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SUMMARY

Sliced inverse regression is a popular tool for sufficient dimension reduction, which replaces
covariates with a minimal set of their linear combinations without loss of information on the
conditional distribution of the response given the covariates. The estimated linear combinations
include all covariates, making results difficult to interpret and perhaps unnecessarily variable,
particularly when the number of covariates is large. In this paper, we propose a convex formu-
lation for fitting sparse sliced inverse regression in high dimensions. Our proposal estimates the
subspace of the linear combinations of the covariates directly and performs variable selection
simultaneously. We solve the resulting convex optimization problem via the linearized alternat-
ing direction methods of multiplier algorithm, and establish an upper bound on the subspace
distance between the estimated and the true subspaces. Through numerical studies, we show that
our proposal is able to identify the correct covariates in the high-dimensional setting.

Some key words: Convex optimization; Dimension reduction; Nonparametric regression; Principal fitted component.

1. INTRODUCTION

We consider regression of a univariate response y € R on a stochastic covariate vector x =
(x1,...,x7)" € R? in which the number of covariates d exceeds the sample size n. The goal is
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to infer the conditional distribution of y given x. When d is large, it is often desirable to perform
dimension reduction on the covariates with the aim of minimizing information loss. Sufficient
dimension reduction is popular for this purpose (Li, 1991; Cook, 1994, 1998).

Let K < min(n,d) and let B1, . .., Bk € R? be d-dimensional vectors. We assume that

yAlx| (Blx,...,Bxx), (1)

where L signifies independence. Equation (1) implies that y can be explained by a set of K
linear combinations of x. A dimension reduction subspace V is defined as the subspace spanned
by B1, ..., Bk such that (1) holds. We henceforth refer to g1, ..., Bx as the sufficient dimension
reduction directions. Dimension reduction subspaces are not unique in general, and Cook (1994)
defined the central subspace, V), as the intersection of all dimension reduction subspaces. Under
regularity conditions, the central subspace exists and is also the unique minimum dimension
reduction subspace that satisfies (1). Many authors have proposed methods to estimate the central
subspace (Li, 1991; Cook & Weisberg, 1991; Cook & Lee, 1999; Bura & Cook, 2001a,b; Cook,
2000, 2007; Cook & Forzani, 2008, 2009; Li & Wang, 2007; Ma & Zhu, 2012, 2013a). The
sufficient dimension reduction literature is vast: see Ma & Zhu (2013b) for a comprehensive list
of references.

We focus on sliced inverse regression for estimating the central subspace V), (Li, 1991).
In the low-dimensional setting in which d < n, the central subspace V)|, can be estimated
consistently (Li, 1991; Hsing & Carroll, 1992; Zhu & Ng, 1995; Zhu & Fang, 1996; Zhu et al.,
2006). One drawback of sliced inverse regression is that the estimated sufficient dimension
reduction directions involve all d covariates, so these directions are hard to interpret, and important
covariates may be difficult to identify.

Numerous attempts have been made to perform variable selection for sliced inverse regression
in the low-dimensional setting (Cook, 2004; Li et al., 2005; Ni et al., 2005; Li & Yin, 2008; Li,
2007). Most are conducted stepwise, estimating a sparse solution for each direction. However,
sparsity in each sufficient dimension reduction direction does not correspond to variable selection
unless an entire row of the basis matrix (81, . . ., Bx) is set to zero, and Chen et al. (2010) proposed
a novel penalty to encourage this. Their proposal involves solving a nonconvex problem and a
global optimum solution is often not guaranteed.

In the high-dimensional setting, Lin et al. (2018) proposed a screening approach to perform
variable selection. The selected variables are then used to fit classical sliced inverse regression. Yin
& Hilafu (2014) proposed a sequential approach for estimating high-dimensional sliced inverse
regression. Both proposals are stepwise procedures that do not correspond to solving a convex
optimization problem. Moreover, as discussed in Yin & Hilafu (2014), theoretical properties for
their proposed estimators are hard to establish due to the sequential procedure used to obtain the
estimators.

