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Abstract—Error-correcting codes that admit local de-
coding and correcting algorithms have been the focus of
much recent research due to their numerous applications.
An important goal is to obtain the best possible tradeoffs
between the number of symbols of the codeword that the
local decoding algorithm must examine (the locality of the
task), and the amount of redundancy in the encoding (the
information rate).

In Hamming’s classical adversarial channel model, the
current tradeoffs are dramatic, allowing either small local-
ity, but superpolynomial blocklength, or small blocklength,
but high locality. However, in the computationally bounded,
adversarial channel model, proposed by Lipton (STACS
1994), constructions of locally decodable codes suddenly
exhibit small locality and small blocklength, but these
constructions require strong trusted setup assumptions
e.g., Ostrovsky, Pandey and Sahai (ICALP 2007) construct
private locally decodable codes in the setting where the
sender and receiver already share a symmetric key.

We study variants of locally decodable and locally
correctable codes in computationally bounded, adversarial
channels, in a setting with no public-key or private-key
cryptographic setup. The only setup assumption we require
is the selection of the public parameters (seed) for a
collision-resistant hash function. Specifically, we provide
constructions of relaxed locally correctable and relaxed
locally decodable codes over the binary alphabet, with
constant information rate, and poly-logarithmic locality.

Our constructions, which compare favorably with their
classical analogs, crucially employ collision-resistant hash
functions and local expander graphs, extending ideas from
recent cryptographic constructions of memory-hard func-
tions.

I. INTRODUCTION

Classically, an error-correcting code is a tuple
(Enc,Dec) of encoding and decoding algorithms em-
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ployed by a sender to encode messages, and by a receiver
to decode them, after potential corruption by a noisy
channel during transmission. Specifically, the sender
encodes a message m of k symbols from an alphabet
Σ into a codeword c of block-length n consisting of
symbols over the same alphabet, via Enc : Σk → Σn.
The receiver uses Dec : Σn → Σk to recover the
message from a received word w ∈ Σn, a corrupted
version of some Enc(m). Codes over the binary alphabet
Σ = {0, 1} are preferred in practice. The quantities of
interest in designing classical codes are the information
rate, defined as k/n, and the error rate, which is the
tolerable fraction of errors in the received word. Codes
with both large information rate and large error rate are
most desirable.

In modern uses of error-correcting codes, one may
only need to recover small portions of the message,
such as a single bit. In such settings, the decoder may
not need to read the entire received word w ∈ Σn, but
only read a few bits of it. Given an index i ∈ [n] and
oracle access to w, a local decoder must make only
q = o(n) queries into w, and output the bit mi. Codes
that admit such fast decoders are called locally decodable
codes (LDCs) [1], [2]. The parameter q is called the
locality of the decoder. A related notion is that of locally
correctable codes (LCCs). LCCs are codes for which
the local decoder with oracle access to w must output
bits of the codeword c, instead of bits of the message
m. LDCs and LCCs have widespread applications in
many areas of theoretical computer science, including
private information retrieval, probabilistically checkable
proofs, self-correction, fault-tolerant circuits, hardness
amplification, and data structures (e.g., [3]–[9] and sur-
veys [10], [11]). However, constructions of such codes
suffer from apparently irreconcilable tension between
locality and rate: existing codes with constant locality
have slightly subexponential blocklength [12]–[14], and
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codes of linear blocklength have slightly subpolynomial
query complexity [15]. For example, see surveys by
Yekhanin [16] and by Kopparty and Saraf [17].

Ben-Sasson et al. [18] propose the notion of relaxed
locally decodable codes (RLDCs) that remedies the
dramatic tradeoffs of classical LDCs. In this notion the
decoding algorithm is allowed to output ⊥ sometimes, to
signal that it does not know the correct value; however,
it should not output an incorrect value too often. More
formally, given i ∈ [k] and oracle access to the received
word w assumed to be relatively close to some codeword
c = Enc(m) ∈ Σn, the local decoder (1) outputs mi

if w = c; (2) otherwise, with probability 2/3 outputs
either mi or ⊥; and (3) the set of indices i such that the
decoder outputs mi (the correct value) with probability
2/3 is of size > ρ · k for some constant ρ > 0. The
relaxed definition allows them to achieve RLDCs with
constant query complexity and blocklength n = k1+ε.

