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Abstract. Memory-hard functions (MHFs) are a key cryptographic primitive
underlying the design of moderately expensive password hashing algorithms
and egalitarian proofs of work. Over the past few years several increasingly
stringent goals for an MHF have been proposed including the requirement
that the MHF have high sequential space-time (ST) complexity, parallel
space-time complexity, amortized area-time (aAT) complexity and sustained
space complexity. Data-Independent Memory Hard Functions (iMHFs) are
of special interest in the context of password hashing as they naturally resist
side-channel attacks. iMHFs can be specified using a directed acyclic graph
(DAG) G with N = 2n nodes and low indegree and the complexity of the
iMHF can be analyzed using a pebbling game. Recently, Alwen et al. [ABH17]
constructed an DAG called DRSample which has aAT complexity at least
Ω
(
N2/logN

)
. Asymptotically DRSample outperformed all prior iMHF con-

structions including Argon2i, winner of the password hashing competition
(aAT cost O

(
N1.767)), though the constants in these bounds are poorly

understood. We show that the the greedy pebbling strategy of Boneh et
al. [BCS16] is particularly effective against DRSample e.g., the aAT cost is
O
(
N2/logN

)
. In fact, our empirical analysis reverses the prior conclusion of

Alwen et al. that DRSample provides stronger resistance to known pebbling
attacks for practical values of N≤224. We construct a new iMHF candidate
(DRSample+BRG) by using the bit-reversal graph to extend DRSample. We
then prove that the construction is asymptotically optimal under every MHF
criteria, and we empirically demonstrate that our iMHF provides the best
resistance to known pebbling attacks. For example, we show that any parallel
pebbling attack either has aAT cost ω(N2) or requires at least Ω(N) steps
with Ω(N/logN) pebbles on the DAG. This makes our construction the first
practical iMHF with a strong sustained space-complexity guarantee and imme-
diately implies that any parallel pebbling has aAT complexity Ω(N2/logN).
We also prove that any sequential pebbling (including the greedy pebbling
attack) has aAT cost Ω

(
N2) and, if a plausible conjecture holds, any parallel

pebbling has aAT costΩ(N2loglogN/logN) — the best possible bound for an
iMHF. We implement our new iMHF and demonstrate that it is just as fast
as Argon2. Along the way we propose a simple modification to the Argon2
round function which increases an attacker’s aAT cost by nearly an order
of magnitude without increasing running time on a CPU. Finally, we give
a pebbling reduction which proves that in the parallel random oracle model



(PROM) the cost of evaluating an iMHF like Argon2i or DRSample+BRG is
given by the pebbling cost of the underlying DAG. Prior pebbling reductions
assumed that the iMHF round function concatenates input labels before
hashing and did not apply to practical iMHFs such as Argon2i, DRSample
or DRSample+BRG where input labels are instead XORed together.

1 Introduction

Memory Hard Functions (MHFs) are a key cryptographic primitive in the design of
password hashing algorithms and egalitarian proof of work puzzles [Lee11]. In the
context of password hashing we want to ensure that the function can be computed
reasonably quickly on standard hardware, but that it is prohibitively expensive to
evaluate the function millions or billions of times. The first property ensures that
legitimate users can authenticate reasonably quickly, while the purpose of the latter
goal is to protect low-entropy secrets (e.g., passwords, PINs, biometrics) against brute-
force offline guessing attacks. One of the challenges is that the attacker might attempt
to reduce computation costs by employing customized hardware such as a Field Pro-
grammable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC).
MHFs were of particular interest in the 2015 Password Hashing Competition [Pin14],
where the winner, Argon2 [BDK16], and all but one finalists [FLW14,SJAA+15,Pes14]
claimed some form of memory hardness.

Wiener defined the full cost of an algorithm’s execution to be the number of
hardware components multiplied by the duration of their usage e.g., if the algorithm
needs to allocate Ω(N) blocks of memory for Ω(N) time steps then full evaluation
costs would scale quadratically. At an intuitive level a strong MHF f(·) should have the
property that the full cost [Wie04] of evaluation grows as fast as possible in the running
time parameterN . Towards this end a number of increasingly stringent security criteria
have been proposed for a MHF including sequential space-time complexity, parallel
space-time complexity, amortized area-time complexity (aAT) and sustained space-
complexity. The sequential (resp. parallel) space-time complexity of a function f(·)
measures the space-time cost of the best sequential (resp. parallel) algorithm evaluating
f(·) i.e., if a computation runs in time t and requires space s then the space-time cost
is given by the product st. The requirement that an hash function has high space-time
complexity rules out traditional hash iteration based key-derivation functions like
PBKDF2 and bcrypt as both of these functions be computed in linear time O(N) and
constant space O(1). Blocki et al. [BHZ18] recently presented an economic argument
that algorithms with low space-time complexity such as bcrypt and PBKDF2 are
no longer suitable to protect low-entropy secrets like passwords i.e., one cannot
provide meaningful protection against a rational attacker with customized hardware
(FPGA,ASIC) without introducing an unacceptably long authentication delay. By
contrast, they argued that MHFs with true cost Ω(N2) can ensure that a rational
attacker will quickly give up since marginal guessing costs are substantially higher.

The Catena-Bit Reversal MHF [FLW14] provably optimal sequential space-time
complexity Ω(N2) — the space-time complexity of any sequential algorithm run-
ning in time N is at most O(N2) since you cannot allocate more than N blocks of



memory in time N . However, Alwen and Serbinenko [AS15] showed that the parallel
of this MHF is just O(N1.5). Even parallel space-time complexity has limitations
in that it doesn’t amortize nicely. The stronger notion of Amortized Area-Time
(aAT) complexity (and the asymptotically equivalent notion of cumulative memory
complexity (cmc)) measures the amortized cost of any parallel algorithm evaluating
the function f(·) on m distinct inputs. Alwen and and Serbinenko [AS15] gave a
theoretical example of a function f(·) with the property that the amortized space-time
cost of evaluating the function on m=

√
(N) distinct inputs is approximately m times

cheaper than the parallel space-time cost i.e., evaluating the function on the last m−1
inputs is essentially free. This is problematic in the context of password hashing where
the attacker wants to compute the function f(·) multiple times i.e., on each password
in a cracking dictionary. The amortization issue is not merely theoretical. Indeed,
the aAT complexity of many MHF candidates is significantly lower than O(N2) e.g.,
the aAT complexity of Balloon Hash [BCS16] is just O(N5/3) [AB16,ABP17] and
for password hashing competition winner Argon2i [BDK16] the aAT cost is at most
O(N1.767) [AB16,AB17,ABP17,BZ17].

The scrypt MHF, introduced by Percival in 2009 [Per09], was proven to have
cmc/aAT complexity Ω

(
N2) in the random oracle model [ACP+17]. However, it is

possible for an scrypt attacker to achieve any space-time trade-off subject to the con-
straint that st=Ω(N2) without penalty e.g., an attacker could evaluate scrypt in time
t=Ω(N2) with space s=O(1). Alwen et al. [ABP18] argued that this flexibility poten-
tially makes it easier to develop ASICs for scrypt, and proposed the even stricter MHF
requirement of sustained space complexity which demands that any (parallel) algorithm
evaluating the function f(·) requires at least t time steps in which the space usage
is ≥s — this implies that aAT ≥st. Alwen et al. [ABP18] provided a theoretical con-
struction of a MHF with maximal sustained space complexity i.e., evaluation requires
space s=Ω(N/logN) for time t=Ω(N). However, there are no practical constructions
of MHFs that provide strong guarantees with respect to sustained space complexity.
Data-Independent vs Data-Dependent Memory Hard Functions. Memory
Hard Functions can be divided into two categories: Data-Independent Memory
Hard Functions (iMHFs) and Data-Dependent Memory Hard Functions (dMHFs).
Examples of dMHFs include scrypt [Per09], Argon2d [BDK16] and Boyen’s halt-
ing puzzles [Boy07]. Examples of iMHFs include Password Hashing Competition
(PHC) [PHC16] winner Argon2i [BDK16], Balloon Hashing [BCS16] and DRSam-
ple [ABH17]. In this work we primarily focus on the design and analysis of secure
iMHFs. iMHFs are designed to resist certain side-channel attacks e.g., cache tim-
ing [Ber05] by requiring that the induced memory access pattern does not depend
on the (sensitive) input e.g., the user’s password. By contrast, the induced memory
access for a dMHFs is allowed to depend on the function input.

Alwen and Blocki [AB16] proved that any iMHF has aAT complexity at most
O(N2loglogN/logN), while the dMHF scrypt provably has aAT complexity Ω(N2)
in the random oracle model — a result which cannot be matched by any iMHF.
However, the aAT complexity of a dMHF may be greatly reduced after a side-channel
attack. If a brute-force attacker is trying to find x≤m s.t. f(x)=y and the attacker
also has learned the correct memory access pattern induced by the real input x∗ (e.g.,



via a side-channel attack) then the attacker can quit evaluation f(x) immediately
once it is clear that the induced memory access pattern on input x 6=x∗ is different.
For example, the aAT complexity of scrypt (resp. [Boy07]) after a side-channel attack
is just O(N) (resp. O(1)).
Hybrid Modes. Alwen and Blocki [AB16,AB17] showed that the aAT complexity
of most iMHFs was significantly lower than one would hope, but their techniques
do not extend to MHFs. In response, the Argon2 spec [KDBJ17] was updated to
list Argon2id as the recommended mode of operation for password hashing instead
of the purely data-independent mode Argon2i. Hybrid independent-dependent (id)
modes, such as Argon2id [KDBJ17], balance side-channel resistance with high aAT
complexity by running the MHF in data-independent mode for N/2 steps before
switching to data-dependent mode for the final N/2 steps. If there is a side-channel
attack then security reduces to that of the underlying iMHF (e.g., Argon2i), and if
there is no side-channel attack then the function is expected to have optimal aAT
complexity Ω(N2). We remark that, even for a hybrid mode, it is important to ensure
that the underlying iMHF is a strong as possible a side-channel attack on a hybrid
“id” mode of operation will reduce security to that of the underlying iMHF.

1.1 Related Work

MHF Goals. Dwork et al. and Abadi et al. [DGN03,ABMW05] introduced the
notion of a memory-bound function where we require that any evaluation algorithm
results in a large number of cache-misses. Ren and Devadas recently introduced
a refinement to this notion called bandwidth-hardness [RD17]. To the best of our
knowledge Percival was the first to propose the goal that a MHF should have high
space-time complexity [Per09] though Boyen’s dMHF construction appears to achieve
this goal [Boy07] and the notion of space-time complexity is closely related to the
notion of “full cost” proposed by Wiener [Wie04]. Metrics like space-time complexity
and Amortized Area-Time Complexity [AS15,ABH17] aim to capture the cost of
the hardware (e.g., DRAM chips) the attacker must purchase to compute an MHF

— amortized by the number of MHF instances computed over the lifetime of the
hardware components. By contrast, bandwidth hardness [RD17] aims to capture the
energy cost of the electricity required to compute the MHF once. If the attacker uses
an ASIC to compute the function then the energy expended during computation
will typically be small in comparison with the energy expended during a cache-miss.
Thus, a bandwidth hard function aims to ensure that any evaluation strategy either
results in Ω(N) cache-misses or ω(N) evaluations of the hash function.

In Appendix A we argue that, in the context of password hashing, aAT complexity
is more relevant than bandwidth hardness because the “full cost” [Wie04] can scale
quadratically in the running time parameter N. However, one would ideally want
to design a MHF that has high aAT complexity and is also maximally bandwidth
hard. Blocki et al. [BRZ18] recently showed that any MHF with high aAT complexity
is at least somewhat bandwidth hard. Furthermore, all practical iMHFs (including
Catena-Bit Reversal [FLW14], Argon2i and DRSample) are maximally bandwidth
hard [RD17,BRZ18], including our new construction DRS+BRG.



Graph Pebbling and iMHFs. An iMHFs fG,H can be viewed as a mode of
operation over a directed acyclic graph (DAG) G=(V =[N ],E) which encodes data-
dependencies (because the DAG is static the memory access pattern will identical for
all inputs) and a compression function H(·). Alwen and Serbinenko [AS15] defined
fG,H(x)= labG,H,x(N) to be the label of the last node in the graph G on input x.
Here, the label of the first node labG,H,x(1)=H(1,x) is computed using the input
x and for each internal node v with parents(v)=v1,...,vδ we have

labG,H,x(v)=H(v,labG,H,x(v1),...,labG,H,x(vδ)) .

In practice, one requires that the maximum indegree is constant O(δ) so that the
function fG,H can be evaluated in sequential timeO(N). Alwen and Serbinenko [AS15]
proved that the cmc complexity (asymptotically equivalent to aAT complexity) of the
function fG,H can be fully described in terms of the black pebbling game — defined
later in Section 2.2. The result is significant in that it reduces the complex task
of building an iMHF with high aAT complexity to the (potentially easier) task of
constructing a DAG with maximum pebbling cost. In particular, Alwen and Serbinenko
showed that any algorithm evaluating the function fG,H in the parallel random oracle
model must have cumulative memory cost at least Ω

(
w×Π‖cc(G)

)
, where Π‖cc(G)

is the cumulative pebbling cost of G (defined in Section 2.2), H :{0,1}∗→{0,1}w is
modeled as a random oracle andw= |H(z)| is the number of output bits in a single hash
value. Similar, pebbling reductions have been given for bandwidth hardness [BRZ18]
and sustained space complexity [ABP18] using the same labeling rule.

While these pebbling reductions are useful in theory, practical iMHF implementa-
tions do not use the labeling rule proposed in [AS15]. In particular, Argon2i, DRSample
and our own iMHF implementation (DRSample+BRG) all use the following labeling
rule

labG,H,x(v)=H(labG,H,x(v1)⊕...⊕labG,H,x(vδ)) ,

where v1,...,vδ =parents(v) and the DAGs have indegree δ=2. The XOR labeling
rule allows one to work with a faster round function H : {0,1}w → {0,1}w e.g.,
Argon2i builds H :{0,1}8192→{0,1}8192 using the Blake2b permutation function and
DRSample(+BRG) uses the same labeling rule as Argon2i. When we define fG,H
using the above the pebbling reduction of [AS15] no longer applies. Thus, while we
know that the pebbling cost of DRSample (resp. Argon2i) is Ω(N2/logN) [ABH17]
(resp. Ω̃(N1.75) [BZ17]). Technically, it had never been proven that DRSample (resp.
Argon2i) has aAT complexityΩ(wN2/logN) (resp. Ω̃(wN1.75) in the parallel random
oracle model.
Argon2i and DRSample. Arguably, two of the most significant iMHFs candidates
are Argon2i [BDK16] and DRSample [ABH17]. Argon2i was the winner of the re-
cently completed password hashing competition [Pin14] and DRSample [ABH17]
was the first practical construction of an iMHF with aAT complexity proven to
be at least Ω

(
N2/logN

)
in the random oracle model. In an asymptotic sense this

upper bound almost matches the general upper bound O(N2 loglogN/logN) on
the aAT cost of any iMHF established by Alwen and Blocki [AB16]. A recent line
of research [AB16,AB17,ABP17,BZ17] has developed theoretical depth-reducing



attacks on Argon2i showing that the iMHF has aAT complexity at most O
(
N1.767)4.

The DRSample [ABH17] iMHF modifies the edge distribution of the Argon2i graph
to ensure that the underlying directed acyclic graph (DAG) satisfies a combinato-
rial property called depth-robustness which is known to be necessary [AB16] and
sufficient [ABP17] for developing a MHF with high aAT complexity.

While the aAT complexity of DRSample is at least c1N
2/logN for some constant

c1, the constant c in this lower bound is poorly understood — Alwen et al. [ABH17]
only proved the lower bound when c1≈7×10−6. Similarly, Argon2i has aAT com-
plexity at least c2N

1.75/logN [BZ17] though the constants from this lower bound are
also poorly understood5. On the negative side the asymptotic lower bounds do not
absolutely rule out the possibility of an attack that reduces aAT complexity by several
orders of magnitude. Alwen et al. [ABH17] also presented an empirical analysis of the
aAT cost of DRSample and Argon2i by measuring the aAT cost of these functions
against a wide battery of pebbling attacks [AB16,ABP17,AB17]. The results of this
empirical analysis was quite positive for DRSample indicated that DRSample was
not only stronger in an asymptotic sense, but that it also provided greater resistance
to other pebbling attacks than other iMHF candidates like Argon2i in practice.

Boneh et al. [BCS16] previously presented a greedy pebbling attack which reduced
the pebbling cost of Argon2i by a moderate constant factor of 4 to 5. The greedy
pebbling attack does not appear to have been included in the empirical analysis of
Alwen et al. [ABH17]. In a strict asymptotic sense the depth-reducing attacks of
Alwen and Blocki [AB16,AB17] achieved more substantialΩ

(
N0.2+)-factor reductions

in pebbling cost, which may help to explain the omission of the greedy algorithm
in [ABH17]. Nevertheless, it is worth noting that the greedy pebbling strategy is a
simple sequential pebbling strategy which would be easy to implement in practice. By
contrast, there has been debate about the practical feasibility of implementing the more
complicated pebbling attacks of Alwen and Blocki [AB16] (Alwen and Blocki [AB17]
argued that the attacks don’t require unrealistic parallelism or memory bandwidth,
but to the best of our knowledge the attacks have yet to be implemented on an ASIC).

1.2 Contributions

Stronger Attacks We present a theoretical and empirical analysis of the greedy peb-
bling attack [BCS16] finding that DRSample has aAT complexity at most /N2/logN .
The greedy pebbling attack that achieves this bound is sequential, easy to implement
and achieves high attack quality even for practical values of N . In fact, for practical
values of N ≤ 224 we show that DRSample is more vulnerable to known pebbling
attacks than Argon2i, which reverses previous conclusions about the practical security
of Argon2i and DRSample [ABH17]. We next consider a defense proposed by Biryukov
et al. [BDK16] against the greedy pebbling attack which we call the XOR-extension
gadget. While this defense defeats the original greedy pebbling attack [BCS16], we
4 This latest attack almost matches the lower bound of Ω̃

(
N1.75) on the aAT complexity

of Argon2i.
5 Blocki and Zhou did not explicitly work out the constants in their lower bound, but

it appears that c2≈5×10−7 [ABH17].



found a simple generalization of the greedy pebbling attack that thwarts this defense.
We also use the greedy pebbling attack to prove that any DAG with indegree two
has a sequential pebbling with aAT cost / N2

4 .
We also develop a novel greedy algorithm for constructing depth-reducing sets, which is
the critical first step in the parallel pebbling attacks of Alwen and Blocki [AB16,AB17].
Empirical analysis demonstrates that this greedy algorithm constructs significantly
smaller depth-reducing sets than previous state of the art techniques [AB16,AB17,
ABH17], which leads to higher quality attacks [AB16] and leaving us in an un-
comfortable situation where there high quality pebbling attacks against all iMHF
candidates e.g., DRSample is susceptible to the greedy pebbling attack while Argon2i
is susceptible to depth-reducing attacks [AB16,AB17,ABH17].

New iMHF Candidate with Optimal Security We next develop a new iMHF
candidate DRSample+BRG by overlaying a bit-reversal graph [LT82,FLW14] on top
of DRSample, and analyze the new DAG empirically and theoretically. Interestingly,
while neither DAG (DRSample or BRG) is known to have strong sustained space
complexity guarantees we can prove that any parallel pebbling either has maximal sus-
tained space complexity (meaning that there are at least Ω(N) steps with Ω(N/logN)
pebbles on the DAG) or has aAT cost at least ω(N2). This makes our construction the
first practical construction with strong guarantees on the sustained space-complexity

— prior constructions of Alwen et al. [ABP18] were theoretical. DRSample+BRG is
asymptotically optimal with respect to all proposed MHF metrics including bandwidth
hardness (both BRG and DRSample are bandwidth hard [RD17,BRZ18]) and aAT
complexity (inherited from DRSample [ABH17]). We also show that our construction
optimally resists the greedy attack and any extensions. In particular, we prove sequen-
tial pebbling of the bit-reversal graph has cumulative memory cost (cmc) and aAT
cost at least Ω(N2). This result generalizes a well known result that the bit-reversal
graph has sequential space-time cost Ω(N2) and may be of independent interest e.g.,
it demonstrates that Password Hashing Competition Finalist Catena-BRG [FLW14]
is secure against all sequential attacks.

Our empirical analysis indicates that DRSample+BRG offers strong resistance
to all known attacks, including the greedy pebbling attack, depth-reducing attacks
and several other novel attacks introduced in this paper. In particular, even for very
large N=224 (224 1KB blocks =16GB) the best attack had aAT cost over N2

11 — for
comparison any DAG with indegree two has aAT cost / N2

4 .
We also show that the aAT/cmc of DRSample+BRG is at leastΩ

(
N2loglogN/logN

)
under a plausible conjecture about the depth-robustness of DRSample. As evidence for
our conjecture we analyze three state-of-the-art approaches for constructing a depth-
reducing set, including the layered attack [AB16], Valiant’s Lemma [AB16,Val77]
and the reduction of Alwen et al. [ABP17], which can transform any pebbling with
low aAT cost (e.g., the Greedy Pebbling Attack) into a depth-reducing set. We show
that each attack fails to refute our conjecture. Thus, even if the conjecture is false
we would require significant improvements to state-of-the art to refute it.

Black Pebbling Reduction for XOR Labeling Rule While Alwen and Ser-
binenko showed that any algorithm evaluating the graph labeling function fG,H



in the parallel random oracle model must have cumulative memory cost at least
Ω
(
w×Π‖cc(G)

)
, their proof made the restrictive assumption that labels are computed

using the concatenation rule labG,H,x(v) =H (v,labG,H,x(v1),...,labG,H,x(vδ)). How-
ever, most practical iMHF implementations (e.g., Argon2i and DRSample(+BRG))
all follow the more efficient XOR labeling rule labG,H,x(v)=H(labG,H,x(v1)⊕...⊕labG,H,x(vδ))
where v1,...,vδ=parents(v) and the DAGs have indegree δ=O(1). The XOR labeling
rule allows one to work with a faster round function H :{0,1}w→{0,1}w, e.g., Argon2i
builds H :{0,1}8192→{0,1}8192, to speed up computation so that we fill more memory.

We extend the results of Alwen and Serbinenko to show that, for suitable DAGs,
fG,H has cumulative memory cost at least Ω

(
w×Π‖cc(G)/δ

)
when the XOR labeling

rule. The loss of δ is necessarily as the pebbling complexity of the complete DAG
KN is Π‖cc(Kn)=Ω(N2), but fKN ,H has cmc/aAT cost at most O(N) when defined
using the XOR labeling rule. In practice, all of the graphs we consider have δ=O(1)
so this loss is not significant.

One challenge we face in the reduction is that it is more difficult to extract labels
from the random oracle query labG,H,x(v1)⊕...⊕labG,H,x(vδ) than from the query
labG,H,x(v1),...,labG,H,x(vδ). Another challenge we face is that the labeling function
H′(x,y)=H(x⊕y) is not even collision resistant e.g., H′(y,x)=H′(x,y). In fact, one
can exploit this property to find graphsG onN nodes where the function fG,H is a con-
stant function e.g., Suppose we start with a DAGG′=(V ′=[N−3],E′) onN−3 nodes
that has high pebbling cost Π‖cc(G′) and define G=(V =[N],E=E′∪{(N−3,N−
2),(N−3,N−1),(N−4,N−2),(N−4,N−1),(N−2,N),(N−1,N)}) by adding di-
rected edges from nodeN−3 andN−4 to nodesN−2,N−1 and then adding directed
edges fromN−2 andN−1 to nodeN . Note that for any input xwe have labG,H,x(N−
2)=H(labG,H,x(N−3)⊕labG,H,x(N−3))= labG,H,x(N−1). It follows that

fG,H(x)= labG,H,x(N)=H(labG,H,x(N−2)⊕labG,H,x(N−1))=H(0w)

is a constant function. Thus, the claim that fG,H has cumulative memory cost at
least Ω

(
w×Π‖cc(G)/δ

)
cannot hold for arbitrary graphs.

The above example exploited the absence of the explicit term v in labG,H,x(v) to
produce two nodes that always have the same label. However, we can prove that if
the DAG G=(V =[N ],E) contains all edges of the form (i,i+1) for i<N then any
algorithm evaluating the function fG,H in the parallel random oracle model must have
cumulative memory cost at least Ω

(
w×Π‖cc(G)/δ

)
. Furthermore, the cumulative

memory cost of an algorithm computing fG,H on m distinct inputs must be at least
Ω
(
mw×Π‖cc(G)

)
. We stress that all of the practical iMHFs we consider including

Argon2i and DRSample(+BRG) satisfy this condition.
Sequential Round Function We show how a parallel attacker could reduce aAT
costs by nearly an order of magnitude by computation of the Argon2i round func-
tion in parallel. For example, the first step to evaluate the Argon2 round function
H(X,Y ) is to divide the input R=X⊕Y ∈ {0,1}8092 into 64 groups of 16-byte
values R0,...,R63 ∈ {0,1}128 and then compute (Q0,Q1,...,Q7)←BP(R0,...,R7),...,



(Q56,Q56,...,Q63)←BP(R56,...,R63). Each call to the Blake2b permutation BP can
be trivially evaluated in parallel, which means that the attacker can easily reduce the
depth of the circuit evaluating Argon2 by a factor of 8 without increasing the area of
the circuit i.e., memory usage remains constant. The issue affects all Argon2 modes of
operation (including data-dependent modes like Argon2d and Argon2id) and could po-
tentially be used in combination with other pebbling attacks [AB16,AB17] for an even
more dramatic decrease in aAT complexity. We also stress that this gain is independent
of any other optimizations that an ASIC attacker might make to speed up compu-
tation of BP e.g., if the attacker can evaluate BP four-times faster than the honest
party then the attacker will be able to evaluate the round function H 8×4=32-times
faster than the honest party. We propose a simple modification to the Argon2 round
function by injecting a few additional data-dependencies to ensure that evaluation is
inherently sequential. While the modification is simple we show it increases a parallel
attacker’s aAT costs by nearly an order of magnitude. Furthermore, empirical analysis
indicates that our modifications have negligible impact on the running time on a CPU.
Implementation of our iMHF We develop an implementation of our new
iMHF candidate DRSample+BRG, which also uses the improved sequential Ar-
gon2 round function. The source code is available on an anonymous Github reposi-
tory https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG. Empirical
tests indicate that the running time of DRSample+BRG is equivalent to that of
Argon2 for the honest party, while our prior analysis indicates the aAT costs, energy
costs and sustained space complexity are all higher for DRSample+BRG.