Yu et al. (2013) proposed using £-minimization with an adaptive Dantzig selector, and estab-
lished a non-asymptotic error bound for the resulting estimator. Wang et al. (2018) recast sliced
inverse regression as a reduced-rank regression problem, proposed solving a nonconvex opti-
mization problem for simultaneous variable selection and dimension reduction, and showed that
their proposed method is prediction consistent. However, there is a gap between the optimization
problem and the theoretical results: there is no guarantee that the estimator obtained from solving
the proposed biconvex optimization problem is the global minimum.

Most existing work in the high-dimensional sufficient dimension reduction literature involves
nonconvex optimization problems. Moreover, they seek to estimate a set of reduced predictors
that are not identifiable by definition, rather than the central subspace. In this paper, we propose a
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convex formulation for sparse sliced inverse regression in the high-dimensional setting by adapt-
ing techniques from sparse canonical correlation analysis (Vu et al., 2013; Gao et al., 2017). Our
proposal estimates the central subspace directly and performs variable selection simultaneously.
Moreover, the proposed method can be adapted for sufficient dimension reduction methods that
can be formulated as generalized eigenvalue problems. These include sliced average variance
estimation, directional regression, principal fitted components, principal Hessian direction, and
iterative Hessian transformation.

2. A REVIEW OF SLICED INVERSE REGRESSION
2-1. Sliced inverse regression

Li (1991) considered the general regression model

Y =f(ﬂirxa~~'s:3[];xa€)a (2)

where € is a stochastic error independent of x and f'(-) is an unknown link function. Model (2)
is equivalent to (1) in the sense that the conditional distribution of y given x is captured by a set
of K linear combinations of x (Zeng & Zhu, 2010, Lemma 1). It has been shown that the central
subspace V| spanned by B4, ..., Bk can be identified. In fact, sliced inverse regression gives the
maximum likelihood estimator of the central subspace if x given y is normally distributed and y
is categorical (Cook & Forzani, 2008, § 4.1).

Sliced inverse regression requires the linearity condition on the covariates x: for any a € RY,

E('x | B1x, ..., BLx) = bo+ biflx + - - + bx fx (3)

for some constants by, . . ., bx. The linearity condition (3) is satisfied when the distribution of x
is elliptically symmetric (Li, 1991). For instance, (3) holds when x is normally distributed with
covariance matrix X. The linearity condition involves only the marginal distribution of x and is
regarded as mild in the sufficient dimension reduction literature.

Under the linearity condition (3), the inverse regression curve E(x | y) resides in the linear
subspace spanned by X1, ..., X8k (Li, 1991, Theorem 3.1). In other words, gy Br =
Ay By fork = 1,..., K, where g (y|y) is the covariance matrix of the conditional expectation
E(x | y), Ak is the kth largest generalized eigenvalue, B, X f8; = 1 and ,BJ.TEX/Sk = 0 forj + k.

Let the columns of V' € R¥*X represent a basis for V) |x- Then a basis can be estimated by solving
the generalized eigenvalue problem

SEanV = SV A, 4)

where 3 E(x|y) is an estimator of Zg(yjy), ¥ € R¥*K consists of K eigenvectors such that /' 2V =
Ig, and A = diag(Ay,...,Ag) € REXK, By definition, Xgy|y) is of rank K. An estimator of V'
can be obtained equivalently by solving the nonconvex optimization problem

minimize — tr {VTf]E(x|y) V} subject to VT,V = Ix. ®)
V eRAxK

Let I be a solution of (5). Then, the central subspace is estimated as span(f/) and the sufficient
dimension reduced variables are V' "x.
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2-2. Estimators for the conditional covariance

Let (y1,x1), - .., (¥n, Xn) be n independent and identically distributed observations. We denote
the order statistics of the response by y(1) < -+ < y(»). In addition, define x(;) as the value of x
associated with the ith order statistic of y. For instance, if the fifth observation ys is the largest
then y(;) = ys and x(n)* = xs.

To estimate ZE(x|y) we use the 1dent1ty COV{E (x | »)} = cov(x) — E{cov(x | y)}. Let T =
E{cov(x | y)}. Then, EE(x|y) 3y — T, where 3, is the sample covariance matrix of x and Tis
an estimator of 7. There are two widely used estimators for 7. The first is

A

/

1 n

r= n Z @iy — x@i—1y-Hxaip — x@i-1y+) ©)
i=1

where |n/2] denotes the largest integer less than or equal to n/2.

