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Summary. The sparse generalized eigenvalue problem (GEP) plays a pivotal role in a large
family of high dimensional statistical models, including sparse Fisher’s discriminant analysis,
canonical correlation analysis and sufficient dimension reduction. The sparse GEP involves
solving a non-convex optimization problem. Most existing methods and theory in the context of
specific statistical models that are special cases of the sparse GEP require restrictive structural
assumptions on the input matrices. We propose a two-stage computational framework to solve
the sparse GEP. At the first stage, we solve a convex relaxation of the sparse GEP. Taking the
solution as an initial value, we then exploit a non-convex optimization perspective and propose
the truncated Rayleigh flow method (which we call ‘rifle’) to estimate the leading generalized
eigenvector. We show that rifle converges linearly to a solution with the optimal statistical rate
of convergence. Theoretically, our method significantly improves on the existing literature by
eliminating structural assumptions on the input matrices. To achieve this, our analysis involves
two key ingredients: a new analysis of the gradient-based method on non-convex objective
functions, and a fine-grained characterization of the evolution of sparsity patterns along the
solution path. Thorough numerical studies are provided to validate the theoretical results.

Keywords: Convex relaxation; Non-convex optimization; Sparse canonical correlation
analysis; Sparse Fisher’s discriminant analysis; Sparse sufficient dimension reduction

1. Introduction

A large class of high dimensional statistical problems such as canonical correlation analysis

(CCA), Fisher’s discriminant analysis (FDA) and sufficient dimension reduction can be formu-

lated as the generalized eigenvalue problem (GEP). Let A ∈ R
d×d be a symmetric matrix and

let B∈R
d×d be a positive definite matrix. For a symmetric definite matrix pair .A, B/, the GEP

aims to obtain vÅ ∈R
d satisfying

AvÅ =λmax.A, B/ ·BvÅ, .1/

where vÅ is the leading generalized eigenvector corresponding to the largest generalized eigen-

value λmax.A, B/ of the matrix pair .A, B/. The largest generalized eigenvalue can also be char-

acterized as
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λmax.A, B/=max
v∈R

d
vTAv, subject to vTBv =1:

In many real world applications, the matrix pair .A, B/ is a population quantity that is un-

known in general. Instead, we can access only .Â, B̂/, which is an estimator of .A, B/ based on

n independent observations:

Â =A +EA

and

B̂=B+EB,

where EA and EB are stochastic errors due to finite sample estimation. For statistical models

that are considered in this paper, EA and EB are symmetric matrices.

In the high dimensional setting in which d>n, we assume that the leading generalized eigen-

vector vÅ is sparse. Let s=‖vÅ‖0 be the number of non-zero entries in vÅ, and assume that s is

much smaller than n and d. We aim to estimate a sparse vÅ based on Â and B̂ by solving the

optimization problem

maximize
v∈R

d
vTÂv, subject to vTB̂v =1, ‖v‖0 � s: .2/

There are three major challenges in solving problem (2). Firstly, in the high dimensional setting,

B̂ is singular and not invertible, and classical algorithms which require taking the inverse of B̂

are not directly applicable (Golub and Van Loan, 2012). Secondly, because of the normaliza-

tion term vTB̂v = 1, many recent proposals for solving sparse eigenvalue problems such as the

truncated power method in Yuan and Zhang (2013) cannot be directly applied to solve problem

(2). Thirdly, problem (2) requires maximizing a convex objective function over a non-convex

set, which is ‘NP’ hard even when B̂ is the identity matrix (Moghaddam et al., 2006a,b).

In this paper, we propose a two-stage computational framework for solving the sparse GEP

(2). At the first stage, we solve a convex relaxation of problem (2). Our proposal generalizes the

convex relaxation that was proposed in Gao et al. (2017) in the context of sparse CCA to the

sparse GEP setting. Gao et al. (2017) assumed that A is low rank and positive semidefinite, and

the rank of A is known. Our theoretical analysis removes all of those assumptions. Using the

solution as an initial value, we propose a non-convex optimization algorithm to solve problem (2)

directly. The algorithm proposed iteratively performs a gradient ascent step on the generalized

Rayleigh quotient vTÂv=vTB̂v, and a truncation step that preserves the top k entries of v with the

largest magnitudes while setting the remaining entries to 0. Here, k is a tuning parameter that

controls the cardinality of the solution. Theoretical guarantees are established for the proposed

non-convex algorithm. To the best of our knowledge, this is the first general theoretical result

for sparse GEPs in the high dimensional setting.

We provide a brief description of the theoretical result for the non-convex algorithm at the

second stage. Let {vt}
L
t=0 be the solution sequence resulting from the algorithm proposed, where

L is the total number of iterations and v0 is the initialization point. We prove that, under mild

conditions,

‖vt − vÅ‖2 � ν t ‖v0 − vÅ‖2
︸ ︷︷ ︸

optimization error

+
√

{ρ.EA, 2k + s/2 +ρ.EB, 2k + s/2}

ξ.A, B/
︸ ︷︷ ︸

statistical error

.t =1, : : : , L/: .3/

The quantities ν ∈ .0, 1/ and ξ.A, B/ depend on the population matrix pair .A, B/. These quan-

tities will be specified in Section 4. Meanwhile, ρ.EA, 2k + s/ is defined as
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ρ.EA, 2k + s/= sup
‖u‖2=1,‖u‖0�2k+s

|uTEAu| .4/

and ρ.EB, 2k + s/ is defined similarly. The first term on the right-hand side quantifies the ex-

ponential decay of the optimization error, whereas the second term characterizes the statistical

error due to finite sample estimation. In particular, for many statistical models that can be

formulated as a sparse GEP such as sparse CCA, sparse FDA and sparse sufficient dimension

reduction, it can be shown that

max{ρ.EA, 2k + s/, ρ.EB, 2k + s/}�

√

{
.s+2k/ log.d/

n

}

.5/

with high probability. Consequently, for any properly chosen k that is of the same order as

s, the algorithm achieves an estimator of vÅ with the optimal statistical rate of convergence√
{s log.d/=n}.

The sparse GEP (2) is also closely related to the classical matrix computation literature

(see, for example, Golub and Van Loan (2012) for a survey, and more recent results in Ge

et al. (2016)). There are two key differences between our results and existing work. Firstly, we

have an additional non-convex constraint on the sparsity level, which allows us to handle the

high dimensional setting. Secondly, because of the existence of stochastic errors, we allow the

normalization matrix B̂ to be rank deficient, whereas in the classical setting B̂ is assumed to be

positive definite. In comparison with existing generalized eigenvalue algorithms, our algorithm

keeps the iterative solution sequence within a basin that involves only a few co-ordinates of

v such that the corresponding submatrix of B̂ is positive definite. Moreover, our algorithm

ensures that the statistical errors in result (3) are in terms of the largest sparse eigenvalues of the

stochastic errors EA and EB, which are defined in equation (4). In contrast, a straightforward

application of classical matrix perturbation theory gives statistical error terms that involve the

largest eigenvalues of EA and EB, which are much larger than their sparse eigenvalues (Stewart

and Sun, 1990).