Recently, Gur et al. [19] introduce the analogous
notion of relaxed locally correctable codes (RLCCs).
In particular, upon receiving a word w ∈ Σn assumed to
be close to some codeword c, the decoder: (1) outputs
ci if w = c; (2) outputs either ci or ⊥ with probability
2/3, otherwise; and (3) the set of indices i such that
the decoder outputs ci with probability 2/3 is of size
ρ ·n, for some ρ > 0. In fact, [19] omits condition (3) in
their definition, since the first two conditions imply the
3rd, for codes with constant locality that can withstand a
constant fraction of error [18]. The reduction from [18],
however, does not maintain the asymptotic error rate,
and in particular, in the non-constant query complexity
regime, the error rate becomes subconstant. Since our
results work in the ω(1)-query regime, we will build
codes that achieve the 3rd condition as well (for constant
error rate). The results in [19] obtain significantly better
parameters for RLCCs than for classical LCCs; namely,
they construct RLCCs with constant query complexity,
polynomial block length, and constant error rate, and
RLCCs with quasipolylogarithmic query complexity,
linear blocklength (constant rate), with the caveat that
the error rate is subconstant. These results immediately
extend to RLDCs, since their codes are systematic,
meaning that the initial part of the encoding consists
of the message itself.

In this work we study RLDCs and RLCCs in the
more restricted, yet natural, computationally bounded
adversarial channel, introduced by Lipton [20]. All the
above constructions of local codes assume a channel that
may introduce a bounded number of adversarial errors,
and the channel has as much time as it needs to decide

what positions to corrupt. Lipton argued that one can
always reasonably assume that an adversarial channel
is computationally bounded and can be modeled as
polynomial time probabilistic (PPT) algorithms. Variants
of this model have been initially studied for classical
error-correcting codes [20]–[24] to show better error rate
capabilities than in the Hamming model. See full version
for further details on related work [25].

Other work has focused on the construction of locally
decodable codes when the sender and receiver have
already exchanged cryptographic keys. Ostrovsky et al.
[26] construct a “private key” locally decodable codes
with constant rate and a small (superconstant) locality
against computationally bounded channels. Similarly,
Hemenway and Ostrovky [27] and Hemenway et al. [28]
construct public-key LDCs i.e., the encoding algorithm
uses a secret key, but the decoder only needs to know
the sender’s public key. A crucial difference is that in
our constructions of RLDCs and RLCCs, the encoding
algorithm is completely public and does not require the
sender to use any secret key. Instead our constructions
only rely on the existence of a collision-resilient hash
function H , which will be used in both the encoding and
decoding algorithms. In practice, one could instantiate H
with SHA3 and no further setup assumptions are needed.

II. OUR CONTRIBUTIONS

We introduce the notions of a computationally relaxed
locally correctable codes (CRLCCs) which is analo-
gous to RLCCs when the channel is computationally
bounded. We construct CRLCCs with constant informa-
tion and error rates as well as polylogarithmic locality,
improving on [19] for bounded channels. Our codes are
systematic, and therefore give computationally relaxed
locally decodable codes (CRLDCs).

Since these codes interact with an adversarial chan-
nel, their strength is not only measured in their error
correction and locality capabilities (as is the case for
RLCCs/RLDCs in the Hamming channel), but also in
the security they provide against the channel. We present
these codes while describing how they interact with the
channel, in order to make the analogy with the classical
setting. We use the notation Enc and Dec to denote
encoding and decoding algorithms.