The second estimator of 7' can be obtained by partitioning the n observations into H slices
according to the order statistics of y and then computing the weighted average of the sample
covariance matrices within each slice. Let Sp,...,Sy be H sets containing the indices of y
partitioned according to their order statistics. Then,

Fe 23S () (6 s) ™

n
h ieSy

Several authors have shown that 7" and 7 are consistent estimators of T in the low-dimensional
setting (Hsing & Carroll, 1992; Zhu & Ng, 1995; Zhu & Fang, 1996). Zhu et al. (2006) established
consistency for ' when d increases as a function of n, but at a slower rate than . Dai et al. (2015)
studied an estimator of the form in (6) in the context of nonparametric regression. In § 4, we will
show that 7 converges to 7 in the high-dimensional setting under the max norm. Similar results
can be shown for 7.

3. CONVEX SPARSE SLICED INVERSE REGRESSION
3-1. Problem formulation
Recall from § 2-1 that the goal of sliced inverse regression is to estimate the central subspace
spanned by By, ..., Bk. Thus, instead of estimating each column of V" as in (5), we propose to

directly estimate the orthogonal projection IT = F¥'T onto the subspace spanned by V. By a
change of variable, (5) can be rewritten as

mll;[nnj\l/%ze —tr {EE(x|y)H} subject to 21/21'[21/2 eB, (8)
(S

where B = {21/21'121/2 : VT8,V = Ix} and M is the set of d x d symmetric positive
semi-definite matrices.
Instead of solving the nonconvex optimization problem in (8), we propose the convex relaxation

mllg[nr/r\ljze —tr {ZE(x|y)H} subject to |12z /2|, < K, ||2)1/2H§:;/2”sp <1
€

6102 ABIN 20 UO oSN SolID UIM L - BJOSSUUI JO ANSISAIUN Aq 221 0% L S/69./7/S0 1 A0BISAE-0[01E/A8WOIq/ W00 dNo 0lWapeoE//:Sd)Y WOl PSpeojuMOd



Sparse sliced inverse regression 773

where

I$12TE2), = trace($)2MTE)2),

p 1/2

IZ20s g = sup > (BT 2nie

vivTv=1 j=1

are the nuclear norm and the spectral norm, respectively. The nuclear norm constrains the solution
to be of low rank and the spectral norm constrains the maximum eigenvalue of the solution. A
similar convex relaxation has been used in sparse principal component analysis and canonical
correlation analysis (Vu et al., 2013; Gao et al., 2017).

To achieve variable selection, we impose a lasso penalty on IT to encourage the estimated
subspace to be sparse. To this end, we introduce the notion of subspace sparsity.

DEFINITION 1. Let TT = VV7T be the orthogonal projection matrix onto the subspace V. The
sparsity level of V is the total number of nonzero diagonal elements in I1, s = |supp{diag(I1)}|.

Suppose, for example, that I1;; = 0. Since IT; = Zle Vﬁ{, this implies that V' = 0 for all
k € (1,...,K). That is, the entire jth row of V' is zero when IT; = 0, which corresponds to not
selecting the jth variable. It seems intuitive to use the trace penalty to penalize only the diagonal
elements of I1 for variable selection. However, if a diagonal element of I1 is zero, the elements
in the corresponding row and column of IT are zero. This motivates us to impose an ¢ penalty
on all elements of IT.

To encourage sparsity, we propose solving the optimization problem

minimize —tr {ﬁ:E(x‘y)H}-i-,OHHHl subject to [|S2IIS2, < K, S22 < 1, (9)
S

where [[TT]l; = ), J IT1;;], and p is a positive tuning parameter that controls the sparsity of

the solution I1. Unlike most existing work, our proposal does not require the inversion of the
empirical covariance matrix X,. By Definition 1, the estimated sparse solution IT from solving
(9) will yield sparse basis vectors.

