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Summary

Sliced inverse regression is a popular tool for sufficient dimension reduction, which replaces

covariates with a minimal set of their linear combinations without loss of information on the

conditional distribution of the response given the covariates. The estimated linear combinations

include all covariates, making results difficult to interpret and perhaps unnecessarily variable,

particularly when the number of covariates is large. In this paper, we propose a convex formu-

lation for fitting sparse sliced inverse regression in high dimensions. Our proposal estimates the

subspace of the linear combinations of the covariates directly and performs variable selection

simultaneously. We solve the resulting convex optimization problem via the linearized alternat-

ing direction methods of multiplier algorithm, and establish an upper bound on the subspace

distance between the estimated and the true subspaces. Through numerical studies, we show that

our proposal is able to identify the correct covariates in the high-dimensional setting.

Some key words: Convex optimization; Dimension reduction; Nonparametric regression; Principal fitted component.

1. Introduction

We consider regression of a univariate response y ∈ R on a stochastic covariate vector x =

(x1, . . . , xd)T ∈ R
d in which the number of covariates d exceeds the sample size n. The goal is
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770 K. M. Tan, Z. Wang, T. Zhang, H. Liu AND R. D. Cook

to infer the conditional distribution of y given x. When d is large, it is often desirable to perform

dimension reduction on the covariates with the aim of minimizing information loss. Sufficient

dimension reduction is popular for this purpose (Li, 1991; Cook, 1994, 1998).

Let K < min(n, d) and let β1, . . . , βK ∈ R
d be d-dimensional vectors. We assume that

y ⊥⊥ x |
(

βT

1x, . . . , βT

K x
)

, (1)

where ⊥⊥ signifies independence. Equation (1) implies that y can be explained by a set of K

linear combinations of x. A dimension reduction subspace V is defined as the subspace spanned

by β1, . . . , βK such that (1) holds. We henceforth refer to β1, . . . , βK as the sufficient dimension

reduction directions. Dimension reduction subspaces are not unique in general, and Cook (1994)

defined the central subspace, Vy|x, as the intersection of all dimension reduction subspaces. Under

regularity conditions, the central subspace exists and is also the unique minimum dimension

reduction subspace that satisfies (1). Many authors have proposed methods to estimate the central

subspace (Li, 1991; Cook & Weisberg, 1991; Cook & Lee, 1999; Bura & Cook, 2001a,b; Cook,

2000, 2007; Cook & Forzani, 2008, 2009; Li & Wang, 2007; Ma & Zhu, 2012, 2013a). The

sufficient dimension reduction literature is vast: see Ma & Zhu (2013b) for a comprehensive list

of references.

We focus on sliced inverse regression for estimating the central subspace Vy|x (Li, 1991).

In the low-dimensional setting in which d < n, the central subspace Vy|x can be estimated

consistently (Li, 1991; Hsing & Carroll, 1992; Zhu & Ng, 1995; Zhu & Fang, 1996; Zhu et al.,

2006). One drawback of sliced inverse regression is that the estimated sufficient dimension

reduction directions involve all d covariates, so these directions are hard to interpret, and important

covariates may be difficult to identify.

Numerous attempts have been made to perform variable selection for sliced inverse regression

in the low-dimensional setting (Cook, 2004; Li et al., 2005; Ni et al., 2005; Li & Yin, 2008; Li,

2007). Most are conducted stepwise, estimating a sparse solution for each direction. However,

sparsity in each sufficient dimension reduction direction does not correspond to variable selection

unless an entire row of the basis matrix (β1, . . . , βK ) is set to zero, and Chen et al. (2010) proposed

a novel penalty to encourage this. Their proposal involves solving a nonconvex problem and a

global optimum solution is often not guaranteed.

In the high-dimensional setting, Lin et al. (2018) proposed a screening approach to perform

variable selection. The selected variables are then used to fit classical sliced inverse regression.Yin

& Hilafu (2014) proposed a sequential approach for estimating high-dimensional sliced inverse

regression. Both proposals are stepwise procedures that do not correspond to solving a convex

optimization problem. Moreover, as discussed in Yin & Hilafu (2014), theoretical properties for

their proposed estimators are hard to establish due to the sequential procedure used to obtain the

estimators.

Yu et al. (2013) proposed using �1-minimization with an adaptive Dantzig selector, and estab-

lished a non-asymptotic error bound for the resulting estimator. Wang et al. (2018) recast sliced

inverse regression as a reduced-rank regression problem, proposed solving a nonconvex opti-

mization problem for simultaneous variable selection and dimension reduction, and showed that

their proposed method is prediction consistent. However, there is a gap between the optimization

problem and the theoretical results: there is no guarantee that the estimator obtained from solving

the proposed biconvex optimization problem is the global minimum.