An R package rifle for fitting and solving the sparse GEP can be found on the Compre-

hensive R Archive Network.

1.1. Notation

Let v = .v1, : : : , vd/T ∈R
d . We define the lq-norm of v as ‖v‖q = .Σd

j=1|vj|q/1=q for 1�q<∞. Let

λmax.Z/ and λmin.Z/ be the largest and smallest eigenvalues correspondingly. If Z is positive

definite, we define its condition number as κ.Z/=λmax.Z/=λmin.Z/. We denote λk.Z/ to be the

kth eigenvalue of Z, and the spectral norm of Z by ‖Z‖2 = sup‖v‖2=1‖Zv‖2. Furthermore, let

‖Z‖1,1 =Σi,j|Zij|, ‖Z‖∞,∞ =maxi,j |Zij| and ‖Z‖Å = tr.Z/. For F ⊂{1, : : : , d}, let Z·F ∈R
d×|F |

and ZF · ∈ R
|F |×d be the submatrix of Z where the columns and rows are restricted to the set

F . With some abuse of notation, let ZF ∈ R
|F |×|F | be the submatrix of Z, where the rows and

columns are restricted to the set F . Finally, we define ρ.Z, s/= sup‖u‖2=1,‖u‖0�s |uTZu|.

2. Sparse generalized eigenvalue problem and its applications

Many high dimensional multivariate statistics methods can be formulated as special instances

of problem (2). For instance, when B̂= I, problem (2) reduces to the sparse principal component

analysis (PCA) that has received considerable attention within the past decade (among others,

Zou et al. (2006), d’Aspremont et al. (2007, 2008), Witten et al. (2009), Ma (2013), Cai et al.

(2013), Yuan and Zhang (2013), Vu et al. (2013), Vu and Lei (2013), Birnbaum et al. (2013),

Wang et al. (2013, 2014) and Gu et al. (2014)). In what follows, we provide three examples
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when B̂ is not the identity matrix. We start with sparse FDA for the classification problem

(among others, Tibshirani et al. (2003), Guo et al. (2007), Leng (2008), Clemmensen et al.

(2012), Mai et al. (2012, 2015), Kolar and Liu (2015), Gaynanova and Kolar (2015) and Fan

et al. (2015)).

2.1. Example 1: sparse Fisher’s discriminant analysis

Given n observations with K distinct classes, Fisher’s discriminant problem seeks a low dimen-

sional projection of the observations such that the between-class variance Σb is large relative

to the within-class variance Σw. Let Σ̂b and Σ̂w be estimators of Σb and Σw respectively. To

obtain a sparse leading discriminant vector, we solve

maximize
v

vT
Σ̂bv, subject to vT

Σ̂wv =1, ‖v‖0 � s: .6/

This is a special case of problem (2) with Â = Σ̂b and B̂= Σ̂w.

Next, we consider sparse CCA that explores the relationship between two high dimensional

random vectors (among others Witten et al. (2009), Chen et al. (2013) and Gao et al. (2015,

2017)).

2.2. Example 2: sparse canonical correlation analysis

Let X and Y be two random vectors. Let Σx and Σy be the covariance matrices for X and Y

respectively, and let Σxy be the cross-covariance matrix between X and Y. To obtain sparse

leading canonical direction vectors, we solve

maximize
vx,vy

vT
x Σ̂xyvy, subject to vT

x Σ̂xvx = vT
y Σ̂yvy =1, ‖vx‖0 � sx, ‖vy‖0 � sy, .7/

where sx and sy control the cardinality of vx and vy. This is a special case of problem (2) with

Â =
(

0 Σ̂xy

Σ̂xy 0

)

,

B̂=
(

Σ̂x 0

0 Σ̂y

)

,

v =
(

vx

vy

)

:

Theoretical guarantees for sparse CCA have been established recently. Chen et al. (2013) pro-

posed a non-convex optimization algorithm for solving problem (7) with theoretical guarantees.

However, their algorithm involves obtaining accurate estimators of Σ
−1
x and Σ

−1
y , which is in

general difficult to do without imposing sparsity assumptions on Σ
−1
x and Σ

−1
y . In a follow-

up work, Gao et al. (2017) proposed a two-stage procedure that attains the optimal statistical

rate of convergence (Gao et al., 2015). However, they required the matrix Σxy to be low rank

and positive semidefinite, and that the rank of Σxy is known a priori. As suggested in Gao et al.

(2015), the low rank assumption on Σxy may be unrealistic in many real data applications where

one is interested in recovering the first few sparse canonical correlation directions whereas there

might be additional directions in the population structure. Our proposal does not impose any

structural assumptions on Σx and Σy, and we only require Σxy to be approximately low rank

in the sense that the leading generalized eigenvalue is larger than the remaining generalized

eigenvalues.
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Next, we consider a regression problem with a univariate response Y and d-dimensional

covariates X, with the goal of inferring the conditional distribution of Y given X. Sufficient

dimension reduction is a popular approach for reducing the dimensionality of the covariates

(Li, 1991; Cook and Lee, 1999; Cook, 2000, 2007; Cook and Forzani, 2008; Ma and Zhu,

2013). It can be shown that many sufficient dimension reduction methods can be formulated as

GEPs (Li, 2007; Chen et al., 2010). In what follows we consider sparse sliced inverse regression

(Li, 1991).

2.3. Example 3: sparse sliced inverse regression

Consider the model

Y =f.vT
1 X, : : : , vT

KX, ε/,

where ε is the stochastic error independent of X, and f.·/ is an unknown link function. Li (1991)

proved that, under regularity conditions, the subspace that is spanned by v1, : : : , vK can be

identified. Let Σx be the covariance matrix for X and let ΣE.X|Y/ be the covariance matrix of the

conditional expectation E.X|Y/. The first leading eigenvector of the subspace that is spanned

by v1, : : : , vK can be identified by solving

maximizev vT
Σ̂E.X|Y/v, subject to vT

Σ̂xv =1, ‖v‖0 � s: .8/

This is a special case of problem (2) with Â = Σ̂E.X|Y/ and B̂= Σ̂x.

Many researchers have proposed methods for sparse sliced inverse regression (Li and Nacht-

sheim, 2006; Zhu et al., 2006; Li and Yin, 2008; Chen et al., 2010; Yin and Hilafu, 2015).