2 Preliminaries

In this section we will lay out notation and important definitions required for the
following sections.
2.1 Graph Notation and Definitions

We use G = (V,E) to denote a directed acyclic graph and we use N = 2n to
denote the number of nodes in V = {1, ... ,N}. Given a node v ∈ V , we use
parents(v) = {u : (u,v) ∈ E} to denote the immediate parents of node v in G.
In general, we use ancestorsG(v)=

⋃
i≥1parentsiG(v) to denote the set of all ancestors

of v — here, parents2
G(v)=parentsG(parentsG(v)) denotes the grandparents of v and

parentsi+1
G (v)=parentsG

(
parentsiG(v)

)
. When G is clear from context we will simply

write parents (ancestors). We use indeg(G)=maxv|parents(v)| to denote the maximum
indegree of any node in G. All of the practical graphs we consider will contain each
of the edges (i,i+1) for i<N . Thus, there is a single source node 1 and a single sink
node N. Most of the graphs we consider will have indeg(G)=2 and in this case we
will use r(i)<i to denote the other parent of node i besides i−1. Given a subset
of nodes S⊆V we use G−S to refer to the graph with all nodes in S deleted and
we use G[S]=G−(V \S) to refer to graph obtained by deleting all nodes except S.
Finally, we use G≤k=G[{1,...,k}] to refer to the graph induced by the first k nodes.

Block depth-robustness: Block depth-robustness is a stronger variant of depth-
robustness. First, we define N(v,b) = {v− b+ 1,v− b+ 2, ...v} to be the set of

https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG


b contiguous nodes ending at node v. For a set of vertices S ⊆ V, we also define
N(S,b) =

⋃
v∈SN(v,b). We say that a graph is (e,d,b) block depth robust if, for

every set S⊆V of size |S| ≤ e, depth(G−N(S,b))≥ d. When b= 1 we simply say
that the graph is (e,d) depth robust. It is known that highly depth robust DAGs
G have high pebbling complexity, and can be used to construct strong iMHFs with
high aAT complexity in the random oracle model [ABP17]. In certain cases, block
depth-robustness can be used to establish even stronger lower bounds on the pebbling
complexity of a graph [ABH17,BZ17]. Alwen et al. gave an algorithm DRSample
which (whp) outputs a DAG G that is (e,d,b) block depth robust with e=Ω(N/logN),
d=Ω(N) and b=Ω(logN) [ABH17].

Graph labeling functions: As mentioned in the introduction, an iMHF fG,H can be
described as a mode of operation over a directed acyclic graph using a round function
H. Intuitively, the graph represents data dependencies between the memory blocks
that are generated as computation progresses and each vertex represents a value being
computed based on some dependencies. The function fG,H(x) can typically be defined
as a labeling function i.e., given a set of vertices V =[N ]={1,2,3,...,N}, a compression
functionH={0,1}∗→{0,1}m (often modeled as a Random Oracle in security analysis),
and an input x, we “label” the nodes in V as follows. All source vertices (those with no
parents) are labeled as `v(x)=H(v,x) and all other nodes with parents v1,v2,...,vδ are
labeled `v(x)=Fv,H(`v1(x),`v2(x),...,`vδ(x)) for a function Fv,H(·) that depends on
H(·). The output fG,H(x) is then defined to be the label(s) of the sink node(s) in G.

In theoretical constructions (e.g., [AS15]) we often haveFv,H(`v1(x),`v2(x),...,`vδ(x))=
H(v,`v1(x),`v2(x),...,`vδ(x)) while in most real world constructions (e.g., Argon2i [BDK16])
we have Fv,H(`v1(x),`v2(x),...,`vδ(x))=H(`v1(x)⊕`v2(x)...⊕`vδ(x)). To ensure that
the function fG,H can be computed in O(N) steps, we require that G is an N-node
DAG with constant indegree δ.
2.2 iMHFs and the Parallel Black Pebbling Game
Alwen and Serbinenko [AS15] and Alwen and Tackmann [AT17] provided reduc-
tions proving that in the parallel random oracle model (PROM) the amortized
area time complexity of the function fG,H is completely captured by the (par-
allel) black pebbling game on the DAG G when we define when we instantiate
the round function as Fv,H (`v1(x),`v2(x),...,`vδ(x)) = H (v,`v1(x),`v2(x),...,`vδ(x)).
However, practical constructions such as Argon2i use a different round function
F⊕v,H (`v1(x),`v2(x),...,`vδ(x)) =H

(⊕δ
j=1`vj(x)

)
. In Section 6 we extend prior peb-

bling reductions to handle the round function F⊕v,H, which justifies the use of pebbling
games to analyze practical constructions of iMHFs such as Argon2i or DRSample.

Intuitively, placing a pebble on a node represents computing the corresponding
memory block and storing it in memory. The rules of the black pebbling game state
that we cannot place a pebble on a node v until we have pebbles on the parents of
node v i.e., we cannot compute a new memory block until we have access to all of
the memory blocks on which the computation depends. More formally, in the black
pebbling game on a directed graph G=(V,E), we place pebbles on certain vertices
of G over a series of t rounds. A valid pebbling P is a sequence P0,P1,...,Pt of sets
of vertices satisfying the following properties: (1) P0 =∅, (2) ∀v∈Pi\Pi−1 we have
parents(v)⊆Pi−1, and (3) ∀v∈V,∃i s.t. v∈Pi.



Intuitively, Pi denotes the subset of data-labels stored in memory at time i and
Pi\Pi−1 denotes the new data-labels that are computed during round i — the second
constraint states that we can only compute these new data-labels if all of the necessary
dependent data values were already in memory. The final constraint says that we
must eventually pebble all nodes (otherwise we would never compute the output
labels for fG,H). We say that a pebbling is sequential if ∀i>0 we have |Pi\Pi−1|≤1
i.e., in every round at most one new pebble is placed on the graph. We use P‖(G)
(resp. P(G)) to denote the set of all valid parallel (resp. sequential) black pebblings
of the DAG G. We define the space-time cost of a pebbling P =(P1,...,Pt)∈P‖G to
be st(P) = t×max1≤i≤t |Pi| and the sequential space-time pebbling cost, denoted
Πst(G)=minP∈PGst(P), is the space-time cost of the best legal pebbling of G.

There are many other pebbling games one can define on a DAG including
the red-blue pebbling game [JWK81] and the black-white pebbling game [Len81].
Red-blue pebbling games can be used to analyze the bandwidth-hardness of an
iMHF [RD17,BRZ18]. In this work, we primarily focus on the (parallel) black peb-
bling game to analyze the amortized Area-Time complexity and the sustained space
complexity of a memory-hard function.

Definition 1 (Time/Space/Cumulative Pebbling Complexity). The time,
space, space-time and cumulative complexity of a pebbling P = {P0, ... ,Pt} ∈ P‖G
are defined to be:

Πt(P)=t Πs(P)=max
i∈[t]
|Pi| Πst(P)=Πt(P)·Πs(P) Πcc(P)=

∑
i∈[t]

|Pi| .

For α∈{s,t,st,cc} the sequential and parallel pebbling complexities of G are defined as

Πα(G)= min
P∈PG

Πα(P) and Π‖α(G)= min
P∈P‖

G

Πα(P) .

It follows from the definition that for α ∈ {s,t,st,cc} and any G, the parallel
pebbling complexity is always at most as high as the sequential, i.e., Πα(G)≥Π‖α(G),
and cumulative complexity is at most as high as space-time complexity, i.e., Πst(G)≥
Πcc(G) and Π

‖
st(G) ≥ Π

‖
cc(G). Thus, we have Πst(G) ≥ Πcc(G) ≥ Π

‖
cc(G) and

Πst(G)≥Π‖st(G)≥Π‖cc(G). However, the relationship between Π‖st(G) and Πcc(G) is
less clear. It is easy to provide examples of graphs for which Πcc(G)�Π

‖
st(G) 6. Al-

wen and Serbinenko showed that for the bit-reversal graph G=BRGn with O(N=2n)
nodes we have Π‖st(G) =O(n

√
n). In Section 4.2 we show that Πcc(G) =Ω

(
N2),

thus, for some DAGs we have Πcc(G)�Π
‖
st(G).

6 One example of such a graph G would be to start the pyramid graph
a
k, which has

O(k2) nodes, a single sink node t and append a path W of length k3 starting at this sink
node t. The pyramid graph requires Π‖s

(a
k

)
=Θ(k) space to pebble and has Πcc

(a
k

)
≤

Πst
(a

k

)
≤ k3. Similarly, the path W requires at least Π‖t (W) =Πt(W) = k3 steps to

pebble the path (even in parallel). Thus, Π‖st(G)≥k4. By contrast, we have Πcc(G)≤
Πcc
(a

k

)
+k3≤k3+k3�k4 since we can place a pebble on node t with cost Πcc

(a
k

)
,

discard all other pebbles from the graph and then walk this pebble across the path.



Definition 2 (Sustained Space Complexity [ABP18]). For s∈N the s-sustained-
space (s-ss) complexity of a pebbling P={P0,...,Pt}∈P‖G is: Πss(P,s)= |{i∈ [t] : |Pi|≥
s}|. More generally, the sequential and parallel s-sustained space complexities of G
are defined as

Πss(G,s)= min
P∈PG

Πss(P,s) and Π‖ss(G,s)= min
P∈P‖

G

Πss(P,s) .

We remark that for any s we have Πcc(G) ≥ Πss(G,s) × s and Π
‖
cc(G) ≥

Π
‖
ss(G,s)×s.

2.3 Amortized Area-Time Cost (aAT)

Amortized Area-Time (aAT) cost is a way of viewing the cost to compute an iMHF,
and it is closely related to the cost of pebbling a graph. Essentially, aAT cost represents
the cost to keep pebbles in memory and adds in a factor representing the cost to
compute the pebble. Here we require an additional factor, the core-memory ratio R,
a multiplicative factor representing the ratio between computation cost vs memory
cost. In this paper we are mainly focused on analysis of Argon2, which has previous
calculations showing R=3000 [BK15]. It can be assumed that this value is being
used for R unless otherwise specified. The formal definition of the aAT complexity
of a pebbling P=(P0,...,PT ) of the graph G is as follows:

aATR(P)=
T∑
i=1
|Pi|+R

T∑
i=1
|Pi\Pi−1|

The (sequential) aAT complexity of a graph G is defined to be the aAT complexity
of the optimal (sequential) pebbling strategy. Formally,

aATR(G)= min
P∈P(G)

aATR(G) , and aAT‖R(G)= min
P∈P‖(G)

aATR(P) .

One of the nice properties of aAT and Π‖cc complexity is that both cost metrics
amortize nicely i.e., if Gm consists of m independent copies of the DAG G then
aAT‖R(Gm)=m×aAT‖R(G). We remark that aAT‖R(G)≥Π‖cc(G), but that in most
cases we will have aAT‖R(G)≈Π‖cc(G) since the number of queries to the random
oracle is typically o

(
Π
‖
cc(G)

)
. We will work with Π‖cc(G) when conducting theoretical

analysis and we will use aAT‖R(G) when conducting empirical experiments, as the
constant factor R is important in practice. This also makes it easier to compare our
empirical results with prior work [AB17,ABH17].
2.4 Attack Quality

In many cases we will care about how efficient certain pebbling strategies are compared
to others. When we work with an iMHF, we have a naive sequential algorithm N for
evaluation e.g. the algorithm described in the Argon2 specifications [BDK16]. Typically,
the naive algorithm N is relatively expensive e.g., aATR(N )=N2/2+RN. We say



that an attacker A is successful at reducing evaluation costs if aATR(A)<aATR(N ).
Following [AB16] we define the quality of the attack as

AT-quality(A)= aATR(N )
aATR(A) ,

which describes how much more efficientlyA is able to evaluate the function compared
to N .

3 Analysis of the Greedy Pebbling Algorithm

In this section we present a theoretical and empirical analysis of the greedy pebbling
attack [BCS16] that reverses previous conclusions about the practical security of Ar-
gon2i vs DRSample [ABH17]. We prove two main results using the greedy algorithm.
First, we show that for any N node DAG G with indegree 2 and a unique topological
ordering, we have aATR(G)≤ N2+2N

4 +RN — see Theorem 1. Second, we prove
that for any constant η>0 and a random DRSample DAG G on N nodes, we have
Πst(G)≤(1+η)2N2/logN with high probability — see Theorem 2. We stress that
in both cases the bounds are explicit not asymptotic, and that the pebbling attacks
are simple and sequential.

Alwen and Blocki [AB16] previously had shown that any DAG G with constant
indegree has aAT‖R(G)∈O(N2loglogN/logN), but the constants from this bound
were not well understood and did not rule out the existence of an N node DAG
G with aAT‖R(G)≥N2/2+RN for practical values of N e.g., unless we use more
than 16GB of RAM we have N ≤ 224 for Argon2i or DRSample7. By contrast,
Theorem 1 immediately implies that aAT‖R(G)≤ N2+2N

4 +RN. Similarly, Alwen
et al. [ABH17] previously showed that with high probability a DRSample DAG G

has aAT‖R(G)∈Ω(N2/logN), but the constants in this lower bound were not well
understood. On a theoretical side our analysis shows that this bound is tight i.e.,
aAT‖R(G)∈Θ(N2/logN). It also proves that DRSample does not quite match the
generic upper bound of Alwen and Blocki [AB16].

Extension of the Greedy Pebbling Attack Our analysis leaves us in an uncomfortable
position where every practical iMHF candidate has high quality pebbling attacks
i.e., greedy pebble for DRSample and depth-reducing attacks for Argon2i. We would
like to develop a practical iMHF candidate that provides strong resistance against
all known pebbling attacks for all practical values of N ≤224. We first consider a
defense proposed by Biryukov et al. [BDK16] against the greedy pebbling attack.
While this defense provides optimal protection against the greedy pebbling attack,
we introduce an extension of the greedy pebbling attack which we call the staggered
greedy pebbling attack and show that the trick of Biryukov et al. [BDK16] fails to
protect against the extended attack.
7 In Argon2, the block-size is 1KB so when we use N=224 nodes the honest party would

require 16GB (=N×KB) of RAM to evaluate the MHF. Thus, we view 224 as a reasonable
upper bound on the the number of blocks that would be used in practical applications.



3.1 The Greedy Pebbling Algorithm

We first review the greedy pebbling algorithm, shown here as Algorithm 1.We first
introduce some notation
gc(v): For each node v<N we let gc(v)=max{w| (v,w)∈E} denote the maximum

child of node v — if v<N then the set {w| (v,w)∈E} is non-empty as it contains
the node v+1. If node v has no children then set gc(v):=v.

χ(i): This represents what we call the crossing set of the ith node. It is defined as
χ(i) = {v|v≤ i ∧ gc(v)> i}. Intuitively this represents the set of nodes v≤ i
incident to a directed edge (v,u) that “crosses over” node i i.e. u>i.

Greedy Pebbling Strategy: Set GP(G) = P = (P1,...,PN) where Pi = χ(i) for
each i≤N. Intuitively, the pebbling strategy can be described follows: In round
i we place a pebble on node i and we then discard any pebbles on nodes v that
are no longer needed in any future round i.e., for all future nodes w> i we have
v /∈parents(w) (equivalently, the greatest-child of node v is gc(v)≤ i). We refer the
reader to Algorithm 1 in the appendix for a formal algorithmic description.

We first prove the following general lower bound for any N node DAG with
indeg(G) ≤ 2 that has a unique topological ordering i.e., G contains each of the
edges (i,i+1). In particular, Theorem 1 shows that for any such DAG G we have
Πst(G)/ N2

2 and Πcc(G)/N2/4. We stress that this is twice as efficient as the naive
pebbling algorithm N which set Pi={1,...,i} for each i≤N and has cumulative cost
Π
‖
cc(N )= N2

2 . Previously, the gold standard was to find constructions of DAGs G
with N nodes such that Π‖cc(G)' N2

2 for practical values of N — asymptotic results
did not rule out this possibility even for N≤240. Theorem 1 demonstrates that the
best we could hope for is to ensure Π‖cc(G)' N2

4 for practical values of N .

Theorem 1. Let r : N>0→ N be any function with the property that r(i)< i−1
for all i∈N>0. Then the DAG G= (V,E) with N nodes V = {1,...,N} and edges
E = {(i− 1,i) : 1 < i ≤ N}∪{(r(i),i) : 2 < i ≤ N} has Πst(G) ≤ N2+2N

2 and
Πcc(G)≤ N2+2N

4 and aATR(G)≤ N2+2N
4 +RN .

The full proof of Theorem 1 is in Appendix C. Intuitively, Theorem 1 follows from
the observation that in any pebbling we have |Pi|≤i, and in the greedy pebbling we
also have |Pi|≤N−i since there can be at most N−i nodes w such that w=r(v)
for some v>i and other pebbles on any other node would have been discarded by
the greedy pebbling algorithm.

3.2 Analysis of the Greedy Pebble Attack on DRSample

We now turn our attention to the specific case of the iMHF DRSample. The DRSam-
ple distribution is defined formally in Algorithm 3 in the appendix. A DAGG sampled
from this distribution has edges of the form (i,i+1) and (r(i),i) where each r(i)<i is in-
dependently selected from some distribution. It is not necessary to understand all of the
details of this distribution to follow our analysis in this section as the crucial property
that we require is given in Claim 1 which is proved in Appendix C. Intuitively, Claim 1
follows because we have Pr[r(j)=i]∼ 1

logj×
1
|j−i| for each node i<j in DRSample.



Claim 1 Let G be a randomly sampled DRSample DAG with N nodes and let Yi,j
be an indicator random variable for the event that r(j)<i for nodes i<j≤N then
we have E[Yi,j]=Pr[r(j)<i]≤1− log(j−i−1)

logj .

If P=(P1,...,PN)=GP(G), then we remark that χ(i) can be viewed as an alternate
characterization of the set Pi=χ(i) of pebbles on the graph at time i. Lemma 1 now
implies that with high probability, we will have |Pi|≤(1+δ)N/n during all pebbling
rounds.

Lemma 1. Given a DAG G on N=2n nodes sampled using the randomized DR-
Sample algorithm for any η>0 we have

Pr
[
max
i
|χ(i)|>(1+η)

(
2N
n

)]
≤exp

(
−2η2N

3n +nln2
)
.

Lemma 1, which bounds the size of maxi|χ(i)|, is proved in Appendix C. Intuitively,
the proof uses the observation that χ(i)≤

∑N
j=i+1Yi,j where Yi,j is an indicator

random variable for the event that r(j)≤i. This is because χ(i) is upper bounded
by the number of edges that “cross” over the node i. We can then use Claim 1 and
standard concentration bounds to obtain Lemma 1.

Theorem 2, our main result in this section, now follows immediately from Lemma 1.
Theorem 2 states that, except with negligibly small probability, the sequential pebbling
cost of a DRSample DAG is at most (1+η)

(
2N2

n

)
+RN .

Theorem 2. Let G be a randomly sampled DRSample DAG with N=2n nodes then
for all η>0 we have

Pr
[
Πst(GP(G))>(1+η)

(
2N2

n

)]
≤exp

(
−2η2N

3n +nln2
)
.

Proof. Fix η>0 and consider a randomly sampled N-node DRSample DAG G. We
let P =GP(G). We observe that |Pi|=χ(i). By Lemma 1, except with probability
exp
(
−η2N/n

3

)
, we have

N×max
i∈[N]

χ(i)≤(1+η)
(

2N2

n

)
. (1)

We now obtain the final result by union bounding over i≤N . Assuming that Equation
1 holds for all i≤N , we have Πst(GP(G))≤(1+η)

(
2N2

n

)
+RN as claimed. �

Discussion. Theorem 2 implies that the (sequential) aAT complexity of DRSample
is aATR(G)/ 2N2/logN ∈O(N2/logN), which asymptotically matches the lower
bound of Ω(N2/logN) [ABH17]. More significant from a practical standpoint is that
the constant factors in the upper bound are given explicitly. Theorem 2 implies attack
quality at least' logN

4 since the cost of the naive pebbling algorithm isN2/2. Thus, for
practical values of N≤224 we will get high quality attacks and our empirical analysis



suggests that attack quality actually scales with logN . On a positive note the pebbling
attack is sequential, which means that we could adjust the naive (honest) evaluation
algorithm to simply use N to use GP(G) instead because the greedy pebbling strategy
is sequential. While this would lead to an egalitarian function, the outcome is still
undesirable from the standpoint of password hashing where we want to ensure that
the attacker’s absolute aAT costs are as high as possible given a fixed running time N .

3.3 Empirical Analysis of the GP Attack

We ran the greedy pebbling attack against several iMHF DAGs including Argon2i,
DRSample and our new construction DRSample+BRG (see Section 4) and compare
the Attack Quality of greedy pebble with prior depth-reducing attacks. The results,
seen in Figure 2 (left), show that the GP attack was especially effective against the
DRSample DAG, improving attack quality by a factor of up to 7 (at n=24) when
compared to previous state-of-the-art depth-reducing attacks (Valiant, Layered, and
various hybrid approaches) [Val77,AB16,ABH17].

The most important observation about Figure 2 (left) is simply how effective
the greedy pebbling attack is against DRSample. We remark that attack quality
for DRSample with N =2n nodes seems to be approximately n — slightly better
than the theoretical guarantees from Theorem 2. While DRSample may have the
strongest asymptotic guarantees (i.e. aAT‖(G) = Ω(N2/logN) for DRSample vs.
aAT‖(G) =O(N1.767) for Argon2i) Argon2i seems to provide better resistance to
known pebbling attacks for practical parameter ranges.

When testing the GP attack against Argon2i we found that, while the Greedy
Pebbling attack does sometimes outperform depth-reducing attacks at smaller values
of n, the depth-reducing attacks appear to be superior once we reach graph sizes that
would likely be used in practice. As an example, when n=20 we find that the attack
quality of the greedy pebbling attack is just 2.99, while the best depth-reducing
attack achieved attack quality 6.25 [ABH17].

3.4 Defense Against Greedy Pebbling Attack: Attempt 1 XOR extension

Biryukov et al. [BDK16] introduced a simple defense against the greedy pebbling
attack of Boneh et al. [BCS16] for iMHFs that make two passes over memory. Nor-
mally during computation the block Bi+N/2 would be stored at memory location i
overwriting block Bi. The idea of the defense is to XOR the two blocks Bi+N/2 and
Bi before overwriting block Bi in memory. Biryukov et al. [BDK16] observed that this
defense does not significantly slow down computation because block Bi would have
been loaded into cache before it is overwritten in either case. The effect of performing
this extra computation is effectively to add each edge of the form (i−N

2 ,i) to the DAG
G. In particular, this means that the greedy pebbling algorithm will not discard the
pebble on node i−N

2 until round i, which is when the honest pebbling algorithm would
have discarded the pebble anyway. Given a graph G=(V,E) we use G⊕=(V,E⊕)
to denote the XOR-extension graph of G where E⊕=E∪{(i−N

2 ,i) | i>
N
2 }. It is

easy to see that Π‖cc(GP(G⊕))≥ N2+2N
4 , which would make it tempting to conclude

that the XOR-extension defeats the greedy pebbling attack.



Greedy Pebble Extension: Given a graph G on N nodes let P = (P1,...,PN) =
GP(G) and let Q = (Q1,...,QN/2) = GP(G≤N/2). Define GPE(G⊕) =

(
P⊕1 ,...,P

⊕
N

)
where P⊕i+N/2−1 =Qi∪Pi+N/2−1 and P⊕i =Pi for i<N/2. See Algorithm 2 in the
appendix for a formal algorithm presentation. Intuitively, the attack exploits the fact
that always ensure that we have a pebble on the extra node v∈parents(N/2+v) at
time N/2+v−1 by using the greedy pebble algorithm to synchronously re-pebble
the nodes 1,...,N/2 a second time.

Theorem 3 demonstrates that the new generalized greedy pebble algorithm is
effective against the XOR-extension gadget. In particular, Corollary 2 states that we
still obtain high quality attacks against DRSample⊕ so the XOR-gadget does not
significantly improve the aAT cost of DRSample.

Theorem 3. Let r :N>0→N be any function with the property that r(i)<i for all
i∈N>0 and let G=(V,E) be a graph with N nodes V ={1,...,N} and directed edges
E={(i,i+1) | i<N}∪{r(i),i | 1<i≤N}. If P=GP(G)∈P(G) and Q∈P(G≤N/2)
then the XOR-extension graph G⊕ of G has amortized Area-Time complexity at most

aAT‖R
(
G⊕
)
≤
N/2∑
i=1
|Pi|+

N∑
i=1
|Qi|+

3RN
2 .

Corollary 1. Let r :N>0→N be any function with the property that r(i)<i for all
i∈N>0 and let G=(V,E) be a graph with N nodes V ={1,...,N} and directed edges
E={(i,i+1) | i<N}∪{r(i),i | 1<i≤N}. Then for the XOR-extension graph G⊕

we have aAT‖R(G⊕)≤ 5N2+12N
16 + 3RN

2 .

The proof of Theorem 3 can be found in the appendix. One consequence of
Theorem 3 is that the XOR-extension gadget does not rescue DRSample from the
greedy pebble attack — see Corollary 2.

Corollary 2. Fix η>0 be a fixed constant and let G=(V,E) be randomly sampled
DRSample DAG with N=2n nodes V ={1,...,N} and directed edges E={(i,i+1) | i<
N}∪{r(i),i | 1<i≤N}. Then

Pr
[
aAT‖R

(
G⊕
)
>(1+η)

(
3N2

n
− N2

n(n−1)

)
+ 3RN

2

]
≤exp

(
−η2N

3(n−1) +1+nln2
)
.

