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HOMOGENIZATION∗
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Abstract. In this paper, we study the numerical solution of elliptic homogenization prob-
lems with stationary and ergodic coefficients characterized by a small length scale ε. The issue of
asymptotic compatibility as ε → 0 is examined for a number of different numerical approximations,
which enables us to construct robust discretization schemes to eliminate the resonance and under-
resolution errors caused by the inappropriate use of base functions. In addition to the study of
effective characteristics based on particular sample realizations that are subject to random effects,
we also consider approximations by numerically evaluating the expectation of realized values. When
the Monte Carlo finite element method is applied for the latter, error estimation is derived to guide
parameter choices so as to further enhance the computational efficiency by performing relatively
few samples while attaining high accuracy. Numerical experiments are presented to validate and
supplement our theoretical findings.
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1. Introduction. Multiscale models have become useful tools in various applica-
tions with many of them rife with uncertainties. In many cases, such as heterogeneous
materials and porous media, the complicated small-scale details may be averaged out
on macroscopic scales, and the characterization of effective property can be highly
desirable in practice. In this paper, we consider multiscale elliptic partial differential
equations (PDEs) with stationary, ergodic, and uniform coercive coefficients, that is,
for a bounded Lipschitz domain D and a given f ∈ H−1(D), find uε(x, ω) : D×Ω → R

such that for almost everywhere (a.e.) ω in a set of outcomes Ω,

(1)







−∇ ·
(
aTε (x, ω)∇uε(x, ω)

)
= f(x) in D,

uε(x, ω) = 0 on ∂D,

where aTε (x, ω) is a random coefficient parametrized by 0 < ε � 1 that, for example,
describes the permeability or conductivity field that involves uncertainty [31], and T
represents a measure preserving dynamical system which will be specified later. It is
well known that the weak solution to (1) admits homogenization almost surely and
the effective (or homogenized) solution could be found by solving certain auxiliary
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problems [25, 26, 30]. Additional studies on the effects of random fluctuation and
numerical approximations can be found, e.g., in [1, 2, 5, 7, 9, 10, 17, 24, 25] and the
references cited therein. Indeed, while the effective coefficient in the one-dimensional
case can be determined explicitly, no closed-form expressions are available for generic
high-dimensional problems due to the abstract statements of auxiliary problems [10].
Hence, numerical realizations of stochastic homogenization are often the only viable
approach for approximating the effective solution. In recent years, numerical methods
for PDEs with random data and input have been studied extensively; we refer to [23]
for a recent survey.

An issue that naturally arises in the practical implementation of the numerical
stochastic homogenization is to investigate how the discretization scale should corre-
spond to the modeling parameter to achieve numerical convergence. Similar issues
are often encountered in many other applications that involve parametrized problems
characterized by some physical scaling parameters, such as periodic homogenization
problems with a small period [24] and high-contrast problems with additional small
scales in the heterogeneous field [14]. We also refer to [15, 34] for more discussions
and additional references on numerical solutions of parameterized problems, in which
the discretization of nonlocal problems involving a horizon parameter describing the
scale of nonlocal interactions is studied.

A major contribution of this work is to introduce the notion of asymptotically
compatible schemes developed in [34] for numerical stochastic homogenization. Such
schemes offer robust discretizations that converge uniformly to the homogenized so-
lution u0. Specifically, let h be the discretization scale, and uh

ε (x, ω) denotes the
pathwise numerical solution to (1). Analogous to the diagram given in [34], we want
to check whether the diagram in Figure 1 commutes.

Note that the convergent paths (i)–(iv) are presented by fixing one of the pa-
rameters h and ε while sending the other one to zero, and the three other different
regimes (v)–(vii) are introduced as both h and ε tend to zero simultaneously. For
standard finite element methods (FEMs), whose spaces are asymptotically dense in
the solution space, we prove that the diagram commutes except for the path (ii) due
to the under-resolution. To correctly pass to the limit in path (ii), many upscaling
methods, e.g., multiscale finite element methods (MsFEMs) [24] and heterogeneous
multiscale methods (HMMs) [2], are developed to find accurate approximations of

uh
ε (x, ω) uh

0 (x)

uε(x, ω) u0(x)

discrete
parametric

discrete
homogenized

continuum
parametric

continuum
homogenized

ε → 0

ε → 0

h → 0 h → 0

(ii)

(i)

(iii) (iv)

h ≈
ε→

0(vi)

ε�
h→

0(v)

h�
ε→

0(vii)

Fig. 1. A diagram describing the convergence results of numerical homogenization.
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1944 QI SUN, QIANG DU, AND JU MING

the homogenized solution without fully resolving the microscopic features. These ap-
proaches can enhance the convergence along most paths shown in the diagram, but a
straightforward implementation of MsFEMs suffers from resonance between the mod-
eling parameter and the discretization scale, that is, it might not correctly pass to
the limit for path (vi) [24]. Intuitively, the reason for not getting the correct conver-
gence in the latter case is that the MsFEM space may not be asymptotically dense
in solution space. As a result, one could construct extended MsFEMs (X-MsFEMs)
by certain enrichments of the approximation space such that the diagram in Figure 1
fully commutes. Systematic discussions of the above account are given in this work.

Additionally, the random fluctuation theory for stochastic homogenization shows
that the convergent paths (i)–(iv) in Figure 1 are in the sense of distribution [7].
The numerical evaluation of the effective solution could be extremely slow due to
the influence of random input data. The corresponding expected value, which also
converges to the effective solution, may provide a more attractive alternative where
the convergence is less susceptible to the effects of random fluctuations. To evaluate
the expectation, we consider the Monte Carlo (MC) finite element approach

QMC =
1

n

n∑

i=1

uh
ε (x, ωi),(2)

where {uh
ε (x, ωi) ∈ H1

0 (D)}ni=1 solves problem (1) numerically with independent and
identically distributed random input data {aTε (x, ωi)}ni=1. By mimicking a similar
diagram in Figure 1, the numerical scheme (2) is shown to inherit the property of
asymptotic compatibility from the numerical sample realizations. It is well known
that the MC methods are useful tools to break the curse of dimensionality and may
incur enormous computational cost since the sample size required is typically large
and does not change with respect to (w.r.t.) the modeling parameter [1]. However,
for stochastic homogenization problems with deterministic effective characteristics, a
key observation is that both the numerical sample realization and its expected value
can converge to the same effective solution. This enables us to perform relatively
few simulations to attain high accuracy, in contrast to the conventional half order
convergence of the MC methods. Moreover, specific error estimation is derived in this
paper for the determination of the optimal sample size.