More generally, in the context of sparse sufficient dimension reduction, Li (2007) and Chen

et al. (2010) reformulated sparse sufficient dimension reduction problems into the sparse GEP

(2). However, these approaches lack algorithmic and non-asymptotic statistical guarantees in

the high dimensional setting. Our results are applicable to most sparse sufficient dimension

reduction methods.

3. Methodology and algorithm

In Section 3.1, we propose an iterative algorithm to estimate vÅ by solving problem (2), which

we refer to as the truncated Rayleigh flow method (and call rifle). Rifle requires an input of

an initial vector v0 that is sufficiently close to vÅ. For this, we propose a convex optimization

approach to obtain such an initial vector v0 in Section 3.2.

3.1. Truncated Rayleigh flow method rifle

Optimization problem (2) can be rewritten as

maximize
v∈R

d

vTÂv

vTB̂v
, subject to ‖v‖0 � s,

where the objective function is referred to as the generalized Rayleigh quotient.

The crux of our proposed algorithm is as follows. Given an initial vector v0, we first compute

the gradient of the generalized Rayleigh quotient. We then update the initial vector by its ascent

direction and normalize it such that the updated vector has norm 1. This step ensures that the

generalized Rayleigh quotient for the updated vector is at least as large as that of the initial
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Table 1. Algorithm 1: truncated Rayleigh flow method (rifle)

Input: matrices Â and B̂, initial vector v0, cardinality
k ∈{1,: : : , d} and step size η

Truncate: truncate v0 by keeping the largest k absolute
elements, and setting the remaining entries to 0

Let t =1 and repeat the following steps until convergence:

1, ρt−1 ← vT
t−1Âvt−1=vT

t−1B̂vt−1;

2, C← I + .η=ρt−1/.Â −ρt−1B̂/;
3, v′

t ←Cvt−1=‖Cvt−1‖2;
4, let Ft = supp.v′

t , k/ contain the indices of v′
t with the largest

k absolute values and truncate.v′
t , Ft/ be the truncated

vector of v′
t by setting .v′

t/i =0 for i 	∈Ft ;
5, v̂t ← truncate.v′

t , Ft/;
6, vt ← v̂t=‖v̂t‖2;
7, t ← t +1

Output: vt

vector. Indeed, in theorem 1, we show that, if the initial vector v0 is close to vÅ, then this step

ensures that the updated vector is closer to vÅ compared with v0. Next, we truncate the updated

vector by keeping the elements with the largest k absolute values and setting the remaining

elements to 0. This step ensures that the updated vector is k sparse, i.e. only k entries are non-

zero. Finally, we normalize the updated vector such that it has norm 1. These steps are repeated

until convergence. We summarize the details in algorithm 1 (Table 1).

In addition to an initial vector v0, algorithm 1 requires the choice of a step size η and a tuning

parameter k on the cardinality of the solution. As suggested by the theoretical results in Section

4, we need η to be sufficiently small such that ηλmax.B̂/ < 1. In practice, the tuning parameter

k can be selected by using cross-validation or based on prior knowledge. The computational

complexity for each iteration of algorithm 1 is O.kd +d/: O.d/ for selecting the k largest elements

of a d-dimensional vector to obtain the set Ft , and O.kd/ for taking the product between a

truncated vector and a matrix with columns restricted to the set Ft , and for calculating the

difference between two matrices with columns restricted to the set Ft .

3.2. A convex optimization approach to obtain v0

As mentioned in Section 3.1, it is crucial to obtain an initial vector v0 that is close to vÅ for rifle.

Gao et al. (2017) have proposed a convex formulation to estimate the subspace that is spanned

by the K leading generalized eigenvectors for sparse CCA, under the assumption that A is low

rank and positive semidefinite. Rather than estimating the K leading generalized eigenvectors,

the main idea of Gao et al. (2017) is to obtain an estimator of the subspace spanned by the K

leading generalized eigenvectors directly. In this section, we point out that the convex relaxation

proposed can be used more generally to estimate the subspace of a sparse generalized eigenvalue

problem, without the low rank and positive semidefinite structural assumptions on A.

Similarly to problem (2), the optimization problem for estimating the K generalized eigen-

vectors can be written as

minimize
U∈R

d×K
−tr.UTÂU/, subject to UTB̂U = IK:

Rather than estimating the K generalized eigenvectors which involves minimizing a concave

function, we consider approximating the subspace that is spanned by U. Let P = UUT and let
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Table 2. Algorithm 2: alternating direction methods of multiplier
algorithm for solving problem (10)

Input: matrices Â and B̂, tuning parameters ζ and K, alternating
direction methods of multiplier parameter ν and convergence
criterion ε

Initialize: matrices P0, H0 and Γ0
Let t =1 and repeat the following steps until ‖Pt+1 −Pt‖F � ε:

1, update P by solving the lasso problem

Pt+1 =arg min
P

ν

2
‖B̂1=2PB̂1=2 −Ht +Γt‖2

F − tr.ÂP/+ ζ‖P‖1,1;

2, let Σ
d
j=1ωjajbT

j be the singular value decomposition of

Γt +B1=2Pt+1B̂1=2 and let

γÅ =arg min
γ>0

γ subject to
d∑

j=1

min{1, max.ωj −γ, 0/}�K;

update H by

Ht+1 =
d∑

j=1

min{1, max.ωj −γÅ, 0/}ajbT
j ;

3, update Γ by

Γt+1 =Γt + B̂1=2Pt+1B̂1=2 −Ht+1;

4, t ← t +1

O ={B̂1=2PB̂1=2 : UTB̂U = IK}. By a change of variable, the above problem can be rewritten as

minimize
P∈R

d×d
−tr.ÂP/, subject to P∈O, .9/

where the objective function is now linear in P.

We consider the following convex relaxation of problem (9) with a lasso penalty to encourage

the estimated subspace to be sparse:

minimize
P

−tr.ÂP/+ ζ‖P‖1,1, subject to‖B̂1=2PB̂1=2‖Å �K and ‖B̂1=2PB̂1=2‖2 �1,

.10/

where ‖ · ‖Å and ‖ · ‖2 are the nuclear norm and spectral norm that encourage the solution to

be low rank and that its eigenvalue to be bounded respectively. Here, ζ and K are two tuning

parameters that encourage the estimated subspace P to be sparse and low rank respectively.

The convex optimization problem (10) can be solved by using the alternating direction methods

of multiplier algorithm; we summarize the details in algorithm 2 (Table 2) (Boyd et al., 2010;

Eckstein, 2012). The computational bottleneck in algorithm 2 is the singular value decomposi-

tion on a d ×d matrix, thus yielding a computational complexity of O.d3/. Compared with the

computational complexity of O.kd + d/ for algorithm 1, it can be seen that obtaining a good

initial vector v0 is much more time consuming than refining the initial value.