Proof. Fix η > 0 and let P = GP(G) where G is a randomly sampled DRSam-
ple DAG. By Lemma 1, except with probability exp

(
−2η2N

3n +nln2
)

, we have

maxi |Pi|= maxiχ(i)≤ (1+η)2N
n which means that

∑N
i=1 |Pi| ≤ (1+η)2N2

n . Simi-
larly, let Q=GP(G≤N/2) be a greedy pebbling of the subgraph formed by the first
N/2 nodes in G. We remark that G≤N/2 can be viewed as a randomly DRSample
DAG with N/2=2n−1 nodes. Thus, except with probability exp

(
−η2N
3(n−1) +(n−1)ln2

)
we have maxi≤N/2 |Qi| = maxiχ(i) ≤ (1 + η) N

n−1 since the first N/2 nodes of G
form a random DRSample DAG with N/2 = 2n−1 nodes. This would imply that∑N/2
i=1 |Qi| ≤ (1 + η) N

n−1 . Putting both bounds together Theorem 3 implies that
aAT‖(G⊕)≤(1+η)

(
3N2

n −
N2

n(n−1)

)
+ 3RN

2 . �



4 New iMHF Construction with Optimal Security

In this section we introduce a new iMHF construction called DRSample+BRG. The
new construction is obtained by overlaying a bit-reversal graph BRGn [LT82] on
top of a random DRSample DAG. If G denotes a random DRSample DAG with
N/2 nodes then we will use BRG(G) to denote the bit-reversal overlay with N nodes.
Intuitively, the result is a graph that resists both the greedy pebble attack (which
is very effective against DRSample alone) and depth-reducing attacks (which DR-
Sample was designed to resist). An even more exciting result is that we can show
that DRSample+BRG is the first practical construction to provide strong sustained
space complexity guarantees. Interestingly, neither graph (DRSample or BRG) is
individually known to provide strong sustained space guarantees. Instead, several of
our proof exploits synergic properties of both graphs. We elaborate on the desirable
properties of DRSample+BRG below.

First, our new construction inherits desirable properties from both the bit-reversal
graph and DRSample. For example, Π‖cc(BRG(G))≥Π‖cc(G)=Ω

(
N2/logN

)
. Simi-

larly, it immediately follows that BRG(G) is maximally bandwidth hard. In particular,
Ren and Devadas [RD17] showed that BRGn is maximally bandwidth hard, and
Blocki et al. [BRZ18] showed that DRSample is maximally bandwidth hard.

Second, BRG(G) provides optimal resistance to the greedy pebbling attack —
Π
‖
cc(GP(BRG(G)))≈N2/4. Furthermore, we can show that any c-parallel pebbling

attack P=(P1,...,Pt) in which |Pi+1\Pi|≤c has cost Πcc(P)=Ω
(
N2). This rules out

any extension of the greedy pebble attack e.g., GPE (Algorithm 2) is 2-parallel. In
fact, we prove that this property already holds for any c-parallel pebbling of the bit
reversal graph BRGn. Our proof that Πcc(BRGn)=Ω(N2) generalizes the well-known
result that Πst(BRGn)=Ω(N2) and may be of independent interest.

Third, we can show that any parallel pebbling P of BRG(G) either has Πcc(P)=
Ω
(
N2) or has maximal sustained space complexity Πss (P,s) = Ω(N) for space

s=Ω(N/logN) i.e., there are at leastΩ(N) steps with at leastΩ(N/logN) pebbles on
the graph. To prove this last property we must rely on properties of both graphs G and
BRGn i.e., the fact that DRSample is highly block-depth robust and the fact that edges
BRGn are evenly distributed over every interval. This makes BRG(G) the first practical
construction of a DAG with provably strong sustained space complexity guarantees.

Finally, we can show that Π‖cc(G)=Ω
(
N2loglogN/logN

)
, matching the general

upper bound of Alwen and Blocki [AB16], under a plausible conjecture about the
block-depth-robustness of G. In particular, we conjecture that G is (e,d,b)-block
depth robust for e = Ω

(
NloglogN

logN

)
, d = Ω

(
NloglogN

logN

)
and b = Ω

(
logN

loglogN

)
. In

the appendix, we also show how to construct a constant indegree DAG G′ with
Π
‖
cc(G′)=Ω

(
N2loglogN/logN

)
from any (e,d)-depth robust graph by overlaying a

superconcentrator on top of G [Pip77]. However, the resulting construction is not
practically efficient. For the bit reversal overlay G′=BRG(G) we require the slightly
stronger assumption that G is block-depth-robust. As evidence for the conjecture
we show that known attacks require the removal of a set S of e=Ω

(
NloglogN

logN

)
to



achieve depth(G−S)≤ N√
logN

. Thus, we would need to find substantially improved
depth-reducing attacks to refute the conjectures.

Bit-Reversal Graph Background: The bit reversal graph was originally pro-
posed by Lenguer and Tarjan [LT82] who showed that any sequential pebbling
has maximal space-time complexity. Forler et al. [FLW14] previously incorporated
this graph into the design of their iMHF candidate Catena which received special
recognition at the password hashing competition [PHC16]. While we are not focused
on sequential space-time complexity the bit reversal graph has several other useful
properties that we exploit in our analysis (see Lemma 2).

Local Samplable. We note that one benefit of DRS+BRG is that it is locally
samplable, a notion mentioned as desirable in [ABH17]. Specifically, we want to be
able to compute the parent blocks with time and spaceO(log|V |) with small constants.
DRS+BRG meets this requirement. Edges sampled from DRSample were shown
to be locally navigable in [ABH17], and each bit-reversal edge a simple operation
called requires one bit reversal operation, which can easily be computed in O(log|V |).
The formal description of the bit-reversal overlay graph BRG(G) is presented in
Definition 4 and is presented in algorithmic form in Algorithm 4 in the appendix.

The Bit-Reversal DAG Given a sequence of bitsX=x1◦x2◦···xn, let ReverseBits(X)=
xn◦xn−1◦···◦x1. Let integer(X) be the integer representation of bit-string X starting
at 1 so that integer({0,1}n)=[2n] i.e., integer(0n)=1 and integer(1n)=2n. Similarly,
let bits(v,n) be the length n binary encoding of (v−1) mod2n e.g., bits(1,n)=0n
and bits(2n,n)=1n so that for all v∈ [2n] we have integer(bits(v,n))=v.

Definition 3. We use the notation BRGn to denote the bit reversal graph with 2n+1

nodes. In particular, BRGn=
(
V =

[
2n+1],E=E1∪E2

)
where E1 :={(i,i+1) : 1≤

i < 2n+1} and E2 := {(x,2n + y) : x = integer(ReverseBits(bits(y,n)))}. That is,
E2 contains an edge from node x ≤ 2n to node 2n + y in BRGn if and only if
x= integer(ReverseBits(bits(y,n))).

Claim 2 states that the cumulative memory cost of the greedy pebbling strategy
GP(BRGn) is at least N2+N .

Claim 2 Πcc(GP(BRGn))≥N2+N

Proof. Let P = (P1,...,P2N) = GP(BRGn). We first note that for all i≤N we have
Pi={1,...,i} since gc(i)>N — every node on the bottom layer [N] has an edge to
some node on the top layer [N+1,2N]. Second, observe that for any round i>N
we have |(Pi\Pi+1)∩[N ]|≤1 since the only pebble in [N] that might be discarded
is the (unique) parent of node i. Thus,

2N∑
i=1
|Pi|≥

N∑
i=1

i+
N∑
i=1

(N−i+1)=N(N+1) . �

Thus, we now define the bit-reversal overlay of the bit reversal graph on a graph
G1. If the graph G1 has N nodes then BRG(G1) has 2N nodes, and the subgraph
induced by the first N nodes of BRG(G1) is simply G1.



Definition 4. Let G1 =(V1 =[N ],E1) be a fixed DAG with N=2n nodes and BRGn=
(V =[2N],E) denote the bit-reversal graph. Then we use BRG(G1)=(V,E∪E1) to
denote the bit-reversal overlay of G1.

In our analysis, we will rely heavily on the following key-property of the bit-reversal
graph from Lemma 2.

Lemma 2. Let G = BRGn and N = 2n so that G has 2N nodes. For a given b,
partition [N ] into N

2n−b =2b intervals

Ik=
[
(k−1)2n−b, k2n−b−1

]
,

each having length 2n−b, for 1≤k≤2b. Then for any interval I of length 2b+1, with
I⊆ [N+1,2N ], there exists an edge from each Ik to I, for 1≤k≤2b.

Proof of Lemma 2. Let I be any interval of length 2b, with I⊆ [N+1,2N ]. Note that
every 2b length bitstring appears as a suffix in I. Thus, there exists an edge from
each interval containing a unique 2b length bitstring as a prefix. It follows that there
exists an edge from each Ik to I, for 1≤k≤2b. �

As we will see, the consequences of Lemma 2 will have powerful implications
for the pebbling complexity of G=BRG(G1) whenever the underlying DAG G1 is
(e,d,b)-block-depth-robust. In particular, Lemma 3 states that if we start with pebbles
on a set |Pi|< e/2 then for any initially empty interval I of O(N/b) consecutive
nodes in the top-half of G we have the property that H :=G−

⋃
x∈Pi[x−b+1,x]

is an (e/2,d,b)-block-depth-robust graph that will need to be completely re-pebbled
(at cost at least Π‖cc(H)≥ed/2) just to advance a pebble across the interval I. See
Appendix C for the proof of Lemma 3.

Lemma 3. Let G1 = (V1 = [N], E) be a (e, d, b)-block depth-robust graph with
N=2n nodes and let G=BRG(G1) denote the bit-reversal extension of G1 with 2N
nodes V (G) = [2N]. For any interval I =

[
N+i+1,N+i+1+ 4N

b

]
⊆ [2N] and any

S⊆ [1,N+i] with |S|< e
2 , ancestorsG−S(I) is

(
e
2 ,d,b

)
-block depth-robust.

Lemma 4. Let G be a (e,d, b)-Block Depth Robust DAG with N = 2n and let
G′=BRG(G) be the bit reversal overlay of G. Let P ∈P‖(G′) be a legal pebbling of G′
and let tv be the first time where v∈Ptv . Then for all v≥1 such that e′ := |Ptv+N |≤ e

4
and v≤N− 32Ne′

be , we have

t
v+N+ 32Ne

be′
−1∑

j=tv+N

|Pj|≥
ed

2 .

Proof of Lemma 4. Let v ≤N − 32Ne
be′ be given such that the set S = PtN+v has

size at most e′= |S| ≤ e/4 and set b′= eb
4e′ . Consider the ancestors of the interval

I = [N+v+1,N+v+ 8N
b′ ] in the graph G′−S. Note that I∩S= ∅ since v is the

maximum node that has been pebbled at time tN+v. We have

H :=G−
⋃
x∈S

[x−b′+1,x]⊆ancestorG′−S(I)



because for any node u∈V (G) if u 6∈
⋃
x∈S[x−b′+1,x] then [u,u+b′−1]∩S=∅

which implies that there exists an “S-free path” from u to I by Lemma 2. Thus,
H will have to be repebbled completely at some point during the time interval[
tv+N ,tv+N+ 32Ne′

be −1

]
since 32Ne′

be ≥
8N
b .

Since b′= eb
4e′ ≥b we note that the e′ intervals of length b′ we are removing can be

covered by at most db′/bee′=de/(4e′)ee′≤(e/4)+e′≤e/2 intervals of length e. Hence,
Lemma 3 implies that H is still (e/2,d,b)-Block Depth Robust and, consequently, we
have that Π‖cc(H)≥ed/2 by [ABP17]. We can conclude that

t
v+N+ 32Ne′

be
−1∑

j=tv+N

|Pj|≥Π‖cc(H)≥ed/2 . �

4.1 Sustained Space Complexity (Tradeoff Theorem)

We prove that for any parameter e=O
(

N
logN

)
the cumulative pebbling cost of any

parallel (legal) pebbling P is has cost least Π(P)=Ω(N3/(elogN)), or there are at
least Ω(N) steps with at least e pebbles on the graph i.e., Πss,e(P)=Ω(N). Note that
the cumulative pebbling cost rapidly increases as e decreases e.g., if e=

√
N/logN

then any pebbling P for which Πss(P,e)=o(N) must have Π(P)=Ω(N2.5).
To begin we start with the known result that (with high probability) a randomly

sampled DRSample DAG G is (e,d,b)-Block Depth Robust with e=Ω(N/logN),
b=Ω(logN), and d=Ω(N) [ABH17]. Lemma 5 now implies that the DAG is also
(e′,d,b′)-block-depth robust for any suitable parameters e′ and b′. Intuitively, if we
delete e′ intervals of length b′>b then we can cover these deleted intervals with at
most e′

(
b′

b +1
)

intervals of length b, as illustrated in Figure 1. The formal proof of
Lemma 5 is in the appendix.

Lemma 5. Suppose that a DAG G is (e,d,b)-Block Depth Robust and that parameters
e′ and b′ satisfies the condition that e′

(
b′

b

)
+e′≤ e

2 . Then G is (e′,d,b′)-Block Depth
Robust, and for all S with size |S| ≤ e′ the graph H = G−

⋃
x∈S[x− b′+ 1,x] is(

e
2 ,d,b

)
-Block Depth Robust.

Together Lemma 4 and Lemma 5 imply that we must incur pebbling cost Ω(ed) to
pebble any interval of Ω

(
Ne′

be

)
consecutive nodes in the top-half of BRG(G) starting

from any configuration with at most e′≤e/4 pebbles on the graph.
Theorem 4, our main result in this subsection, now follows because for any peb-

bling P ∈Π‖(BRG(G)) and any interval I of Ω
(
Ne′

be

)
nodes in the top-half of G we

must either (1) keep at least e′ pebbles on the graph while we walk a pebble accross
the first half of the interval I, or (2) pay cost Ω(ed) to re-pebble a depth-robust
graph. Since there are Ω

(
eb
e′

)
such disjoint intervals we must either keep |Pi| ≥ e′

pebbles on the graph for Ω(N) rounds, or pay cost Π‖cc(P)≥ e2db
64e′ .



G

G

F∈S
N∈S′

F

N N N N

⊆
⋃
x∈S[x−b′+1,x]

⊆
⋃
x∈S′ [x−b+1,x]

Fig. 1: Intervals
⋃
x∈S[x−b′+1,x] and

⋃
x∈S′[x−b+1,x] when b′ = 10 and b= 3.

Observe that
⋃
x∈S′[x−b+1,x]⊃

⋃
x∈S[x−b′+1,x] over the integers.

Theorem 4. Let G be any (e,d,b)-Block Depth Robust DAG on N=2n nodes, and
G′ = BRG(G) be the bit reversal overlay of G. Then for any pebbling P ∈Π‖(G)
and all e′≤ e

4 , we have either Π‖cc(P)≥ e2db
64e′ , or Πss(P,e′)≥ N

4 −o(N) i.e., at least
N
4 −o(N) rounds i in which |Pi|≥e′.

Corollary 3 follows immediately from Theorem 4.

Corollary 3. Let G be any
(
c1N
logN ,c2N,c3logN

)
-Block Depth Robust DAG on N=2n

nodes for some constants c1,c2,c3>0 and let G′=BRG(G) be the bit reversal overlay
of G. Then for any e′< c1N

4logN and any pebbling P ∈P‖(G′) we have either Π‖cc(P)≥
c2

1c2c3N
3

64e′logN , or Πss(P,e′)≥ N
4 −o(N) i.e., at least N

4 −o(N) rounds j in which |Pj|≥e′.

Remark 1. Alwen et al. previously proved that for constants c1 =2.4×10−4, c2 =0.03
and c3 =160 a randomly sampled DAGG from DRSample will be

(
c1N
logN ,c2N,c3logN

)
-

Block Depth Robust except with negligible probability [ABH17]. Thus, with high
probability Corollary 3 can be applied to the bit reversal overlay BRG(G). Notice also
that as e′ decreases, the lower bound on Π‖cc(P) increases rapidly e.g., if a pebbling
does not have at least Ω(N) steps with at least e′=Ω

(√
N
)

pebbles on the graph,

then Π‖cc(P)=Ω̃
(
N2.5).

A Conjectured (tight) Lower Bound on Π
‖
cc(BRG(G)). The idea behind

the proof of Theorem 5 in the appendix is very similar to the proof of Theo-
rem 4 — an attacker must either keep e/2 pebbles on the graph most of the
time or the attacker must pay Ω (edb) to repebble an (e, d)-depth Ω(b) times.
In fact, a slightly weaker version (worse constants) of Theorem 5 follows as a
corollary of Theorem 4 since Π‖cc(P)≥ e′×Πss(P,e′). Under our conjecture that
DR-Sample DAGs are (c1N loglogN/logN,c2N loglogN/logN,c3logN/loglogN)-block
depth-robust graph, Theorem 5 implies that Π‖cc(BRG(G))=Ω(N2loglogN/logN).
In fact, any pebbling must either keep Ω(N loglogN/logN) pebbles on the graph for
≈N/4 steps or the pebbling has cost Ω(N2loglogN).

Theorem 5. Let G1 be an (e,d,b)-block depth-robust graph with N=2n nodes. Then
Π
‖
cc(BRG(G1))≥min

(
eN
2 ,

edb
32
)
.



Evidence for Conjecture. In Appendix I we present evidence for our conjecture
on the (block)-depth robustness of DRSample. We show that all known techniques
for constructing depth-reducing sets fail to refute our conjecture. Along the way we
introduce a general technique for bounding the size of a set S produced by Valiant’s
Lemma8. In this attack we partition the edges into sets E1,...,En where Ei contains
the set of all edges (u,v) such that the most significant different bit of (the binary
encoding of) u and v is i. By deleting j of these edge sets (e.g., by removing one node
incident to each edge) we can reduce the depth of the graph to N/2j. In Corollary 7
we show that for any edge distribution function r(v)<v we have

E[|Ei|]=
N

2i +

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
2i−1+m≥v−r(v)>m

]
where the value of the random variable |Ei| will be tightly concentrated around its
mean since for each node v the edge distribution function r(v) is independent.

4.2 (Nearly) Sequential Pebblings of BRGn have Maximum Cost

In this section, we show that for any constant c≥1 any c-parallel pebbling P of BRGn
must have cost Πcc(P)=Ω

(
N2). A pebbling P=(P1,...,Pt) is said to be c-parallel if

we have |Pi+1\Pi|≤c for all round i<t. We remark that this rules out any natural
extension of the greedy pebbling attack e.g., the extension from the previous section
which defeated the XOR extension graph G⊕ was a c=2-parallel pebbling. We also
remark that our proof generalizes a well-known result of [LT82] which implied that
Πst(BRGn)=Ω

(
N2) for any sequential pebbling. For parallel pebblings it is known

that Π‖st =O
(
N1.5) [AS15] though this pebbling attack requires parallelism c=

√
N .

It is easy to show (e.g., from Lemma 2) that starting from a configuration with
|Pi|≤e pebbles on the graph, it will take Ω(N) steps to advance a pebble O(e) steps
on the top of the graph. It follows that Πst(BRGn)=Ω

(
N2). The challenge in lower

bounding Πcc(G) as in Theorem 6 is that space usage might not remain constant
throughout the pebbling. Once we have proved that Πcc(G)=Ω(N2) we then note
that any c-parallel pebbling P can be transformed into a sequential pebbling Q s.t.
Πcc(Q)≤c×Πcc(P) by dividing each transition Pi→Pi+1 into c transitions to ensure
that |Qj\Qj−1|≤1. Thus, it follows that Πcc(P)=Ω

(
N2) for any c-parallel pebbling.

8 In the appendix we also analyze the performance of Valiant’s Lemma attack against
Argon2i. Previously, the best known upper bound was that Valiant’s Lemma yields
a depth-reducing set of size e=O

(
Nlog(N/d)

logN

)
for any DAG G with constant indegree.

For the specific case of Argon2i this upper bound on e was significantly larger than the
upper bound —e= Õ

(
N

d1/3

)
— obtained by running the layered attack [AB17,BZ17].

Nevertheless, empirical analysis of both attacks surprisingly indicated that Valiant’s
Lemma yields smaller depth-reducing sets than the layered attack for Argon2i. We show
how to customize the analysis of Valiant’s Lemma attack to a specific DAG such as DR-
Sample or Argon2i. Our theoretical analysis of Valiant’s Lemma explains these surprising
empirical results. By focusing on Argon2i specifically we can show that, for a target
depth d, the attacker yields a depth-reducing set of size e= Õ

(
N

d1/3

)
�O

(
Nlog(N/d)

logN

)
,

which is optimal and matches the performance of the layered attack [BZ17].



Theorem 6. Let G=BRGn and N=2n. Then Πcc(G)=Ω
(
N2).

The full proof of Theorem 6 can be found in Appendix G. Briefly, we introduce a
potential function Φ and then argue that, beginning with a configuration with at
most O(e) pebbles on the graph, advancing the pebble e steps on the top of the
graph either costs Ω(Ne) (i.e., we keep Ω(e) pebbles on the graph for the Ω(N)
steps required to advance the pebble e steps) or increases the potential function by
Ω(Ne) i.e., we significantly reduce the number of pebbles on the graph during the
interval. Note that the cost Ω(Ne) to advance a pebble e steps on the top of the
graph corresponds to an average cost of Ω(N) per node on the top of the graph. Thus,
the total cost is Ω(N2). Lemma 6, which states that it is expensive to transition
from a configuration with few pebbles on the graph to a configuration with many
well-spread pebbles on the graph, is a core piece of the potential function argument.

Lemma 6. Let G=BRGn for some integer n>0 and N=2n. Let P=(P1,...,Pt)∈
P(G) be some legal sequential pebbling of G. For a given b, partition [N ] into N

2b =2n−b
intervals Ix=

[
(x−1)2b+1,x×2b

]
, each having length 2b, for 1≤x≤2n−b. Suppose

that at time i, at most N
2b′+3 of the intervals contain a pebble with b′≥b and at time

j, at least N
2b′+1 of the intervals contain a pebble. Then

|Pi|+...+|Pj|≥
N2

2b′+5 and (j−i)≥ 2b−b′N
4 .

5 Empirical Analysis

We empirically analyze the quality of DRS+BRG by subjecting it to a variety of
known depth-reducing pebbling attacks [AB16,AB17] as well as the “new” greedy
pebbling attack. We additionally present a new heuristic algorithm for construct-
ing smaller depth-reducing sets, which we call greedy depth reduce. We extend
the pebbling attack library of Alwen et al. [ABH17] to include the greedy peb-
bling algorithm [BCS16] as well as our new heuristic algorithm. The source code
is available on a (currently anonymous) Github repository https://github.com/
NewAttacksAndStrongerConstructions/EC2019_submission.

5.1 Greedy Depth Reduce

We introduce a novel greedy algorithm for constructing a depth-reducing set S such
that depth(G−S)≤dtgt. Intuitively, the idea is to repeatedly find the node v∈V (G)\S
that is incident to the largest number of paths of length dtgt in G−S and add v to
S until depth(G−S)≤dtgt. While we can compute incident(v,dtgt), the number of
length dtgt paths incident to v, in polynomial time using dynamic programming, it will
takeO(Ndtgt) time and space to fill in the dynamic programming table. Thus, a naive
implementation would run in total time O(Ndtgte) since we would need to recompute
the array after each iteration. This proves not to be feasible in many instances we
encountered e.g. N=224, dtgt=216 and e≈6.4×105 and we would need to run the

https://github.com/NewAttacksAndStrongerConstructions/EC2019_submission
https://github.com/NewAttacksAndStrongerConstructions/EC2019_submission


algorithm multiple times in our experiments. Thus, we adopt two key heuristics to
reduce the running time. The first heuristic is to fix some parameter d′≤dtgt (we used
d′=16 whenever dtgt≥16) and repeatedly delete nodes incident to the largest number
of paths of length d′ until depth(G−S)≤dtgt. The second heuristic is to select a larger
set T⊆V (G)\S of k nodes (we set k=400×2(18−n)/2 in our experiments) to delete
in each round so that we can reduce the number of times we need to re-compute
incident(v,dtgt). We select T in a greedy fashion: repeatedly select a node v (with
maximum value incident(v,d′)) subject to the constraint dist(v,T)≤ r for some
radius r (we used r=8 in our experiments) until |T |≥k or there are no nodes left
to add — here dist(v,T) denotes the length of the shortest directed path connecting
v to T in G−S. In our experiments we also minimized the number of times we
need to run the greedy heuristic algorithm for each DAG G by first identifying the
target depth value d∗tgt=2j with j∈ [n] which resulted in the highest quality attack
against G when using other algorithms (Valiant’s Lemma/Layered Attack) to build
the depth-reducing set S. For each DAG G we then ran our heuristic algorithm with
target depths dtgt=2j×d∗tgt for each j∈{−1,0,1}. We refer the reader to Appendix
E and Algorithm 5 for a more detailed discussion of our heuristic algorithm.

Figure 3 explicitly compares the performance of our greedy heuristic algorithm
with prior state-of-the art algorithms for constructing depth-reducing sets. Given a
DAG G (either Argon2i, DRSample or DRS+BRG) on N=2n nodes and a target
depth dtgt we run each algorithm to find a (small) set S such that depth(G−S)≤dtgt.
The figure on the left (resp. right) plots the size of the depth-reducing set e= |S| vs.
the size of the graph N (logscale) when the target depth dtgt=8 (resp. dtgt=16). Our
analysis indicates that our greedy heuristic algorithm outperforms all prior state-of-the
art algorithms for constructing depth-reducing sets including Valiant’s Lemma [Val77]
and the layered attack [AB16]. In particular, the greedy algorithm consistently outputs
a depth-reducing that is 2.5 to 5 times smaller than the best depth-reducing set found
by any other approach — the improvement is strongest for the DRSample graph.

5.2 Comparing Attack Quality

We ran each DAG G (either Argon2i, DRSample or DRS+BRG) with N = 2n
nodes against a battery of pebbling attacks including both depth-reducing at-
tacks [AB16,AB17] and the greedy pebble attack. In our analysis we focused on graphs
of size N=2n with n ranging from n∈ [14,24], representing memory ranging from
16MB to 16GB. Our results are shown in Figure 2. While DRSample provided strong
resistance to depth-reducing attacks (right), the greedy pebbling attack (left) yields
a very high quality attack (for n≥20 the attack quality is ≈n) against DRSample.
Similarly, as we can see in Figure 2, Argon2i provides reasonably strong resistance
to the greedy pebble attack (left), but is vulnerable to depth-reducing attacks (right).
DRS+BRG strikes a healthy middle ground as it provides good resistance to both
attacks. In particular, even if we use our new greedy heuristic algorithm to construct
the depth-reducing sets (right), the attack quality never exceeds 6 for DRS+BRG.
In summary, DRS+BRG provides the strongest resistance to known pebbling attacks
for practical parameter ranges n∈ [14,24].