Most existing work in the high-dimensional sufficient dimension reduction literature involves

nonconvex optimization problems. Moreover, they seek to estimate a set of reduced predictors

that are not identifiable by definition, rather than the central subspace. In this paper, we propose a
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Sparse sliced inverse regression 771

convex formulation for sparse sliced inverse regression in the high-dimensional setting by adapt-

ing techniques from sparse canonical correlation analysis (Vu et al., 2013; Gao et al., 2017). Our

proposal estimates the central subspace directly and performs variable selection simultaneously.

Moreover, the proposed method can be adapted for sufficient dimension reduction methods that

can be formulated as generalized eigenvalue problems. These include sliced average variance

estimation, directional regression, principal fitted components, principal Hessian direction, and

iterative Hessian transformation.

2. A review of sliced inverse regression

2·1. Sliced inverse regression

Li (1991) considered the general regression model

y = f (βT

1x, . . . , βT

K x, ε), (2)

where ε is a stochastic error independent of x and f (·) is an unknown link function. Model (2)

is equivalent to (1) in the sense that the conditional distribution of y given x is captured by a set

of K linear combinations of x (Zeng & Zhu, 2010, Lemma 1). It has been shown that the central

subspace Vy|x spanned by β1, . . . , βK can be identified. In fact, sliced inverse regression gives the

maximum likelihood estimator of the central subspace if x given y is normally distributed and y

is categorical (Cook & Forzani, 2008, § 4.1).

Sliced inverse regression requires the linearity condition on the covariates x: for any a ∈ R
d ,

E(aTx | βT

1x, . . . , βT

K x) = b0 + b1β
T

1x + · · · + bKβT

K x (3)

for some constants b0, . . . , bK . The linearity condition (3) is satisfied when the distribution of x

is elliptically symmetric (Li, 1991). For instance, (3) holds when x is normally distributed with

covariance matrix �x. The linearity condition involves only the marginal distribution of x and is

regarded as mild in the sufficient dimension reduction literature.

Under the linearity condition (3), the inverse regression curve E(x | y) resides in the linear

subspace spanned by �xβ1, . . . , �xβK (Li, 1991, Theorem 3.1). In other words, �E(x|y)βk =

λk�xβk for k = 1, . . . , K , where �E(x|y) is the covariance matrix of the conditional expectation

E(x | y), λk is the kth largest generalized eigenvalue, βT

k
�xβk = 1 and βT

j �xβk = 0 for j |= k .

Let the columns of V ∈ R
d×K represent a basis for Vy|x. Then a basis can be estimated by solving

the generalized eigenvalue problem

�̂E(x|y)V = �̂xV�, (4)

where �̂E(x|y) is an estimator of �E(x|y), V ∈ R
d×K consists of K eigenvectors such that V T�̂xV =

IK , and � = diag(λ1, . . . , λK ) ∈ R
K×K . By definition, �E(x|y) is of rank K . An estimator of V

can be obtained equivalently by solving the nonconvex optimization problem

minimize
V∈Rd×K

− tr
{

V T�̂E(x|y)V
}

subject to V T�̂xV = IK . (5)

Let V̂ be a solution of (5). Then, the central subspace is estimated as span(V̂ ) and the sufficient

dimension reduced variables are V̂ Tx.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

-a
b
s
tra

c
t/1

0
5
/4

/7
6
9
/5

1
4
0
1
2
2
 b

y
 U

n
iv

e
rs

ity
 o

f M
in

n
e
s
o
ta

 - T
w

in
 C

itie
s
 u

s
e
r o

n
 0

2
 M

a
y
 2

0
1
9



772 K. M. Tan, Z. Wang, T. Zhang, H. Liu AND R. D. Cook

2·2. Estimators for the conditional covariance

Let (y1, x1), . . . , (yn, xn) be n independent and identically distributed observations. We denote

the order statistics of the response by y(1) � · · · � y(n). In addition, define x(i)∗ as the value of x

associated with the ith order statistic of y. For instance, if the fifth observation y5 is the largest

then y(n) = y5 and x(n)∗ = x5.