Let P̂ be an estimator obtained from solving problem (10). Then, the initial value v0 can be

set to be the largest eigenvector of P̂. The theoretical guarantees for v0 that are obtained via this

approach are presented in proposition 1 in Section 4.1. In practice, for obtaining an initial value

v0, we can simply set K =1 and ζ to be approximately
√

{log.d/=n}. In fact, we suggest setting ζ

conservatively since there is a refinement step using rifle to obtain an estimator that is closer to vÅ.
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4. Theoretical results

We show that, if the matrix pair .A, B/ has a unique sparse leading generalized eigenvector,

then algorithm 1 can accurately recover the population leading generalized eigenvector from

the noisy matrix pair .Â, B̂/. Recall from Section 1 that A is symmetric and B is positive definite.

This condition ensures that all generalized eigenvalues are real. Recall that vÅ is the leading

generalized eigenvector of .A, B/. Let V = supp.vÅ/ be the index set corresponding to the non-

zero elements of vÅ, and let |V | = s. Let F ⊂ {1, : : : , d} be a superset of V , i.e. V ⊂ F , with

cardinality |F |=k′. Throughout the paper, for notational convenience, let λj and λ̂j be the jth

generalized eigenvalue of the matrix pairs .A, B/ and .Â, B̂/ respectively. Moreover, let λj.F/ and

λ̂j.F/ be the jth generalized eigenvalue of the matrix pairs .AF , BF / and .ÂF , B̂F / respectively.

Our theoretical results depend on several quantities that are specific to the generalized eigen-

value problem. Let

cr.A, B/= min
v:‖v‖2=1

{.vTAv/2 + .vTBv/2}1=2 > 0 .11/

be the Crawford number of the symmetric definite matrix pair .A, B/ (Stewart, 1979). Let

cr.k′/= inf
F :|F |�k′

cr.AF , BF /,

ε.k′/=
√

{ρ.EA, k′/2 +ρ.EB, k′/2},
.12/

where ρ.EA, k′/ is as defined in equation (4). In what follows, we start with an assumption that

these quantities are upper bounded for sufficiently large n.

Assumption 1. For sufficiently large n, there are constants b, c> 0 such that

ε.k′/

cr.k′/
�b

and

ρ.EB, k′/� cλmin.B/

for any k′ 
n, where cr.k′/ and ε.k′/ are defined in expression (12).

Provided that n is sufficiently large, it can be shown that assumption 1 holds with high

probability for most statistical models. In fact, we shall show in proposition 2 in Section 4.2

that, as long as n > Ck′ log.d/ for some sufficiently large constant C, then assumption 1 is

satisfied with high probability for most statistical models. We shall use the following implications

of assumption 1 in our theoretical analysis, which are implied by matrix perturbation theory

(Stewart, 1979; Stewart and Sun, 1990). In detail, by applications of lemmas 1 and 2 in Appendix

A, we have that, for any F ⊂{1, : : : , d} with |F |=k′, there are constants a and c such that

.1−a/λj.F/� λ̂j.F/� .1+a/λj.F/,

.1− c/λj.BF /�λj.B̂F /� .1+ c/λj.BF /

and

clower κ.B/�κ.B̂F /� cupper κ.B/, .13/

where clower = .1− c/=.1+ c/, cupper = .1+ c/=.1− c/, c is the same constant as in assumption 1

and κ.B/ is the condition number of the matrix B. Meanwhile, let γ = .1+a/λ2={.1−a/λ1}.
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Finally, we define v.F/ to be the solution of a GEP restricted to a superset of V (V ⊂F ):

v.F/=arg max
v∈R

d

vTÂv, subject to vTB̂v =1, supp.v/⊆F: .14/

The quantity v.F/ can be interpreted as the solution of a GEP for a low dimensional problem

when k′ <n. In the following theorem, we present our main theoretical result for algorithm 1 as

a function of the l2-distance between v.F/ and vÅ.

Theorem 1. Let k′ = 2k + s and choose k =Cs for sufficiently large C. In addition, choose η

such that η λmax.B/< 1=.1+ c/ and

ν =
√

[1+2{.s=k/1=2 + s=k}]

√

{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

< 1:

Input an initial vector v0 with ‖v0‖2 =1 satisfying |.vÅ/Tv0|=‖vÅ‖2 �1−θ.A, B/, where θ.A, B/

is a quantity given in lemma 3 that depends on the matrix pair .A, B/. Under assumption 1, we

have
√

{

1−
|.vÅ/Tvt|
‖vÅ‖2

}

�ν t√θ.A, B/+
√

20

1−ν

√

{

1−
|v.F/TvÅ|

‖v.F/‖2‖vÅ‖2

}

: .15/

For simplicity, assume that .vÅ/Tvt is positive without loss of generality. Since vt is a unit

vector, from inequality (15) we have

1−
|.vÅ/Tvt|
‖vÅ‖2

=
1

2

∥
∥
∥
∥

vt −
vÅ

‖vÅ‖2

∥
∥
∥
∥

2

2

,

1−
|v.F/TvÅ|

‖v.F/‖2‖vÅ‖2
=

1

2

∥
∥
∥
∥

v.F/

‖v.F/‖2
−

vÅ

‖vÅ‖2

∥
∥
∥
∥

2

2

:

Thus, result (15) states that the l2-distance between vÅ=‖vÅ‖2 and vt can be upper bounded by

two terms. The first term on the right-hand side of inequality (15) quantifies the optimization

error, which decreases to 0 at a geometric rate since ν < 1. Meanwhile, the second term on the

right-hand side of inequality (15) is the statistical error that is introduced for solving GEPs

restricted to the set F as in problem (14). The result in theorem 1 depends on the estimation

error between v.F/ and vÅ. The following corollary quantifies such estimation error for a general

class of symmetric definite matrix pairs .A, B/.

Corollary 1. For a general class of symmetric definite matrix pairs .A, B/, let

∆λ=min
j>1

λ1 − .1+a/λj√
.1+λ2

1/
√

{1+ .1−a/2λ2
j}

.16/

denote the eigengap for the GEP (Stewart, 1979; Stewart and Sun, 1990). Assume that ∆λ >

ε.k′/=cr.k′/. Then, under the same conditions as in theorem 1, we have

√

{

1−
|.vÅ/Tvt|
‖vÅ‖2

}

�ν t√θ.A, B/+
√

10

1−ν

2

∆λ{cr.k′/− ε.k′/}
ε.k′/,

where ε.k′/=
√

{ρ.EA, k′/2 +ρ.EB, k′/2}.