Our paper is organized as follows. In section 2, some preliminary description
of stochastic homogenization is introduced. Then in section 3, after a brief review
of homogenization results for multiscale elliptic PDEs with stationary and ergodic
coefficients in the continuous sense, the asymptotic compatibilities of numerical sample
realizations using FEMs, MsFEMs, and X-MsFEMs are studied. Next, in section 4, we
first prove that the numerical expectation can converge to the same effective solution
while its MC FE approach inherits the property of asymptotic compatibility for all
n ∈ Z+, then detailed error estimates are derived to further enhance the numerical
efficiency. Finally, some concluding remarks are given in section 5.

2. Preliminaries. We first introduce the function spaces and notation used in
this paper and some basic knowledge of ergodic theory and compensated compactness.

2.1. Stochastic function spaces and notation. Throughout this paper, we
adopt the notation in [18] for the classical Sobolev spaces. To be specific, let d be a
positive integer and D be an open, connected, bounded, and convex subset of Rd with
polygonal boundary ∂D. Hr(D), r ∈ Z+, is a Sobolev space equipped with the inner
product (·, ·)Hr(D) and the induced norm ‖·‖Hr(D). Clearly, ‖·‖Hr(D) is equivalent to
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the seminorm | · |Hr(D) in Hr
0 (D), where Hr

0 (D) := {v ∈ Hr(D) : v = 0 on ∂D}. We
use C to denote a generic constant whose value may change with context. Moreover,
let (Ω,F , µ) denote a σ-finite probability space, where Ω is a set of outcomes, F is a
σ-algebra of events, and µ : F → [0, 1] is a probability measure.

E[X] =

∫

Ω

X(ω) dµ(ω) and V[X] = E
[
(X − E[X])2

]

are the expected value and the variance of the random variable X(ω).
Let B(D) be the Borel σ-algebra generated by the open subsets of D; we define

the stochastic Sobolev spaces Hr(D) = L2(Ω;Hr(D)) consisting of those functions
that are assumed to be strongly measurable w.r.t. the product σ-algebra B(D)⊗ F ,
whose associated inner product is given as

[u, v]L2(Ω;Hr(D)) = E
[
(u, v)Hr(D)

]
=

∫

Ω

(u, v)Hr(D) dµ,

and thus the norm

‖v‖2L2(Ω;Hr(D)) = E
[
‖v‖2Hr(D)

]
=

∫

Ω

‖v‖2Hr(D) dµ.

Note that the stochastic Sobolev space Hr(D) is a Hilbert space and is isomorphic
to the tensor product Hilbert space Hr(D) ⊗ L2(Ω) [6]. For simplicity, let (·, ·) :=
(·, ·)L2(D) and

L2(D) := L2(Ω;L2(D)) with norm ‖v‖2L2(D) = E

[

‖v‖2L2(D)

]

,

L∞(D) := L2(Ω;L∞(D)) with norm ‖v‖L∞(D) = E
[
‖v‖L∞(D)

]
.

2.2. Ergodic theory and compensated compactness. We briefly recall the
Birkhoff ergodic theorem, Weyl decomposition theorem, and Div-Curl theorem, which
are used in proving stochastic homogenization in this paper.

Definition 2.1. A d-dimensional measure preserving dynamical system is a fam-

ily of measurable mappings Tx : Ω → Ω, parametrized by x ∈ R
d, satisfying that

(1) T0 = I is the identity mapping on Ω;
(2) Tx ◦ Ty = Tx+y for all x, y ∈ R

d;

(3) the dynamical system is measure preserving in the sense that for every x ∈ R
d

and every µ-measurable set E ∈ F we have µ(T−1
x (E)) = µ(E);

(4) for any measurable function f(ω) on Ω, the composition f(Tx(ω)) defined on

the Cartesian product Ω× R
d is also measurable.

Furthermore, the following two statements are equivalent:

(5) the measure preserving dynamical system T = {Tx}x∈Rd is ergodic;

(6) whenever f(ω) ∈ L2(Ω) and f (Tx(ω)) = f(ω) for all (ω, x) ∈ Ω× R
d then f

is constant a.e.

By defining the following notion of mean value for functions defined in R
d, we are

able to illustate the Birkhoff ergodic theorem [3, 25].

Definition 2.2. Let g(x) ∈ Lp
loc(R

d) for some p ≥ 1; a number Mg is called the

mean value of g if for any Lebesgue measurable bounded set K ⊂ R
d with measure

|K| 6= 0,

(3) g(ε−1x)
w
⇀ Mg = lim

ε→0

1

|K|

∫

K

g(ε−1x) dx in Lp
loc(R

d), as ε → 0.
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Theorem 2.3. Let T = {Tx}x∈Rd be a measure preserving dynamical system and

f ∈ Lp(Ω) with p ≥ 1; then for a.e. ω ∈ Ω the realization gT (x, ω) = f(Tx(ω))
possesses a mean value in the sense of formula (3), that is, by defining gTε (x, ω) =
gT (ε−1x, ω), one has

gTε (·, ω)
w
⇀ Mg(ω) in Lp

loc(R
d), as ε → 0.

In particular, if the system T is ergodic, then for a.e. ω ∈ Ω the mean value above is

a constant and

gTε (·, ω)
w
⇀

∫

Ω

f(ω) dµ = E[f ] in Lp
loc(R

d), as ε → 0.