To estimate �E(x|y) we use the identity cov{E(x | y)} = cov(x) − E{cov(x | y)}. Let T =

E{cov(x | y)}. Then, �̂E(x|y) = �̂x − T̂ , where �̂x is the sample covariance matrix of x and T̂ is

an estimator of T . There are two widely used estimators for T . The first is

T̂ =
1

n

�n/2�
∑

i=1

{x(2i)∗ − x(2i−1)∗}{x(2i)∗ − x(2i−1)∗}
T, (6)

where �n/2� denotes the largest integer less than or equal to n/2.

The second estimator of T can be obtained by partitioning the n observations into H slices

according to the order statistics of y and then computing the weighted average of the sample

covariance matrices within each slice. Let S1, . . . , SH be H sets containing the indices of y

partitioned according to their order statistics. Then,

T̃ =
1

H

H
∑

h=1

⎧

⎨

⎩

1

nh

∑

i∈Sh

(

xi − x̄Sh

) (

xi − x̄Sh

)T

⎫

⎬

⎭

. (7)

Several authors have shown that T̂ and T̃ are consistent estimators of T in the low-dimensional

setting (Hsing & Carroll, 1992; Zhu & Ng, 1995; Zhu & Fang, 1996). Zhu et al. (2006) established

consistency for T̃ when d increases as a function of n, but at a slower rate than n. Dai et al. (2015)

studied an estimator of the form in (6) in the context of nonparametric regression. In § 4, we will

show that T̂ converges to T in the high-dimensional setting under the max norm. Similar results

can be shown for T̃ .

3. Convex sparse sliced inverse regression

3·1. Problem formulation

Recall from § 2·1 that the goal of sliced inverse regression is to estimate the central subspace

spanned by β1, . . . , βK . Thus, instead of estimating each column of V as in (5), we propose to

directly estimate the orthogonal projection � = VV T onto the subspace spanned by V . By a

change of variable, (5) can be rewritten as

minimize
�∈M

− tr
{

�̂E(x|y)�
}

subject to �̂1/2
x ��̂1/2

x ∈ B, (8)

where B = {�̂
1/2
x ��̂

1/2
x : V T�̂xV = IK } and M is the set of d × d symmetric positive

semi-definite matrices.

Instead of solving the nonconvex optimization problem in (8), we propose the convex relaxation

minimize
�∈M

− tr
{

�̂E(x|y)�
}

subject to ‖�̂1/2
x ��1/2

x ‖∗ � K , ‖�̂1/2
x ��̂1/2

x ‖sp � 1,
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Sparse sliced inverse regression 773

where

‖�̂1/2
x ��1/2

x ‖∗ = trace(�̂1/2
x ��1/2

x ),

‖�̂1/2
x ��1/2

x ‖sp = sup
v:vTv=1

⎧

⎨

⎩

d
∑

j=1

(�̂1/2
x ��1/2

x v)2
j

⎫

⎬

⎭

1/2

,

are the nuclear norm and the spectral norm, respectively. The nuclear norm constrains the solution

to be of low rank and the spectral norm constrains the maximum eigenvalue of the solution. A

similar convex relaxation has been used in sparse principal component analysis and canonical

correlation analysis (Vu et al., 2013; Gao et al., 2017).

To achieve variable selection, we impose a lasso penalty on � to encourage the estimated

subspace to be sparse. To this end, we introduce the notion of subspace sparsity.

Definition 1. Let � = VV T be the orthogonal projection matrix onto the subspace V . The

sparsity level of V is the total number of nonzero diagonal elements in �, s = |supp{diag(�)}|.

Suppose, for example, that �jj = 0. Since �jj =
∑K

k=1 V 2
jk

, this implies that Vjk = 0 for all

k ∈ (1, . . . , K). That is, the entire jth row of V is zero when �jj = 0, which corresponds to not

selecting the jth variable. It seems intuitive to use the trace penalty to penalize only the diagonal

elements of � for variable selection. However, if a diagonal element of � is zero, the elements

in the corresponding row and column of � are zero. This motivates us to impose an �1 penalty

on all elements of �.

To encourage sparsity, we propose solving the optimization problem

minimize
�∈M

−tr
{

�̂E(x|y)�
}

+ρ‖�‖1 subject to ‖�̂1/2
x ��̂1/2

x ‖∗ � K , ‖�̂1/2
x ��̂1/2

x ‖sp � 1, (9)

where ‖�‖1 =
∑

i,j |�ij|, and ρ is a positive tuning parameter that controls the sparsity of

the solution �̂. Unlike most existing work, our proposal does not require the inversion of the

empirical covariance matrix �̂x. By Definition 1, the estimated sparse solution �̂ from solving

(9) will yield sparse basis vectors.