For a large class of statistical models, ε.k′/ converges to 0 at the rate of
√

{s log.d/=n} with

high probability.
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4.1. Theoretical justification for the initialization in problem (10)

Theorem 1 involves a condition on the initialization v0: the cosine of the angle between vÅ and v0

needs to be strictly larger than a constant. In other words, the initialization v0 needs to be close

to vÅ. We now present some theoretical guarantees for the initialization procedure in Section

3.2. In the context of sparse CCA, Gao et al. (2017) have shown that the estimated subspace that

is obtained from solving a convex relaxation of the form (10) converges to the true subspace,

under the assumption that A is low rank and positive semidefinite, and that the rank of A is

known. In the following proposition, we remove those assumptions on A. Thus, a similar result

holds more generally for the sparse generalized eigenvalue problem with symmetric definite

matrix pair .A, B/.

For this, we define some additional notation. Let VÅ ∈ R
d×d be d generalized eigenvectors

and let Λ
Å ∈ R

d×d be a diagonal matrix of generalized eigenvalues of the matrix pair .A, B/.

Let Sv be a set containing indices of non-zero rows of VÅ ∈ R
d×d . For simplicity, assume that

|Sv|= s and that the eigenvalues of B are bounded. The matrix A can be rewritten in terms of

its generalized eigenvectors and generalized eigenvalues up to sign jointly, A =BVÅ
Λ

Å.VÅ/TB

(Gao et al., 2017). Let Ã = B̂VÅ
Λ

Å.VÅ/TB̂ and let PÅ = VÅ
·K.VÅ

·K/T, where VÅ
·K are the first K

generalized eigenvectors of .A, B/. Let P̂ be a solution to problem (10) with tuning parameters

ζ and K. The following proposition establishes an upper bound for the difference between P̂

and PÅ under the Frobenius norm.

Proposition 1. Assume that n is sufficiently large such that ρ.EB, s2/� cλmin.B/, where c is

the same constant as appears in assumption 1. Let δgap =λK − cκ.B/λK+1=.1− c/, and assume

that δgap > 0. Set ζ > 2‖Â − Ã‖∞,∞. Then,

‖P̂−PÅ‖F �C

(
s

δgap
‖Â − Ã‖∞,∞ +K‖B̂Sv

−BSv
‖2

)

,

where C is a generic constant that does not depend on the generalized eigenvalues and the

dimensions n, d, s and K.

For most statistical models, it can be shown that ‖Â − Ã‖∞,∞ �C1
√

{log.d/=n} and ‖B̂Sv
−

BSv
‖2 � C2

√
.s=n/ with high probability for generic constants C1 and C2. Thus, picking ζ >

C3
√

{log.d/=n}, the upper bound can be simplified to

‖P̂−PÅ‖F �C

[
s

δgap

√

{
log.d/

n

}

+K

√

(
s

n

)]

:

Choosing K =1 in expression (10), by a variant of the Davis–Kahan theorem in Vu et al. (2013),

proposition 1 guarantees that, by setting v0 to be the leading eigenvector of P̂, then v0 will

be sufficiently close to vÅ as long as the conditions in proposition 1 are satisfied. In the next

section, we shall quantify the sample size condition that is needed for proposition 1 to hold

under various statistical models.

4.2. Applications to sparse principal components analysis and sparse canonical

correlation analysis

In this section, we provide some discussions on the implications of theorem 1 and proposition

1 in the context of sparse PCA and CCA. More specifically, we first verify that the initial vector

v0 that is obtained from solving problem (10) is close to vÅ. Therefore, the assumption on v0 in

theorem 1 is satisfied. Next, we compare our results from theorem 1 with the minimax optimal

rate of convergence for the two statistical models.
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4.2.1. Sparse principal component analysis

We start with the sparse PCA problem. We assume the model X ∼ N.0,Σ/. As mentioned in

Section 2, sparse PCA is a special case of the sparse GEP when .A, B/= .Σ, I/ and .Â, B̂/= .Σ̂, I/,

where Σ̂ is the sample covariance matrix. Thus, optimization problem (10) reduces to a convex

relaxation of sparse PCA proposed by Vu et al. (2013). In this case, using a variant of the

theoretical results in proposition 1, the initial value v0 converges to vÅ as long as n>Cs2 log.d/.

Applying corollary 1 directly to the sparse PCA problem will give a loose upper bound (on

the eigenfactor) since the additional information on the matrix pair .A, B/ = .Σ, I/, with B

restricted to the identity matrix and A restricted to positive definite matrices, are not used in

the derivation of corollary 1. In other words, the results in corollary 1 are derived under a much

larger class of matrix pair .A, B/. For this, we resort to the following corollary on the variant of

the Davis–Kahan perturbation result for sparse PCA (see, for instance, Yu et al. (2014)).

Corollary 2. Let .A, B/= .Σ, I/ and let Σ be a symmetric positive definite matrix. Let Â = Σ̂

be the sample covariance matrix. We have that

ρ.Â −A, s/�C
√

λ1.A/

√

{
s log.d/

n

}

holds with high probability for some constant C > 0. Suppose that |F |= k′ and that k′ =O.s/.

Then, by the Davis–Kahan theorem,

√

{

1−
|v.F/TvÅ|

‖v.F/‖2‖vÅ‖2

}

�C′
√

λ1.A/

λ1.A/−λ2.A/

√

{
s log.d/

n

}

holds with high probability for some constant C′ > 0.

Combining corollary 2 with theorem 1, our results indicate that, as the optimization error

decays to 0, our proposed estimator has a statistical rate of convergence of approximately
√

λ1.A/

λ1.A/−λ2.A/

√

{
s log.d/

n

}

,

which matches the minimax optimal rate of convergence for sparse PCA problems (Cai et al.,

2013).

4.2.2. Sparse canonical correlation analysis

For sparse CCA, we assume the model
(

X

Y

)

∼N.0,Σ/

and

Σ=
(

Σx Σxy

Σ
T
xy Σy

)

:

Recall from example 2 the definitions of Â and B̂ in the context of sparse CCA. The following

proposition characterizes the rate of convergence between Σ̂ and Σ. It follows from lemma 6.5

of Gao et al. (2017). For ease of presentation, we omit the dependence on the eigenvalues of A

and B for CCA.

Proposition 2. Let Σ̂x, Σ̂y and Σ̂xy be the sample covariances of Σx, Σy and Σxy respectively.

