—l +m+log(28—1)} * Long +m+log(2$—|—k)
< 2 + 22 et 251 +k+1
*10g2 log2? log2s—1 * log2s
s—1

g k—|—1

*10g2 lz s
s b E_ 24
“log2 s log2 s
SL' 8 =8. 2 =8. 2 <8 Ltk

log2 s+1 log2s+1 log(254-29) log(25+k)

t

7 logt’

S

1 7
s@;7

t

Theorem 17. For t>2, we have %-@SZZ 2logz

<8 o
Proof. The second inequality comes directly from Lemma 17. Now we have
Z SH2_1 t
logz logt logt 2 logt

for t>2. O
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