3-2. Linearized alternating direction of method of multipliers algorithm

The main difficulty in solving (9) is the interaction between the penalty term and the constraints.
To solve (9), we use the linearized alternating direction method of multipliers algorithm that allows
us to decouple terms that are difficult to optimize jointly (Zhang et al., 2011; Wang & Yuan, 2012;
Yang & Yuan, 2013). Convergence of the algorithm has been studied in Fang et al. (2015). The
details are presented in Algorithm 1 and its derivation is deferred to the Supplementary Material.
Algorithm 1 amounts to performing soft-thresholding, computing a singular value decomposition,
and modifying the obtained singular values with a monotone piecewise linear function.

Optimization problem (9) can also be solved via the standard alternating direction method of
multipliers algorithm (Boyd et al., 2010). In this case, however, there is no closed-form solution
for updating the primal variable IT as in Step 3(a) of Algorithm 1. Instead of soft-thresholding,
it involves solving a d-dimensional lasso regression problem in each iteration, which may be
computationally prohibitive when the number of covariates d is large.
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Algorithm 1. Linearized alternating direction of method of multipliers algorithm.

1. Input the variables: f]x, ) E(x|y)» the tuning parameter p, rank constraint K, the L-ADMM
parameters v > 0, tolerance level € > 0, and 7 = 4vkr2nax(flx), where )Lmax(f]x) 1s the
largest eigenvalue of >

2. Initialize the parameters: primal variables MO =7, HO = 1, and dual variable ¥ = 0.

3. Iterate until the stopping criterion |[TT® — IT“~ V|| < € is met, where [T is IT obtained
at the rth iteration:

a. TIUHD = Soft[M1®) + S/t — VSO, — S2HO — TOY512y /7, p/7],
where Soft denotes the soft-thresholding operator, applied elementwise to a matrix,
Soft(4;7, b) = sign(4;7) max (4] — b, 0).

b. H*D = Zﬁ:l min{1, max (w; — y*, O)}ujujT, where Z]dzl a)juju} is the singular value
decomposition of I'¥) + 12ne+n 5172 and

*

d
y* = argmin y, subject to Zmin{l,max (a)j — y,O)} < K.

y>0 =1

c. THD — O L $l2esngl/2 gt

3-3. Tuning parameter selection

Our proposed method (9) involves two user-specified tuning parameters: the dimension K of
the central subspace V|, and a sparsity tuning parameter p. Zhu et al. (2006) used the Bayesian
information criterion to select K. Several authors proposed to select K using bootstrap procedures
(Ye & Weiss, 2003; Dong & Li, 2010; Ma & Zhu, 2012). In addition, sequential testing procedures
were developed for determining K (Li, 1991; Bura & Cook, 2001a; Cook & Ni, 2005; Ma &
Zhu, 2013b).

Motivated by Cook & Forzani (2008), we propose a cross-validation approach to select the
tuning parameters K and p. Let IT be the solution of (9), and recall that span(ﬁ) is an estimate
of the central subspace V.. Let 71, ..., 7k be the top K eigenvectors of f1. Given a new data
point x*, define

exp |~ IRG) - Re 13

s exp | =3 IRe = Reol3)

R(x*) = (Afx*, ..., 7px™)T, wi(x*) =

where ||a|, = (Zjd:l ajz)l/2 for @ € RY. The conditional mean E(@y | x = x*) can then be
estimated as

E(y |x =x") = Zwi(x*)y,-. (10)

i=1

Details on the derivation of (10) are deferred to § 6.
We propose an M -fold cross-validation procedure to select the tuning parameters K and p based
on (10). We first partition the n observations into M sets, C1, . .., Cys. For each set C,,, we obtain
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an estimate of I1 using all observations outside the set C,,,. We then predict the conditional mean
for observations in Cy, usi}r\l/[g (10). The tuning parameters K and p are now chosen to minimize the
overall prediction error i—E | x = x;)}*/(M|Cy]), where | Cy, | is the cardinality
of the set Cy,.

m=1 ieCy

4. THEORETICAL RESULTS

We study the theoretical properties of the proposed estimator IT obtained from solving (9)
under the non-asymptotic setting in which 7, d, s, and K are allowed to grow. Throughout this
section, we assume that the linearity condition in (3) holds and that x1, .. .,x, are independent
random variables that are sub-Gaussian with covariance matrix X,. Moreover, for simplicity,
we assume that the largest generalized eigenvalue XA is bounded by some constant, and that
K < min(s,logd). To quantify the distance between the estimated and population subspaces,
we first establish a concentration result for X (y|,) under the max norm. Recall that y (1), ..., u)
are the order statistics of y1,...,y,. Let m{y;)} = E{x | y;)}. We state an assumption on the
smoothness of m(y).