For any C> 0 and positive integer k̄, there is a constant C′ > 0 such that
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ρ.Σ̂x −Σx, k̄/�C

√

{
k̄ log.d/

n

}

,

ρ.Σ̂y −Σy, k̄/�C

√

{
k̄ log.d/

n

}

and

ρ.Σ̂xy −Σxy, k̄/�C

√

{
k̄ log.d/

n

}

,

with high probability. Moreover, ‖Σ̂xy −Σxy‖∞,∞ �C
√

{log.d/=n} with high probability.

We now verify the sample size condition in proposition 1. From proposition 2, we have

ρ.EB, s2/ = OP [
√

{s2 log.d/=n}]. Thus, we need n > Cs2 log.d/ for some generic constant C.

Under the sample size condition and using the results in proposition 2, it can be shown that

‖Ã − Â‖∞,∞ � ‖Ã − A‖∞,∞ + ‖Â − A‖∞, ∞ = OP{
√

log.d/=n}. Moreover, ‖B̂Sv
− BSv

‖2 =
OP{

√
.s=n/}. Thus, as long as n > Cs2 log.d/, v0 converges to vÅ. This verifies the assumption

on v0 in theorem 1.

Recently Ma and Li (2016) showed that the minimax optimal eigenfactor takes the form√
.1−λ2

1/
√

.1−λ2
2/=.λ1 −λ2/ in the low dimensional setting in which n>d, under the assump-

tion that Σx =Σy = I. Adapting the results in Ma and Li (2016) in a similar fashion to that in

corollary 2, theorem 1 indicates that, with high probability, our proposed estimator obtains the

minimax statistical rate of convergence of approximately

√
.1−λ2

1/
√

.1−λ2
2/

λ1 −λ2

√

{
s log.d/

n

}

, .17/

for the case when Σx =Σy = I. However, the minimax optimal eigenfactor for general Σx and

Σy remains an open problem in the literature.

To obtain the rate of convergence for general Σx and Σy, we shall apply corollary 1 to the

sparse CCA problem. Choosing k to be of the same order as s, proposition 2 implies that both

ρ.EA, k′/ and ρ.EB, k′/ are of the order of
√

{s log.d/=n} with high probability. Thus, corollary

1 indicates that, as the optimization error decays to 0, our proposed estimator has a statistical

rate of convergence of approximately

√
.1+λ2

1/
√

.1+λ2
2/

λ1 −λ2

√

{
s log.d/

n

}

: .18/

The upper bound is expected to be loose in terms of the eigenfactor since the class of paired

matrices .A, B/ that was considered in corollary 1 is a much larger class of matrices than that

of the sparse CCA.

In short, our theoretical results are very general and are not based on any statistical model.

Moreover, the results in theorem 1 are written as a function of the estimation error between

v.F/, the solution of a GEP restricted on the set F , and vÅ. Therefore, existing minimax optimal

results for various statistical models in the low dimensional setting can be adapted to the high

dimensional setting in a similar fashion to that in corollary 2.

5. Numerical studies

We perform extensive numerical studies to evaluate the performance of our proposal, rifle,
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compared with existing methods. We consider sparse FDA and sparse CCA, each of which can

be recast as the sparse GEP (2), as shown in examples 1 and 2.

Rifle involves an initial vector v0 and a tuning parameter k on the cardinality. We employ

the convex optimization approach that was proposed in Section 3.2 to obtain an initial vector

v0. The convex approach involves two tuning parameters: we simply select ζ =
√

{log.d/=n}
and K = 1 as suggested by the theoretical analysis. Note that these tuning parameters can be

selected conservatively since there is a refinement step to obtain a final estimator by using

rifle.

It is challenging to propose a general model selection technique for the selection of k in a

sparse GEP since it is not based on any statistical model and it includes both unsupervised

learning and supervised learning methods as its special cases. For supervised learning methods

such as sparse FDA, we perform cross-validation to select the truncation parameter k. For

unsupervised learning methods such as sparse PCA and CCA, it is generally agreed in the

literature that the model selection problem is challenging. In principle, we could also use cross-

validation techniques to select k in these settings such as the procedure that was considered in

Witten et al. (2009). For simplicity, in our simulation studies, we assess the performance of our

estimator in the context of sparse CCA across several values of k and examine the role of k

under finite sample settings.

5.1. Fisher’s discriminant analysis

We consider high dimensional classification problems using sparse FDA. The data consist of

an n×d matrix X with d features measured on n observations, each of which belongs to one of

K classes. We let xi denote the ith row of X, and let Ck ⊂ {1, : : : , n} contain the indices of the

observations in the kth class with nk =|Ck| and Σ
K
k=1nk =n.

Recall from example 1 that this is a special case of the sparse GEP with Â = Σ̂b and B̂= Σ̂w.

Let µ̂k =Σi∈Ck
xi=nk be the estimated mean for the kth class. The standard estimates for Σw and

Σb are

Σ̂w =
1

n

K∑

k=1

∑

i∈Ck

.xi − µ̂k/.xi − µ̂k/T

and

Σ̂b =
1

n

K∑

k=1

nkµ̂kµ̂
T
k :

We consider two simulation settings similar to that of Witten et al. (2009).

(a) Binary classification: in this example, we set µ1 = 0, µ2j = 0:5 for j = {2, 4, : : : , 40} and

µ2j = 0 otherwise. Let Σ be a block diagonal covariance matrix with five blocks, each

of dimension d=5×d=5. The .j, j′/th element of each block takes value 0:8|j−j′|. As sug-

gested by Witten et al. (2009), this covariance structure is intended to mimic the co-

variance structure of gene expression data. The data are simulated as xi ∼ N.µk,Σ/ for

i∈Ck.

(b) Multiclass classification: there are K = 4 classes in this example. Let µkj = .k − 1/=3 for

j = {2, 4, : : : , 40} and µkj = 0 otherwise. The data are simulated as xi ∼ N.µk,Σ/ for

i ∈ Ck, with the same covariance structure for binary classification. As noted in Wit-

ten et al. (2009), a one-dimensional vector projection of the data fully captures the class

structure.



1070 K. M. Tan, Z. Wang, H. Liu and T. Zhang

Table 3. Number of misclassified observations out of 1000 test samples and
number of non-zero features (and standard errors) for binary and multiclass clas-
sification problems, averaged over 200 data sets†

Problem Results for the following methods:

l1 penalized l1-FDA Direct Rifle Oracle

Binary Error 32 (1) 298 (1) 29 (1) 15 (1) 8 (1)
Features 88 (1) 23 (1) 105 (2) 42 (1) 41 (0)

Multiclass Error 495 (2) 497 (1) 247 (2) 192 (2) 153 (1)
Features 54 (2) 22 (1) 102 (2) 42 (1) 41 (0)

†The results (rounded to the nearest integer) are for models trained with 400 training
samples with 500 features.