Furthermore, a vector field g ∈ L2(Ω) :=
(
L2(Ω)

)d
is called solenoidal (resp., po-

tential) if its realization g (Tx(ω)), constructed with a measure preserving dynamical
system T , is solenoidal (resp., potential) on R

d for a.e. ω ∈ Ω. We define the spaces
of potential and solenoidal vector fields by L2

pot(Ω, T ) and L2
sol(Ω, T ), respectively.

Then, by defining the space

V 2
pot(Ω, T ) =

{
g ∈ L2

pot(Ω, T ) : E[g] = 0
}
,

the Weyl decomposition theorem is stated as follows [25].

Theorem 2.4. If the dynamical system T is ergodic, then the following orthogonal

decomposition is valid:

L2(Ω) = V 2
pot(Ω, T )⊕L2

sol(Ω, T ).

Finally, we state a well-known compensated compactness result, namely, the Div-
Curl theorem.

Theorem 2.5. Let D be a bounded domain in R
d, and let uε and vε be vector

fields in L2(D) such that

uε
w
⇀ u0 and vε

w
⇀ v0 in L2(D), as ε → 0.

If, in addition, the conditions ∇ · uε → f in H−1(D) and curlvε = 0 are satisfied,

then

uε · vε
w?

⇀ u0 · v0, as ε → 0.

3. Asymptotically compatible schemes for realization. In this section,
after introducing the homogenization results for multiscale elliptic PDEs with sta-
tionary and ergodic coefficients in the continuous sense, we study the asymptotic
compatibilities for numerical homogenization procedures using FEMs, MsFEMs, and
X-MsFEMs. A one-dimensional benchmark numerical test is presented to validate
and supplement our theoretical findings.

3.1. Parametric problems and their approximations. Here and in what
follows, let T = {Tx}x∈Rd be a family of measure preserving dynamical system that is
ergodic, and let a(ω) = (aij(ω))d×d be a matrix function that belongs to the following
space with positive constants a− and a+, namely,

A = {a : Ω → R
d×d
sym : a(ω) is measurable w.r.t. F and

0 < a−|ξ|2 ≤ ξ · a(ω)ξ ≤ a+|ξ|2 < +∞ for all ξ ∈ R
d, for a.e. ω ∈ Ω}.
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In many applications, such as diffusion through porous media and heterogeneous
materials (see, for instance, [31] and references therein), the permeability fields typ-
ically vary at a small scale due to the randomly oriented pores, and the steady-
state diffusion in such media could be described by an elliptic variational problem,
parametrized by 0 < ε � 1 and with random coefficients, that is,

(4)







given f ∈ H−1(D), find uε(·, ω) ∈ H1
0 (D) such that for a.e. ω ∈ Ω,

aε(uε, v) = (f, v) for all v ∈ H1
0 (D),

where aε(u, v) =

∫

D

aTε (·, ω)∇u · ∇v dx for all u, v ∈ H1
0 (D) with

aTε (x, ω) = aT (ε−1x, ω) = a (Tε−1x(ω)) .

Here and throughout this paper, “∇” means differentiation w.r.t. the spatial variable
x ∈ D only, and the coefficient aTε (x, ω) is stationary and ergodic by its construction.

It is well known that the sequence of coefficients {aTε (x, ω)}ε>0 G-converges to
an effective coefficient a0 ∈ A at a constant value [25], that is, the weak solutions to
problem (4) satisfy the following convergence properties:

(a) uε(·, ω) w
⇀ u0 in H1

0 (D) for a.e. ω ∈ Ω;

(b) aTε (·, ω)∇uε(·, ω) w
⇀ a0∇u0 in L2(D) for a.e. ω ∈ Ω,

as ε → 0, where u0 solves the homogenized problem

(5)







given the same f ∈ H−1(D), find u0(x) ∈ H1
0 (D) such that

a0(u0, v) = (f, v) for all v ∈ H1
0 (D),

where a0(u, v) =

∫

D

a0∇u · ∇v dx for u, v ∈ H1
0 (D), and a0 is defined by

a0ξ =

∫

Ω

a(ω) (ξ +ϕξ(ω)) dµ for all ξ ∈ R
d,

where ϕξ(ω) solves the auxiliary problem: find ϕ ∈ V 2
pot(Ω, T ) such that

∫

D

a(ω) (ξ +ϕ(ω)) · ϑ(ω) dµ = 0 for all ϑ ∈ V 2
pot(Ω, T ).

Note that for any vector ξ ∈ R
d, the auxiliary problem in (5) is well-posed and has a

unique solution ϕξ ∈ V 2
pot(Ω, T ) which is a linear function of ξ [25].

Although the effective coefficient is explicitly characterized by a0 =
(
E[a−1(ω)]

)−1

in the one-dimensional case [3], no closed-form expressions are available for the general
d-dimensional problems. As a result, much attention has been paid in the literature
to numerically solving the auxiliary problem to obtain the effective coefficient, e.g.,
[10, 17] and references therein. Alternatively, the effective properties can also be char-
acterized by solving the problem (4) for a sufficiently small modeling parameter [7].

We consider here the effective solution that is approached by numerically solving
the problem (4) with parameter ε chosen small enough, that is,

(6)







given the same f ∈ H−1(D), find uh
ε (·, ω) ∈ Vh such that for a.e. ω ∈ Ω,

aε(u
h
ε , vh) = (f, vh) for all vh ∈ Vh,

where Vh is the approximation space, and uh
0 ∈ Vh can be defined in a similar way.

As such, the question on asymptotic compatibility arises naturally: how about
the asymptotic behaviors of the solution to problem (6) as h → 0, ε → 0, or both? In
other words, we want to check whether the diagram in Figure 1 commutes.
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3.2. Asymptotic compatibility. Note that the convergent path (i) in Figure 1
is implied by the theory of G-convergence presented in section 3.1. Next, we consider
the convergence of Galerkin approximations as h → 0 for a fixed ε ∈ [0,∞), i.e., the
paths (iii)–(iv) in Figure 1, which is a conventional numerical analysis question since
the ε-scale details are fully resolved [7].