3·2. Linearized alternating direction of method of multipliers algorithm

The main difficulty in solving (9) is the interaction between the penalty term and the constraints.

To solve (9), we use the linearized alternating direction method of multipliers algorithm that allows

us to decouple terms that are difficult to optimize jointly (Zhang et al., 2011; Wang &Yuan, 2012;

Yang & Yuan, 2013). Convergence of the algorithm has been studied in Fang et al. (2015). The

details are presented in Algorithm 1 and its derivation is deferred to the Supplementary Material.

Algorithm 1 amounts to performing soft-thresholding, computing a singular value decomposition,

and modifying the obtained singular values with a monotone piecewise linear function.

Optimization problem (9) can also be solved via the standard alternating direction method of

multipliers algorithm (Boyd et al., 2010). In this case, however, there is no closed-form solution

for updating the primal variable � as in Step 3(a) of Algorithm 1. Instead of soft-thresholding,

it involves solving a d2-dimensional lasso regression problem in each iteration, which may be

computationally prohibitive when the number of covariates d is large.
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774 K. M. Tan, Z. Wang, T. Zhang, H. Liu AND R. D. Cook

Algorithm 1. Linearized alternating direction of method of multipliers algorithm.

1. Input the variables: �̂x, �̂E(x|y), the tuning parameter ρ, rank constraint K , the L-ADMM

parameters ν > 0, tolerance level ε > 0, and τ = 4νλ2
max(�̂x), where λmax(�̂x) is the

largest eigenvalue of �̂x.

2. Initialize the parameters: primal variables �(0) = Id , H (0) = Id , and dual variable �(0) = 0.

3. Iterate until the stopping criterion ‖�(t) − �(t−1)‖F � ε is met, where �(t) is � obtained

at the tth iteration:

a. �(t+1) = Soft[�(t) + �̂E(x|y)/τ − ν{�̂x�
(t)�̂x − �̂

1/2
x (H (t) − �(t))�̂

1/2
x }/τ , ρ/τ ],

where Soft denotes the soft-thresholding operator, applied elementwise to a matrix,

Soft(Aij, b) = sign(Aij) max
(

|Aij| − b, 0
)

.

b. H (t+1) =
∑d

j=1 min{1, max
(

ωj − γ ∗, 0
)

}uju
T
j , where

∑d
j=1 ωjuju

T
j is the singular value

decomposition of �(t) + �̂
1/2
x �(t+1)�̂

1/2
x , and

γ ∗ = argmin
γ>0

γ , subject to

d
∑

j=1

min{1, max
(

ωj − γ , 0
)

} � K .

c. �(t+1) = �(t) + �̂
1/2
x �(t+1)�̂

1/2
x − H (t+1).

3·3. Tuning parameter selection

Our proposed method (9) involves two user-specified tuning parameters: the dimension K of

the central subspace Vy|x and a sparsity tuning parameter ρ. Zhu et al. (2006) used the Bayesian

information criterion to select K . Several authors proposed to select K using bootstrap procedures

(Ye & Weiss, 2003; Dong & Li, 2010; Ma & Zhu, 2012). In addition, sequential testing procedures

were developed for determining K (Li, 1991; Bura & Cook, 2001a; Cook & Ni, 2005; Ma &

Zhu, 2013b).

Motivated by Cook & Forzani (2008), we propose a cross-validation approach to select the

tuning parameters K and ρ. Let �̂ be the solution of (9), and recall that span(�̂) is an estimate

of the central subspace Vy|x. Let π̂1, . . . , π̂K be the top K eigenvectors of �̂. Given a new data

point x∗, define

R̂(x∗) = (π̂T

1 x∗, . . . , π̂T

K x∗)T, wi(x
∗) =

exp
{

−1
2
‖R̂(x∗) − R̂(xi)‖

2
2

}

∑n
i=1 exp

{

−1
2
‖R̂(x∗) − R̂(xi)‖

2
2

} ,

where ‖a‖2 = (
∑d

j=1 a2
j )

1/2 for a ∈ R
d . The conditional mean E(y | x = x∗) can then be

estimated as

Ê(y | x = x∗) =

n
∑

i=1

wi(x
∗)yi. (10)

Details on the derivation of (10) are deferred to § 6.

We propose an M -fold cross-validation procedure to select the tuning parameters K and ρ based

on (10). We first partition the n observations into M sets, C1, . . . , CM . For each set Cm, we obtain
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Sparse sliced inverse regression 775

an estimate of �̂ using all observations outside the set Cm. We then predict the conditional mean

for observations in Cm using (10). The tuning parameters K and ρ are now chosen to minimize the

overall prediction error
∑M

m=1

∑

i∈Cm
{yi−Ê(y | x = xi)}

2/(M |Cm|), where |Cm| is the cardinality

of the set Cm.