Definition 2.1: A local code is a tuple (Gen,Enc,Dec)
of probabilistic algorithms such that

• Gen(1λ) takes as input security parameter λ and
generates a public seed s ∈ {0, 1}∗. This public
seed s is fixed once and for all.
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• Enc takes as input the public seed s and a message
x ∈ Σk and outputs a codeword c = Enc(s, x) with
c ∈ Σn.

• Dec takes as input the public seed s, an index
i ∈ [n], and is given oracle access to a word
w ∈ Σn. Decw(s, i) outputs a symbol b ∈ Σ (which
is supposed to be the value at position i of the
closest codeword to w).

We say that the code is efficient if Gen,Enc,Dec are
all probabilistic polynomial time (PPT) algorithms, and
we say that the (information) rate of the code is k/n.

Definition 2.2: A computational adversarial channel
A with error rate τ is an algorithm that interacts with
a local code (Gen,Enc,Dec) in rounds, as follows. In
each round of the execution, given a security parameter
λ,

(1) Generate s ← Gen(1λ); s is public, so Enc, Dec,
and A have access to s. This public seed s is fixed
once and for all.

(2) The channel A on input s hands a message x to
the sender.

(3) The sender computes c = Enc(s, x) and hands
it back to the channel (in fact the channel can
compute c without this interaction).

(4) The channel A corrupts at most τn entries of c
to obtain a word w ∈ Σn and selects a challenge
index i ∈ [n]; w is given to the receiver’s Dec with
query access along with the challenge index i.

(5) The receiver outputs b← Decw(s, i).
(6) We define A(s)’s probability of fooling Dec on

this round to be pA,s = Pr[b 6∈ {⊥, ci}], where
the probability is taken only over the randomness
of the Decw(s, i). We say that A(s) is γ-successful
at fooling Dec if pA,s > γ. We say that A(s) is ρ-
successful at limiting Dec if |GoodA,s| < ρ · n,
where GoodA,s ⊆ [n] is the set of indices j
such that Pr[Decw(s, j) = cj ] > 2

3 . We use
FoolA,s(γ, τ, λ) (resp. LimitA,s(ρ, τ, λ)) to denote
the event that the attacker was γ-successful at
fooling Dec (resp. ρ-successful at limiting Dec)
on this round.

We now define our secure RLCC codes against compu-
tational adversarial channels.

Definition 2.3 ((Computational) Relaxed Locally Cor-
rectable Codes (CRLCC)): A local code (Gen,Enc,Dec)
is a (q, τ, ρ, γ(·), µ(·))-CRLCC against a class A of
adversaries if Decw makes at most q queries to w and
satisfies the following:

(1) For all public seeds s if w ← Enc(s, x) then
Decw(s, i) outputs b = (Enc(s, x))i.

(2) For all A ∈ A we have Pr[FoolA,s(γ(λ), τ, λ)] ≤
µ(λ), where the randomness is taken over the
selection of s ← Gen(1λ) as well as A’s random
coins.

(3) For all A ∈ A we have Pr[LimitA,s(ρ, τ, λ)] ≤
µ(λ), where the randomness is taken over the
selection of s ← Gen(1λ) as well as A’s random
coins.

When µ(λ) = 0, γ(λ) = 1
3 is a constant and A is

the set of all (computationally unbounded) channels, we
say that the code is a (q, τ, ρ, γ)-RLCC. When µ(·) is
a negligible function and A is restricted to the set of
all probabilistic polynomial time (PPT) attackers, we
say that the code is a (q, τ, ρ, γ)-CRLCC (computational
relaxed locally correctable code).

We say that a code that satisfies conditions 1 and 2 is
a Weak CRLCC, while a code that satisfies conditions
1, 2 and 3 is a Strong CRLCC code.