Lemma 3.1. For any FEMs whose space Vh is asymptotically dense in the solution

space, by the Galerkin approximation, there exists a generic constant C > 0 such that

‖uε(·, ω)− uh
ε (·, ω)‖H1

0 (D) ≤ C inf
vh∈Vh

‖uε(·, ω)− vh‖H1
0 (D) → 0, as h → 0,

for arbitrary but fixed ε ∈ [0,∞) and a.e. ω ∈ Ω.

Now we consider the situation where both ε and h are sent to zero simultaneously,
i.e., the convergent paths (v)–(vii) in Figure 1, and the result is presented in the
following theorem, which relies on a notion of asymptotically dense approximation
spaces [34]. That is, in the current context, the FEM spaces (that may be constructed
with dependence on ε) remain dense in H1

0 (D) as (ε, h) → (0, 0).

Theorem 3.2. For any conforming FEMs whose space is asymptotically dense in

the solution space, the pathwise solution to (6) satisfies the convergence properties

uh
ε (·, ω)

w
⇀ u0 in H1

0 (D) and uh
ε (·, ω) → u0 in L2(D), for a.e. ω ∈ Ω,

for any sequences ε → 0 and h → 0 simultaneously.

Proof. Step 1. For any sequences {εn} and {hn} that tend to 0 as n → ∞, it can
be easily deduced from (6) that the sequence of pathwise solutions {un := uhn

εn (·, ω)} is
uniformly bounded in H1

0 (D) for a.e. ω ∈ Ω. Then, by the Banach–Alaoglu theorem,
there exist convergent subsequence (not relabeled) and u0 := u0(·, ω) ∈ H1

0 (D) such
that for a.e. ω ∈ Ω,

un
w
⇀ u0 in H1

0 (D).

Since H1
0 (D) is compactly embedded into L2(D), we have by the Rellich embed-

ding theorem that, for a.e. ω ∈ Ω,

un → u0 in L2(D) and ∇un
w
⇀ ∇u0 in L2(D).(7)

Let an := aTεn(·, ω) and σn := an∇un. Then for a.e. ω ∈ Ω, by the boundedness
of {σn} in L2(D), there exists a subsequence (not relabeled) and σ0 := σ0(·, ω) ∈
L2(D) such that

σn
w
⇀ σ0 in L2(D).(8)

Step 2. Let ξ ∈ R
d be fixed but arbitrary and ϕξ(ω) ∈ V 2

pot(Ω, T ) be the solution
to the auxiliary problem given in (5), and let p(ω) := ξ + ϕξ(ω). By definition, we
obtain

p(ω) ∈ L2
pot(Ω, T ) and E[p] = ξ + E[ϕξ] = ξ.

Moreover, let q(ω) := a(ω)p(ω), by the auxiliary problem and Theorem 2.4, we have

q(ω) ∈ L2
sol(Ω, T ) and E[q] =

∫

Ω

a(ω) (ξ +ϕξ(ω)) dµ := a0ξ.(9)
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We define pT
n (x, ω) := p(Tε−1

n x(ω)) and qT
n (x, ω) := q(Tε−1

n x(ω)), then by Theo-
rem 2.3, it immediately implies, for a.e. ω ∈ Ω,

pT
n (·, ω)

w
⇀ E[p] = ξ and qT

n (·, ω)
w
⇀ E[q] = a0ξ in L2(D).(10)

Step 3. By the symmetry of an = a(Tε−1
n x(ω)) ∈ A, we can write

σn · pT
n (·, ω) = (an∇un) · pT

n (·, ω) = ∇un · (an pT
n (·, ω)) = ∇un · qT

n (·, ω).(11)

Note that, on the left-hand side of (11), by (6) and the fact that Vhn
is dense in

H1
0 (D) as hn → 0, we have for a.e. ω ∈ Ω,

‖∇ · σn + f‖H−1(D) = sup
‖v‖

H1
0(D)

≤1

|(∇ · σn + f, v)|

= sup
‖v‖

H1
0(D)

≤1

∣
∣
∣
∣

∫

D

σn · (−∇v +∇vhn
) dx+

∫

D

f(v − vhn
) dx

∣
∣
∣
∣

≤ sup
‖v‖

H1
0(D)

≤1

(

‖σn‖L2(D) ‖∇vhn
−∇v‖L2(D)

+ ‖f‖L2(D) ‖v − vhn
‖L2(D)

)

→ 0, as n → ∞,

that is, ∇·σn → −f in H−1(D). Moreover, by pT
n (·, ω) ∈ L2

pot(Ω, T ) and curl∇g = 0

for any scalar-valued function g, we have curlpT
n (·, ω) = 0 for a.e. ω ∈ Ω. Then by

(8), (10), and Theorem 2.5, we get

σn · pT
n (·, ω)

w?

⇀ σ0 · ξ for a.e. ω ∈ Ω.(12)

On the other hand, for the right-hand side of (11), we have for a.e. ω ∈ Ω,
∇ · qT

n (·, ω) = 0 by qT
n (·, ω) ∈ L2

sol(Ω, T ) and curl∇un = 0. Then by (7), (9), and
Theorem 2.5, we have

∇un · qT
n (·, ω)

w?

⇀ ∇u0 · a0ξ for a.e. ω ∈ Ω.(13)

Since an is symmetric and the same can be said about a0 [25, 33], by the unique-
ness of weak limit and (12), (13), we then have for a.e. ω ∈ Ω,

σ0 · ξ = ∇u0 · a0ξ = a0∇u0 · ξ for all ξ ∈ R
d.

Note that ξ is chosen arbitrarily; we deduce that

σn = an∇un
w
⇀ σ0 = a0∇u0 in L2(D) for a.e. ω ∈ Ω.(14)

Step 4. We are now ready to identify the PDEs that u0 solves and to show that
u0 is independent of ω. By (14) and (6) we have for all v ∈ H1

0 (D),

a0(u0, v)− (f, v) = a0(u0, v)− an(un, vhn
) + (f, vhn

)− (f, v)

= a0(u0, v)− an(un, v) + an(un, v − vhn
) + (f, vhn

− v)
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=

∫

D

(σ0 − σn) · ∇v dx+

∫

D

σn · (∇v −∇vhn
) dx

+

∫

D

f(vhn
− v) dx

≤
∫

D

(σ0 − σn) · ∇v dx+ ‖σn‖L2(D)‖∇v −∇vhn
‖L2(D)

+ ‖f‖L2(D)‖vhn
− v‖L2(D)

→ 0 for a.e. ω ∈ Ω.