4. Theoretical results

We study the theoretical properties of the proposed estimator �̂ obtained from solving (9)

under the non-asymptotic setting in which n, d, s, and K are allowed to grow. Throughout this

section, we assume that the linearity condition in (3) holds and that x1, . . . , xn are independent

random variables that are sub-Gaussian with covariance matrix �x. Moreover, for simplicity,

we assume that the largest generalized eigenvalue λ1 is bounded by some constant, and that

K < min(s, log d). To quantify the distance between the estimated and population subspaces,

we first establish a concentration result for �E(x|y) under the max norm. Recall that y(1), . . . , y(n)

are the order statistics of y1, . . . , yn. Let m{y(i)} = E{x | y(i)}. We state an assumption on the

smoothness of m(y).

Assumption 1. Let B > 0 and let �n(B) be the collection of all the n-point partitions −B �

y(1) � · · · � y(n) � B on the interval [−B, B]. A vector-valued m(y) is said to have a total

variation of order 1/4 if for any fixed B > 0,

lim
n→∞

1

n1/4
sup

�n(B)

n
∑

i=2

‖m{y(i)} − m{y(i−1)}‖∞ = 0,

where ‖a‖∞ = maxj |aj| for a ∈ R
d .

A similar assumption is given by Hsing & Carroll (1992) and Zhu & Ng (1995), except that

they considered the Euclidean norm on the quantity m{y(i)}− m{y(i−1)} rather than the �∞ norm.

In our problem, it suffices to assume the smoothness condition under the �∞ norm, since we are

bounding the estimation error of T̂ under the max norm. The following lemma provides an upper

bound on the estimation error of T̂ in (6).

Lemma 1. Assume that y1, . . . , yn ∈ [−B, B] has a bounded support for some fixed B > 0.

Assume that x1, . . . , xn are independent sub-Gaussian random variables with covariance matrix

�x. Under Assumption 1, for sufficiently large n, there exists constants C, C ′ > 0 such that with

probability at least 1 − exp(−C ′ log d),

‖T̂ − T‖max = C(log d/n)1/2,

where ‖A‖max = maxi,j |Aij| for A ∈ R
d×d .

For simplicity, we assume that y has a bounded support in Lemma 1. When y is unbounded, a

more refined analysis is needed to obtain an upper bound on the estimation error under additional

assumptions on the inverse regression curve and the empirical distribution of y (Zhu et al., 2006).

Similar results can be shown for the estimator T̃ in (7). We next state a result on the sample

covariance matrix �̂x, which follows from Lemma 1 of Ravikumar et al. (2011).
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Proposition 1. Assume that x1, . . . , xn are independent sub-Gaussian random variables with

the covariance matrix �x. Let �̂x be the sample covariance matrix. Then there exists constants

C1, C ′
1 > 0 such that

‖�̂x − �x‖max = C1(log d/n)1/2

with probability at least 1 − exp(−C ′
1 log d).

Corollary 1. Let �̂E(x|y) = �̂x − T̂ . Under the conditions in Lemma 1 and Proposition 1,

there exists constants C2, C ′
2 > 0 such that

‖�̂E(x|y) − �E(x|y)‖max � C2(log d/n)1/2

with probability at least 1 − exp(C ′
2 log d).

Corollary 1 follows directly from Lemma 1 and Proposition 1. Next, we state an assumption

on the s-sparse eigenvalue of �x. The assumption is commonly used in the high-dimensional

literature (see, for instance, Meinshausen & Yu, 2009).

Assumption 2. The s-sparse minimal and maximal eigenvalues of �x are

λmin(�x, s) = min
v:‖v‖0�s

vT�xv

vTv
, λmax(�x, s) = max

v:‖v‖0�s

vT�xv

vTv
,

where ‖v‖0 is the number of nonzero elements in v. Assume that there exists a constant c > 0

such that c−1 � λmin(�x, s) � λmax(�x, s) � c.

We now quantify the distance between the estimated and population subspaces. To this end,

we establish the notion of distance between subspaces (Vu et al., 2013).

Definition 2. LetV and V̂ be K-dimensional subspaces of R
d . Let P� and P

�̂
be the projection

matrices onto the subspaces V and V̂ , respectively. The distance between the two subspaces are

defined as D
(

V , V̂
)

= ‖P� − P
�̂

‖F.