Assumption 1. Let B > 0 and let E,(B) be the collection of all the n-point partitions —B <
yay < -+ < Yy < B on the interval [—B, B]. A vector-valued m(y) is said to have a total
variation of order 1/4 if for any fixed B > 0,

n—o00 pl/4 2

En(

1 -
lim — sup Z lm{yu} — m{yi-nlle =0,
B) =2

where ||allo = max; |q;| fora € RY.

A similar assumption is given by Hsing & Carroll (1992) and Zhu & Ng (1995), except that
they considered the Euclidean norm on the quantity m{y;} — m{y(—1)} rather than the £, norm.
In our problem, it suffices to assume the smoothness condition under the ¢, norm, since we are
bounding the estimation error of T under the max norm. The following lemma provides an upper
bound on the estimation error of 7" in (6).

LEMMA 1. Assume that y1,...,y, € [—B, Bl has a bounded support for some fixed B > 0.
Assume that x1, . . ., Xy, are independent sub-Gaussian random variables with covariance matrix
Y. Under Assumption 1, for sufficiently large n, there exists constants C,C’' > 0 such that with
probability at least 1 — exp(—C’logd),

|7 = Tllmax = C(logd/n)'/?,
where ||A|lmax = max; ; |4, for A € R9*4.

For simplicity, we assume that y has a bounded support in Lemma 1. When y is unbounded, a
more refined analysis is needed to obtain an upper bound on the estimation error under additional
assumptions on the inverse regression curve and the empirical distribution of y (Zhu et al., 2006).
Similar results can be shown for the estimator 7" in (7). We next state a result on the sample
covariance matrix 3, which follows from Lemma 1 of Ravikumar et al. (2011).
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PROPOSITION 1. Assume that x1, . . .,x, are independent sub-Gaussian random variables with
the covariance matrix X,. Let X, be the sample covariance matrix. Then there exists constants
C1, Cy > 0 such that

IZx = Zellmax = Ci(logd/m)'/?
with probability at least 1 — exp(—Cj logd).

COROLLARY 1. Let ﬁ:E(xly) = 3, — T. Under the conditions in Lemma 1 and Proposition 1,
there exists constants Cy, Cé > 0 such that

IZExy) — ZEa)) lmax < Ca(logd/m)'/?
with probability at least 1 — exp(C} log d).

Corollary 1 follows directly from Lemma 1 and Proposition 1. Next, we state an assumption
on the s-sparse eigenvalue of X,. The assumption is commonly used in the high-dimensional
literature (see, for instance, Meinshausen & Yu, 2009).

Assumption 2. The s-sparse minimal and maximal eigenvalues of ¥ are

. VIEw ANV
Amin(Zy,s) = min —, Amax (Zy,8) = max ——,
vilvlo<s v'v vifviloss vV

where ||v]|o is the number of nonzero elements in v. Assume that there exists a constant ¢ > 0
such that ¢! < Amin(Zx, 8) < Amax (X, 8) < c.

We now quantify the distance between the estimated and population subspaces. To this end,
we establish the notion of distance between subspaces (Vu et al., 2013).

DEFINITION2. LetV andV be K -dimensional subspaces of R?. Let Pry and P, be the projection

matrices onto the subspaces V and v, respectively. The distance between the two subspaces are
defined as D(V,V) = ||Pr1 — P |F.

The following theorem provides an upper bound on the subspace distance as defined in
Definition 2 between IT and the solution IT obtained from solving (9).