Note that u0 is independent of ω since both a0 and f are deterministic.
Therefore, not only a particular subsequence but also the entire sequence admit
convergence.

Now it remains to show the convergent path (ii) in Figure 1, in which h is fixed
while ε is sent to zero. Although the effective features can be described by a deter-
ministic model with constant coefficients, the standard FEMs would generically fail
to correctly pass to the limit in such a situation. An intuitive explanation is that,
by Theorem 2.3, the effective coefficient is the averaged result of both the stochastic
field and the interaction of ε-scale oscillations. However, the polynomial base func-
tion does not depend on the modeling parameter ε, with a fixed h, and hence could
not capture any ε-scale information (e.g., see [16] for problems in periodic setting).
Therefore, numerous methods including, but not limited to, MsFEMs and HMMs have
been developed to find accurate approximations of the homogenized solution without
resolving the ε-scale structures. Moreover, it is proved with mild assumptions in [7]
that MsFEMs and HMMs can correctly pass to the limit in paths (i)–(iv) for one-
dimensional problems, while the high-dimensional case remains an open problem.

However, a straightforward implementation of MsFEMs suffers from resonance
between the discretization scale and the modeling parameter, i.e., the numerical error
becomes large when ε and h are of the same order. Specifically, let V ε

h denote the
MsFEM space consisting of local oscillating functions; for a.e. ω ∈ Ω, we consider the
following inequality:

‖uh
ε (·, ω)− uε(·, ω)‖L2(D) ≤ ‖uh

ε (·, ω)− u0‖L2(D) + ‖u0 − uε(·, ω)‖L2(D),(15)

where uh
ε (·, ω) ∈ V ε

h solves (6). When h ≈ ε, the left-hand side could be large and
might even seem to diverge for periodic homogenization problems [24]. Hence, the
first term on the right-hand side of (15) does not diminish since the second term goes
to zero by the standard theory of homogenization. Intuitively, by Theorem 3.2, the
reason for not getting convergence is that V ε

h may not be asymptotically dense in the
solution space H1

0 (D).
With the intuitive argument above, a remedy for avoiding both underresolution

and resonance can be made. Indeed, the study of asymptotic compatibility enables
us to construct X-MsFEMs by certain enrichments of the MsFEMs approximation
space so that the diagram in Figure 1 commutes in all regimes. In particular, since
the continuous piecewise linear element space is independent of ε and is dense (and
thus asymptotically dense) in H1

0 (D), we get the following result.

Corollary 3.3. For any conforming X-MsFEMs with enrichment containing

all continuous piecewise linear elements, the diagram in Figure 1 commutes in all

regimes.
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Fig. 2. One realization of the one-dimensional tile-based random media w.r.t. tile size ε = 2−2,
2−4, and 2−6.

3.3. Numerical experiments. Here, numerical examples in one dimension are
constructed to examine the validity of our theory. Specifically, for Theorem 3.2, we
compute the error ‖uh

ε (·, ω)− u0‖L2(D) and convergence rate for h = ε1/2, h = ε, and

h = ε3/2, respectively.

3.3.1. Stationary and ergodic coefficients. In comparison with Karhunen–
Loève expansion that represents random fields via statistical moments, the ergodic
assumptions in the homogenization theory are a more abstract notion with far less
extensive practical illustration. In this section, we consider a one-dimensional tile-
based random media which is known as a severe benchmark test [4]; other examples,
e.g., quasi-periodic type, can be found in [25].

Specifically, let D = [0, 1] be uniformly divided into several disjoint intervals
with length ε, each of which takes values κ0 and κ1 with probabilities p and 1 − p,
respectively. The realization of such media w.r.t. tile size ε = 2−2, 2−4, and 2−6 is
depicted in Figure 2, where κ1 = 1 and κ2 = 4 and with probability p = 1/2. It can
be easily deduced from Theorem 3.2 that the effective coefficient is determined by

a0 =

(

E

[
1

a(ω)

])−1

=
8

5
.(16)

3.3.2. Numerical verification of asymptotic compatibility. Let Th be a
uniform partition ofD = [0, 1] with mesh size h; we can take, without loss of generality,
piecewise continuous linear elements Vh = {vh ∈ C0(D̄) : vh|K ∈ P1 for all K ∈ Th}.
Now, we consider a parametric problem with the coefficients constructed in section
3.3.1: given f = −a0e

x and g = ex, find uh
ε (·, ω) ∈ {w ∈ Vh : w|∂D = g} such that for

a.e. ω ∈ Ω,

aε(u
h
ε , vh) = (f, vh) for all vh ∈ {w ∈ Vh : w|∂D = 0}.(17)

Then by Theorem 3.2, as h and ε tend to zero, the solution to (17) converges to the
solution of the homogenized problem given below: find u0 ∈ {w ∈ H1(D) : w|∂D = g}
such that

a0(u0, v) = (f, v) for all v ∈ H1
0 (D),(18)

where a0 is given in (16) and the effective solution has explicit expression u0(x) = ex.
Given the random input data as depicted in Figure 2, the numerical realizations

to problem (17) in all regimes are presented in Figure 3. Note that, in the last column,
all the realizations are shown to solve an elliptic problem with a constant coefficient.
Namely, neither the resonance nor the underresolution does pollute the approach
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Fig. 3. From top to bottom: numerical sample realizations uh
ε (x, ω) w.r.t. h = ε1/2, h = ε,

and h = ε3/2. From left to right: ε = 2−4, 2−6, 2−8, and 2−10.

Table 1

Error and convergence order in L2 and L∞ norms for different regimes using linear elements.