The following theorem provides an upper bound on the subspace distance as defined in

Definition 2 between � and the solution �̂ obtained from solving (9).

Theorem 1. Let V and V̂ be the true and estimated subspaces, respectively. Let n >

Cs2 log d/λ2
K for some sufficiently large constant C, where λK is the Kth generalized eigen-

value of the pair of matrices {�E(x|y), �x}. Assume that λK K2 < s log d. Let ρ � C1(log d/n)1/2

for some constant C1. Under the conditions in Corollary 1 and Assumption 2,

D(V , V̂) � C2s(log d/n)1/2/λK

with probability at least 1 − exp(−C3s) − exp(−C4 log d) for some constants C2, C3, and C4.

Theorem 1 states that with probability tending to one, the distance between the esti-

mated and population subspaces is proportional to s(log d/n)1/2/λK and decays to zero if

s = o{λK (n/ log d)1/2}. That is, the number of active covariates cannot be too large. We will

illustrate the results in Theorem 1 in § 5.
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Sparse sliced inverse regression 777

Remark 1. Our results allow the dimension K to increase as a function of n, d, s under

the constraint that λK = ω{s(log d/n)1/2}, where the notation f (n) = ω{g(n)} indicates

limn→∞ |f (n)/g(n)| → ∞. In other words, the signal to noise ratio in terms of the K th general-

ized eigenvalue λK has to be sufficiently large to attain a small estimation error. We require that

λK K2 < s log d, so K cannot be too large compared to the number of active covariates.

5. Numerical studies

We compare our proposal to three other methods based on high-dimensional sparse sliced

inverse regression (Yin & Hilafu, 2014; Li & Yin, 2008; Wang et al., 2018) under various sim-

ulation settings. Recall from Definition 1 that subspace sparsity is determined by the diagonal

elements of �. Let �̂ be an estimator of �. We define the true positive rate as the proportion

of correctly identified nonzero diagonals, and the false positive rate as the proportion of zero

diagonals that are incorrectly identified to be nonzeros. Furthermore, we calculate the absolute

correlation coefficient between the true sufficient predictor and its estimate. For simulation set-

tings with K > 1, we calculate the pairwise correlation between the estimated directions and

each of the true sufficient dimension reduction directions. We then select the maximum pairwise

correlation for each of the true direction and take their average. In addition, we compute the

subspace distance between the true and estimated subspace to illustrate the theoretical result in

Theorem 1.

We simulated x from Nd(0, �x), where (�x)ij = 0·5|i−j| for 1 � i, j � d, ε from N (0, 1), and

employed the following regression models:

1. A linear regression model with three active predictors:

y = (x1 + x2 + x3)/31/2 + 2ε.

In this setting, the central subspace is spanned by the directions β = (13, 0d−3)
T and K = 1.

2. A nonlinear regression model with three active predictors:

y = 1 + exp{(x1 + x2 + x3)/31/2} + ε.

This regression model has recently been considered in Yin & Hilafu (2014). In this study,

the central subspace is spanned by the direction β = (13, 0d−3)
T and K = 1.

3. A nonlinear regression model with five active predictors:

y =
x1 + x2 + x3

0·5 + (x4 + x5 + 1·5)2
+ 0·1ε.

This simulation setting is similar to that of Chen et al. (2010). In this study, the central

subspace is spanned by the directions β1 = (13, 0d−3)
T, β2 = (03, 12, 0d−5)

T, and K = 2.

Sliced inverse regression requires estimators of the marginal and conditional covariance matri-

ces, �x and �E(x|y). We estimated �x using the sample covariance matrix �̂x. Then, �E(x|y) can

be estimated using the identity �̂E(x|y) = �̂x − T̃ , where T̃ is defined in (7). We constructed T̃

with H = 5 slices. There are two tuning parameters in our proposal (9), which we selected using

the cross-validation idea outlined in § 3·3. Similarly, we used cross-validation to select tuning
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Table 1. True and false positive rates, and absolute correlation coefficient with n = (100, 200)

and d = 150. The mean (standard error), averaged over 200 datasets, are reported. All entries

are multiplied by 100

n = 100 and d = 150 n = 200 and d = 150

Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3

TPR 96 (1) 94·2 (1·2) 91·3 (1·1) 98·2 (0·5) 98·5 (0·5) 98·9 (2·5)

Our proposed method FPR 6 (0·9) 3·6 (0·7) 7·4 (0·1) 3·4 (0·4) 1·1 (0·2) 2·5 (0·3)

corr 88·3 (0·9) 86·4 (1·1) 74·2 (1·1) 90·9 (0·5) 92·1 (0·5) 79·2 (0·6)