As Figure 2 (right) demonstrates attack quality almost always improves when we
use the new greedy algorithm to construct depth-reducing sets. The one exception
was that for larger Argon2i DAGs prior techniques (i.e., Valiant’s Lemma) outperform
greedy. We conjecture that this is because we had to select the parameter d′�d∗tgt for
efficiency reasons. For DRSample and DRS+BRG the value d∗tgt was reasonably small
i.e., for DRSample we always had d∗tgt≤16 allowing us to set d′=d∗tgt. We believe that
the greedy heuristic algorithm would outperform prior techniques if we were able to
set d′∼d∗tgt and that this would lead to even higher quality attacks against Argon2i.
However, the time to pre-compute the depth-reducing set will increase linearly with d′.
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6 Pebbling Reduction

Alwen and Serbinenko [AS15] previously showed that, in the parallel random or-
acle model, the cumulative memory complexity (cmc) of an iMHFs fG,H can be
characterized by the black pebbling cost Π‖cc(G) of the underlying DAG. However,
their reduction assumed that the output of fG,H(x) := labG,H,x(N) is the label of
the last node N of G where labels are defined recursively using the concatenation
rule labG,H,x(v) :=H(v,labG,H,x(v1),...,labG,H,x(vδ)) where v1,...,vδ =parentsG(v). I
To improve performance, real world implementations of iMHFs such as Argon2i,
DRSample and our own implementation of BRG(DRSample) use the XOR labeling
rule labG,H,x(v) :=H (labG,H,x(v1)⊕labG,H,x(v2)⊕...⊕labG,H,x(vδ)) so that we can
avoid Merkle-Damgard and work with a faster round function H :{0,1}w→{0,1}w
instead of requiring H :{0,1}(δ+1)w→{0,1}w.

We prove that in the parallel random oracle model, the cumulative memory com-
plexity of fG,H is still captured by Π‖cc(G) when using the XOR labeling rule (under
certain restrictions discussed below that will hold for all of the iMHF constructions we
consider in this paper). We postpone a fully formal definition of cumulative memory
complexity cmc to Appendix H as it is identical to [AS15]. Intuitively, one can consider
the execution trace TraceA,R,H(x)={(σi,Qi)}ti=1 of an attacker AH(.)(x;R) on input
value x with internal randomness R. Here, Qi denotes the set of random oracle queries
made in parallel during round i and σi denotes the state of the attacker immediately
before the queries Qi are answered. In this case, cmc(TraceA,R,H(x)):=

∑
i|σi| sums

the memory required during each round in the parallel random oracle model9. For a
list of distinct inputs X=(x1,x2,...,xm), let f×mG,H(X) be the ordered tuple f×mG,H(X)=
(fG,H(x1),fG,H(x2),...,fG,H(xm)). Then the memory cost of a f×mG,H is defined by

cmcq,ε(f×mG,H)=min
A,x

E[cmc(TraceA,R,H(x))],

where the expectation is taken over the selection of the random oracle H(·) as well
as the internal randomness R of the algorithm A. The minimum is taken over all
valid inputs X=(x1,x2,...,xm) with xi 6=xj for i<j and all algorithms AH(.) that
compute f×mG,H(X) correctly with probability at least ε and make at most q queries
for each computation of fG,H(xi). Let G×m be a DAG with mN nodes, including
m sources and m sinks.

Theorem 7, our main result, states that cmcq,ε(f×mG,H) ≥ εwm
8δ ·Π

‖
cc(G). Thus,

the cost of computing fG,H on m distinct inputs and constant indegree graphs
G is at least Ω

(
m×w×Π‖cc(G)

)
— here, we assume that H : {0,1}w → {0,1}w.

We remark that for practical iMHF constructions we will have indegree δ∈{2,3}
so that cmcq,ε(f×mG,H) = Ω

(
Π
‖
cc(G)

)
. The δ-factor loss is necessary. For example,

9 Given a constant R which represents the core/memory area ratio we can define
aAT‖R(TraceA,R,H(x))=cmc(TraceA,R,H(x))+R

∑
i
|Qi|. We will focus on lower bounds

on cmc since the notions are asymptotically equivalent and lower bounds on aAT
complexity.



the complete DAG KN has maximum pebbling cost Π‖cc(KN)≥N(N−1)/2, but
cmcq,ε(f×mKN ,H)=O(Nw) when we use the XOR labeling rule10

Theorem 7. Let G be a DAG with N nodes, indegree δ ≥ 2, and parents(u) 6=
parents(v) for all pairs u 6=v∈V , and let fG,H be a function that follows the XOR
labeling rule, with label size w. Let H be a family of random oracle functions with
outputs of label length w and H=(H1,H2), where H1,H2∈H. Let m be a number
of parallel instances such that mN < 2w/32, q < 2w/32 be the maximum number of
queries to a random oracle, and let ε

4>2−w/2+2> qmN+1
2w−m2N2−mN + 2m2N2

2w−mN . Then

cmcq,ε(f×mG,H)≥ εmw8δ ·Π
‖
cc(G).

As in [AS15] the pebbling reduction relies on an extractor argument to show
that we can find a black pebbling P=(P1,...,Pt) s.t. |Pi|=O(|σi|/w). The extractor
takes a hint h of length |h|= |σi|+h2 and then extracts ` distinct random oracle
pairs (x1,H(x1)),...,(x`,H(x`)) by simulating the attacker. Here, one can show that
`≥h2/w+Ω(|Pi|), which implies that |σi|=Ω(w|Pi|) since a random oracle cannot
be compressed.

There are several additional challenges we must handle when using the XOR
labeling rule. First, in [AS15] we effectively use an independent random oracle
Hv(·)=H(v,·) to compute the label of each node v — a property that does not hold
for the XOR labeling rule we consider. Second, when we use the XOR labeling it is
more challenging for the extractor to extract the value of labels from random oracle
queries made by the (simulated) attacker. For example, the random oracle query
the attacker must submit to compute labG,H,x(v) is now

⊕δ
i=1labG,H,x(vi) instead

of (v,labG,H,x(v1),...,labG,H,x(vδ)) — in the later case it is trivial to read each of the
labels for nodes v1,...,vδ. Third, even if H is a random oracle the XOR labeling
rule uses a round function F(x,y)=H(x⊕y) that is not even collision resistant e.g.,
F(x,y)=F(y,x). Because of this, we will not be able to prove a pebbling reduction
for arbitrary DAGs G.

In fact, one can easily find examples of DAGs G where cmc(fG,H)�Π
‖
cc(G) i.e.,

the cumulative memory complexity is much less than the cumulative pebbling cost
by exploiting the fact that labG,H,x(u)= labG,H,x(v) whenever parents(u)=parents(v).
For example, observe that if parents(N)={u,v} and parents(u)=parents(v) then

fG,H(x)= labG,H,x(N)=H(labG,H,x(u)⊕labG,H,x(v))=H(0w) ,

so that fG,H(x) becomes a constant function and any attempt to extract a pebbling
from an execution trace computing fG,H would be a fruitless exercise!

For this reason, we only prove that cmc(fG,H)=Ω
(
Π
‖
cc(G)×w

)
when G=(V =

[N],E) satisfies the unique parents property i.e., for any pair of vertices u 6= v we
10 In particular, if we let Lv= labKN ,H,x(v)=H(Lv−1⊕...⊕L1) denotes the label of node v

given input x then the prelabel of node v is Yv=prelabKN ,H,x(v)=Li−1⊕...⊕L1. Given
only Yv we can obtain Lv=H(Yv) and Yv+1 =Yv⊕Lv. Thus, cmcq,ε(fKN ,H)=O(Nw)
since we can compute fKN ,H(x)=LN in linear time with space O(w).



have parents(v) 6=parents(u). We remark that any DAG which contains all edges of
the form (i,i+1) with i<N will satisfy this property since v−1 /∈parents(u). Thus,
Argon2i, DRSample and DRSample+BRG all satisfy the unique parents property.

Extractor: We argue that, except with negligible probability, a successful execu-
tion trace must have the property that |σi|=Ω(w|Pi|) for each round of some legal
pebbling P . Our extractor takes a hint which include σi (to simulate the attacker),
the set Pi and some (short) additional information e.g., to identify the index of
the next random oracle query qv where the label for node v will appear as input.
To address the challenge that the query qv = labG,H,x(v)⊕ labG,H,x(u) we increase
both the size of the hint and the number of labels being extracted e.g., our hint
might additionally include the pair (u,labG,H,x(u)) which allows us to extract both
labG,H,x(v) and labG,H,x(u) from qv. Our extractor will attempt to extract labels for
each node v∈Pi as well as for a few extra sibling nodes such as u, which means that
we must take care to ensure that we never ruin the extracted label labG,H,x(u) by
submitting the random oracle query

⊕δ
i=1ui to H(·). If G satisfies the unique parents

property then we can prove that whp our extractor will be successful. It follows that
|σi|=Ω(w|Pi|) since the hint must be long enough to encode all of the labels that we
extract.

7 An Improved Argon2 Round Function

In this section we show how a parallel attacker could reduce aAT costs by nearly an
order of magnitude by computing the Argon2i round function in parallel. We then
present a tweaked round function to ensure that the function must be computed
sequentially. Empirical analysis indicates that our modifications have negligible impact
on the running time performance of Argon2 for the honest party (sequential), while the
modifications will increase the attackers aAT costs by nearly an order of magnitude.
Review of the Argon2 Compression Function. We begin by briefly reviewing
the Argon2 round function G :{0,1}8092→{0,1}8092 which takes two 1KB blocks X
and Y as input and outputs the next block G(X,Y ). G builds upon a second function
BP : {0,1}128→{0,1}128, which is the Blake2b round function [SAA+15]. In our
analysis we treat BP as a blackbox. For a more detailed explanation including the
specific definition of BP, we refer the readers to the Argon2 specification [BDK16].

To begin, G takes the intermediate block R=X⊕Y (which is being treated as
an 8x8 array of 16 byte values R0,...,R63), and runs BP on each row to create a
second intermediate stage Q. We then apply BP to Q column-wise to obtain one
more intermediate value Z: Specifically:

(Q0,Q1,...,Q7)←BP(R0,R1,...,R7) (Z0,Z8,...,Z56)←BP(Q0,Q8,...,Q56)
(Q8,Q9,...,Q15)←BP(R8,R9,...,R15) (Z1,Z9,...,Z57)←BP(Q1,Q9,...,Q57)

...

(Q56,Q57,...,Q63)←BP(R56,R57,...,R63) (Z7,Z15,...,Z63)←BP(Q7,Q15,...,Q63)

To finish, we have one last XOR, giving the result G(X,Y )=R⊕Z.



ASIC vs CPU AT cost. From the above description, it is clear that computation
of the round function can be parallelized. In particular, the first (resp. last) eight
calls to the permutation BP are all independent and could easily be evaluated
in parallel i.e., compute BP(R0,R1,...,R7),...,BP(R56,R57,...,R64) then compute
BP(Q0,Q8,...,Q56),...,BP(Q7,Q15,...,Q63) in parallel. Similarly, XORing the 1KB
blocks in the first (R=X⊕Y ) and last (G(X,Y ) =R⊕Z) steps can be done in
parallel. This if we let tASICBP (resp. tCPUBP ) denote the time to compute BP on an
ASIC (resp. CPU) we have tASICG ≈ 2tASICBP whereas tCPUG ≈ 16× tCPUBP since the
honest party (CPU) must evaluate each call to BP sequentially. Suppose that the
MHF uses the round function G to fill N blocks of size 1KB e.g., N=220 is 1GB.
Then the total area-time product on an ASIC (resp. CPU) would approximately be(
AASICmem N

)
×
(
tASICG N

)
≈ 2N2×AASICmem tASICBP (resp.

(
ACPUmemN

)
×
(
16tCPBPN

)
where

AASICmem (resp.AASICmem ) is the area required to store a 1KB block in memory on an ASIC
(resp. CPU). Since memory is egalitarian we have AASICmem ≈ACPUmem whereas we may
have tASICBP �tCPUBP . If we can make G inherently sequential then we have tASICG ≈
16tASICBP , which means that the new AT cost on an ASIC is 16N2×AASICmem tASICBP which
is eight times higher than before. We remark that the change would not necessarily
increase the running time N×tCPUG on a CPU since evaluation is already sequential.
We stress that the improvement (resp. attack) applies to all modes of Argon2 both
data-dependent (Argon2d,Argon2id) and data-independent (Argon2i), and that the
attack could potentially be combined with other pebbling attacks [AB16,BCS16].

Remark 2. We remark that the implementation of BP in Argon2 is heavily optimized
using SIMD instructions so that the function BP would be computed in parallel on
most computer architectures. Thus, we avoid trying to make BP sequential as this
would slow down both the attacker and the honest party i.e., both tCPUBP and tASICBP
would increase.

Inherently Sequential Round Function. We present a small modification to
the Argon2 compression function which prevents the above attack. The idea is simply
to inject extra data-dependencies between calls to BP to ensure that an attacker
must evaluate each call to BP sequentially just like the honest party would. In short,
we require the first output byte from the i−1th call to BP to be XORed with the
ith input byte for the current (ith) call, as shown in Figure 4.

In particular, we now compute G(X,Y ) as:

(Q0,Q1,...,Q7)←BP(R0,R1,...,R7) (Z0,Z8,...,Z56)←BP(Q0,Q8,...,Q56)
(Q8,Q9,...,Q15)←BP(R8,R9⊕Q0,...,R15) (Z1,Z9,...,Z57)←BP(Q1,Q9⊕Z0,...,Q57)

... ...

(Q56,Q57,...,Q63)←BP(R56,R57,...,R64⊕Q48) (Z7,Z15,...,Z63)←BP(Q7,Q15,...,Q63⊕Z6)

where, as before, R=X⊕Y and the output is G(X,Y )=Z⊕R.
We welcome cryptanalysis of both this round function and the original Argon2

round function. We stress that the primary threat to passwords is brute-force attacks
(not hash inversions/collisions etc...) so increasing evaluation costs is arguably the
primary goal.



Implementation and Empirical Evaluation To determine the performance
impact this would have on Argon2, we modified the publicly available code to include
this new compression function. The source code is available on an anonymous Github
repository https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG. We
then ran experiments using both the Argon2 and DRS+BRG edge distributions, and
further split these groupings to include/exclude the new round function for a total
of four conditions. For each condition, we evaluated 1000 instances of the memory
hard function in single-pass mode with memory parameter N = 220 blocks (i.e.,
1GB=N×1KB). In our experiments, we interleave instances from different conditions
to ensure that any incidental interference from system processes affects each condition
equally. The experiments were run on a desktop with an Intel Core 15-6600K CPU
capable of running at 3.5GHz with 4 cores. After 1000 runs of each instance, we
observed only small differences in runtimes, ( 3%) at most. The exact results can
be seen in Table 1 along with 99% confidence intervals. The evidence suggests that
there is no large difference between any of these versions, and that the anti-parallel
modification would not cause a large increase in running time for legitimate users.

Table 1: Anti-parallel runtimes with 99% confidence
Argon2i DRS+BRG

Current 1405.541±1.036 ms 1445.275±1.076 ms
Anti-parallel 1405.278±1.121 ms 1445.017±0.895 ms
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AB16. Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent
memory-hard functions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 241–271. Springer,
Heidelberg, August 2016.
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Appendix

A Amortized Area-Time Complexity vs. Bandwidth
Hardness

The Amortized Area-Time Complexity [AS15,ABH17] metric aims to capture the
cost of the hardware (e.g., DRAM chips) the attacker must purchase to compute an
MHF — amortized by the number of MHF instances computed over the lifetime of

https://password-hashing.net/
http://eprint.iacr.org/2015/136


that hardware. By contrast, bandwidth hardness [RD17] aims to capture the energy
cost of the electricity required to compute the MHF once. If the attacker uses an
ASIC to computer the function then the energy expended during computation will
typically be small in comparison with the energy expended during a cache-miss. Thus,
a bandwidth hard function aims to ensure that any evaluation strategy incurs a large
number Ω(n) of cache-misses during computation.

We argue that, in the context of password hashing, the Amortized Area-Time
Complexity metric is more appropriate. In particular, our goal is to maximize the
attackers cost per password guess given a fixed bound N on the maximum acceptable
running time e.g.,N might be constrained by user patience since larger values ofN cor-
respond to larger authentication delays. Suppose that we fix N=220 and assume that
we operate over 1KB blocks as in Argon2i so that the total memory consumed is 1GB.

1. It cost approximately 0.3nJ per Byte transferred on an ASIC so if we optimisti-
cally assume that the attacker has to transfer 1GB of data to/from cache then the
attacker will consume 0.3J (8.33×10−8 kWh) per evaluation. If we optimistically
assume that the attacker pays $0.12 per kWh of electricity11 then it will cost
≈$1×10−8 per evaluation (password guess).

2. By contrast if we suppose that the attacker is able to purchase a 1GB DRAM chip
for as little as $5 and that the DRAM chip lasts for up to 2 years under constant
utilization then the attacker will be able to compute the MHF approximately
6.3×107 times over the lifetime of the DRAM chip — it takes approximately 1 sec-
ond to evaluate the Argon2i iMHF withN=220 blocks (1GB of memory) [BDK16].
Thus, if we amortize the cost of the DRAM chip over the total number of guesses
then the cost per guess is approximately one order of magnitude higher ≈1×10−7.

3. If we increase memory consumption to N = 222 1KB blocks (4GB) then the
bandwidth costs increases to ≈$4×10−8 (linear scaling), while the capacity costs
increase to ≈1.26×10−6 (quadradic scaling). To see this why this occurs we note
that the attacker would need to pay 4×$5 for four 1GB DRAM chips. Thus, the
cost of the memory chips increased. However, even though the attacker purchased
more DRAM the total number of instances we can evaluate in 2 years still
decreases to 1.58×107 because it now takes takes 4 seconds per MHF evaluation.
In this case we remark that the cost per evaluation due to hardware costs (aAT
complexity) exceeds the energy costs by nearly two orders of magnitude.

Furthermore, Blocki et al. [BRZ18] recently demonstrated that any MHF with
high Amortized Area-Time complexity must have relatively high bandwidth cost as
well. Thus, we chose to focus on Amortized Area-Time Complexity in this paper.
Ideally, an MHF would have high Amortized Area-Time Complexity and high band-
width cost. We remark that our construction DRSample+BRG has high bandwidth
costs 12 in addition to having high aAT complexity.
11 The figure $0.12 is based on the average price of electricity in the United States, but

the attacker might chose to locate in a state/country where electricity is cheaper.
12 Blocki et al. proved that DRSample in particular has asymptotically maximum bandwidth

cost. Our iMHF construction inherits this property automatically as it contains the
graph DRSample.



B The DRSample(+BRG) Algorithm

Algorithm 1: Greedy Pebble.
Input : DAG G=(V,E) of

size |V |=N∈N≥2 with edge set E={(i,i+1) | i<N}∪{(r(i),i) | i≤N}
Output
:

A legal pebbling P of G

Function GP(G=(V,E)):
P0 :={v|parents(v)=∅}
i :=1
while

⋃
Pi 6=V do

SafeToDiscard:={v|gc(v)<i}
Pi :=(Pi−1∪{v|parents(v)∈Pi−1})\SafeToDiscard
i←i+1

end
return P

Algorithm 2: Greedy Pebble Extension.
Input : DAG G=(V,E) of size

|V |=N=2n with edge set E={(i,i+1) | i<N}∪{(r(i),i) | 1<i≤N}
Output
:

A legal pebbling P⊕ of G⊕

Function GPE(G=(V,E)):
P :=GP(G)
Q :=GP(G≤N/2)
i :=1 for i=1 to N/2-1 do

P⊕i =Pi
P⊕i+N/2−1 =Qi∪Pi+N/2−1

end
P⊕N ={N}

return P

Here we provide the original unmodified version of the DRSample algorithm,
which is used in the construction of DRS+BRG. It can be seen in Algorithm 3. The
algorithm samples a random DAG G which was proven to be (Ω(N/logN),Ω(N))-
depth-robust with high probability. The algorithm to sample a random DRS+BRG
DAG G is presented in Algorithm 4.



Algorithm 3: An algorithm for sampling depth-robust graphs.
Function DRSample(n∈N≥2):

V :=[v]
E :={(1,2)}
for v∈ [3,n] and i∈ [2] do // Populate edges

E :=E∪{(GetParent(v,i),v)} // Get ith parent
end
return G :=(V,E).

Function GetParent(v,i):
if i=1 then

u :=i−1
else

g′←[1,blog2(v)c+1] // Get random range size.
g :=min(v,2g

′
) // Don’t make edges too long.

r←[max(g/2,2),g] // Get random edge length.
end
return v−r

Algorithm 4: An algorithm for sampling depth-robust graphs.
Input : Size n∈N≥2 of graph.
Output
:

A DRS+BRG DAG, the first half sampled

from DRSample and the second generated by the Bit Reversal Graph
Function DRS+BRG(n∈N≥2):

V =[2n]
E=∅
DRS←DRSample(N/2)
E :=E∪DRS.E
for v∈ [N/2+1,N] do

b←v modN/2
E :=E∪{reverse bits(b),v}

end

C Missing Proofs

Reminder of Theorem 1. Let r :N>0→N be any function with the property that
r(i)<i−1 for all i∈N>0. Then the DAG G=(V,E) with N nodes V ={1,...,N} and
edges E={(i−1,i) : 1<i≤N}∪{(r(i),i) : 2<i≤N} has Πst(G)≤ N2+2N

2 and
Πcc(G)≤ N2+2N

4 and aATR(G)≤ N2+2N
4 +RN .



Proof of Theorem 1. We consider the greedy pebbling P = GP(G) ∈ P(G). The
sequential pebbling finishes in N rounds and so the computation cost incurred is

N∑
i=1
|Pi\Pi−1|R=RN . (2)

Since the pebbling is sequential we observer that |Pi|≤i for each round i since we
can place at most i new pebbles on the graph in i rounds. Thus,

N/2∑
i=0
|Pi|≤

N/2∑
i=0

i=N2+2N
8 . (3)

Similarly, we also note that for each i we have

|Pi|≤|parents({N,...,i+1})|+1≤N−i+1

since Pi⊆{i}∪parents({N,...,i+1}). Thus, to analyze the last N/2 rounds, we look
from the opposite direction. |PN |=1,|PN−1|=2,...,|PN−i|≤i+1. Thus we have:

N∑
N/2

|Pi|=
N∑

i=N/2+1

N−i+1=N2+2N
8 . (4)

Combining equations 23 and 4 we have

Πcc(G)≤2N
2+2N

8 =N2+2N
4 ,

and
aAT‖(G)≤2N

2+2N
8 +RN=N2+2N

4 +RN .

Finally, for the maximum space usage is maxi|Pi|≤maximin{i,N−i+1} which is
achieved when i=dN2 e. Thus, Πst(G)≤ N2

2 +N . �

Reminder of Claim 1. Let G be a randomly sampled DRSample DAG with N
nodes and let Yi,j be an indicator random variable for the event that r(j)<i for nodes
i<j≤N then we have E[Yi,j]=Pr[r(j)<i]≤1− log(j−i−1)

logj .
Proof of Claim 1. Recall that DRSample select the parent node r(j) in several
stages. First, we partition all nodes v < j − 1 into log j buckets B1, ... , Blogj
where B1 = [j − 2 − 20, j − 2), B2 = [j − 2 − 20 − 21, j − 2 − 20), ... , Bk+1 =
[j − 2− 20 − 21 − ...− 2k,j − 2− 20 − 21 − ...− 2k−1), ... and select a bucket Bk
uniformly at random from all logj buckets. Second, we select a node r(j) uniformly at
random from the bucket Bk. Note that if i≤j−2−20−21−...−2k−1 (or equivalently,
log2(j−i−1)≥k) and we select the bucket Bk in step 1 then we cannot possibly
select r(j)<i in step 2. Thus, as long as k≤ log(j−i−1) we will have r(j)≥i so

Pr[r(j)≥i]> log(j−i−1)
logj



, meaning that Pr[r(j)<i]≤1− log(j−i−1)
logj . �

Reminder of Lemma 1. Given a DAG G on N = 2n nodes sampled using the
randomized DRSample algorithm for any η>0 we have

Pr
[
max
i
|χ(i)|>(1+η)

(
2N
n

)]
≤exp

(
−2η2N

3n +nln2
)
.

Proof of Lemma 1. We let Yi,j denote and indicator random variable for the event
that r(j)≤i and observe that χ(i)≤

∑N
j=i+1Yi,j, since χ(i) is upper bounded by the

number of edges that “cross” over the node i. Therefore, by linearity of expectation
and by Claim 1 it follows that

E[|χ(i)|]≤
N∑

j=i+1
E[Yi,j]≤1+

N∑
j=i+2

(
1− log(j−i−1)

logj

)
.

We now define QN to be the predicate that for all i≤N we have that

1+
N∑

j=i+2

(
1− log(j−i−1)

logj

)
≤ 2N

logN .

It is straightforward to verify that the predicate QN holds for N ≤ 11 by direct
calculation for all possible cases. Having established our base cases we will argue
inductively that QN→QN+1 for all N≥11 by induction. The following claim will be
useful

Claim 3 If N≥11 then 2N
logN + log(N+1)−log(N/2)

log(N+1) ≤ 2(N+1)
log(N+1) .

Proof. Observe that if N≥11 then we also have N≥e7
3 and logN≤N/3. Thus, we

have that (
N

N+1

)2N+logN
·N≥

(
N

N+1

)7N
3

·N≥ N

e
7
3
≥1

⇔ log
(

N

N+1

)
(2N+logN)+logN≥0

⇔ 2N
logN + log(N+1)−log(N/2)

log(N+1) ≤ 2(N+1)
log(N+1) .

�

Supposing that QN holds for N≥11 we do the following case analysis to show
that QN+1 holds:

– For all i≤ N
2 we rely on our inductive hypothesis to see that

1+
N+1∑
j=i+2

(
1− log(j−i−1)

logj

)
≤ 2N

logN + log(N+1)−log(N−i)
log(N+1) .