‖e‖L2 × 10−2 ‖e‖L∞
× 10−2

ε h = ε1/2 h = ε h = ε3/2 h = ε1/2 h = ε h = ε3/2

2−2 22.63(−) 25.08(−) 25.71(−) 43.04(−) 43.58(−) 43.80(−)

2−4 19.78(0.19) 12.66(0.49) 12.71(0.51) 37.62(0.19) 23.19(0.45) 23.27(0.46)

2−6 8.57(1.21) 4.70(0.71) 4.70(0.72) 13.73(1.45) 11.02(0.54) 11.06(0.54)

2−8 5.84(0.55) 1.70(0.73) 1.70(0.73) 9.96(0.46) 5.44(0.51) 5.45(0.51)

2−10 5.59(0.06) 0.65(0.70) 0.65(0.70) 8.83(0.17) 1.54(0.91) 1.55(0.91)

to an effective solution, which validates the property of asymptotic compatibility
in Theorem 3.2 for piecewise linear elements. Moreover, the numerical error e =
uh
ε (·, ω)− u0 in L2 and L∞ norms for all scenarios are given in Table 1.

For the last two cases, i.e., h = ε and h = ε3/2, we use the partitions where
all the discontinuities in the coefficient lie on grid points. Hence, the FEM with
piecewise linear base functions that is used for solving the one-dimensional problem
(17) can still attain second order accuracy in the infinity norm [29]. While in the
case of underresolution, i.e., h = ε1/2, only first order accuracy in the infinity norm
is obtained since the ε-scale details haven’t been resolved [29].

We note, however, that no convergence order is obtained from Table 1. On the
one hand, it may be as in the Birkhoff’s ergodic theorem where no general statement
can be made about the speed of convergence [27, 28]. On the other hand, when using
realizations to approach the homogenized solution, it is subject to fluctuation effects.
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For the one-dimensional example, if the deviation of 1/aTε (·, ω) from its mean 1/a0 is
strongly mixing, the corrector theory in [7] shows that, as ε → 0,

uε(·, ω)− u0
in distribution−−−−−−−−−→ εγN (·, ω),(19)

where 0 < γ < 1 and N (·, ω) is a Gaussian random process. In other words, the error
could be large even if the parameter ε is very small. Therefore, the expected value is
used to deal with such a problem in the following sections.

4. Asymptotically compatible schemes for expectation. In this section,
we first prove that the expected value can also converge to the same homogenized
solution and its MC FE approximation inherits the property of asymptotic compat-
ibility from numerical realizations. Moreover, specific error estimation is derived to
enhance the numerical efficiency, and numerical experiments are presented to validate
our statements.

4.1. Asymptotic compatibility. To begin with, we prove that the expectation
E[uε] also converges to the homogenized solution u0 as ε → 0. Then, by mimicking a
similar diagram in Figure 1, a discussion on the asymptotic compatibility for the MC
FE approximation (2) of E[uε] is presented.

Theorem 4.1. The expected value of the pathwise solution to problem (4) satisfies

E[uε] → u0 in L2(D), as ε → 0,

where u0 solves the homogenized problem (5).

Proof. By the theory of stochastic homogenization, we have for a.e. ω ∈ Ω,

‖uε(·, ω)− u0‖L2(D) → 0, as ε → 0.

On the other hand, the following standard estimate holds almost surely:

‖uε(·, ω)− u0‖L2(D) ≤ ‖uε(·, ω)‖L2(D) + ‖u0‖L2(D) ≤
2C

a−
‖f‖L2(D),

where C is the constant given by the Poincaré inequality.
Note that the mapping ω 7→ u(·, ω) is measurable [12]; by Lebesgue’s dominated

convergence theorem, it immediately implies that

E

[

‖uε(·, ω)− u0‖2L2(D)

]

→ 0, as ε → 0.

Then by Jensen’s inequality, we have

‖E [uε(·, ω)− u0]‖2L2(D) ≤ E

[

‖uε(·, ω)− u0‖2L2(D)

]

→ 0, as ε → 0,(20)

that is, E[uε] → u0 in L2(D) as ε → 0 which completes the proof.

Similarly, for the numerical approximation of E[uε] via scheme (2), the ques-
tion on asymptotic compatibility arises naturally: whether the diagram in Figure 4
commutes.

Note that, by Theorem 4.1 and Lemma 3.1, the paths (i) and (iv) in Figure 4 are
accessible, respectively. Moreover, for arbitrary but fixed ε ∈ (0,∞), the conventional
error estimation for the elliptic problem with stochastic coefficients [8, Theorem 4.3]
implies that
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QMC uh
0 (x)

E[uε] u0(x)

discrete
parametric
MC FE

discrete
homogenized

continuum
parametric
expectation

continuum
homogenized

ε → 0, n → ∞

ε → 0

h → 0, n → ∞ h → 0

(ii)

(i)

(iii) (iv)

h ≈
ε→

0, ∀n ∈
Z
+

(vi)

ε�
h→

0, ∀n ∈
Z
+

(v)
h�

ε→
0, ∀n ∈

Z
+

(vii)

Fig. 4. A diagram describing the convergence results of numerical homogenization.

‖QMC − E[uε]‖L2(D) → 0, as h → 0 and n → ∞,

which indicates that the convergent path (iii) holds true.
Now we consider the situation where both ε and h are sent to zero for all n∈Z+,

i.e., the convergent paths (v)–(vii) in Figure 4, and the results are given in the fol-
lowing corollary.

Corollary 4.2. For any conforming FEMs with approximation spaces asymp-

totically dense in the solution space, the expected value of the pathwise solution to (6)
satisfies

E[uh
ε ] → u0 in L2(D) for any sequences ε → 0 and h → 0.

Furthermore, the corresponding MC FE approximation (2) satisfies

QMC → u0 in L2(D) for any sequences ε, h → 0 and for all n ∈ Z+.

Proof. For any sequences ε → 0 and h → 0, by Theorem 3.2, the numerical sample
realization uh

ε (·, ω) converges strongly to u0 in L2(D) almost surely. Therefore, by
the arguments presented in Theorem 4.1, it immediately implies that there holds

(21) ‖uh
ε − u0‖L2(D) → 0 and ‖E[uh

ε ]− u0‖L2(D) → 0 for any sequences ε, h → 0.