TPR 95·3 (0·9) 100 (0) 99·6 (0·4) 100 (0) 100 (0) 100 (0)

Yin & Hilafu (2014) FPR 4·9 (0·1) 4·8 (0·1) 3·5 (0·1) 5·9 (0·2) 6·7 (0·3) 4·5 (0·2)

corr 59·2 (1·1) 87·8 (0·5) 78·8 (0·6) 78 (0·6) 94·2 (0·2) 87·4 (0·5)

TPR 97·8 (0·1) 98·1 (0·1) 97·8 (0·1) 98·9 (0·1) 99·1 (0·1) 97·9 (0·1)

Li & Yin (2008) FPR 8·3 (1·2) 3·8 (0·8) 23·4 (1·1) 1·2 (0·4) 0·3 (0·2) 19·7 (1·1)

corr 84·3 (0·9) 88·9 (0·6) 62·7 (0·7) 93·6 (0·4) 95·8 (0·3) 69·7 (0·5)

TPR 88·8 (1·5) 93·5 (1·2) 80·1 (1·2) 97·5 (1·0) 98·8 (0·7) 96·3 (0·6)

Wang et al. (2018) FPR 0·6 (0·1) 0·6 (0·1) 0·2 (0·1) 0·3 (0·1) 0·3 (0·1) 0·1 (0·1)

corr 81·5 (1·4) 85·1 (1·3) 69·9 (1·1) 91·3 (1·1) 93·2 (1·0) 84·4 (0·7)

TPR, true positive rate; FPR, false positive rate; corr, absolute correlation coefficient.

parameters for Wang et al. (2018). For the proposal in Li &Yin (2008), the authors proposed three

different methods for selecting the tuning parameters: we performed tuning parameter selection

with these three methods and reported only the best results for Li & Yin (2008). We considered

multiple sets of tuning parameters for Yin & Hilafu (2014) and reported only the best results for

their proposal. The true and false positive rates, and the absolute correlation coefficient, averaged

over 200 datasets, are reported in Table 1.

Table 1 shows that the proposed method performs competitively against recent proposals for

high-dimensional sliced inverse regression (Yin & Hilafu, 2014; Wang et al., 2018; Li & Yin,

2008). In the low-dimensional setting when n = 200, our method performs competitively with all

of the existing methods across all three settings. In the high-dimensional setting when n = 100,

for setting 1, our proposal yields the best absolute correlation between the true and estimated

sufficient dimension direction. All methods perform similarly in setting 2. Setting 3 is a harder

problem and the method of Li &Yin (2008) has an extremely high false positive rate. The method

of Wang et al. (2018) has the lowest true positive rate and a low correlation, and that of Yin &

Hilafu (2014) slightly outperforms our proposal in terms of true positive rate and correlation.

However, the tuning parameters for our proposals are selected entirely using cross-validation and

we report the best results for Yin & Hilafu (2014) after considering multiple tuning parameters.

Moreover, Yin & Hilafu (2014) has the worst performance in setting 1. In short, our proposed

method is the most robust proposal across all three settings in the high-dimensional setting.

Next, we evaluated the distance between the estimated and the population subspaces. We

assume that K is known, and select ρ = 2(log d/n)1/2 as suggested by Theorem 1. The results

for d = (100, 200) as a function of n, averaged over 500 datasets, are presented in Figs. 1(a)–(c).

The subspace distance between the estimated and population subspaces is indeed proportional to

s(log d/n)1/2.

6. An extension to sparse principal fitted components

We briefly outline an extension of the proposed method for principal fitted components in

the high-dimensional setting. Cook & Forzani (2008) proposed several model-based sufficient
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Fig. 1. Results for the subspace distance, averaged over 500 datasets. Panels (a), (b), and (c) are the results for
simulation settings 1, 2, and 3, respectively. The lines are obtained by varying the sample size n with d = 100 (circle

black line) and d = 200 (square grey line), respectively.

dimension reduction methods, collectively referred to as principal fitted components. Let xy be the

conditional random variable of x given y. Assume that xy is normally distributed from Nd(µy, �).