Claim 3 now implies that

1+
N+1∑
j=i+2

(
1− log(j−i−1)

logj

)
≤ 2N

logN + log(N+1)−log(N−i)
log(N+1)

≤ 2N
logN + log(N+1)−log(N/2)

log(N+1)

≤ 2(N+1)
log(N+1) .

– For all i> N
2 , we have that

1+
N+1∑
j=i+2

(
1− log(j−i−1)

logj

)
≤1+

N+1∑
j=i+2

(
logj−log(j−i−1)

log(N/2)

)

≤1+ 1
log(N/2)log

 N+1∏
j=i+2

j

j−i−1


=1+ 1

logN−1log
(

(N+1)!
(N−i)!(i+1)!

)
=1+ 1

logN−1log
(
N+1
i+1

)
≤1+ N+1

logN−1

≤ 2(N+1)
log(N+1) (whenever N≥11)

It follows that 1+
∑N+1
j=i+2

(
1− log(j−i−1)

logj

)
≤1+ N

logN−1≤
2(N+1)

log(N+1) for all i≤N+1
so the predicate QN+1 holds.

Therefore, we have that E[|χ(i)|] ≤ 2N
logN for all i ≤ N. As the expected value

is the sum of independent random variables, we can use Chernoff Bounds with
µ= 2N

n ≥
∑N
j=i+1E[Yi,j] to show that for any constant η we have

Pr[|χ(i)|>(1+η)µ]<exp
(
−2η2N

3n

)
.

Now we union bound over all i≤N to recover the original lemma statement. �

Reminder of Theorem 3. Let r :N>0→N be any function with the property that
r(i)<i for all i∈N>0 and let G=(V,E) be a graph with N nodes V ={1,...,N} and
directed edges E={(i,i+1) | i<N}∪{r(i),i | 1<i≤N}. If P =GP(G)∈P(G) and
Q∈P(G≤N/2) then the XOR-extension graph G⊕ of G has amortized Area-Time
complexity at most

aAT‖R
(
G⊕
)
≤
N/2∑
i=1
|Pi|+

N∑
i=1
|Qi|+

3RN
2 .



Proof of Theorem 3. We consider the pebbling P⊕= GPE(G) from Algorithm 2.
For i<N/2 we have P⊕i =Pi where P=GP(G) is the greedy pebbling. We remark
that P⊕i =Pi and P⊕N/2+i−1 =Qi∪Pi+N/2−1 for i<N/2 and P⊕N ={N}=PN where
P=GP(G) and Q=GP(G≤N/2).

We first argue that the pebbling P⊕ is legal. Legality of the first N/2 moves
follows directly from legality of the pebbling P for GP(G) since G⊕≤N/2 =G≤N/2.
For later rounds we consider the sets Di = P⊕i+N/2−1 \P

⊕
i+N/2−2 of new pebbles

placed during round i+N/2−1. To show that the pebbling is legal we want to
show that parents(Di)⊆P⊕i+N/2−2. We note that the set Di contains exactly two
nodes Di={i,i+N/2−1}. First consider the node i. Because i∈Qi\Qi−1 and Q
is a legal pebbling of G≤N/2 we know that parents(i)⊆Qi−1⊆P⊕i+N/2−2. Similarly,
any parent of node i+N/2−1 in G (i.e., possibly excluding node i−1) would be
contained in Pi+N/2−2⊆P⊕i+N/2−2. G⊕ contains at most one additional parent of
node i+N/2−1 i.e., node i−1. However, we have i−1∈Qi−1⊆P⊕i+N/2−2. Thus,

parents
(
P⊕i+N/2−1\P

⊕
)
⊆
(
Pi+N/2\Pi+N/2−1

)
⊆P⊕i+N/2−2.

As demonstrated in the proof of Theorem 1 for P=GP(G) we have

aAT‖R(P)≤N
2+2N

4 +RN . (5)

Similarly, for Q=GP(G≤N/2) we have

aAT‖R(Q)≤N
2+4N
16 +RN/2 . (6)

By definition of P⊕ we have

aAT‖
(
P⊕
)
≤ aAT‖R(P)+aAT‖R(Q)

≤ 5N2+12N
16 + 3RN

2 .

Reminder of Lemma 5. Suppose that a DAG G is (e,d,b)-Block Depth Robust and
that parameters e′ and b′ satisfies the condition that e′

(
b′

b

)
+e′≤ e

2 . Then G is (e′,d,b′)-
Block Depth Robust, and for all S with size |S|≤e′ the graph H=G−

⋃
x∈S[x−b′+1,x]

is
(
e
2 ,d,b

)
-Block Depth Robust.

Proof of Lemma 5. 1. Suppose that G is not (e′,d,b′)-Block Depth Robust. Then
there exists a set S with size |S|≤e′ such that depth

(
G−

⋃
x∈S[x−b′+1,x]

)
<d. Now,

let S′ be the set
S′=

{
v−b′i|v∈S and 0≤i<

⌈
b′

b

⌉
,i∈Z

}
.

Then we can claim that
⋃
x∈S[x−b′+1,x]⊆

⋃
x∈S′[x−b+1,x] since

y∈
⋃
x∈S

[x−b′+1,x] =⇒ ∃u∈S with u−b′+1≤y≤u



=⇒ u−b
⌈
b′

b

⌉
+1≤u−b′+1≤y≤u

=⇒ ∃i∈Z with 0≤i<
⌈
b′

b

⌉
with

u−b(i+1)+1≤y≤u−bi

=⇒ y∈
⋃
x∈S′

[x−b+1,x].

But since G is (e,d,b)-Block Depth Robust, we have

d≤depth
(
G−

⋃
x∈S′

[x−b+1,x]
)

≤depth
(
G−

⋃
x∈S

[x−b′+1,x]
)
<d

which is a contradiction.
2. By definition of S′, we have

|S′|≤
⌈
b′

b

⌉
|S|≤

(
b′

b
+1
)
e′≤ e2 ,

and depth
(
G−

⋃
x∈S′[x−b+1,x]

)
≤depth

(
G−

⋃
x∈S[x−b′+1,x]

)
. Since we have only

deleted at most e
2 intervals of length b and the assumption that G is (e,d,b)-Block

Depth Robust, we can conclude that the subgraph H is itself still
(
e
2 ,d,b

)
-Block

Depth Robust. �

Reminder of Lemma 3. Let G1 = (V1 = [N],E) be a (e,d,b)-block depth-robust
graph with N=2n nodes and let G=BRG(G1) denote the bit-reversal extension of
G1 with 2N nodes V (G)=[2N ]. For any interval I=

[
N+i+1,N+i+1+ 4N

b

]
⊆ [2N ]

and any S⊆ [1,N+i] with |S|< e
2 , ancestorsG−S(I) is

(
e
2 ,d,b

)
-block depth-robust.

Proof of Lemma 3. Since, G1 is (e,d,b)-block depth-robust and |S| ≤ e
2 it follows

that H=G1−∪x∈S[x−b+1,x] is
(
e
2 ,d,b

)
block depth-robust. Thus, it is sufficient

to argue that V (H)⊆ancestorsG−S(I).
Consider any v∈ [1,N], either v∈∪x∈S[x−b+1,x] (i.e., v 6∈V (H)) or

[
v,v+ b

2
]

contains no vertices of S (i.e., v ∈ V (H)). In the latter case, the graph G must
contain an edge of the form (x,y) with x∈

[
v,v+ b

2
]

and y ∈ I because Lemma 2
implies that for any interval I′⊆ [N ] of length b

2 , there is an edge from I′ to I. Thus,
v∈ancestorsG−S(I) since there is an S-free path from v to I via the edge (x,y). �

Reminder of Theorem 4. Let G be any (e,d,b)-Block Depth Robust DAG on
N=2n nodes, and G′=BRG(G) be the bit reversal overlay of G. Then for any pebbling
P ∈Π‖(G) and all e′≤ e

4 , we have either Π‖cc(P)≥ e2db
64e′ , or Πss(P,e′)≥ N

4 −o(N)
i.e., at least N

4 −o(N) rounds i in which |Pi|≥e′.
Proof of Theorem 4. Let P ∈P‖(G′) be a legal pebbling of G′ and let tv be the
first time where v∈Ptv . Set b′ := eb

4e′ . Partition the nodes (i.e., the top nodes of G′)



into b′/4 intervals I1,...,Ib′/4 s.t. for each j ≤ b′/4 the interval Ij contains each of
the nodes

[
N+ 4N(j−1)

b′ +1,N+ 4Nj
b′

]
. Let fj=N+ 4N(j−1)

b′ +1 denote the first node
in interval Ij and let tj,f := tfj denote the first time where the node fj is pebbles.
Similarly, let mj=N+ 4N(j−1)+N

b′ denote a node in the middle of the interval and
let tj,m :=tmj denote the first time this node is pebbled. Notice that we must have
tj,m−tj,f≥fj−mj≥ N

b′ since in any legal pebbling it will take at least fj−mj steps
to walk a pebble from fj to mj.

We remark that P either (1) keeps at least |Pj|≥e′ pebbles during each round
j ∈ [tj,f ,tj,m] i.e., at least N

b′ rounds, or (2) for some j ∈ [tj,f ,tj,m] we drop below
|Pj|<e′ pebbles. In the second case Lemma 4 implies that

t
v+N+ 32Ne′

be
−1∑

j=tv+N

|Pj|≥ed/2 .

We have at least b′

4 −1 disjoint intervals of length 4N
b′ (possibly excluding the last

interval Ib′/4).

1. If case (1) applies to at least b′

8 − 1 intervals, then we have 2N
b′ ×

(
b′

8 −1
)

=
N
4 −

2N
b′ = N

4 −o(N)=Ω(N) steps with at least e pebbles.
2. Otherwise, case (2) applies to at least b′

8 intervals and we must pay the cost

Π‖cc(P)≥
(
b′

8

)
× ed2 = e2db

64e′ =Ω
(
edb
( e
e′

))
. �

D New Argon2 Round Function

Figure 4, shown here, is a visual representation of the Argon2 round function with
added dependencies shown as arrows.

E Greedy Algorithm for Constructing Smaller
Depth-Reducing Sets

A recent line of work establishes a close connection between the aAT completixty of an
iMHF and the depth-robustness of and underlying DAG [AB16,ABP17,ABH17]. In
particular, if a DAG G is highly depth-robust then the corresponding iMHF provably
has high aAT complexity if and only if the underlying DAG G is depth-robust. Thus,
an improved algorithm for constructing smaller depth-reducing sets S would likely
yield improved pebbling attacks against the DAG G. We introduce a new greedy
algorithm to construct small depth-reducing sets and demonstrate the advantage of
our new approach empirically.



Fig. 4: Dependencies in round function calls with m=218kB of memory

Intuition Behind Greedy Depth Reduce At a high level the intuition behind Algorithm 5
is simple. Find the node v that is incident to the maximum number of length d paths
and delete it. Repeat until no length d paths are left. We use dynamic programming
to identify the node v that is incident to the maximum number of length d paths.

A dynamic programming method The subroutine CountPaths in Algorithm 5 uses
dynamic programming to compute the number of length paths that are incident to
each node v. To accomplish this task we fill in two dynamic programming tables.
Intuitively, PathsEndingAtNode[v,i] (resp. PathsStartingAtNode[v,i]) denotes the
total number of directed paths of length i (here, length is the total number of di-
rected edges on the path) that end (resp. begin) at node v. To fill in the dynamic
programming table we exploit the fact that

PathsEndingAtNode[v,i]=
∑

(u,v)∈E

PathsEndingAtNode[u,i−1] (7)

Intuitively, Equation 7 follows because any path of length i that ends at node v
has the form P=P ′,v where P ′ is a directed path of length i−1 ending at some node
u and the graph contains the directed edge (u,v)∈E from u to v. Similarly, any path
of length i beginning at node v has the form P=v,P ′ where P ′ is a directed path of
length i−1 beginning at node w and the graph contains the directed edge (v,w)∈E.



Algorithm 5: An algorithm for a new depth-reducing attack.
Input : DAG G=([N],E) and target depth d
Output
:

A depth-reducing set S

Function BuildDepthReducingSet(n∈N≥2,d):
S=∅
NodesInRadius :=∅
while depth(G−S)>d do

IncidentPathsCount :=CountPaths(G,S,d)
B :=SelectRemovalNodes(G,d,r,k,NodesInRadius)
S :=S∪B

end
return S

Input : DAG G=([N],E) and set S of already deleted nodes and a depth d
Output
:

An array IncidentPathsCount, where IncidentPathsCount[v] denotes

the number of paths of length d incident to node v in the graph G−S.
Here, the length of a path is given by the number of edges in the path.

Function CountPaths(G, S, d):
for v∈ [N] do

PathsEndingAtNode[v,0]=1
PathsStartingAtNode[v,0]=1

end
for i=[1,d] do

for v∈ [N] do
PathsEndingAtNode[v,i]=

∑
(u,v)∈EPathsEndingAtNode[u,i−1]

PathsStartingAtNode[v,i]=
∑

(v,w)∈EPathsStartingAtNode[w,i−1]
end

end
for v∈ [N] do

IncidentPathsCount[v]=∑d

i=0PathsEndingAtNode[v,i]×PathsStartingAtNode[v,d−i]
end
return IncidentPathsCount

Thus, we can use Equation 8 to compute the second array PathsStartingAtNode[v,i]

IncidentPathsStartingAtNode[v,i]=
∑

(v,w)∈E

IncidentPathsStartingAtNode[w,i−1] .

(8)
Once we have computed both tables we can compute the total number of length

d paths incident to each node v as follows

IncidentPathsCount[v]=
d∑
i=0

PathsEndingAtNode[v,i]×PathsEndingAtNode[v,d−i]

(9)



Intuitively, Equation 9 follows because each path of length d that is incident to v
has the form P=P1,P2 where P1 is a length i path ending at node v, P2 is a length
j path beginning at node v and the total length of both paths is i+j=d.

We remark that both of the dynamic programming tables has size O(Nd) and
that it takes time O(Nd) for the subroutine CountPaths to finish. If we want to reduce
space usage it is possible to reduce memory consumption to O(N logd) if we are
willing to increase our running time to O(Ndlogd). To further increase performance
a specific depth can be set i.e. look for the number of nodes with the highest number
of incident paths of some length. We use this method in the experiments shown in
Figure 2b and Figure 3. 13

Algorithm 6: A greedy algorithm to select multiple nodes to remove.
Input : DAG G=([N],E), depth d, radius r, k which denotes the number

of nodes that will be removed at one time and set NodesInRadius
of nodes that are in the radius of all the already deleted nodes.

Output
:

A set of selected nodes to remove

Function SelectRemovalNodes(G, IncidentPathsCount, d,r,k):
if r=0 then

return {argmaxv(IncidentPathsCount[v])}
SelectedCandidates=SelectTopKnodes(IncidentPathsCount)
for v∈SelectedCandidates do

if v /∈NodesInRadius then
B :=B∪{v}
UpdateNodesInRadius(G,v,r,NodesInRadius)

end
return B

Function UpdateNodesInRadius(G, v, r, NodesInRadius):
while dist(u,v)≤r or dist(v,u)≤r do

if u /∈NodesInRadius then
NodesInRadius :=NodesInRadius∪{u}

end
Function SelectTopKnodes(IncidentPathsCount,k):

return Set of k largest nodes in IncidentPathsCount

Challenges While the new greedy algorithm for constructing depth-reducing sets
yielded superior results (smaller depth-reducing sets for the same target depth d),
Algorithm 5 is more expensive computationally than previous approaches. In par-
ticular, the algorithm requires O(Nde) time in the full version to complete where
e is the size of the final depth reducing set that is returned. When N,d,e are all
13 This can be accomplished by discarding rows of the dynamic programming table from

memory and recomputing them later. At each point in time we keep logd rows of the
table in memory to ensure that each row will only need to be repebled.



large this approach is not always computationally feasible. Another challenge is that
Algorithm 5 requires O(Nd) space for the dynamic programming tables, which can
be problematic for larger target depths d e.g., when N=224 with target depth d=215

we would require terabytes of memory to store the dynamic programming table. We
remark that it is possible to reduce space usage to O(N logd) while maintaining
a running time of O(Nde) by strategically recomputing portions of the dynamic
programming table to reduce memory usage.

The result of the CountPaths subroutine is IncidentPathsCount[v] an array which,
for each vertex v, counts the number of paths of length d incident to node v in graph
G−S. Here we can employ a heuristic to speed up computation. We note that nodes
close to nodes selected for removal in each round have a higher chance of being selected
in the next round of CountPaths. However, when node v has a large number of paths
of length d incident to it, the nodes that are close to v may also have a large number
of paths of length d which share many of the same paths. Thus, deleting nodes that
are close together might not contribute much to a decrease the depth of the remaining
graph. To counteract this we eliminate the nodes that are within a certain radius of
the deleted nodes as shown in UpdateNodesInRadius and SelectRemovalNodes. Thus
we add multiple nodes per round, yet do so strategically using this heuristic to help
increase depth more per node added to the depth reducing set.

E.1 Empirical Analysis
Figure 3 compares the performance of our new method with prior state-of-the art
techniques for constructing depth-reducing sets. As the figure shows our algorithm is
able to consistently construct significantly smaller depth-reducing sets. In particular,
the size of the depth-reducing sets we obtain are typically 2–3 times smaller than
prior approaches [ABH17,AB17]. Figure 2 compares the attack quality of our new
method with previous best depth-reducing attack. Our new method not only reduces
the size of the depth-reducing set, but also improves state-of-the art pebbling attacks.

F Candidate CMC-Optimal DAGs

In this section we present two candidate DAGs G which achieve the best possible lower
bound on Π‖cc(G)=Ω(N2loglogN/logN) for constant indegree graphs under plausible
conjectures of the (block) depth-robustness of these DAGs. Our first results shows
that any (e,d)-depth-robust DAG G with e=d=Ω(N loglogN/logN) can be used to
construct a new graph G′=superconc(G) s.t. G′ has Π‖cc(G′)=Ω(N2loglogN/logN)
by overlaying a superconcentrator on top of G. We first recall the definition of a
superconcentrator.
Definition 5. A graph G with O(N) vertices is a superconcentrator if there exists
I,O with |I|= |O|=N such that for all S1⊆I,S2⊆O with |S1|= |S2|=k, there are
k vertex disjoint paths from S1 to S2.
It is well known that there exists superconcentrators with |I|= |O|=N, constant
indegree and O(N) nodes total e.g. [LT82,Pip77]. We now define the overlay of a
superconcentrator on a graph G1.



Definition 6. Let G1 be a fixed DAG with N nodes and G2 = (V,E) be a (a
priori fixed) super-concentrator with N inputs I = {i1,...,iN} ⊆ V and N outputs
O={o1,...,oN}⊆V . We use G=superconc(G1) to denote the graph G=(V,E∪F1∪F2)
where F1 ={(oi,oi+1) : 1≤i<N} and F2 ={(iu,iv) :(u,v)∈E(G1)}.

Theorem 8 ( [ABP17], Theorem 4). If G is (e,d)-depth robust, then Π‖cc(G)>ed.

Lemma 7. Let G be an (e,d)-depth robust graph. Then for all S with |S|< e
2 , it

follows that Π‖cc(G−S)≥ e
2d.

Proof. Observe that if G is (e,d)-depth robust and |S|< e
2 , then G−S is

(
e
2 ,d
)
-depth

robust. Thus, Π‖cc(G−S)≥ e
2d by Theorem 8. �

Conjecture 1. Let G be a graph with N nodes sampled uniformly at random from
the DRSample distribution. Then with high probability, G is (e,d)-depth robust,
where e= c1NloglogN

logN and d= c2NloglogN
logN , for some constants c1,c2>0.

Theorem 9. Let G1 be an (e,d)-depth robust graph with N nodes. Then for G=
superconc(G1), Π‖cc(G)=Ω

(
min

(
Ne−2e2

4 ,Nd−2ed
4

))
.

Proof. Let P = (P1,...,Pt) ∈ P‖(G) be a legal pebbling of G and let {o1,...,oN}
denote the output nodes of the super-concentrator. For each node v ∈ V (G), let
tv be the first time v is pebbled. Notice that toi <toi+1 since G includes the edge
(oi,oi+1) for each i<N. Partition L into intervals of 2e consecutive output nodes
L1 ={o1,...,o2e},L2 ={o2e+1,...,o4e},... and use let vistart=o2e(i−1)+1 denote the first
node in interval Li, vimid=o2e(i−1)+e denote the middle node, and vilast=o2e(i−1)+2e

denote the last node in the interval Li. We also use Lfirsti ={o2e(i−1)+1,...,o2e(i−1)+e}
to denote the first e nodes on the interval Li and Llasti ={o2e(i−1)+e+1,...,o2e(i−1)+2e}
to denote the second half of the interval.

We now lower bound
∑t

vi
end

i=t
vi
start

|Pi|, the cost incurred during pebbling rounds
[tvistart,tviend]. We consider two cases.

In case 1 we have |Pj|≥ e
2 for all j∈ [tvstart,tvmid]. In this case we have

t
vi
end∑

j=t
vi
start

|Pj|≥

t
vi
mid∑

j=t
vi
start

|Pj|≥
(
tvi
mid
−tvistart

)e
2≥

e2

2 ,

where the last inequality follows from the observation that(
tvi
mid

+1−tvistart
)
≥2e(i−1)+e+1−2e(i−1)+1=e .

In case 2 there exists some time j∗∈ [tvistart,tvimid] such that |Pj∗|< e
2 . Now we

note that we must completely re-pebble all nodes in the set ancestorsG−Pj∗ [Llasti ]
before round tvi

last
. Let S={i1,...,iN}\ancestorsG−Pj∗ [Llasti ] be the inputs of G that



are not ancestors of Llasti in the graph G−Pj∗ i.e., the nodes we don’t necessarily
need to repebble. We first claim that |S|≤|Pj∗|<e/2. Suppose note, then, since G
is a super-concentrator, there are min(|S|,e)> |Pj∗| vertex disjoint paths from S to
Llasti in G. It follows that there is a path from some node v∈S to Llasti which avoids
Pj∗, but this implies that v∈ancestorsG−Pj∗ [Llasti ]. Contradiction, by construction
S is disjoint from ancestorsG−Pj∗ [Llasti ]! It follows that |S|≤|Pj∗|.

We now let S1 ={v∈V (G1) : iv ∈S} be the nodes in G1 corresponding to the
inputs S⊆V (G). Note that |S1|= |S|. We have

t
vi
end∑

j=t
vi
start

|Pj|≥

t
vi
end∑

j=j∗
|Pj|≥Π‖cc(G1−S1)≥ ed2

where the second to last inequality follows because we need to re-pebble every input
node that is not in S and we G contains a copy of G1 overlayed on top of the inputs.
The last inequality follows from Lemma 7.

We have show that for each interval Li we have
t
vi
end∑

j=t
vi
start

|Pj|≥min
{
e2

2 ,
ed

2

}
.

Since there are at least
⌊
n
2e
⌋

such intervals, the total cost of pebbling G is at least

t∑
j=1
|Pj|≥

bN2ec∑
i=1

t
vi
end∑

j=t
vi
start

|Pj|≥
(
N

2e−1
)

min
{
e2

2 ,
ed

2

}
. �

If Conjecture 1 holds, then we can take e=Ω
(
NloglogN

logN

)
and d=Ω

(
NloglogN

logN

)
so

that Π‖cc(G)=Ω
(
N2loglogN

logN

)
.

Corollary 4. Let G1 be a graph with N nodes sampled uniformly at random from
the DRSample distribution. If Conjecture 1 holds, thenΠ‖cc(superconc(G1))=Ω

(
N2loglogN

logN

)
with high probability.

However, a superconcentrator overlay is not the most practical construction. Before
we describe a more practical construction, we first set up some notation.

We now make a conjecture slightly stronger than Conjecture 1 and show it also
leads to an asymptotically cmc-optimal DAG may be easier for practical implement.

Conjecture 2. Let G be a graph with N nodes sampled uniformly at random from the
DRSample distribution. Then with high probability, G is (e,d,b)-block depth robust,
where e= c1NloglogN

logN , d= c2NloglogN
logN , and b= c3logN

loglogN for some constants c1,c2,c3>0.

Reminder of Theorem 5. Let G1 be an (e,d,b)-block depth-robust graph with
N=2n nodes. Then Π

‖
cc(BRG(G1))≥min

(
eN
2 ,

edb
32
)
.



Proof of Theorem 5. Suppose G1 = (V1 = [N],E1) is (e,d,b)-block depth-robust
DAG with and let G=BRG(G1) be a graph with V =[2N ]. We partition the nodes
[N+1,2N ] from the second half of G into

⌊
b

16
⌋

disjoint intervals of length 16N
b :

J0 =
[
N+1,N+ 16N

b

]
,J1 =

[
N+ 16N

b
+1,N+ 32N

b

]
,...

and split each interval Ji into Fi =
[
N+ 16iN

b +1,N+ 16iN
b + 8N

b

]
, the first half of

the interval, and Li=
[
N+ 16iN

b + 8N
b +1,N+ 16(i+1)N

b

]
, the last half of the interval.

Similarly, partition the first half of G into disjoint intervals of length b
4 : I1 =

[
1, b4
]
,I2 =[

b
4 +1, b2

]
,.... By Lemma 2, each Li is connected to all of the intervals {Ik}. For any

fixed i let tstart be first time the first node in Fi is pebbled and let tlast be the first
time the last node in Fi is pebbled. Note that either for all j∈ [tstart,tlast], |Pj|≥ e

2 ,
or there exists a j∈ [tstart,tlast] with |Pj|< e

2 .
In the first case, |Pj|≥ e

2 for at least b
8 steps, so that the cost of pebbling the

interval is at least 8eN
b . In the second case, there exists a j∈ [tstart,tlast] with |Pj|< e

2 .
Observe that Li has length 8N

b . Thus by Lemma 3, ancestorsG−Pj(Li) is
(
e
2 ,d,b

)
block

depth-robust, so by Theorem 8, the cost to repebble ancestorsG−Pj(Li) is at least ed
2 .

Hence, the cost to pebble each interval of length 16N
b is at least min

(8eN
b ,ed2

)
.

Accounting for each of the b
16 intervals, the total pebbling cost is at least min

(
eN
2 ,

edb
32
)
.