Four approaches are compared:

(a) rifle;

(b) l1-penalized logistic or multinomial regression implemented by using the R package

glmnet;

(c) l1-penalized FDA with a diagonal estimate of Σw implemented by using the R package

penalizedLDA (Witten et al., 2009);

(d) a direct approach to sparse discriminant analysis (Mai et al., 2012, 2016) implemented by

using the R package dsda and msda for binary and multiclass classification respectively.

For each method, models are fitted on the training set with tuning parameter selected by

using fivefold cross-validation. Then, the models are evaluated on the test set. In addition to

the aforementioned models, we consider an oracle estimator using the theoretical direction vÅ,

computed by using the population quantities Σw and Σb.

To compare the performance of the various proposals, we report the misclassification error

on the test set and the number of non-zero features that are selected in the models. The results

for 400 training samples and 1000 test samples, with d = 500 features, are reported in Table

3. From Table 3, we see that rifle has the lowest misclassification error compared with other

competing methods. This suggests that algorithm 1 works well with the initial value that is

obtained from the convex approach in Section 3.2. The method of Witten et al. (2009) has the

highest misclassification error in both of our simulation settings, since it does not take into

account the dependences between the features. The methods of Mai et al. (2012, 2015) perform

slightly worse than our proposal in terms of misclassification error. Moreover, they used a

large number of features in their model, which renders interpretation difficult. In contrast,

the number of features that are selected by our proposal is very close to that of the oracle

estimator.

5.2. Canonical correlation analysis

In this section, we study the relationship between two sets of random variables X ∈ R
d=2 and

Y ∈ R
d=2 in the high dimensional setting using sparse CCA. Let Σx and Σy be the covariance

matrices of X and Y, and Σxy be the cross-covariance matrix of X and Y. We consider two

different scenarios in which Σxy is low rank and approximately low rank.

Throughout the simulation studies, we compare our proposal with that of Witten et al. (2009),
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implemented by using the R package PMA. Their proposal involves choosing two tuning param-

eters that control the sparsity of the estimated directional vectors. We consider a range of tuning

parameters and choose tuning parameters that yield the lowest estimation error for Witten et al.

(2009). We assess the performance of rifle by considering multiple values of k ={6, 8, 10, 15}.

The output of both our proposal and that of Witten et al. (2009) is normalized to have norm

1, whereas the true parameters vÅ
x and vÅ

y are normalized with respect to Σx and Σy. To evaluate

the performance of the two methods, we normalize vÅ
x and vÅ

y such that they have norm 1 and

compute the squared l2-distance between the estimated and the true directional vectors.

5.2.1. Low rank Σxy

Assume that .X, Y/∼N.0,Σ/ with

Σ=
(

Σx Σxy

Σxy Σy

)

and

Σxy =ΣxvÅ
x λ1.vÅ

y /T
Σy,

where 0 < λ1 < 1 is the largest generalized eigenvalue and vÅ
x and vÅ

y are the leading pair of

canonical directions. The data consists of two n×d=2 matrices X and Y. We assume that each

row of the two matrices is generated according to .xi, yi/ ∼ N.0,Σ/. The goal of CCA is to

estimate the canonical directions vÅ
x and vÅ

y on the basis of the data matrices X and Y.

Let Σ̂x and Σ̂y be the sample covariance matrices of X and Y, and let Σ̂xy be the sample

cross-covariance matrix of X and Y. Recall from example 2 that the sparse CCA problem can

be recast as the GEP with

Â =
(

0 Σ̂xy

Σ̂xy 0

)

,

B̂=
(

Σ̂x 0

0 Σ̂y

)

and

v =
(

vx

vy

)

:

In our simulation setting, we set λ1 =0:9, vÅ
x,j =vÅ

y,j =1=
√

3 for j ={1, 6, 11}, and vÅ
x,j =vÅ

y,j =0

otherwise. Then, we normalize vÅ
x and vÅ

y such that .vÅ
x /T

ΣxvÅ
x = .vÅ

y /T
ΣyvÅ

y =1. We consider the

case when Σx and Σy are block diagonal matrices with five blocks, each of dimension d=5×d=5,

where the .j, j′/th element of each block takes value 0:8|j−j′|. The results for d =500 and s=6,

averaged over 200 data sets, are summarized in Table 4.

From Table 4, we see that our proposal outperforms that of Witten et al. (2009) uniformly

across different sample sizes. This is not surprising since Witten et al. (2009) used diagonal

estimates of Σx and Σy to compute the directional vectors. The l2-distance for our proposal

decreases as we increase n. Moreover, the l2-distance increases when we increase k. These results

confirm our theoretical analysis in theorem 1.
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Table 4. Results for low rank Σxy†

n Results for the following methods:

PMA Rifle (k =6) Rifle (k =8) Rifle (k =10) Rifle (k =15)

vx

200 0.72 (0.01) 0.21 (0.02) 0.11 (0.02) 0.08 (0.02) 0.07 (0.01)
400 0.61 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
600 0.58 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

vy

200 0.70 (0.01) 0.24 (0.02) 0.24 (0.02) 0.35 (0.02) 0.58 (0.01)
400 0.62 (0.01) 0.02 (0.01) 0.07 (0.01) 0.15 (0.01) 0.32 (0.01)
600 0.59 (0.01) 0.01 (0.01) 0.04 (0.01) 0.08 (0.01) 0.19 (0.01)

†Squared l2-distance between the estimated and true leading generalized eigenvector as a function
of the sample size n for d =500 and s=6. The results are averaged over 200 data sets.

5.2.2. Approximately low rank Σxy

In this section, we consider the case when Σxy is approximately low rank. We consider the same

simulation set-up as in the previous section, except that Σxy is now approximately low rank,

generated as follows:

Σxy =ΣxvÅ
x λ1.vÅ

y /T
Σy +ΣxVÅ

x Λ.VÅ
y /T

Σy

with λ1 = 0:9. Here, Λ∈ R
200×200 is a diagonal matrix with diagonal entries 0.1, and VÅ

x , VÅ
y ∈

R
d=2×200 are normalized orthogonal matrices such that .VÅ

x /T
ΣxVÅ

x = I and .VÅ
y /T

ΣyVÅ
y = I

respectively. The goal is to recover the leading generalized eigenvector vÅ
x and vÅ

y . The results

for d =1000 and s=6, averaged over 200 data sets, are summarized in Table 5.