On the other hand, the standard error bound for the MC FE estimation of E[uε]
gives

eMC := ‖QMC − u0‖L2(D) ≤ ‖QMC − E[uh
ε ]‖L2(D) + ‖E[uh

ε ]− u0‖L2(D)

=
1√
n
‖uh

ε − E[uh
ε ]‖L2(D) + ‖E[uh

ε ]− u0‖L2(D)

≤ 1√
n
‖uh

ε‖L2(D) + ‖E[uh
ε ]− u0‖L2(D)

≤ C

a−
√
n
‖f‖L2(D) + ‖E[uh

ε ]− u0‖L2(D),

(22)
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Table 2

Numerical error ‖QMC − u0‖ in different norms with fixed h and different ε.

Index of level (`) 0 1 2 3 4

‖QMC − u0‖L2 (×10−2) 2.83 4.35 5.07 5.33 5.44

‖QMC − u0‖L∞
(×10−2) 3.90 5.96 6.96 7.31 7.46

where C is the constant given by the Poincaré inequality [12]. By invoking (21), the
right-hand side of (22) goes to zero for any sequences (ε, h) → (0, 0) and n → ∞.

Similarly, for fixed but arbitrary n ∈ Z+, we have

eMC ≤ 1√
n
‖uh

ε − E[uh
ε ]‖L2(D) + ‖E[uh

ε ]− u0‖L2(D)

≤ 1√
n
‖uh

ε − u0‖L2(D) +
1√
n
‖E[uh

ε ]− u0‖L2(D) + ‖E[uh
ε ]− u0‖L2(D),

hence the proof is completed by invoking (21).

Now it remains to examine the convergent path (ii) in Figure 4 for the standard
FEMs where h � ε. Intuitively, for standard FEMs, the underresolution error could
not be eliminated by using sample average since no ε-scale information is included.
More precisely, by using continuous linear elements, we consider the problem (17)
with a fixed mesh size h = 2−9, a sequence of modeling parameters {ε` = 2−`−10}4`=0,
and sample size n = 3000; the numerical results are presented in Table 2.

As can be seen from Table 2, even though the small-scale oscillation diminishes
as ε → 0, the numerical error becomes large as the ratio r = h/ε grows. The reason
for this is that the larger the ratio is, the worse the approximation to ε-scale structure
gets. Therefore, the upscaling methods, e.g., MsFEMs and HMMs, should be used to
deal with the underresolution [7]. Furthermore, X-MsFEMs may be used to overcome
resonance when the discretization scale is close to the heterogeneity scale of the media
as illustrated in the earlier section.

4.2. Further error analysis for the MC FE method. Although the influence
of randomness can be reduced by using sample average (2), the MC simulation is
known to be costly and even unaffordable. However, based on the error estimates
developed for homogenization problems with deterministic limits in this section, high
accuracy can be achieved by performing relatively few simulations.

Recall that the error estimation associated with approximating u0 by QMC takes
the form

(23) eMC ≤ n− 1
2 ‖uh

ε − E[uh
ε ]‖L2(D)

︸ ︷︷ ︸

sampling error

+ ‖E[uh
ε ]− u0‖L2(D)

︸ ︷︷ ︸

homogenization error

.

Moreover, let EMC := ‖uh
ε −E[uh

ε ]‖L2(D), and define Serr and Herr as the sampling and
the homogenization error, respectively. Then, by balancing errors, the MC sample
size n can be determined by the following formula:

(24) n− 1
2 EMC = Serr ≈ Herr.

Note that by using asymptotically compatible schemes, the homogenization error
diminish as (ε, h) → (0, 0). Since EMC is bounded by some constant in (22), it implies
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that the MC sample size n increases as (ε, h) → (0, 0). However, for our problems, a
key observation is that both uh

ε and E[uh
ε ] can converge strongly to u0 in L2(D), that

is, EMC → 0 as (ε, h) → (0, 0), which enables us to perform relatively few simulations
to attain high accuracy.

In fact, the MC FE approximation error also takes the form

eMC ≤ ‖QMC − E[uh
ε ]‖L2(D) + ‖E[uh

ε ]− u0‖L2(D)

= n− 1
2 ‖

(
V[uh

ε ]
) 1

2 ‖L2(D)
︸ ︷︷ ︸

sampling error

+ ‖E[uh
ε ]− u0‖L2(D)

︸ ︷︷ ︸

homogenization error

,

where the variance tends to zero as (ε, h) → (0, 0) since the numerical realized values
converge to the deterministic effective solutions. Moreover, one can also estimate the
mean square error in a suitable norm ‖ · ‖ to draw a similar conclusion, i.e.,

τMC :=
∥
∥
∥E

[(
QMC − u0

)2
]∥
∥
∥ =

∥
∥
∥E

[(
QMC − E[uh

ε ]
)2
]

+
(
E[uh

ε ]− u0

)2
∥
∥
∥

≤ n−1
∥
∥V[uh

ε ]
∥
∥

︸ ︷︷ ︸

sampling error

+
∥
∥
∥

(
E[uh

ε ]− u0

)2
∥
∥
∥

︸ ︷︷ ︸

homogenization error

.(25)

Specifically, the variance V[uh
ε ] of numerical realizations, which inherits the proper-

ties of continuous problem, diminishes as both ε → 0 and h → 0 simultaneously and
thus coincides with our statements reported before. To compensate for the lack of
quantitative results based on theoretical derivations, numerical experiments are car-
ried out in the following section to offer quantitative finding by showing the order of
convergence that is not provided in our convergence theorem.