Furthermore, let µ̄ = E(x), and let V� = span(µy − µ̄ | y ∈ Sy), where � ∈ R
d×K denotes a

semi-orthogonal matrix whose columns form a basis for the K-dimensional subspace V� , and Sy

denotes the sample space of y. Cook & Forzani (2008) considered the inverse regression model

x = µ̄ + �ξ{f (y) − f̄ (y)} + �1/2ε, (11)

where ξ ∈ R
K×r is an unrestricted rank K matrix with K < r, f (y) ∈ R

r is a known vector-

valued function of y, and ε is N (0, Id) that is independent of y. The covariates f (y) usually take the

form of polynomial, piecewise linear, or Fourier basis functions. Thus, the regression model (11)

can effectively model nonlinear relationships between the covariates and the response. Principal

fitted components yields sliced inverse regression as a special case when y is categorical (Cook

& Forzani, 2008).

Under model (11), Cook & Forzani (2008) showed that the maximum likelihood estimator of

the central subspace V� can be obtained by solving the generalized eigenvalue problem �̂fitV =

�̂xV�, where �̂fit is the sample covariance matrix of the estimated vectors from the linear

regression of x on f . More specifically, let X denote the n × d matrix with rows (x − x̄)T

and let F denote the n × r matrix with rows {f (y) − f̄ (y)}T. Then, �̂fit = X
T
F(FT

F)−1
F

T
X/n

and �̂x = X
T
X/n. While the estimator of the central subspace is derived under the normality

assumption, it is also robust to nonnormal error (Cook & Forzani, 2008, Theorem 3.5). Therefore,

normality assumption on the covariates is not crucial to the principal fitted components.

A convex relaxation for the principal fitted components takes the form

minimize
�∈M

− tr
(

�̂fit�
)

+ ρ‖�‖1 subject to ‖�̂1/2
x ��̂1/2

x ‖∗ � K , ‖�̂1/2
x ��̂1/2

x ‖sp � 1. (12)

Algorithm 1 can be directly adapted to solve (12); with some abuse of notation, let �̂ be the

solution to (12) and let π̂1, . . . , π̂K be the K largest eigenvector of �̂.

One of the main advantages of principal fitted components is that a model for x given y can

be inverted to provide a method for estimating the mean function E(y | x) without specifying

a model for the joint distribution (y, x). Let R(x) be the K-dimensional sufficient reduction. Let

g(x | y) and g{R(x) | y} be the conditional densities of x given y and R(x) given y. Then, the
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conditional expectation can be written as

E(y | x) = E{y | R(x)} =
E[yg{R(x) | y}]

E[g{R(x) | y}]
,

where the expectation is taken with respect to the random variable y. Under the normality

assumption on xy, for a new data point x∗, the conditional mean can be estimated as

Ê(y | x = x∗) =

n
∑

i=1

wi(x
∗)yi, wi(x

∗) =
exp

{

−1
2
‖R̂(x∗) − R̂(xi)‖

2
2

}

∑n
i=1 exp

{

−1
2
‖R̂(x∗) − R̂(xi)‖

2
2

} ,

where R̂(x∗) = (π̂T

1 x∗, . . . , π̂T

K x∗)T is an estimate of the K-dimensional sufficient reduction. This

motivates the cross-validation procedure described in § 3·3 for selecting the tuning parameters

K and ρ.

7. Discussion

We have proposed a convex relaxation for sparse sliced inverse regression in the high-

dimensional setting, using the fact that sliced inverse regression is a special case of the generalized

eigenvalue problem. As discussed in Chen et al. (2010) and Li (2007), many other sufficient

dimension reduction methods can be formulated as sparse generalized eigenvalue problems.

These include sliced average variance estimation, directional regression, principal fitted compo-

nents, principal Hessian direction, and iterative Hessian transformation. Therefore, these models

can all be applied using the proposed method in (9) with different choices of covariance matrices.

Many sufficient dimension reduction methods rely on the linearity condition (3), but this is

not always satisfied. To address this, Ma & Zhu (2012) proposed a semiparametric approach

for sufficient dimension reduction that removes the linearity condition. In future work, it will

be of interest to propose a high-dimensional semiparametric approach for sufficient dimension

reduction using recently developed theoretical tools in high-dimensional statistics.

Many authors have proposed methods to estimate the subspace dimension K . These include

the Bayesian information criterion, the bootstrap, and sequential testing (Zhu et al., 2006; Ye

& Weiss, 2003; Dong & Li, 2010; Ma & Zhu, 2012; Li, 1991; Bura & Cook, 2001a; Cook &

Ni, 2005). Ma & Zhang (2015) proposed a validated information criterion for selecting K in

dimension reduction models. However, these methods are not directly applicable to the high-

dimensional setting. It will be of interest to develop a principled way to estimate the subspace

dimension K consistently in this setting.
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