THEOREM 1. Let V and V be the true and estimated subspaces, respectively. Let n >
Cs?logd/ )\%{ for some sufficiently large constant C, where Ag is the Kth generalized eigen-
value of the pair of matrices {Xg x|y), Xx}. Assume that AxK? < slogd. Let p > Cy(logd/n)'/?
for some constant C1. Under the conditions in Corollary 1 and Assumption 2,

DV, V) < Cas(logd/m)"/? ag
with probability at least 1 — exp(—C3s) — exp(—Cy log d) for some constants Co, C3, and Ca.

Theorem 1 states that with probability tending to one, the distance between the esti-
mated and population subspaces is proportional to s(logd/n)!'/?/ig and decays to zero if
s = o{ig(n/logd)'/?}. That is, the number of active covariates cannot be too large. We will
illustrate the results in Theorem 1 in § 5.
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Remark 1. Our results allow the dimension K to increase as a function of n,d,s under
the constraint that A\x = w{s(logd/ n)l/ 2}, where the notation f(n) = w{g(n)} indicates
lim,—,  |f (n)/g(n)| — oo. In other words, the signal to noise ratio in terms of the Kth general-
ized eigenvalue Ag has to be sufficiently large to attain a small estimation error. We require that
rxK? < slogd, so K cannot be too large compared to the number of active covariates.

5. NUMERICAL STUDIES

We compare our proposal to three other methods based on high-dimensional sparse sliced
inverse regression (Yin & Hilafu, 2014; Li & Yin, 2008; Wang et al., 2018) under various sim-
ulation settings. Recall from Definition 1 that subspace sparsity is determined by the diagonal
elements of I1. Let T be an estimator of I1. We define the true positive rate as the proportion
of correctly identified nonzero diagonals, and the false positive rate as the proportion of zero
diagonals that are incorrectly identified to be nonzeros. Furthermore, we calculate the absolute
correlation coefficient between the true sufficient predictor and its estimate. For simulation set-
tings with K > 1, we calculate the pairwise correlation between the estimated directions and
each of the true sufficient dimension reduction directions. We then select the maximum pairwise
correlation for each of the true direction and take their average. In addition, we compute the
subspace distance between the true and estimated subspace to illustrate the theoretical result in
Theorem 1.

We simulated x from N;(0, X,), where (Z,); = 0-5/7! for 1 <i,j < d, € from N(0, 1), and
employed the following regression models:

1. A linear regression model with three active predictors:
y=(x1+x +X3)/31/2 + 2e.

In this setting, the central subspace is spanned by the directions 8 = (13,0;_3)"and K = 1.

2. A nonlinear regression model with three active predictors:
y=1+exp{(x; +x +x3)/3%) +e.

This regression model has recently been considered in Yin & Hilafu (2014). In this study,
the central subspace is spanned by the direction 8 = (13,0;_3)T and K = 1.
3. A nonlinear regression model with five active predictors:

. X1 +x2 +x3
"~ 054+ (xg + x5+ 1.5)2

y + 0-1e.

This simulation setting is similar to that of Chen et al. (2010). In this study, the central
subspace is spanned by the directions 81 = (13,07_3)", B2 = (03, 12,04_5)", and K = 2.

Sliced inverse regression requires estimators of the marginal and conditional covariance matri-
ces, Xy and Xg(y)). We estimated X, using the sample covariance matrix f]x. Then, Xg(y|y) can
be estimated using the identity f]E(x|y) = flx — T, where T is defined in (7). We constructed T
with H = 5 slices. There are two tuning parameters in our proposal (9), which we selected using
the cross-validation idea outlined in § 3-3. Similarly, we used cross-validation to select tuning
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Table 1. True and false positive rates, and absolute correlation coefficient with n = (100, 200)
and d = 150. The mean (standard error), averaged over 200 datasets, are reported. All entries
are multiplied by 100

n=100andd = 150 n=200andd = 150

Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3
TPR 96 (1) 94.2(1-.2) 913 (1-1) 982(0:5) 98:5(0-:5 98.9(2:5)

Our proposed method ~ FPR 6 (0-9) 3.6 (0-7) 7-4(0-1) 3-4(0-4) 1-1(0-2) 2-5(0-3)
corr  88:3(0:9) 86:4(1-1) 742(1-1) 909(0-5) 92:1(0-5) 79-2(0-6)

TPR  95-3(0-9) 100 (0) 99-6 (0-4) 100 (0) 100 (0) 100 (0)