�

Corollary 5. Let G1 be a graph with N nodes sampled uniformly at random from the
DRSample distribution. If Conjecture 2 holds, then Π

‖
cc(BRG(G1))=Ω

(
N2loglogN

logN

)
with high probability.

G Sequential Complexity of the Bit Reversal Graph

In this section, we show that the bit reversal graph has high sequential cumulative
memory cost.

Definition 7. We say an interval I=[a,b] contains a pebble in round j if I∩Pj 6=∅.
We also interchangeably say that we place a pebble on I in round j if I∩Pj 6=∅, but
I∩Pj−1 =∅.

Reminder of Lemma 6. Let G=BRGn for some integer n>0 and N=2n. Let
P=(P1,...,Pt)∈P(G) be some legal sequential pebbling of G. For a given b, partition
[N] into N

2b = 2n−b intervals Ix =
[
(x−1)2b+1,x×2b

]
, each having length 2b, for

1≤x≤2n−b. Suppose that at time i, at most N
2b′+3 of the intervals contain a pebble

with b′≥b and at time j, at least N
2b′+1 of the intervals contain a pebble. Then

|Pi|+...+|Pj|≥
N2

2b′+5 and (j−i)≥ 2b−b′N
4 .



Proof of Lemma 6. We say an interval Ix is far from being pebbled at time k if both
Ix−1∩Pk=∅ and Ix∩Pk=∅. Let z be the last pebbling round i<z<j in which |Pz|<
N

2b′+3 . Since at most N
2b′+3 intervals contain pebbles at time z, there are at least N

2b′+1−
2N

2b′+3 = N
2b′+2 intervals Ix that are far from being pebbled at time z, but also contain

a pebble at time j. For each such interval Ix, at least 2b sequential pebbling steps are
necessary to place a pebble on Ix, since Ix−1∩Pz=∅ and each interval has length 2b.
Thus, at least j−z≥ N

2b′+2 ·2b= 2b−b
′
N

4 steps are necessary to reach round j. Hence,

|Pi|+...+|Pj|≥|Pz+1|+...+|Pj|≥
2b−b′N

4 · N2b+3 = N2

2b′+5 . �

Reminder of Theorem 6. Let G=BRGn and N=2n. Then Πcc(G)=Ω
(
N2).

Proof of Theorem 6. We first let P ∈P(G) be a legal sequential pebbling of the bit
reversal graph G. Let ti denote the first time a pebble is placed on node i. We first
show that we can assume |Pk|< N

32 for all pebbling rounds k.
If |Pk| ≥ N

32 , then let z < k be the last time at which |Pz|< N
64 and note that

k−z≥|Pk|−|Pz|≥ N
64 , since at most one pebble can be added in each round in a

sequential pebbling. Thus, it follows that aAT(P)≥(k−z)N64≥
(
N
64
)2.

In the remainder of the proof we assume that |Pk|< N
32 for all k and in particular,

|PtN |< N
32 . We define a sequence b0,b1,...,bi∗ recursively as follows. Let b0>0 be the

largest integer such that at most N
2b0+3 of the N

2b0 intervals I0
1 ,...,I

0
2n−b0 contain pebbles

at time y0 =tN , where I0
x :=[(x−1)·2b0 +1,x·2b0] denotes the intervals that partition

the nodes [N ] in the first layer of the bit reversal graph. Let b1>0 be the largest integer
so that at most N

2b1+3 of the N
2b1 intervals I1

1 ,...,I
1
2n−b1 with I1

x :=[(x−1)·2b1 +1,x·2b1]
contain pebbles at time y1 = tN+4N/2b0 , and in general, once b0,...,bi have been
defined, let bi+1 denote the largest integer so that at most N

2bi+1+3 of the N
2bi+1

intervals Ii+1
1 ,...,Ii+1

2n−bi+1 contain pebbles at time yi+1 =tN+4N/2b0+...+4N/2bi , where
Ii+1
x :=[(x−1)·2bi+1 +1,x·2bi+1].

We halt the sequence whenever
∑i∗

i=02−bi+2N≥3N/4. We now prove two useful
claims. Claim 4, which follows from Lemma 6, lower bounds the initial pebbling cost.
In particular, if b0 =O(1) is any constant then Claim 4 implies that aAT(P)=Ω(N2).
Lemma 6 also implies that if for any bi in our sequence we have bi =O(1) then
aAT(P)=Ω(N2). Thus, in the rest of the proof we can safely assume that for each
i≤i∗ we have bi≥4 so thatN2−bi<N/4. In particular, this implies that yi∗≤t2N and

i∗−1∑
i=0

2−bi+2N≥N/2 , and thus
i∗−1∑
i=0

2−bi+22−bi≥2−3 .

Claim 4
y0−1∑
i=1
|Pi|≥

N2

2b0+8 .



Proof of Claim 4. The claim follows by setting b=b0+1 and b′=b+2 in Lemma 6. In
particular, at time j=y0 we must have pebbles on at least N

2b0+4 = N
2b+3 = N

2b′+1 of the
intervals I0

x=[(x−1)2b+1,x×2b] — otherwise we could have selected a larger value
of b0. Similarly, at time i=0 we have no pebbles on the graph. Thus, by Lemma 6

y0−1∑
i=1
|Pi|≥

N2

2b′+5 = N2

2b0+8 . �

Claim 5 lower bounds the elapsed time between two phases. In particular,
yi+1−yi≥ 3N

4 .

Claim 5 For all 0≤i<i∗ we have yi+1−yi≥ 3N
4 .

Proof of Claim 5. Each of the nodes in

I :=
[
N+4N

(
2−b0 +...+2−bi−1

)
,N+4

(
2−b0 +...+2−bi

)]
are all pebbled for the first time during the time interval [yi,yi+1] — if i=0 then set I :=[
N+1,N+4N2−b0

]
. By Lemma 2, each interval Iik of the form Iik=

[
(k−1)2bi,k×2bi

]
has an edge to I. Hence, for each interval of the form Iik=

[
(k−1)2bi,k×2bi

]
there must

be some pebbling round j∈ [yi,yi+1] s.t. Iik contains a pebble at time j i.e.,
∣∣Pj∩Iik∣∣>0.

We have N
2bi intervals of the form Iik and, by definition of bi, at most N

2bi−3 of
these intervals Iik contain pebbles at time yi. Let F denote the set of all such intervals
Iik s.t. both of the intervals Iik and Iik+1 contain no pebbles at time yi. We note that

|F |≥ N

2bi −2× N

2bi−3 ≥
3
4×

N

2bi .

Finally, we note that each interval Iik in F will require 2bi steps as it will need to be com-
pletely repebbled before we can place a pebble on the next interval Iik+1. Thus, we have

yi+1−yi≥2bi|F |≥ 3N
4 . �

We now define a potential function Φ to help analyze the amortized cost of
pebbling during each interval [yi,yi+1]. In particular, we initially set Φ(y0)= N2

28+b0

and then prove that for each such interval we have

Φ(yi)−Φ(yi+1)+
yi+1−1∑
t=yi

|Pt|≥
N2

2bi+10 .

It follows that

−∆Φ+
i∗−1∑
i=0

yi+1−1∑
t=yi

|Pt| =
i∗−1∑
i=0

(
Φ(yi+1)−Φ(yi)+

yi+1−1∑
t=yi

|Pt|

)



≥
i∗−1∑
i=0

N2

210+bi

= N2

29

i∗−1∑
i=0

2−bi

≥ N2

213 .

We then separately prove that ∆Φ≥−Φ(yo) which means that

y0−1∑
t=0
|Pi|+

∑
i

yi+1−1∑
t=yi

|Pt|≥
y0−1∑
t=0
|Pi|+

N2

213−Φ(yo)≥
N2

212 ,

where the last inequality follows because Claim 4 implies
∑y0−1
t=0 |Pi|≥Φ(y0).

We now consider several cases based on the difference bi+1−bi:

Case 1 (small increase): bi≤bi+1≤bi+2. We consider two sub-cases: either in every round z∈ [yi,yi+1)
we have |Pz|> N

2bi+8 , or at some point z∈ [yi,yi+1) we have |Pz|≤ N
2bi+8 . In the

first sub-case, the cost of pebbling during rounds [yi,yi+1) is at least

yi+1−1∑
t=yi

|Pt|≥(yi+1−yi)
N

2bi+8 ≥
3N
4 ·

N

2bi+8 ≥
N2

2bi+9 .

To obtain a lower bound in the second sub-case we rely on the observation that
at time yi+1 there must be pebbles on at least 1

8-fraction of the intervals of length
2bi+1+1. Now we set b=bi+1+1 and b′=b+2≤bi+5 in Lemma 6 to obtain the
lower bound

yi+1−1∑
t=yi

|Pt|≥
N2

2b′+5 ≥
N2

2bi+10 .

Note that we can apply Lemma 6 since we end with pebbles on at least
N/2bi+1+4 =N/2b′+1 of the intervals of length 2b at time yi+1 (otherwise, we
would have selected bi+1 =b) and start with pebbles on at most |Pz|≤ N

2bi+8 ≤ N
2b′+3

such intervals.
Thus, in this sub-case we have cost at least

∑yi+1−1
t=yi |Pt|≥

N2

2bi+10 . In both sub-
cases we set Φ(yi+1):=Φ(yi) so that the potential function does not change i.e.,
Φ(yi)−Φ(yi+1)=0.

Case 2 (decrease): bi+1 =bi−k with k≥1. In this case the pebbling costs will be quite large which
will allow us to “recharge” the potential function using excess costs. We again
consider two subcases. In subcase one we assume that |Pz| ≥ N

2bi+1+6 for all
z∈ [yi,yi+1) which immediately implies that

yi+1−1∑
t=yi

|Pt|≥
3N
4 ·

N

2bi+1+6 ≥
3N2

2bi−k+8 ≥
N2

2bi−k+7 .



In the second case we let z∈ [yi,yi+1) be the latest time for which |Pz|≤ N
2bi+1+6 . By

setting b=bi+1+1 and b′=b+2=bi+1+3 in Lemma 6 we obtain the lower bound

yi+1−1∑
t=yi

|Pt|≥
N2

2b′+5 ≥
N2

2bi+1+8 = N2

2bi−k+8 .

Note that we can apply Lemma 6 since at most |Pz| ≤ N
2bi+1+6 = N

2b′+3 of the
intervals of size 2b are pebbled at time z and at least N

2b+3 = N
2b′+1 of these intervals

must be pebbled by time yi+1 — otherwise we would have selected a larger bi+1.
In both sub-cases we have

yi+1−1∑
t=yi

|Pt|≥
2k+2N2

2bi+10 .

We will define Φ(yi+1):=Φ(yi)+
(
2k+2−1

)
N2

2bi+10 . Notice that while the potential
does increase significantly in this case we still have

Φ(yi)−Φ(yi+1)+
yi+1−1∑
t=yi

|Pt|≥
N2

2bi+10 .

Case 3 (large increase): bi+1>bi+2. In this case we will simply define Φ(yi+1)=Φ(yi)− N2

2bi+10 so that
trivially we have

Φ(yi)−Φ(yi+1)+
yi+1−1∑
t=yi

|Pt|≥
N2

2bi+10 .

In particular, we don’t attempt to lower bound the pebbling costs in this case
and instead reduce the potential function.

In the final case the potential decreases, but, as we later prove in Lemma 8, we
maintain the invariant that Φ(yi)≥0 which means that for any i>0 we have

Φ(y0)−Φ(yi)≤Φ(y0)≤
y0−1∑
t=1
|Pt| .

It remains to prove that the potential function never becomes negative. Lemma 8
shows that a stronger invariant holds.

Lemma 8. For each i we have Φ(yi)≥ N2

2bi+8 .

Proof of Lemma 8. Clearly, when i= 0 we have Φ(y0)≥ N2

2bi+8 by definition. Now
suppose that the invariant holds at time i and consider Φ(yi+1). There are three cases.
In the first case (small increase) we have bi≤ bi+1≤ bi+2. In this case we defined
Φ(yi+1)=Φ(yi). It follows that

Φ(yi+1)=Φ(yi)≥
N2

2bi+8 ≥
N2

2bi+1+8 .



In the second case (decrease) we have bi+1 =bi−k with k>0 where we had set

Φ(yi+1) = Φ(yi)+
(
2k+2−1

) N2

2bi+10

= Φ(yi)+
(
2k+2−1

) N2

2bi+1+k+10

≥ N2

2bi+1+8 +
(
Φ(yi)−

N2

2bi+10

)
≥ N2

2bi+1+8 .

In the third case (large increase) we have bi+1>bi+2 and we defined Φ(yi+1)=
Φ(yi)− N2

2bi+10 . Thus,

Φ(yi+1)≥ N2

2bi+8−
N2

2bi+10 ≥
N2

2bi+9 ≥
N2

2bi+1+6 . �

This completes the proof of Theorem 6. �

Definition 8. A pebbling P=P1,... is c-parallel if |Pi+1\Pi|≤c for all i. We define
Πc

cc(G) to be the cumulative pebbling cost by any c-parallel pebbling.

Note that any c-parallel pebbling P places at most c new pebbles in each step,
so that |Pi+1 \Pi| ≤ c for all i. Thus, each step Pi in a c-parallel pebbling can be
emulated by a sequence of c steps Qci+1,...,Qc(i+1) in a sequential pebbling where
Qci=Pi and Qc(i+1) =Pi+1 so that |Qj+1\Qj|≤1 for all j and |Qci+j|≤|Pi+1| for
all 1≤j≤c. Thus, for any c-parallel pebbling P there exists a sequential pebbling
Q with Πcc(Q)≤c×Πcc(P).
Remark 3. For any graph G and any integer c≥1,

Πcc(G)≤c×Πc
cc(G) .

Corollary 6. Let G=BRGn and N=2n for some integer n>0. In particular, for
any constant c≥1 we have Πc

cc(G)=Ω(Πcc(G))=Ω
(
N2).

H Pebbling Reduction for XOR Labeling Rule

Alwen and Serbinenko [AS15] previously showed that, in the parallel random or-
acle model, cumulative memory complexity of an iMHFs fG,H can be character-
ized by the black pebbling cost Π‖cc(G) of the underlying DAG. However, their
reduction assumed that the output of fG,H is fG,H(x) := labG,H,x(N) is the la-
bel of the last node N of G where labels are defined recursively using the rule
labG,H,x(v)=H(v,labG,H,x(v1),...,labG,H,x(vδ)) where v1,...,vδ =parentsG(v). To im-
prove performance real world implementations of iMHFs such as Argon2i, DRSample
and our own construction BRG(DRSample) are defined using the XOR labeling rule

labG,H,x(v)=H
(

δ⊕
i=1

labG,H,x(vi)
)



=H(labG,H,x(v1)⊕labG,H,x(v2)⊕...labG,H,x(vδ)),

where v1,...,vδ are the parents of node v.
In this section we prove that, in the parallel random oracle model, the cumula-

tive memory complexity of fG,H is still captured by Π‖cc(G) when using the XOR
labeling rule. There are several additional challenges we must handle when using
the XOR labeling rule. First, in [AS15] we effectively use an independent random
oracle Hv(x)=H(v,x) to compute the label of each node v — a property that does
not hold for XOR labels. Second, even if H is a random oracle the hash function
F(x,y)=H(x⊕y) is used to generate the labels.

We remark that G is not even collision resistant e.g., F(x,y)=F(y,x). Because
of this we will not be able to prove a pebbling reduction for arbitrary DAGs G. In
fact, one can easily find examples of DAGs G where cmc(fG,H)�Π

‖
cc(G) i.e., the

cumulative memory complexity is much less than the cumulative pebbling cost by
exploiting the fact that labG,H,x(u)= labG,H,x(v) whenever parents(u)=parents(v). In
such a case if parents(N)={u,v} we would have

fG,H(x)= labG,H,x(N)=H(labG,H,x(u)⊕labG,H,x(v))=H(0w) ,

so that fG,H(x) becomes a constant function!
For this reason we only prove that cmc(fG,H)=Ω

(
Π
‖
cc(G)×w

)
when G=(V =

[N],E) contains all of the edges of the form (i,i+1) with i<N. This ensures that
for any u< v we have parents(v) 6= parents(u) since v−1 /∈ parents(u). Fortunately,
this happens to be true of all of the iMHFs we consider. We can use this to ar-
gue that it is not possible for an attacker to find a pair (x,v) 6= (x′,v′) such that
labG,H,x′(v′)= labG,H,x(v).

Definition 9 (XOR Labeling). Suppose G=(V,E) is a directed acyclic graph with
indegree δ and a single sink node N. Given a family of random oracle functions
H={H1,H2} with H1,H2 :Σ∗→Σ` over an alphabet Σ, we define the prelabel of
a node v∈ [N] as prelabG,H,x(i) : [N]→ΣU . We omit the subscripts G,H when the
dependency on the graph G and hash function H is clear. In particular, given an
input x the prelabel of node v is defined by

prelabG,H,x(v)=


H1(x), indeg(v)=0
labG,H,x(v−1), indeg(v)=1⊕δ

i=1labG,H,x(vi), indeg(v)>1.

where v1,...,vδ are the parents of node v. The (H,x) XOR labeling of G is then defined
recursively by

labG,H,x(v)=


H2(H1(x)), indeg(v)=0
H2(labG,H,x(v−1)), indeg(v)=1
H2

(⊕δ
i=1labG,H,x(vi)

)
, indeg(v)>1.

.

We then define fG,H(x)= labG,H,x(N).



Lemma 9 states that, except with negligible probability, all nodes will have dis-
tinct labels and pre-labels as long as the original DAG satisfies the property that
parents(u) 6= parents(v) for all pairs u 6= v ∈ V . The assumption that parents(u) 6=
parents(v) for all u 6=v∈V is necessary so that each node in G has a unique prelabel
with high probability. Otherwise, we cannot accurately view the label of each node
as an independent strings. See Figure 5 for an example of a DAG whose prelabels
are not necessarily different.

Lemma 9. Suppose G= (V,E) is a DAG with N nodes, such that parents(u) 6=
parents(v) for all pairs u 6= v ∈ V . Let H= (H1,H2) be a family of random oracle
functions with outputs of label length w. Then

Pr
H∈H

[COLLISION]≤ 2N2

2w−N .

where COLLISION denotes the event ∃a 6=b∈V,labG,H,x(a)= labG,H,x(b)∨prelabG,H,x(a)=
prelabG,H,x(b).

Proof of Lemma 9. Suppose without loss of generality that the nodes 1,...,N are in
topological order and let H be chosen uniformly at random from H. Let Lm be the
event that labG,H,x(a)= labG,H,x(b) for some a 6=b with a,b≤m. Let Pm be the event
that prelabG,H,x(a)=prelabG,H,x(b) for some a 6=b with a,b≤m.

Consider an induction on m after observing that Pr[L1]=Pr[P1]=0. For any
v∈V , let r1(v),...,rδv(v) denote the parents of v with r1(v)<r2(v)<...< rδv . For
fixed i∈V with i<m+1, prelabG,H,x(i)=prelabG,H,x(m+1) if and only if

δi⊕
j=1

labG,H,x(rj(i))=
δi⊕
j=1

labG,H,x(rj(m+1)) .

Conditioned on ¬Lm, the probability that prelabG,H,x(i)=prelabG,H,x(m+1) for
a fixed i <m+1 is at most 1

2w−m since labG,H,x(r1(i)) =H
(
prelabG,H,x(r1(i))

)
is

essentially a uniformly random w bit string — the condition ¬Lm that the first m
pre-labels are pairwise distinct rules out at most m possible values of labG,H,x(r1(i)).
Taking a union bound over all choices of i≤m we have

Pr[Pm+1|¬Lm∧¬Pm]≤ m

2w−m≤
N

2w−N .

Conditioned on ¬Pm+1, it follows that for a fixed i < m+1, prelabG,H,x(i) 6=
prelabG,H,x(m+1). Hence, the probability that labG,H,x(i) = labG,H,x(m+1) for a
fixed i<m+1 is at most 1

2w−m since we can view labG,H,x(m+1) as a uniformly
random w bit string conditioning on the event that it is not equal to any of the m
prior labels labG,H,x(1),...,labG,H,x(m). Taking a union bound over all choices of i≤m,

Pr[Lm+1|¬Lm∧¬Pm+1]≤ m

2w−m≤
N

2w−N .

Thus, it follows that Pr[¬PN∧¬LN ]≤ 2N2

2w−N . �



Fig. 5: An example of a DAG without independent prelabels.

Technical Note: Argon2i actually defines the first two blocks according to a special
rule. Essentially, the labels of the first two nodes will be H1(x,0) and the label of
the second node will be H1(x,1), while the rest of the nodes will be defined as above.
We remark that Lemma 9 will still hold with this modification since the prelabels
for the first two nodes are guaranteed to be distinct.

H.1 Memory in the Parallel Random Oracle Model

Before describing our reduction, we formally recall the definition of cumulative mem-
ory complexity in the pROM model. Let the state of an algorithm AH(.) at time i
to be σi, which contains the contents of the memory. Let AH(.) be a pROM attacker
AH(.) who is given oracle access to a random oracle H :{0,1}∗→{0,1}w. An execution
of AH(.) on input x proceeds in rounds as follows. Initially, the state at time 0 is
σ0, which encodes the initial input x. At the beginning of round i the attacker is
given the initial state σi−1 as well as the answers Ai−1 to any random oracle queries
that were asked at the end of the last round. The algorithm AH(.) may then perform
arbitrary computation and choose to update the memory, outputting a new state
σi, along with a batch of queries Qi={qi1,qi2,...,q

ki
i }.

Execution Trace. The execution trace of the algorithm AH(.) is defined by the se-
quence of memory states and queries made to the random oracle H. Formally, the
execution trace is TraceA,R,H(x) = {(σi,Qi)}ti=1, where the trace TraceA,R,H(x) is
dependent on the algorithm AH(.), random oracle H, internal randomness R, and
input value x. Then the cumulative memory cost of the execution trace is

cmc(TraceA,R,H(x))=
∑
i

|σi| .

Note that the attacker is not charged for space used for computation between queries.
This is justified since we will lower bound the cumulative memory cost. We say that
an execution trace TraceA,R,H(x) is successful if the final output was correct i.e.,
fG,H(x)= labG,H,x(N).

H.2 Ex-Post-Facto Pebbling

Let fG,H be a function with random oracleH and underlying directed acyclic graphG.
We show that computation of fG,H yields a legal black pebbling with high probability.
We first define an ex-post-facto pebbling for any computation of fG,H using the
following terminology.



Definition 10. We say that random oracle query q targets node v if q=prelab(v).
We say that the node v is an input for query q if q=prelab(w) for some node w such
that v∈ parents(w). We use the predicate targets(q,v) (resp. input(q,v)) to indicate
that query q targets node v (resp. node v is an input for query q).

We remark that multiple nodes v could be the target of a query q if two pre-labels
collide i.e., prelabG,H,x(v)=prelabG,H,x(u), though Lemma 9 implies that that this only
happens with negligible probability when all nodes in G have a distinct set of parents.

We use AH(.) to extract a legal P = (P1,...,Pt)∈P‖(G) from a successful exe-
cution trace. Given a successful execution trace TraceA,R,H(x) = {(σi,Qi)}ti=1 we
let Ti = {v : ∃q ∈ Qi s.t. targets(q, v)} be the set of targeted nodes in round i
and we let Ii = {v : ∃q ∈ Qi s.t. input(q,v)} be the set of required input nodes
in round i. Given a node v and a round i we define NextTargetRound(v,i) (resp.
NextRequiredRound(v,i)) to be the earliest round j ≥ i s.t. v ∈ Tj (resp. v ∈ Ij).
We define Ri = {v : NextRequiredRound(v, i) ≤ NextTargetRound(v, i)} to de-
note the set of all nodes which are required as inputs for random oracle queries
before they are observed as outputs. Now to obtain the corresponding pebbling
BlackPebbleH(TraceA,R,H(x))=(P0,...,Pt) where P0 =∅ and Pi=Ri∩(Ti∪Pi−1) for
each round 0<i≤t.

Intuitively, at each time j, Pj contains all nodes v whose label will appear as
input to a future random oracle query before the label appears as the output of a
random oracle query.

Definition 11. Given an execution trace TraceA,R,H(x)={(σi,Qi)}ti=1 we say that
a round i query q∈Qi is lucky if for some nodes x and v∈parents(x) we have :

– targets(q,x) (query q targets node x), and
– For all prior queries q′∈

⋃i−1
j=1Qj we have targets(q′,v)=0 i.e., v has not been

the target of any prior query.

We say that the output is lucky if the execution trace is successful, but the final node
N was never the target of a query i.e., targets(q,N)=0 for all q∈

⋃t
j=1Qj.

Observe that if there are no lucky guesses, then BlackPebbleH(TraceA,R,H(x))=
P0,...,Pt corresponds to a legal black pebbling.

Theorem 10. Suppose G=(V,E) is a DAG with N nodes, such that parents(u) 6=
parents(v) for all pairs u 6=v∈V . and that A computes fG,H correctly with probability
at least ε while making at most q queries to the random oracle. Then with probability
at least ε− qN+1

2w−N−N2 − 2N2

2w−N the ex-post-facto pebbling extracted from A is a legal
pebbling and the event COLLISION from Lemma 9 does not occur.

Proof. Fix an execution trace TraceA,R,H(T)={(σi,Qi)}ti=1. By Lemma 9 we have
that the probability of the event COLLISION that two nodes have the same label
or pre-label is at most N2

2w−1−2N . We now upper bound the probability that there
is a lucky query conditioning on the event that COLLISION does not occur. Let
NQi={v : targets(q′,v)=0 ∀q′∈

⋃i−1
j=1Qj} denote the set of nodes that were never

a target of any query q′ before round i.



Fixing a query q′∈Qi along with a node u we have

Pr[targets(q′,u) : parents(u)∩NQi 6=∅]≤
1

2w−N−N2 .