4.3. Numerical experiments. Here, we consider the following boundary value
problem with stationary and ergodic coefficients: given f ∈ H−1(D) and g ∈ H1/2(D),
find uh

ε (·, ω) ∈ {w ∈ Vh : w|∂D = g} such that for a.e. ω ∈ Ω,

aε(u
h
ε , vh) = (f, vh) for all vh ∈ {w ∈ Vh : w|∂D = 0},(26)

where the quantity of interest E[uε] is approximated by sample average (2). Without
loss of generality, standard FEMs are used and specific partitions are chosen where
all the discontinuities in the coefficient lie on grid points. Let EMC

` = ‖uh`

ε`
− E[uh`

ε`
]‖

and VMC
` = ‖V[uh`

ε`
]‖ for ` = 0, . . . , L ∈ Z+, where L2 and L∞ norms are used.

In such settings, numerical results are reported in this section to computationally
verify the assumption

(27) EMC = ‖uh
ε − E[uh

ε ]‖ ≤ Cεα and EMC = ‖V[uh
ε ]‖ ≤ Cεβ ,

where C is a generic constant, and α and β are two positive constants which change
with the dimension of problem and the norm ‖ · ‖ of interest.

4.3.1. One-dimensional numerical experiment. We consider the model prob-
lem (26) with coefficients constructed in section 3.3.1, f(x) = −8ex/5 and g(x) = ex.
Specifically, the sequence of modeling parameters is chosen to be {ε` = 2−`−5}L=7

`=0 ,
and the mesh sizes are given by h` = 2−`−6 with fixed ratio r = 2−1 for ` = 0, . . . , 7.
Furthermore, by using n = 3000 samples and quadratic elements, the numerical
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Fig. 5. Linear fitted results of EMC
` and VMC

` for ` = 0, . . . , 7.

Table 3

Linear fitted results and convergence orders of EMC
` and VMC

` for ` = 0, . . . , 7.

Index of level (`) 0 1 2 3 4 5 6 7 Order

‖EMC
` ‖L2(D) × 10−2 7.91 5.68 3.96 2.81 1.98 1.39 0.99 0.71 0.50

‖EMC
` ‖L∞(D) × 10−2 42.93 31.34 20.88 14.12 10.80 7.54 5.22 3.71 0.51

‖VMC
` ‖L2(D) × 10−4 70.82 36.53 17.81 9.11 4.48 2.26 1.46 0.56 1.00

‖VMC
` ‖L∞(D) × 10−4 106.68 55.36 26.79 13.47 6.45 3.39 1.72 0.83 1.00

results concerning assumption (27) are given as follows: Figure 5 presents the lin-
ear fitted results of EMC

` and VMC
` , while the computational results are given in

Table 3.
As seen from Table 3, assumption (27) is substantiated with convergence orders

α ≈ 0.5 and β ≈ 1, which validates our statements in section 4.2. This enables us to
determine the optimal sample size for different types of error and parameter value,
which could greatly reduce the computational cost in contrast to the traditional MC
methods.

4.3.2. Two-dimensional numerical experiment. Next, a two-dimensional
model problem (26) with coefficient in a chessboard type is considered [25]. Specif-
ically, let I2 be the 2 by 2 identity matrix and the domain D = [0, 1]2 be split into
squares of length ε > 0. We consider that the coefficient aTε (x, ω) takes two values
κ1I2 and κ2I2 on each square independently for two given positive scalars κ1 and κ2,
with probabilities p and 1− p, respectively.

Some realizations of such two-dimensional media with κ1 = 1 (black), κ2 = 4
(white), and p = 1/2 are depicted on the first line of Figure 6. The corresponding
numerical realization with f(x, y) = exy(x−1)(y−1), g(x, y) = 0, and a fixed ratio
r = 1 is presented on the second line of Figure 6. Note that the right-hand side is a
symmetric function centered at (1/2, 1/2), and numerical realization uh

ε (·, ω) is seen
to solve an elliptic problem with a constant coefficient, which matches with our theory
in Theorem 3.2.

Next, n = 5000 samples and quadratic elements are used to numerically verify
the assumption (27) with the sequence of parameter chosen to be {ε` = 2−2−`}L=3

`=0 ,
and the numerical results are given in Figure 7 and Table 4, which validate our
statements.
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Fig. 6. Realizations of the two-dimensional chessboard media and the corresponding solutions
w.r.t. {ε = 2−`}6`=2.
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Fig. 7. Linear fitted results of EMC
` and VMC

` for ` = 0, . . . , 3.

Table 4

Linear fitted results and convergence orders of EMC
` and VMC

` for ` = 0, . . . , 3.

Index of level (`) 0 1 2 3 Order

‖EMC
` ‖L2(D) (×10−3) 5.37 3.39 2.04 1.18 0.73

‖EMC
` ‖L∞(D) (×10−2) 3.20 2.19 1.24 0.76 0.70

‖VMC
` ‖L2(D) (×10−5) 3.57 1.32 0.46 0.15 1.52

‖VMC
` ‖L∞(D) (×10−5) 6.02 2.48 0.87 0.29 1.46

5. Conclusions. In this work, we first introduce the theory of asymptotic com-
patibility for the numerical sample realization of elliptic homogenization problems
using standard FEMs, MsFEMs, and X-MsFEMs. We then demonstrate that the
expected value, which also converges to the homogenized solution, provides a more
attractive alternative since the convergence is less susceptible to the fluctuation ef-
fects. To evaluate the expectation, the MC FE scheme (2) is used and it is shown to
inherit the asymptotic compatibility. Finally, specific error estimation is derived to
further enhance the efficiency of our numerical approach.
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The framework and numerical schemes developed in this paper could also be ap-
plied to high-contrast problems with additional small scale in the coefficients, stochas-
tic optimal control problems where (4) serves as constraints, etc. Such problems await
further investigations in the future [32]. In addition, we note that besides the con-
ventional MC sampling strategy discussed in this paper, one may also invoke several
techniques including, but not limit to, the quasi-MC method [11, 19], the Markov
chain MC method [20], variance reduction [5, 21, 22], and reduced order basis tech-
niques [13] to further enhance the performance of the MC scheme. It will be interesting
future work to study these as well as other variants of multilevel and multiscale MC
schemes arising from the asymptotic compatibility of numerical expectation presented
in Corollary 4.2.
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