Yin & Hilafu (2014) FPR  4.9(0-1) 4.8 (0-1) 3:5(0-1) 5:9(0-2) 6-7 (0-3) 4.5(0-2)
corr  59:2(1-1) 87-8(0-5) 78-8(0-6) 78 (0-6) 94.2(0-2)  87-4(0-5)
TPR  97-8(0-1) 98-1(0-1) 97-8(0-1) 98:9(0-1) 99-1(0-1) 979 (0-1)
Li & Yin (2008) FPR  8:3(12) 3.8(0-8) 23411 12 (0-4) 0-3(0-2) 19-7 (1-1)
corr  843(0:9) 889(0:6) 627(0-7) 93-6(0-4) 95-8(0:3) 69-7(0-5)
TPR  88.8(1-5) 93-5(1-2) 80-1(1-2) 97-5(1-0) 98:8(0-7) 96-3(0-6)

Wang et al. (2018) FPR  0:6(0-1) 0-6 (0-1) 0-2 (0-1) 0-3(0-1) 0-3(0-1) 0-1(0-1)
corr 81-5(1-4) 851(1:3) 699(1-1) 91-3(1-1) 93:2(1.0) 84-4(0-7)

TPR, true positive rate; FPR, false positive rate; corr, absolute correlation coefficient.

parameters for Wang et al. (2018). For the proposal in Li & Yin (2008), the authors proposed three
different methods for selecting the tuning parameters: we performed tuning parameter selection
with these three methods and reported only the best results for Li & Yin (2008). We considered
multiple sets of tuning parameters for Yin & Hilafu (2014) and reported only the best results for
their proposal. The true and false positive rates, and the absolute correlation coefficient, averaged
over 200 datasets, are reported in Table 1.

Table 1 shows that the proposed method performs competitively against recent proposals for
high-dimensional sliced inverse regression (Yin & Hilafu, 2014; Wang et al., 2018; Li & Yin,
2008). In the low-dimensional setting when n = 200, our method performs competitively with all
of the existing methods across all three settings. In the high-dimensional setting when n = 100,
for setting 1, our proposal yields the best absolute correlation between the true and estimated
sufficient dimension direction. All methods perform similarly in setting 2. Setting 3 is a harder
problem and the method of Li & Yin (2008) has an extremely high false positive rate. The method
of Wang et al. (2018) has the lowest true positive rate and a low correlation, and that of Yin &
Hilafu (2014) slightly outperforms our proposal in terms of true positive rate and correlation.
However, the tuning parameters for our proposals are selected entirely using cross-validation and
we report the best results for Yin & Hilafu (2014) after considering multiple tuning parameters.
Moreover, Yin & Hilafu (2014) has the worst performance in setting 1. In short, our proposed
method is the most robust proposal across all three settings in the high-dimensional setting.

Next, we evaluated the distance between the estimated and the population subspaces. We
assume that K is known, and select p = 2(logd/n)'/? as suggested by Theorem 1. The results
for d = (100, 200) as a function of n, averaged over 500 datasets, are presented in Figs. 1(a)—(c).
The subspace distance between the estimated and population subspaces is indeed proportional to
s(logd/n)'/2.

6. AN EXTENSION TO SPARSE PRINCIPAL FITTED COMPONENTS

We briefly outline an extension of the proposed method for principal fitted components in
the high-dimensional setting. Cook & Forzani (2008) proposed several model-based sufficient
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Fig. 1. Results for the subspace distance, averaged over 500 datasets. Panels (a), (b), and (c) are the results for
simulation settings 1, 2, and 3, respectively. The lines are obtained by varying the sample size n with d = 100 (circle
black line) and d = 200 (square grey line), respectively.

dimension reduction methods, collectively referred to as principal fitted components. Let x,, be the
conditional random variable of x given y. Assume that x,, is normally distributed from Ny (1, A).
Furthermore, let 1 = E(x), and let Vr = span(u, — i | y € S,), where I' € RZ*K denotes a
semi-orthogonal matrix whose columns form a basis for the K -dimensional subspace Vr, and S,
denotes the sample space of y. Cook & Forzani (2008) considered the inverse regression model

x=[A+TE () —f)) + A%, (1)
where £ € RXX" is an unrestricted rank K matrix with K < r, f(y) € R" is a known vector-
valued function of y, and € is N (0, /) that is independent of y. The covariates f () usually take the
form of polynomial, piecewise linear, or Fourier basis functions. Thus, the regression model (11)
can effectively model nonlinear relationships between the covariates and the response. Principal
fitted components yields sliced inverse regression as a special case when y is categorical (Cook
& Forzani, 2008).