We construct Weak and Strong CRLCCs against
PPT adversaries, under the assumption that Collision-
Resistant Hash Functions (CRHF) exist. Briefly, a
CRHF function is a pair (GenH, H) of probabilistic
polynomial time (PPT) algorithms, where GenH takes as
input a security parameter λ and outputs a public seed
s ∈ {0, 1}∗; the function H : {0, 1}∗ × Σ∗ → Σ`(λ),
takes as input the seed s and a long enough input that
is hashed into a string of length `(λ). We note that H
is deterministic upon fixing s. The value `(λ) is the
length of the hash function. (GenH, H) is said to be
collision-resistant if for all PPT adversaries that take as
input the seed s generated by Gen(1λ), the probability
that a collision pair (x, x′) is produced, i.e. such that
H(s, x) = H(s, x′) and x 6= x′, is negligible in 1λ.

Theorem 2.4, our main result, states that it is pos-
sible to construct a constant rate Strong CRLDC with
polylog locality that withstands a constant error rate τ .
Furthermore, the information rate r(τ) approaches 1 as
τ approaches 0. By contrast, the classical RLCCs of
[19] achieve constant information rate, but subconstant
error rate and (log n)O(log logn) query complexity in the
Hamming channel.

Theorem 2.4: Assuming the existence of a collision-
resistant hash function (GenH, H) with length `(λ),
there exists a constant 0 < τ ′ < 1 and negli-
gible functions µ(·), γ(·) such that for all τ ≤ τ ′

there exist constants 0 < r(τ), ρ(τ) < 1 such that
there exists a (`(λ) ·polylog n, τ, ρ(τ), γ(·), µ(·))-Strong
CRLCC of blocklength n over the binary alphabet with
rate r(τ) where r(·) and ρ(·) have the property that
limτ→0 r(τ) = 1 and limτ→0 ρ(τ) = 1. In particular,
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if `(λ) = polylog λ and λ ∈ Θ(n) then the code is a
(polylog n, τ, ρ(τ), γ(·), µ(·))-Strong CRLCC.

Our constructions are systematic and imply the exis-
tence of a Strong CRLDC with the same parameters.

III. TECHNICAL INGREDIENTS

At a technical level our construction uses two main
building blocks: local expander graphs and collision
resistant hash functions. Below we describe how we
use these tools to construct Weak CRLCCs. We will
also briefly sketch how the construction can be modified
to obtain Strong CRLCCs though we defer a complete
treatment to the full version of the paper [25].

Weak CRLCCs (Encoding): Our construction of
Weak CRLCCs involves labeling a k-node directed
acyclic graph G with a collision resistant hash function
H(s, ·). We require that G satisfies key combinatorial
property called δ-local expansion described later. Given
an input word x = (x1 ◦ . . . ◦ xk) (broken up into bit
strings of length `(λ)) and a k node local expander
graph G, the label of node v with parents v1, . . . , vd
is computed as `v,s = H (s, xv ◦ `v1,s ◦ . . . ◦ `vd,s) ∈
{0, 1}`(λ), where `v1,s, . . . , `vd,s are the labels of the
parents of node v (if any exist), and ◦ denotes string
concatenation. When `(λ) ∈ O(polylog λ) we will select
λ ∈ O(n) to ensure that `(λ) ∈ O(polylog n). We use
the notation Enc and Dec for the encoding and decoding
of our construction, while we use ECC and ECCD to
denote the efficient encoding and decoding algorithms
for a good binary code with constant rate and relative
distance (e.g., [29], [30]), which can decode efficiently
from some constant fractions of errors.

We first apply ECC to x1, . . . , xk to obtain code-
words c1, . . . , ck ∈ {0, 1}O(`(λ)) where ci =
ECC(xi). Also, for v ∈ [k] we let cv+k =
ECC(`v,s) which is the encoding of the label cor-
responding to the node v in G. The final output is
c = (c1 ◦ . . . ◦ c2k−1 ◦ c2k ◦ c2k+1 ◦ . . . ◦ c3k) where
c2k+1 = . . . = c3k = c2k consists of k copies of the
last codeword c2k. The final word is an n bit message
with n = O(k` (λ)). By repeating this last codeword k
times we ensure that it is not possible for the attacker to
irreparably corrupt the final label `k,s.