This follows because, if some v∈parents(u) has never been the target of a prior random
oracle query, then we gave never submitted the query prelab(v) and we can essentially
view the label labG,H,x(v)=H(prelab(v)) as a uniformly random w-bit string that
is yet to be selected. The only restriction is that labG,H,x(v) must be distinct from
other known labels and that for any pair of nodes u1,u2 we have prelabG,H,x(u1) 6=
prelabG,H,x(u2) since we condition on the event that the event COLLISION does not oc-
cur. These restrictions rule out at most N+N2 possible values of the label labG,H,x(v).
Hence, for any constant w-bit string y∈{0,1}w, the string y⊕labG,H,x(v) can essen-
tially be viewed as a w-bit string selected uniformly at random. More precisely, we can
view the prelabel prelab(u)= labG,H,x(v)⊕

(⊕
i∈parents(u)\{v}labG,H,x(i)

)
as a random

w-bit string which will be drawn from a set S⊆{0,1}w of at least 2w−N−N2 strings.
Thus, Pr[prelab(u)=q′ : parents(u)∩NQi 6=∅]≤ 1

2w−N−N2 . Union bounding over
all nodes u we have

Pr[∃u : targets(q′,u)∧parents(u)∩NQi 6=∅]≤
N

2w−N−N2 .

Finally, we can union bound over all q queries to see that the probability there exists
a lucky query is at most

Pr[∃u,q′ : targets(q′,u)∧parents(u)∩NQi 6=∅]≤
qN

2w−N−N2 .

A similar argument shows that the probability of a lucky output on any query
q′ 6=prelab(N) is at most 2−w — note that if q′=prelab(v) for v<N then we already
know that q′ does not have lucky output sinceH(prelab(v))= labG,H,x(v) 6= labG,H,x(N)
as we assume that the event COLLISION does not occur. Thus, the probability of a
lucky query or lucky output is at most qN

2w−N−N2 +2−w.
If there are no lucky queries, then for each node u∈V and round i such that

there exists q∈Qi with targets(q,u), then for all nodes v∈ parents(u), there exists
a query q′ in some previous round j<i with q′∈Qj and targets(q′,u). Notably, let
z < i be the last round in which there exists a query q0 ∈Qz with targets(q0,v) —
which means that we have v ∈Ry for any round z < y≤ i. Thus, by definition of
BlackPebbleH(TraceA,R,H(T)) we have v∈Py for any z≤ y < i because we never
discard pebbles v∈Ry. It follows that parents(Pi+1\Pi)⊆Pi.

Furthermore, if the output is not lucky, then there exists a round j and a
query q∈Qj such that targets(q,N). By definition of BlackPebbleH(TraceA,R,H(T))
this means that N ∈ Pj. Thus with probability at least ε− qN+1

2w−N−N2 − N2

2w−N ,
BlackPebbleH(TraceA,R,H(T)) is a legal black pebbling. �

H.3 Extractor Argument
We now argue that with high probability, the execution cost of an adversary that
computes an instance of fG,H corresponds to the cumulative memory cost of its
ex-post-facto pebbling.



We now formally define the cost of computing a function based on its execution
trace.

Definition 12. The memory cost cost of a function fG,H is defined by

cmcq,ε(fG,H)=min
A,x

E[cmc(TraceA,R,H(x))],

where the minimum is taken over all valid inputs x and all algorithms A making at
most q queries that compute fG,H(x) correctly with probability at least ε.

We now show that any algorithm AH(.) that computes a function that follows the
XOR labeling rule correctly with probability at least ε has cost corresponding to the
cumulative cost of the resulting legal black pebbling, Π‖cc(G). The proof uses that
fact that if an attacking strategy does not yield a corresponding legal black pebbling,
then the attacking strategy can be modified to form an extractor for the labels of
a subset of nodes. Specifically, an extractor with access to the attacking strategy, the
state of the memory, and a few select hints can successfully predict a large number
of random bits, which cannot happen with high probability. The hints given to the
extractor describes the positions of the random bits, and ensure these bits remain
“random” (that is, we do not explicitly query these locations later).

In particular, the extractor uses the hints to simulate AH(.) but the hints do not
include the current state of memory σi.

Lemma 10. [DKW11] Let B be a series of random bits and let A be an algorithm
that receives a hint h∈H and can query B at specific indices. If A outputs a subset of k
indices of B that were previously not queried, as well as guesses for each of the bits, the
probability there exists some h∈H so that all the k guesses are correct is at most |H|2k .

Theorem 11. Let G be a DAG with N nodes, maximum indegree δ ≥ 2, and
parents(u) 6=parents(v) for all pairs u 6=v∈V , and let fG,H be a function that follows
the XOR labeling rule, with label size w. Let q<2w/32 be a number of queries to a
random oracle, 32logN<w, and ε

4>2−w/2+2> qN+1
2w−N−N2 + 2N2

2w−N . Then

cmcq,ε(fG,H)≥ εw8δ ·Π
‖
cc(G),

where w is the size of each label.

Proof. Suppose by way of contradiction, that E[cmc(TraceA,R,H(x))] ≤ εw
8δΠ

‖
cc(G)

where TraceA,R,H(x) = {(σi,Qi)}ti=1 is a random execution trace of AH(·). By as-
sumption we have

Pr
[
AH(·)(x)=fG,H(x)

]
≥ε .

Similarly, we have
∑
i|Qi|≤q since AH(·) makes at most q random oracle queries.

Consider a random execution trace TraceA,R,H(x) = {(σi,Qi)}ti=1 of AH(·)(x).
By Markov’s inequality we have Pr

[
cmc(TraceA,R,H(x))≥ wΠ‖cc(G)

4δ

]
≤ ε

2 . By Theo-

rem 10, with probability at least ε− qN+1
2w−N−N2− 2N2

2w−N−ε/2≥ε/4 we get a successful



execution trace with cmc(TraceA,R,H(x)) ≤ wΠ‖cc(G)
4δ (i.e., AH(·) that succeeds in

calculating fG,H(x)) and we can extract a legal black pebbling P = (P1,...,Pt) =
BlackPebbleH(TraceA,R,H(x)) from this execution trace and the event COLLISION
did not occur (i.e., all nodes have distinct labels and pre-labels). Let Π‖cc(P)≥Π‖cc(G)
be the cumulative complexity of this pebbling.

If cmc(TraceA,R,H(x))≤ wΠ‖cc(P)
4δ then for some step i we must have |σi|< |Pi|w4δ .

By construction of the pebbling, for each node v∈Pi we have

iv :=NextRequiredRound(v,i)≤NextTargetRound(v,i) .

Let qv∈Qiv denote the first query in which input(qv,v)=1. Assuming that the event
COLLISION did not occur (i.e., all nodes have distinct labels and pre-labels) there is
a unique node uv such that prelab(uv)=qv. We will let uv be the node targeted by
the query qv.

We would like to extract lab(v) from the query qv. However, under the XOR
labeling rule, the situation is complicated since lab(v) is not explicitly revealed
in the random oracle query qv, instead qv = lab(v)

(⊕
j∈parents(uv)\{v}lab(j)

)
. Let

Av = parents(uv)\{v} denote the set of additional nodes whose labels are XORed
with lab(v). To solve the problem we order nodes in v∈Pi in increasing order by
NextRequiredRound(v,i). We then define the sets Ei,Ci by following the following
procedure: 1) Initialize P0

i =Pi,Ei,Ci=∅ and j=0, 2) Select the first element v∈P ji
3) Update Ei←Ei∪{v}, Ci←Ci∪(Av\Ei), set P j+1

i =P ji \({v}∪Av) and increment
j. 4) repeat steps 2–3 until P ji is empty.

We let S=Ci∪Pi where Ci is the final set output by the procedure above. Note
that |Ci|≤(δ−1)|Pi| where δ is the indegree of the graph. This follows because each
time step 3 is executed we add at most |Av|≤δ−1 new nodes to Ci. Furthermore,
we cannot execute step 3 more than |Pi| times since we discard at least one node
(i.e., v) from P ji on each iteration. Similarly, we note that we must execute step 3
at least d|Pi|/δe times so we have |Ei|= |Pi\Ci|≥ |Pi|δ . Thus, |S|≥|Ci|+

⌈
|Pi|
δ

⌉
.

We argue that an extractor using AH(·) can predict (|S|)w random bits using
|Pi|
4δ w bits of information from the state of AH(·), along with the following hint, which

consists of three parts:

1. The sets S = Ci ∪Ei and |Ci| itself is given as a hint to tell the extractor
which labels to extract. The size of this component of the hint is at most
|S|logN+|Ci|logN bits.

2. For each node v∈Pi\Ci the hint includes the index of the first query qv∈Qiv
denote the first query in which input(qv,v)=1 as well as the target uv of this
query qv. Since, there are at most q queries total it will take at most log2q bits to
encode the index of each query and log2N bits to encode the target of each query.
Thus, this component of the hint is at most |Pi\Ci|logq+|Pi\Ci|logN bits.

3. For each node v∈Ci the hint includes lab(v). This component of the hint is at
most |Ci|w bits.

4. For each v∈S, the index of the first query when lab(v) might be compromised.
Observe that if the extractor successfully predicts a random string at a location



v, but then lab(v) is later queried by the attacker, we cannot distinguish this
case at the end from the case that the extractor simply read lab(v) after making
the query. Effectively, the extractor is no longer predicting a random string. To
avoid this, the hint given to the extractor details queries that would compromise
the randomness of the desired locations. Formally, the hint is the minimal index
k such that qjk=prelab(v), which yields returns the query H(qji )= lab(v). This
component of the hint tells the extractor the locations of the random strings to
be predicted, and has size at most |S|logq bits.

We remark that the total length of the hint h is |S|(2logq+2logN)+|Ci|w+|σi|≤
δ(2logq+2logN)+|Ci|w+ |Pi|2δ , while the extractor will output |S|w≥

(
|Ci|+

⌈
|Pi|
δ

⌉)
w

random bits. Since we assume that logN< w
32 and q<2w/32 we have

|S|w−|h|≥|Pi\Ci|w
(

1− 1
2δ

)
−w/8≥w/2 .

The extractor will simulate AH(.) starting from initial state σi. The extractor main-
tains a list L={(v,lab(v)} of known labels — initially L={(v,lab(v)) : v∈Ci} —
as well as a list Lpre={(v,prelab(v)} of known pre-labels — initially empty. In each
round j≥ i we observe a new batch of random oracle queries Qj. For each query
y∈Qj we check if the query is of interest.

1. If our hint indicates that y has some node v ∈ Pi \Ci as input then we will
compute lab(v)=y⊕

(⊕
j∈parents(uv)\{v}lab(j)

)
add (v,lab(v)) to our list — here

we rely on the fact that the hint contains the target uv of the query y to identify
parents(uv) and, to compute

⊕
j∈parents(uv)\{v}lab(j), we rely on the fact that L

must contain each of the pairs (j,lab(j)) since parents(uv)⊆Ci∪{v}. In this case
we have prelab(uv)=y so we will also add the pair (uv,y) to Lpre in this case.
If we happen to have (uv,lab(uv))∈Lpre for some node v then we write lab(uv)
on A’s response tape; otherwise we query H(y), add (uv,H(y)) to L and record
H(y) on A’s response tape.

2. If our hint indicates that y targets some node v ∈ Pi then we will look for
the pair (v, lab(v)) in our list L and write this response on A’s response
tape. Note that (v, lab(v)) must be in L because for any node v ∈ Pi we
have NextRequiredRound(v,i)≤ NextTargetRound(v,i). Thus, we will extract
(v,lab(v)) before the current round j≥ NextTargetRound(v,i). In this case we
have prelab(v)=y so we will add (v,y) to the list Lpre.

3. If we have (v,y)∈Lpre for some node v∈Ci then the extractor looks for a pair
(v,lab(v))∈L and writes the response lab(v) on A’s response tape. Note that we
must have (v,lab(v))∈L in this case. Clearly, if v∈Ci then (v,lab(v))∈L since
we start with all of these labels in L. If v∈Pi\Ci then y cannot the first query
to target v then we would have already added (v,lab(v)) in the previous case (If
y were first query to target v then we would be in case 2 since the hint encodes
the index of the first query to target v).

4. Otherwise, we simply query H(y) and write H(y) on A’s response tape.



After AH(.) finishes the extractor the list L will contain (v,lab(v)) for each node
v∈Ci∪Pi, but we may not have (v,prelab(v)) for each node. Thus, the extractor will
begin computing fG,H using the honest evaluation algorithm. As before the extractor
will check each random oracle query y to see if (v,y)∈Lpre for some node v∈Ci. If
so then extractor finds (v,lab(v))∈L and uses lab(v) as the output without querying
H(.). As we progress the extractor maintains a list (v,lab(v)) for each of the labels
computed so far, and the extractor immediately adds (v,prelab(v)) to Lpre once all
of the labels of the node in parents(v) are known. Finally, the extractor will output
(prelab(v),lab(v)) for each node v∈Pi∪Ci.

Assuming that we were able to extract a legal pebbling from the execution trace
TraceA,R,H(x) the extractor will always succeed in extracting |S| input/output pairs
(prelab(v),lab(v)) without querying the random oracle at prelab(v) for each node
v∈Pi∪Ci, and if all of the pre-labels are distinct then we have |S| input/output pairs.

In general, the probability that our extractor can extract |S| input/output pairs
from our short hint will be at least

ε− qN+1
2w−N−N2−

2N2

2w−N −
ε

2≥
ε

4≥2−w/2+2 ,

where ε is the probability AH(.) correctly computes fG,H(x), ε
2 is an upper bound

on the probability that cmc(TraceA,R,Hx)> wΠ‖cc(P)
4δ , and qN+1

2w−N−N2 + 2N2

2w−N upper
bounds the probability that we fail to extract a black pebbling or two labels/prelabels
collide — see Theorem 10.

However, by Lemma 10 the probability the extractor can successfully output |S|
input output pairs from a hint of size |S| is at most

2−|S|w+|h|≤2−w/2 .

This is a contradiction as it implies that

2−w/2+2≤ ε4≤2−w/2. �

See Figure 6 for intuition.
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(v,prelab(v))
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H(·)

Fig. 6: An extractor that uses the attacker to predict distinct outputs of random
oracle H(·).



Reminder of Theorem 7.
Let G be a DAG with N nodes, indegree δ≥2, and parents(u) 6=parents(v) for all

pairs u 6=v∈V , and let fG,H be a function that follows the XOR labeling rule, with
label size w. Let H be a family of random oracle functions with outputs of label length
w and H=(H1,H2), where H1,H2∈H. Let m be a number of parallel instances such
that mN<2w/32, q<2w/32 be the maximum number of queries to a random oracle,
and let ε

4>2−w/2+2> qmN+1
2w−m2N2−mN + 2m2N2

2w−mN . Then

cmcq,ε(f×mG,H)≥ εmw8δ ·Π
‖
cc(G).

Proof of Theorem 7. [Sketch] The proof is quite similar to Theorem 11, except that
the number of nodes in G×m is mN . We need to show that the event COLLISION is
negligible as in Lemma 9. The proof is almost identical except that we need to add
a special case for all of the m sink nodes in G×m. We note that all of these source
nodes are guaranteed to have distinct pre-labels since the inputs X=(x1,x2,...,xm)
to each instance of fG,H are distinct. With this observation we can easily adapt the
proof of Lemma 9 to conclude that

Pr[COLLISION]≤ 2m2N2

2w−mn

and we can adapt the proof of Theorem 10 to show that we extract a legal black
pebbling with probability at least

ε− qmN+1
2w−m2N2−mN

− 2m2N2

2w−mn .

At this point the extractor argument follows the proof of Theorem 11 exactly. �

I Cryptanalysis of DRSample as Evidence for Conjectures

In this section of the appendix we provide strong evidence in support of our con-
jectures about the depth-robustness of DRSample. The first conjecture states that
DRSample is (e=c1N loglogN/logN,d=c2N loglogN/logN)-depth robust for suitable
constants c1,c2,c3>0, and the second (stronger) conjecture states that DRSample
is (e= c1N loglogN/logN,d= c2N loglogN/logN,b= c3logN/loglogN)-block-depth
robust. We consider three different state-of-the-art depth-reducing attacks: the layered
attack [AB16], Valiant’s Lemma [Val77,AB16] and the pebbling reduction of Alwen et
al. [ABP17] which constructs a depth-reducing set S of size at most e= |S|≤Π‖cc(G)/d

— we use the greedy pebble attack [BCS16] as our starting point since this is the best
known pebbling attack against DRSample. The layered attack [AB16] was originally
used to attack Argon2i and Balloon Hash, while Valiant’s Lemma [Val77,AB16] was
originally used to derive the general upper bound that any DAG G with constant
indegree is (e=c1N loglogN/logN,d=c2N/log2N) reducible for some constants c1

and c2 — hence Π‖cc(G)=O
(
N2loglogN/logN

)
by a result from [AB16].



We show that when we want to reduce the depth to just d=N/
√

logN that each of
the above attacks require the removal of at least Ω(N loglogN/logN) nodes. Along the
way we introduce a general framework for analyzing Valiant’s Lemma [Val77,AB16]
for a specific DAG and use our techniques to analyze the performance of the attack
against Argon2iA and Argon2iB. Interestingly, the performance exactly matches the
performance of the layered attack against these graphs. This provides theoretical
justification to a surprising finding of Alwen et al. [AB17,ABH17] that the layered
attack seems to perform slightly worse than Valiant’s Lemma despite the fact that (at
the time) the best asymptotic upper bounds for the layered attack were much better.
Another interesting finding is that the performance of all three distinct attacks are
asymptotically equivalent despite the fact that the depth-reducing sets are chosen
in very different ways.

I.1 Valiant’s Lemma: Basic Setting and Observation

We introduce two variant’s of Valiant’s Lemma attack in Algorithm 7 and Algo-
rithm 8. Both algorithms start by partitioning the edges E into sets E1,...,En where
Ei={(u,v) |MSDB(`u,`v)=i} (resp. Si={u :(u,v)∈Ei}) is the set of all edges (u,v)
with the property that the most-significant different bit between the binary strings
`u and `v is i. Here, `u is the n bit binary string corresponding to the integer u−1
i.e. `1 =0n. If the nodes are given in topological order then it is easy to show that
for any X⊆ [n] we have depth(G−

⋃
i∈XSi)≤N/2|X|. Algorithm 8 takes as input a

target depth d and selects the log2(N/d) smallest sets Si to add to X to ensure the
depth of the graph depth(G−

⋃
i∈XSi) is at most d. By contrast, Algorithm 7 takes

as input a maximum size e and repeatedly finds i∈ [n]\X with minimum size |Si| to
add to X until we have we cannot find any i∈ [n]\X such that

∣∣∣⋃j∈X∪{i}Si∣∣∣≤e. We
now introduce a general technique to analyze DAGs G=(V =[N],E) with edge set
E={(i,i+1):1≤i<N}∪{(r(i),i):1<i≤N} for some predecessor function r(i)<i.

Definition 13. Let G= (V = [N],E) be a DAG with N = 2n nodes. Define Ei as
follows:

Ei :={(u,v)∈E :MSDB(`u,`v)=i}.
Where `u is the n bit binary string corresponding to the integer u−1 i.e. `1 =0n.

All of the DAGs G = (V = [N],E) we consider in this section have edge set
E={(i,i+1):1≤i<N}∪{(r(i),i):1<i≤N} where r(i) is a random predecessor of
the node i and the selection of the predecessor r(i) can be viewed as an independent
choice for each node i. Note that the function r(i)<i varies for different constructions
e.g., Argon2iA,Argon2iB and DRSample. Thus, we can split the set Ei into two sets:

Ei={(u,v)∈E :MSDB(`u,`v)=i}
={(v,v+1):MSDB(`v,`v+1)=i}︸ ︷︷ ︸

=:Ai

∪{(r(v),v):MSDB(`r(v),`v)=i}︸ ︷︷ ︸
=:Bi

We introduce an indicator random variable which checks whether MSDB(`r(v),`v)=i
or not.



Definition 14. Let G=(V,E) be a DAG and v∈V be any node in the set V . Then
an indicator random variable Xv,i to check MSDB is defined by

Xv,i=
{

1 when MSDB(`r(v),`v)=i
0 otherwise

The following fact states that |Ai|=2−iN for each i≤n. The fact applies to all
DAGs we will analyze. Thus, to analyze the size of Ei for a particular DAG it suffices
to focus on the set Bi.

Fact 12 Let i ≤ n be given and set Ai =: {(v,v+ 1) : MSDB(`v,`v+1) = i} then
|Ai|=2−iN.

Proof. It is clear that MSDB(`v,`v+1)=i if and only if v=2i−1+2i·k for any integer
0≤k<2−iN . Therefore, we have that |Ai|= |{k :0≤k<2−iN,k∈Z}|=2−iN. �

Lemma 11 is a general tool which we will use to bound the size of Bi.

Lemma 11. MSDB(`r(v),`v) = i if and only if 2i−1 +m ≥ `v − `r(v) > m where
`v=j ·2i−1+m where 0≤m<2i−1 and j is a nonnegative odd integer.

Proof. If `r(v) < `v − m, then clearly MSDB(`r(v), `v) will never be i. And if
`v−`r(v)>2i−1+m, then we have MSDB(`r(v),`v)≥i+1. Finally, if j is even, then the
i-th bit should be 0, which means that MSDB(`r(v),`v) 6=i because flipping the i-th bit
would increase the label which contradicts to the definition of the predecessor r(v). �

Example 1. Suppose that i = 3 and choose m = 3 < 2i−1 = 4 and j = 3. Then
`v=3·22+3 and the bit representation for `v is 1111. Then we observe that if `r(v) is
greater than or equal to 1100=1111−11=`v−m, then MSDB(`v,`r(v)) should be 1 or
2, which is not 3. Moreover, if `r(v) is less than 1000=1111−100−11=`v−2i−1−m,
then MSDB(`v,`r(v)) should be 4, which is not 3. Therefore, we have that to yield
MSDB(`v,`r(v))=3, then we need to pick r(v) which satisfies 2i−1+m≥`v−`r(v)>m.

When the function r(v) is random we expected size of the set Bi is given in
Corollary 7. While |Bi| is a random variable it is easy to show that |Bi| will be close
to its expectation because the values r(v) are independently chosen for each vertex v.

Corollary 7. The expected value of the size of the set Bi is given by

E[|Bi|]=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
2i−1+m≥`v−`r(v)>m

]
where `v=(2j+1)·2i−1+m. Furthermore, |Bi| is tightly concentrated around its mean

Pr[|Bi|>2E[|Bi|]]<
(e

4

)E[|Bi|]
, and Pr

[
|Bi|<

1
2E[|Bi|]

]
<

(√
2√
e

)E[|Bi|]

.

In particular, if E[|Bi|] > log2N then, except with negligible probability, we have
1
2E[|Bi|]≤|Bi|≤2E[|Bi|]. If E[|Bi|]<µ for any upper bound µ≥ log2N then, except
with negligible probability |Bi|≤2µ.



Proof. Recall an indicator random variable from Definition 14. Clearly, we have
|Bi|=

∑N
v=1Xv,i. Taken together with Lemma 11, we conclude that

E[|Bi|]=E

[
N∑
v=1

Xv,i

]
=

N∑
v=1

E[Xv,i]=
N∑
v=1

Pr
[
MSDB(`r(v),`v)=i

]

=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
MSDB(`r(v),`v)=i

]

=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
2i−1+m≥`v−`r(v)>m

]
provided by `v=(2j+1)·2i−1+m. Moreover, one can observe that X1,i,···,XN,i’s are
all independent. Then applying a multiplicative Chernoff bound, we have

Pr[|Bi|>2E[|Bi|]]<
(e

4

)E[|Bi|]

and

Pr
[
|Bi|<

1
2E[|Bi|]

]
<

(
e−1/2

(1/2)1/2

)E[|Bi|]

=
(√

2√
e

)E[|Bi|]

. �

Now we have the following Lemma from [AB16] which is essentially equivalent
to Valiant’s Lemma [Val77]:

Lemma 12 ( [AB16], Lemma 6.1). Given a DAG G with m edges and depth
depth(G)≤d=2i there is a set of m/i edges such that by deleting them we obtain a
graph of depth at most d/2.

Lemma 13 ( [AB16], Lemma 6.2). Let G=(V,E) be an arbitrary DAG of size
|V |=N=2n with indeg(G)=δ. Then for every integer t≥1 there is a set S⊆V of
size |S|≤ tδN

log(N)−t such that depth(G−S)≤2n−t. Furthermore, there is an efficient
algorithm to find such S.

Applying this lemma to well-known graphs such as Argon2i-A, B, and DRSample,
one should be able to get the reducibility of such graphs. We are going to argue that
the results by applying Valiant’s lemma matches the known results for Argon2i and
DRSample, with the interesting observation that layered attack against DRSample
is not effective based on the upcoming analysis. To see this, we need the following
algorithm (Algorithm 7) from invoking Lemma 12 and Lemma 13:

I.2 Analysis on Argon2i (Improved Results)

Theorem 13. Let G be Argon2i-A with N nodes and let S = Valiant(G,e) with
e2>N logN. Then with high probability, depth(G−S)=O((N/e)2logN).



Algorithm 7: An algorithm to sample a depth-reducing set.
Input : DAG G=(V (G),E(G)) with |V (G)|=N=2n, and a target size e.
Output
:

A depth-reducing set S with |S|≤e to remove

Function Valiant(G, e):
for i≤n do

Ei :={(u,v)|MSDB(u,v)=i}
Si :={u|(u,v)∈Ei}

end
S :=∅
X :=∅
while |S|≤e do

i=argmini6∈X|Ei| // Find smallest |Ei| that hasn’t been picked yet
S=S∪Si
X=S

end
return S

Proof. In Argon2i-A, the edge distribution is uniformly random. In particular, for
v>1 the predecessor r(v) is chosen uniformly at random from the set {1,...,v−2}.
By Corollary 7, we have

E[|Bi|]=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
2i−1+m≥`v−`r(v)>m

]
where `v=(2j+1)·2i−1+m

=

N

2i
−1∑

j=0

2i−1∑
m=0

2i−1

v
=

2i−1−1∑
m=0

N

2i
−1∑

j=0

2i−1

(2j+1)·2i−1+m

≤
2i−1−1∑
m=0


∫ N

2i
−1

0

2i−1dj

2i·j+2i−1+m︸ ︷︷ ︸
(1)

+ 2i−1

2i−1+m︸ ︷︷ ︸
when j=0


because for a positive decreasing function f , we have

∑n
k=1f(k)≤

∫ n
0 f(t)dt. Moreover,

we have

(1)=
[

ln(2i·j+2i−1+m)
2

]N
2i
−1

0

= 1
2ln
[
N−2i−1+m

2i−1+m

]
= 1

2ln
[
1+ N−2i

2i−1+m

]
which leads to

E[|Bi|]≤
2i−1−1∑
m=0

[
1
2ln
[
1+ N−2i

2i−1+m

]
+ 2i−1

2i−1+m

]



≤
∫ 2i−1−1

0

1
2 ln

[
1+ N−2i

2i−1+m

]
︸ ︷︷ ︸
≤ln
[

1+N−2i
2i−1

]
≤ln[ N

2i−1 ]

+ 2i−1

2i−1+mdm+ 1
2ln
[
1+N−2i−1

2i−1

]
+1︸ ︷︷ ︸

when m=0

≤2i−1· 12ln
[
N

2i−1

]
+

∫ 2i−1−1

0

2i−1

2i−1+mdm︸ ︷︷ ︸
≤[2i−1ln(2i−1+m)]2i−1

0 =2i−1ln2

+1
2ln
[
N

2i−1

]
+1

≤2i−1· 12log2

[
N

2i−1

]
+2i−1+ 1

2log2

[
N

2i−1

]
+1︸ ︷︷ ︸

≤2i−1·12 log2N

≤2i−1log2N.