Under model (11), Cook & Forzani (2008) showed that the maximum likelihood estimator of
the central subspace Vr can be obtained by solving the generalized eigenvalue problem Sall =
ﬁx V A, where fiﬁt is the sample covariance matrix of the estimated vectors from the linear
regression of x on f. More specifically, let X denote the n x d matrix with rows (x — X)"
and let F denote the n x r matrix with rows {f () — f()}". Then, S5 = X"F(F'F)~'F'X/n
and &, = XTX/n. While the estimator of the central subspace is derived under the normality
assumption, it is also robust to nonnormal error (Cook & Forzani, 2008, Theorem 3.5). Therefore,
normality assumption on the covariates is not crucial to the principal fitted components.

A convex relaxation for the principal fitted components takes the form

minimize — tr (%n) + p|| M| subject to [SI2MISI2), < K, IBV2I812 ) < 1. (12)
(S

Algorithm 1 can be directly adapted to solve (12); with some abuse of notation, let IT be the
solution to (12) and let 71, . . ., g be the K largest eigenvector of I1.

One of the main advantages of principal fitted components is that a model for x given y can
be inverted to provide a method for estimating the mean function E(y | x) without specifying
a model for the joint distribution (y, x). Let R(x) be the K-dimensional sufficient reduction. Let
g(x | y) and g{R(x) | ¥} be the conditional densities of x given y and R(x) given y. Then, the
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conditional expectation can be written as

Elyg{R(x) | y}]
E[g{R() | y}1°

where the expectation is taken with respect to the random variable y. Under the normality
assumption on x,, for a new data point x*, the conditional mean can be estimated as

EQy|x)=Ely| R0} =

LDy D 2

: " exp {~IRG) — R
Boix=x=Y me . wie) = — |- — 2}2,
= S exp {—IRG) — a3

where IA?(x*) = (A{x*, ..., gx*)" is an estimate of the K-dimensional sufficient reduction. This
motivates the cross-validation procedure described in § 3-3 for selecting the tuning parameters
K and p.

7. DISCUSSION

We have proposed a convex relaxation for sparse sliced inverse regression in the high-
dimensional setting, using the fact that sliced inverse regression is a special case of the generalized
eigenvalue problem. As discussed in Chen et al. (2010) and Li (2007), many other sufficient
dimension reduction methods can be formulated as sparse generalized eigenvalue problems.
These include sliced average variance estimation, directional regression, principal fitted compo-
nents, principal Hessian direction, and iterative Hessian transformation. Therefore, these models
can all be applied using the proposed method in (9) with different choices of covariance matrices.

Many sufficient dimension reduction methods rely on the linearity condition (3), but this is
not always satisfied. To address this, Ma & Zhu (2012) proposed a semiparametric approach
for sufficient dimension reduction that removes the linearity condition. In future work, it will
be of interest to propose a high-dimensional semiparametric approach for sufficient dimension
reduction using recently developed theoretical tools in high-dimensional statistics.

Many authors have proposed methods to estimate the subspace dimension K. These include
the Bayesian information criterion, the bootstrap, and sequential testing (Zhu et al., 2006; Ye
& Weiss, 2003; Dong & Li, 2010; Ma & Zhu, 2012; Li, 1991; Bura & Cook, 2001a; Cook &
Ni, 2005). Ma & Zhang (2015) proposed a validated information criterion for selecting K in
dimension reduction models. However, these methods are not directly applicable to the high-
dimensional setting. It will be of interest to develop a principled way to estimate the subspace
dimension K consistently in this setting.
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Supplementary material available at Biometrika online includes the derivation of Algorithm 1
and proofs of the theoretical results.
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