Weak CRLCCs (Local Decoder): Given a (possibly
corrupted) codeword c′ produced by a PPT attacker
A we let x′ = (x′1 ◦ . . . ◦ x′k) with x′i = ECCD(c′i)
(possibly ⊥) and we let `′v,s = ECCD(c′v+k) for v ∈ [k]
and `′k,s,j = ECCD(c′2k+j) for each j ∈ [k]. We say
that a node v is green if it is locally consistent i.e.,
`′v,s = H

(
s, x′v ◦ `′v1,s ◦ . . . ◦ `

′
vd,s

)
, otherwise, we say

that the node is red. Because H(s, ·) is collision resistant

it is not too difficult to prove that if a green node
has the correct label `′v,s = `v,s then it must be the
case that x′v = xv and `′vi,s = `vi,s for each of v’s
parents v1, . . . vd — otherwise A would have found a
hash collision! If a graph contains too many red nodes
then this is easily detectable by random sampling and our
weak local decoder is allowed to output ⊥ if it detects
any red nodes.

Our local decoder will first obtain the final label `k,s
by random sampling some labels from `′k,s,1, . . . , `

′
k,s,k

and checking to make sure each of these labels is equal
to `′k,s. If this check passes then with high probability we
must have `′k,s = `k,s since the attacker cannot corrupt
too many of these labels. The local decoder also checks
that the node k is green i.e., `′k,s is locally consistent. If
`′k,s is correct and node k is green then this node serves
as an anchor point. In particular, if node v and node k are
connected by a green path then we can conclude that this
part of the codeword has not been corrupted i.e., `v,s =
`v,s and that xv = x′v . Thus, the remaining challenge is
to design a test with small locality that outputs 0 (whp)
whenever there is no green path connecting v to k and
always outputs 1 when there are no red nodes. We show
how to design such a test whenever G is a local expander.

Local Expander Graphs: Given a graph G =
(V,E) and distinguished subsets A,B ⊆ V of nodes
such that A ∩ B = ∅ and |A| ≤ |B| we say that the
pair (A,B) contains a δ-expander if for all X ⊆ A
and Y ⊆ B with |X| > δ|B| and |Y | > δ|B| there
is an edge connecting X and Y . We say that a DAG
G is a δ-local expander around a node v if for any
radius r > 0 and any node v ≥ 2r, the contiguous pair
A = {v−2r+1, . . . , v−r} and B = {v−r+1, . . . , v}
contain a δ-expander and the contiguous pair C =
{v, . . . , v + r − 1} and D = {v + r, . . . , v + 2r − 1}
contain a δ-expander. When this property holds for every
node v ∈ V (G) = {1, . . . , n} we simply say that the
DAG G is a δ-local expander. For any constant δ > 0
it is possible to (explicitly) construct a δ-local expander
with the property that indeg(G), outdeg(G) ∈ O(log n)
[31], [32]. Local expanders have several nice properties
that have been recently exploited in cryptography in
the design and analysis of data-independent memory
hard functions (iMHFs) [32]–[36], proofs of sequential
work [37] and proofs of space [38].

If G is a δ-local expander (for a suitably small constant
δ > 0) and we delete a large number of nodes S ⊆
V , then we can still prove that (1) at least n − 2|S|

α of
the nodes have the property that they are “α-good” with
respect to the deleted set S, and (2) any pair of α-good
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nodes u and v are connected by a directed path. Here,
a node v is α-good with respect to S if, for any radius
r < v, we have at most αr nodes in S ∩ [v − r + 1, v]
and for any radius r ≤ n − v + 1, we have at most αr
nodes in S ∩ [v, v + r − 1].

Recall that given a (potentially corrupted) codeword,
we defined a node v to be green if the hash label was
locally consistent. Now if we let S denote the set of
red nodes then we can develop an efficient randomized
testing algorithm to check if a particular node v is α-
good or not. (We defer to the full version [25] the
details of this test and of the full construction of Strong
CRLCCs using the ideas developed above.)
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