Therefore, we can argue that with high probability, we have |Bi|≤2E[|Bi|]≤2ilogN
for each i≥1+loglogN by Corollary 7 and with high probability |Bi|≤2log2N for
each i≤ loglogN . Taken together, for i≤ log2N , with high probability we have

|Ei|≤2ilog2N+N

2i for i≥1+loglogN

We also observe that, except with negligible probability, we have
loglogN∑
i=1
|Bi|≤ log2N(loglogN)=n2logn .

The algorithm will find the j smallest sets Ei1, ... , Eij to delete such that∑j
k=1 |Eik | ≤ e to reduce the depth to d = N/2j. We can achieve this when

i'(n−log2n)/2. Then we will delete all sets in the interval [n−log2n
2 − j

2 ,
n−log2n

2 + j
2 ]

. Hence, with high probability, the total number of deleting edges is

e=

n−log2n+j
2∑

k=n−log2n−j
2

|Ek|≤

n−log2n+j
2∑

k=n−log2n−j
2

2klog2N+N

2k +
loglogN∑
i=1
|Bi|

=
j∑
k=0

2
n−log2n−j

2 +klog2N+N ·2
−n+log2n+j

2 −k+n2logn

≤2
n−log2n−j

2 +j+1log2N+2n·2
−n+log2n+j

2 +1+n2logn

=2n2−
log2n

2 + j
2 +1

log2N︸ ︷︷ ︸
=n

+2log2n︸ ︷︷ ︸
=n

+n2logn

=
√
N · 1√

n
·
√
N

d
·2·2n+n2logn≤ 5

√
nN√
d

which implies that d=O
((

N
e

)2)lnN . �



Theorem 14. Let G be Argon2i-B with N nodes and let S = Valiant(G,e) with
e3>N2. Then with high probability, depth(G−S)=O((N/e)3).

Proof. In Argon2i-B, we have

Pr[r(i)=j]= Pr
x∈[N]

[
i

(
1− x2

N2

)
∈(j−1,j]

]
=
√

1− j−1
i
−
√

1− j
i

since i
(

1− x2

N2

)
∈(j−1,j] is equivalent to N

√
1− j

i ≤x<N
√

1− j−1
i . Similarly, we

have

Pr[a≤r(i)<b]= Pr
x∈[N]

[
i

(
1− x2

N2

)
∈(a−1,b−1]

]
=
√

1−a−1
i
−
√

1− b−1
i
.

Therefore, in Argon2i-B, we have

E[|Bi|]=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
MSDB(`r(v),`v)=i

]
where `v=(2j+1)·2i−1+m

=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
2i−1+m≥`v−`r(v)>m

]

=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
2i−1+m≥v−r(v)>m

]

=

N

2i
−1∑

j=0

2i−1−1∑
m=0

Pr
[
v−2i−1−m≤r(v)<v−m

]

=

N

2i
−1∑

j=0

2i−1−1∑
m=0

√
2i−1+m+1

v
−
√
m+1
v

=
2i−1−1∑
m=0


(√

2i−1+m+1−
√
m+1

)N2i−1∑
j=0

1√
2i·j+2i−1+m︸ ︷︷ ︸

(2)


where

(2)≤
∫ N

2i

0

dj√
2i·j+2i−1+m

+ 1√
2i−1+m

=
[√

2i·j+2i−1+m
2i−1

]N
2i

0

+
√

2i−1+m
2i−1+m



≤
√
N+2i−1+m−

√
2i−1+m

2i−1 +
√

2i−1+m
2i−1

=
√
N+2i−1+m

2i−1

which leads to

E[|Bi|]≤
2i−1−1∑
m=0

(√
2i−1+m+1−

√
m+1

)
·
√
N+2i−1+m

2i−1

=
2i−1−1∑
m=0

2i−1
√

2i−1+m+1+
√
m+1

·
√
N+2i−1+m

2i−1

≤
2i−1−1∑
m=0

2i−1
√

2i−1
·
√

3N
2i−1

≤
√

3N√
2i−1
·2i−1 =

√
3N ·2i−1.

Therefore, since
√

3N ·2i−1� log2N for any i ≥ 0, by Corollary 7 we can argue
that with high probability, we have |Bi| ≤ 2E[|Bi|] ≤ 2

√
3N ·2i−1 =

√
6N ·2i for

i≥2+2loglogN . Taken together, for i≤ log2N , with high probability we have

|Ei|≤
√

6
(√

N ·2i+N

2i

)
.

Our goal is to find j smallest sets to delete to make smallest Ei when d=N/2j. We
can achieve this when i=n/3. Then we will delete all sets in the interval [n3−

j
3 ,
n
3 + 2j

3 ].
Hence, the total number of deleting edges is

e≤
n
3 + 2j

3∑
k=n

3−
j
3

|Ek|≤
√

6
n
3 + 2j

3∑
k=n

3−
j
3

(√
N ·2i+N

2i

)

=
√

6
j∑
k=0

2n2 ·2
1
2(n3− j3 +k)

︸ ︷︷ ︸
≤2

2n
3 −

j
6 + j

2 · 1√
2−1

+
√

6
j∑
k=0

2n−(n3− j3 +k)

︸ ︷︷ ︸
≤2

2n
3 + j

3 +1

≤
√

6·(
√

2+3)·22n
3 + j

3 ≤11·22n
3 + j

3

which implies that
e3≤113·22n+j=113·N2·N

d
.

Therefore, we can conclude that d=O
((

N
e

)3). �



I.3 Analysis on DRSample

In DRSample which has been introduced in [ABH17] and is specified in Algo-
rithm 3 in the appendix. To see how the distribution r(v) is defined consider
partitioning the set of all potential predecessors u into buckets Dv

1,D
v
2,··· where

Dv
i :={u :2i−1<dist(u,v)≤2i} where dist(u,v)=v−u. Intuitively, to sample r(v) we

first select a bucket Dv
i with i≤ log2v uniformly at random and then select a parent

u=r(v) uniformly at random from this bucket Dv
i i.e., (r(v),v)∈Dv

i , or equivalently,
subject to the constraint that 2i−1<dist(r(v),v)≤2i. We remark that the pebbling
attacks of Alwen and Blocki [AB16] have cost Θ(Ne+N

√
Nd). If we wanted to

obtain an attack with cumulative cost o
(
N2loglogN/logN

)
then we would need a

depth-reducing set S of size e≤ NloglogN
logN such that depth(G−S)≤ N(loglogN)2

log2N
. We

show that no known techniques for producing depth-reducing sets will produce a set
S which satisfy both criteria. We first consider an attack based on Valiant’s Lemma.

Here, we consider the variant of the attack (Algorithm 8) which is guaranteed
to find S s.t. depth(G−S)≤ N

logN . As Theorem 15 shows that with high probabil-

ity |S|=Ω
(
NloglogN

logN

)
— of course we would need to ensure that depth(G−S)≤

N(loglogN)2

log2N
� N

logN is even smaller to obtain an attack with cost o
(
N2loglogN/logN

)
.

Algorithm 8: An algorithm to sample a depth-reducing set.
Input : DAG G=(V (G),E(G)) with |V (G)|=N=2n, and a target size e.
Output
:

A depth-reducing set S with depth(G−S)>d to remove

Function Valiant2(G, d):
for i≤n do

Ei :={(u,v)|MSDB(u,v)=i}
Si :={u|(u,v)∈Ei}

end
S :=∅
X :=∅
while depth(G−S)>d do

i=argmini6∈X|Ei| // Find smallest |Ei| that hasn’t been picked yet
S=S∪Si
X=S

end
return S

Theorem 15. Let G be a randomly sampled DRSample DAG with N nodes and let

S=Valiant2
(
G, N√

logN

)
with e= |S|. Then there exist constants c1 and c2 such that

with high probability, c1NloglogN
logN ≤e≤ c2NloglogN

logN .



Proof. Similar to Argon2i-A and B, we have that |Ai|= N
2i . As stated before, from

Lemma 11 we have that

Pr[MSDB(`r(v),`v)=i]=Pr[2i−1+m≥v−r(v)>m].

Now observe that if m is large, i.e., m=2i−1−1, then there is up to only one bucket to
select which satisfies the inequality 2i−1+m≥v−r(v)>m. Similarly, if m=2i−j+1,
then there are totally up to j buckets to select which satisfies the inequality. Taken
together with the assumption that v≥

√
N , we can compute the expectation

E[|Bi|]≤
i−2∑
j=0

2j−i+1 ·N · i−jlogv ≤
i−2∑
j=0

2j−i+1·N · i−j1
2 logN

= 2N
n

i−2∑
j=0

(i−j)2j−i+1 = 2N
n
· 3·2

i−1−2i−2
2i−1︸ ︷︷ ︸
≤3

≤ 6N
n

Therefore, we can argue that with high probability, we have |Bi| ≤ 12N
n . Taken

together, for i≤ log2N , with high probability we have

|Ei|≤
12N
n

+N

2i .

Our goal is to find j smallest sets to delete to make smallest Ei when d=N/2j. We
can achieve this when i=n. Then we will delete all sets in the interval [n−j+1,n].
Hence, the total number of deleting edges is

e≤
n∑

k=n−j+1
|Ek|≤

n∑
k=n−j+1

(
12N
n

+N

2k

)
≤j · 12N

n
+N ·2−n+j

=log2

(
N

d

)
· 12N
n

+2j

=log2

(
N

d

)
· 12N
n

+N

d
.

Putting d= N√
n

= N√
logN

, we have that

e≤ log2
√
n· 12N

n
+
√
n

≤c·N loglogN
logN

for some constant c>0.
Now, in terms of the lower bound, one can observe that the number of bucket

in each case is lower bounded by j−1 buckets if m=2i−j+1. Hence, we have that

E[|Bi|]≥
i−2∑
j=0

2j−i+1 ·N · i−j−1
logv ≥

i−2∑
j=0

2j−i+1·N · i−j−1
logN



=N

n

i−2∑
j=0

(i−j−1)2j−i+1 =N

n
· ·2

i−i−1
2i−1︸ ︷︷ ︸
≥1/2

≥ N

2n

which, by Corollary 7, leads to

|Ei|≥
N

4n+N

2i

with high probability since E[|Bi|]= N
2n� log2N . Again, our goal is to find j smallest

sets to delete to make smallest Ei when d=N/2j. We can achieve this when i=n.
Then we will delete all sets in the interval [n−j+1,n]. Hence, the total number of
deleting edges is

e≥
n∑

k=n−j+1
|Ek|≥

n∑
k=n−j+1

(
N

4n+N

2k

)

≥j ·N4n+N ·
j−1∑
k=0

2−n+j−1−k

=log2

(
N

d

)
·N4n+(2j−1)

=log2

(
N

d

)
·N4n+N

d
−1.

Putting d= N√
n

= N√
logN

, we have that

e≥ log2
√
n·N4n+

√
n−1

≥ log2
√
n·N4n= 1

8 ·
N loglogN

logN .

Hence, one can conclude that Valient’s lemma fails to do better than e=Ω
(
NloglogN

logN

)
even when the target depth is just d= N√

n
. �

Therefore, we can safely conclude that DRSample is optimally resistant to Valient’s
Lemma.

I.4 Layered Attack against DRSample

Next we consider the layered attack of Alwen and Blocki [AB16] for constructing
depth-reducing sets and show that it fails to produce a set S of size e≤ NloglogN

logN s.t.
depth(G−S)≤ N(loglogN)2

log2N
as required to obtain a pebbling attack with cumulative

cost at most eN+N
√
Nd=o

(
N2loglogN

logN

)
. In fact, Lemma 14 and Corollary 8 show

that the layered attack fails to produce such an effective depth-reducing set S.
Before introducing Lemma 14, define an algorithm which samples the depth-

reducing set from layered attack (Algorithm 9).



Algorithm 9: An algorithm to sample the depth-reducing set from layered
attack.

Input : DAG G=(V (G)=[N],E(G)) with |V (G)|=N=2n and
E(G)=∪Ni=3{(i−1,i),(r(i),i)}∪{(1,2)}, the number of layer λ, and a gap g.

Output
:

A depth-reducing set S to remove

Function Layered(G, λ, g):
S1 :={g,2g,3g,···}S :=V (G)
for i=1 to λ do

Li :={k∈Z|(i−1)dN
λ
e<k≤idN

λ
e}

Ei :={v∈Li s.t. r(v)∈Li}
end
S2 :=∪λi=1Ei
return S=S1∪S2

Lemma 14. Let G be a randomly sampled DRSample DAG with N nodes, λ,g>0
be given such that λlogλ>N, and S=Layered(G,λ,g). Then with high probability,

N

g
+N log(N/2λ)

4logλ ≤|S|≤N
g

+ 8N log(N/λ)
logλ .

Proof. The probability that the predecessor of the node v is in the same layer has
the following upper and lower bound. Note that we could get the lower bound by
only considering the case that v lies in the second half of the layer.

log(N/2λ)
log(iN/λ) ≤Pr[r(v) in the same layer]≤ log(N/λ)

log(iN/λ)≤
log(N/λ)

logi .

Then we have

depth(G−S)=λ·g and

|S|≤N
g

+N

λ

λ∑
i=2

log(N/λ)
logi

≤N
g

+N

λ
·8· λlogλ ·log

(
N

λ

)
/Theorem 17

=N

g
+ 8N log(N/λ)

logλ

Now, when it comes to lower bounds, from the condition λlogλ>N, we have that
λ2>N which is equivalent to λ>N/λ. Hence, this leads to

|S|≥N
g

+N

λ

λ∑
i=2

log(N/2λ)
log(iN/λ)

≥N
g

+N

λ

λ∑
i=2

log(N/2λ)
log(iλ)



=N

g
+λ−1

λ
·N log(N/2λ)

2logλ

≥N
g

+N log(N/2λ)
4logλ

which proves the lemma. �

Corollary 8 demonstrates demonstrates that the layered attack fails to produce an
effective depth-reducing set to obtain a pebbling with cost o

(
N2loglogN

logN

)
for any

settings of the parameters λ and g.

Corollary 8. Let G be a randomly sampled DRSample DAG with N nodes. Then
with high probability for all λ,g>0 s.t. λg≤ N√

logN
we have |S|≥ NloglogN

8logN where S
is the depth reducing set generated by the layered attack with parameters λ and g.

Proof. By Lemma 14, with high probability for any λ,g we have

|S|≥N
g

+N log(N/2λ)
4logλ .

If we want |S|< NloglogN
logN then we must have g≥ logN

loglogN due to the N
g term. To

ensure that depth(G−S)≤ N√
logN

we also require that λg≤ N√
logN

. Thus, we have

λ≤ NloglogN
log1.5N

. But this implies that

|S|≥N log(N/2λ)
4logλ ≥

N log log1.5N
2loglogN

4log
(
NloglogN
log1.5N

)≥N loglogN
8logN . �

Corollary 9 shows that the layered attack and Valiant’s Lemma generate com-
parable sizes of the depth reducing set when we have target depth d= N√

logN
despite

generating the depth-reducing sets in very different ways. In fact, for any constant
c>0 we could also achieve target depth N/logcN with |S|=O(N loglogN/logN).

Corollary 9. Let G be a randomly sampled DRSample DAG with N nodes. Then
there exist λ,g>0 such that the layered attack on yields a depth-reducing set S of size
|S|=O

(
NloglogN

logN

)
s.t. depth(G−S)≤ N√

logN
.

Proof. Let g = logN and λ = N/ log2N. Then by Lemma 14 we have |S| =
O
(
NloglogN

logN

)
and depth(G−S)= N

logN . �

I.5 Analysis of GreedyPebble Attack along with [ABP17]

Alwen et al. [ABP17] proved that any DAGG that is (e,d)-depth robust has cumulative
pebbling cost at leastΠ‖cc(G)>ed. Their argument was by contradiction. In particular,
for any target depth d>0 they show how to transform any legal pebbling P ∈P‖(G)



into a depth-reducing set S of size at most |S|≤Π‖cc(P)/d s.t. depth(G−S)≤d. Thus,
one natural approach to construct a depth-reducing set would be to find an efficient
pebbling P ∈P‖(G) and this transformation to yield S. We focus on the Greedy Peb-
bling of DRSample since this is the most-effective pebbling of the DAG that is known.
Once again, if we set our target depth d= N

logN we can show that with high probability

the size of our depth-reducing set S is e=Θ
(
NloglogN

logN

)
. Thus, the transformation

matches the performance of the layered attack and Valiant’s lemma, but does not yield
a sufficiently small set to obtain a depth-reducing attack [AB16] with cost o

(
NloglogN

logN

)
.

Recall that the GreedyPebble configuration is GP(G) = (P1, ··· ,Pn) ∈ P‖(G)
where Pi = {i} ∪ {j s.t. gc(j) > i}. Here gc(j) = max{v : j ∈ parents(v)}. Let
Si = Pi ∪ Pi+d ∪ Pi+2d ∪ ··· ∪ Pi+kd ∪ ··· for i < d and consider the interval
Ik=[i+(k−1)d,i+kd]. We can observe that if gc(v)∈Ik, then v will be discarded
before reaching Pi+kd. Therefore, we have that Si=∪k{i+kd}∪{v|gc(v)−v>d−mv}
where mv denotes the distance between i+(k−1)d and v. We provide such algorithm
to sample the minimum depth-reducing set in Algorithm 10.

Algorithm 10: An algorithm to sample the minimum depth-reducing set
from greedypebble.

Input : DAG G=(V (G),E(G)) with |V (G)|=N=2n, and a target depth d.
Output
:

A depth-reducing set S to remove

Function GPDR(G, d):
P :=GP(G) // A legal pebbling P from Algorithm 1.
S :=V (G)
for i=0 to d−1 do

Si :=Pi∪Pi+d∪Pi+2d∪···
if |Si|< |S| then

S=Si
end
return S

Theorem 16. Let G be a randomly sampled DRSample DAG with N nodes and
let S=GPDR(G, N√

logN
). Then there exists a constant c1,c2>0 such that with high

probability, c1NloglogN
logN ≤|S|≤ c2NloglogN

logN .

Proof. Let Yv be the random variable representing the event that v−r(v)>mv where
r(v) is the predecessor of v. That is, we have that

Yv=
{

1 if v−r(v)>mv

0 otherwise
Similarly, define the random variable Zv as follows:

Zv=
{

1 if Yv=1 and gc(r(v))=v
0 otherwise



Then we have that the expectation of the size of the set {v|gc(v)−v>d−mv} equals
to the sum of the value E[Zv] over the nodes v, which leads to

E[|Si|]=
N

d
+
∑
v

E[Zv].

In DRSample, when v lies between the interval [u−2k+1+1,u−2k+1], the size of
the bucket is 2k and the probability that r(u)=v is 1

logu ·
1

2k . Moreover, the fact that
u−2k+1+1≤v≤u−2k+1 implies 1

2k ≤
2

u−v . Taken together, we have

Pr[r(u)=v]= 1
logu ·

1
2k ≤

1
logu ·

2
u−v

.

With the choice of d= N√
logN

, we would get

Pr
[
∃x>u+d

2 s.t. r(x)=u
]
≤

N∑
x>u+d

2

2
x−u

· 1
logx

≤ 2
log
(
u+ d

2
) N∑
x>u+d

2

1
x−u

≤ 2
log
(
u+ d

2
) ·ln[2(N−u)

d

]
≤ 2

log
(
u+ N

2
√

logN

) ·ln[2√logN
]

≤ 2

log
(

N

2
√

logN

) ·loglogN

≤ 4
logN ·loglogN=O

(
loglogN

logN

)
because logN≥8loglogN for large N . Therefore, we have

Pr[Zv|Yv]≥1− 4
logN ·loglogN≥ 1

2

and

E[|Si|]=
N

d
+
∑
v

E[Zv]

≥N
d

+
(
N

4

)
· 12 ·Pr

[
v−r(v)>d

∣∣∣∣v>N

2

]
≥N
d

+
(
N

4

)
· 12 ·

logv−logd
logv



≥N
d

+
(
N

4

)
· 14 ·

loglogN
log(N/2)≥Ω

(
N loglogN

logN

)
.

Now, we can simply get the upper bound by replacing Zv by Yv if we assume that
gc(r(v)) = v always happens in the best scenario. Assuming that Yv = 1 for every
v≤ N

logN , we have

E[|Si|]≤
N

d
+
∑
v

E[Yv]

≤N
d

+ N

logN +
∑

v>N/logN

E[Yv]︸ ︷︷ ︸
(1)

.

Considering (1), split the interval with length d and consider the case v∈ [x,x+d].
If x+ d

2i <v≤x+ d
2i−1 , then at least log(d/2i) buckets overlap [x,x+d]. If bv denotes

the total number of buckets before v, then we have

E[Yv]≤
bv−log(d/2i)

bv
=1− log(d/2i)

bv
≤1− log(d/2i)

logN

when v∈
(
x+ d

2i ,x+ d
2i−1

]
. Since we have d

2i such v’s and we have at most N
d such

[x,x+d]’s, with the choice of d= N√
logN

, we would get

(1)=
∑

v>N/logN

E[Yv]≤
N

d

∞∑
i=1

d

2i ·
(

1− log(d/2i)
logN

)

=N
[ ∞∑
i=1

1
2i−

∞∑
i=1

logN− 1
2 loglogN−i

2ilogN

]

=N
[

1
2

loglogN
logN

∞∑
i=1

1
2i−

1
logN

( ∞∑
i=1

i

2i

)]

=N loglogN
2logN − 2N

logN =O
(
N loglogN

logN

)
.

Taken together, we finally have

E[|Si|]≤
N

d
+ N

logN +
∑

v>N/logN

E[Yv]

=logN+ N

logN +O
(
N loglogN

logN

)
=O

(
N loglogN

logN

)
.

Therefore, we can conclude that E[|Si|]=Θ
(
NloglogN

logN

)
and the rest follows from the

Chernoff bound argument. �



Remark 4. If d= N√
logN
� NloglogN

logN , we still have that E[|Si|]≥Ω
(
NloglogN

logN

)
, which

implies that we cannot remove below Ω
(
NloglogN

logN

)
nodes to achieve that target depth.

I.6 The Summation of 1/log

We show that
∑t
i=2

1
logi ∈Θ(t/logt) a fact that is useful for our analysis of depth-

reducing attacks.

Lemma 15. For s≥1, we have
∑s
i=1

2i
i ≤4· 2

s

s .

Proof. We can prove this by induction:

– (Base Case) 2
1≤4· 21 when s=1 and 2

1 + 22

2 =4≤8=4· 2
2

2 when s=2.
– (Induction Hypothesis) Suppose that

∑t
i=1

2i
i ≤4· 2

t

t for t≥2.
– (Induction Step) Then we have

t+1∑
i=1

2i

i
=

t∑
i=1

2i

i
+ 2t+1

t+1

≤4· 2
t

t
+ 2t+1

t+1 ≤4· 2
t+1

t+1︸ ︷︷ ︸
(1)

because we have

(1)⇐⇒4· 2
t

t
≤3· 2

t+1

t+1
⇐⇒4·2t(t+1)≤3t·2t+1

⇐⇒4t·2t+4·2t≤6t·2t

⇐⇒4·2t≤2t·2t

⇐⇒2≤t. �

Lemma 16. For s≥1, we have
∑2s
i=2

1
logi≤4· 2s

log2s .

Proof. By Lemma 15 we have

2s∑
i=2

1
logi=

[
1

log2 + 1
log3

]
+
[

1
log4 +···+ 1

log7

]
+

···+
[

1
log2s−1 +···+ 1

log(2s−1)

]
+ 1

log2s

≤ 2
log2 + 22

log22 +···+ 2s−1

log2s−1 + 1
log2s

= 1
log2

[
s−1∑
i=1

2i

i
+ 1
s

]
≤ 1

log2

s∑
i=1

2i

i
≤ 1

log2 ·4·
2s

s
=4· 2s

log2s . �



Lemma 17. For t≥2, we have
∑t
i=2

1
logi≤8· t

logt .

Proof. We can write t=2s+k where 0≤k<2s and s≥1. With the similar technique
from Lemma 16, we have

t∑
i=2

1
logi=

[
1

log2 + 1
log3

]
+

···+
[

1
log2s−1 +···+ 1

log(2s−1)

]
+
[

1
log2s +···+ 1

log(2s+k)

]
≤ 2

log2 + 22

log22 +···+ 2s−1

log2s−1 + k+1
log2s

≤ 1
log2

[
s−1∑
i=1

2i

i
+k+1

s

]
≤ 1

log2

s∑
i=1

2i

i

≤ 1
log2 ·4·

2s

s
= 2s

log2 ·
4
s

≤ 2s

log2 ·
8

s+1 =8· 2s

log2s+1 =8· 2s

log(2s+2s)≤8· 2s+k
log(2s+k)

=8· tlogt. �

Theorem 17. For t≥2, we have 1
2 ·

t
logt≤

∑t
i=2

1
logi≤8· t

logt .

Proof. The second inequality comes directly from Lemma 17. Now we have

t∑
i=2

1
logi≥

t−1
logt ≥

t/2
logt= 1

2 ·
t

logt

for t≥2. �
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