From Table 5, we see that the performance of rifle is much better than that of PMA across all

settings. As we increase the number of samples n, the l2-distance decreases for all values of k. In-

teresting, as we increase k from k=6 to k=10 for the case when n=400, the l2-distance decreases

Table 5. Results for approximately low rank Σxy†

n Results for the following methods:

PMA Rifle (k =6) Rifle (k =8) Rifle (k =10) Rifle (k =15)

vx

400 0.63 (0.01) 0.30 (0.02) 0.19 (0.02) 0.13 (0.02) 0.07 (0.01)
600 0.62 (0.01) 0.11 (0.01) 0.07 (0.01) 0.09 (0.01) 0.07 (0.01)
800 0.57 (0.01) 0.02 (0.01) 0.05 (0.01) 0.08 (0.01) 0.07 (0.01)

vy

400 0.66 (0.01) 0.31 (0.02) 0.26 (0.02) 0.22 (0.02) 0.25 (0.01)
600 0.63 (0.01) 0.10 (0.01) 0.11 (0.01) 0.13 (0.01) 0.16 (0.01)
800 0.55 (0.01) 0.02 (0.01) 0.07 (0.01) 0.11 (0.01) 0.13 (0.01)

†Squared l2-distance between the estimated and true leading generalized eigenvector as a function
of the sample size n for d =1000 and s=6. The results are averaged over 200 data sets.
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slightly. This is because, in the high dimensional setting, the initial value is not estimated accu-

rately. Thus, when we choose k = s=6, some of the true support is not selected after truncating

the initial value v0 and therefore it has a higher l2-distance. In this case, by selecting a larger value

of k, we can ensure that the true support is selected, which yields a lower l2-distance. If an even

larger k is selected, then the l2-distance will eventually increase like in the case when k=15 for vy.

6. Data application

In this section, we apply our method in the context of sparse sliced inverse regression as in

example 3. The data sets that we consider are as follows.

(a) The leukaemia (Golub et al., 1999) data set consists of 7129 gene expression measurements

from 25 patients with acute myeloid leukaemia and 47 patients with acute lymphoblastic

leukaemia. The data are available from http://www.broadinstitute.org/cgi-b

in/cancer/datasets.cgi. Recently, this data set has been analysed in the context

of sparse sufficient dimension reduction in Yin and Hilafu (2015).

(b) The lung cancer (Spira et al., 2007) data set consists of 22283 gene expression

measurements from large airway epithelial cells sampled from 97 smokers with lung can-

cer and 90 smokers without lung cancer. The data are publicly available from the gene

expression omnibus, accession number GDS2771.

We preprocess the leukaemia data set following Golub et al. (1999) and Yin and Hilafu (2015).

In particular, we set gene expression readings of 100 or fewer to 100, and expression readings of

16000 or more to 16000. We then remove genes with difference and ratio between the maximum

and minimum readings that are less than 500 and 5 respectively. A log-transformation is then

applied to the data. This gives us a data matrix X with 72 rows or samples and 3571 columns

or genes. For the lung cancer data, we simply select the 2000 genes with the largest variance

as in Petersen et al. (2016). This gives a data matrix with 167 rows or samples and 2000

columns or genes. We further standardize both data sets so that the genes have mean 0 and

variance 1.

Recall from example 3 that, to apply our method, we need the estimates Â = Σ̂E.X|Y/ and

B̂ = Σ̂x. The quantity Σ̂x is simply the sample covariance matrix of X. Let n1 and n2 be the

number of samples of the two classes in the data set. Let Σ̂x,1 and Σ̂x,2 be the sample covariance

matrix calculated by using only data from class 1 and class 2 respectively. Then, the covariance

matrix of the conditional expectation can be estimated by

Σ̂E.X|Y/ = Σ̂x −
1

n

2∑

k=1

nkΣ̂x,k,

where n=n1 +n2 (Li, 1991; Li and Nachtsheim, 2006; Zhu et al., 2006; Li and Yin, 2008; Chen

et al., 2010; Yin and Hilafu, 2015). Let v̂t be the output of algorithm 1. Similarly to Yin and

Hilafu (2015), we plot the boxplot of the sufficient predictor Xv̂t for the two classes in each data

set. The results with k =25 for the leukaemia and lung cancer data sets are in Figs 1(a) and 1(b)

respectively.

From Fig. 1(a), for the leukaemia data set, we see that the sufficient predictors for the two

groups are much more well separated than the results in Yin and Hilafu (2015). Moreover, our

proposal is with theoretical guarantees whereas their proposal is sequential without theoretical

guarantees. For the lung cancer data set, we see that there is some overlap between the sufficient

predictors for subjects with and without lung cancer. These results are consistent with the

literature where it is known that the lung cancer data set is a much more difficult classification
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Fig. 1. Boxplots of the sufficient predictor Xv̂t obtained from algorithm 1 for the leukaemia and lung cancer
data sets: patients with acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML); (b) patients
with (case) and without (control) lung cancer

problem compared with that of the leukaemia data set (Fan and Fan, 2008; Petersen et al.,

2016).

7. Discussion

We propose a two-stage computational framework for solving the sparse GEP. The method suc-

cessfully handles ill-conditioned normalization matrices that arise from the high dimensional
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Table 6. Estimation error between the true standardized generalized eigenvector
kv*k2 D 1 and the estimated generalized eigenvector for the binary classification
problem, averaged over 50 data sets†

Results for soft-rifle Results for rifle

C =1 C =0.5 C =0.25 k =35 k =40 k =55

Estimation error 0.180 0.048 0.072 0.181 0.048 0.072
Features 33.5 39.7 53.3 35 40 55

†The numbers of non-zero features are also reported. The results are with n=200 and
d =200. The true sparsity level is s=40.

setting because of finite sample estimation, and the final estimator enjoys geometric convergence

to a solution with the optimal statistical rate of convergence. Our method and theory have appli-

cations to a large class of statistical models including but not limited to sparse FDA, sparse CCA

and sparse sufficient dimension reduction. Compared with existing theory for each specific statis-

tical model, our theory is very general and does not require any structural assumptions on (A, B/.

Our theoretical results in theorem 1 rely on selecting the tuning parameter k such that k =Cs

for some constant C>1. However, in practice, the true sparsity level s is unknown and it may be

difficult to select the value of k. To remove the dependences on s, one of the reviewers suggested

a thresholding strategy, i.e. instead of truncating the vector v′
t and keeping the top k elements,

one can perform C
√

{log.d/=n} thresholding on the updated vector v′
t from step 3 of algorithm

1, where C is some user-specified constant. To evaluate the thresholding strategy, we perform a

small scale numerical study on the FDA binary classification example similar to that of Section

5.1 with n=200 and d =200. We compare the estimator that is obtained by using the soft thresh-

olding rule, soft-rifle, and that of our proposed truncation rule by calculating the estimation

error between these estimators and the oracle direction. The results, averaged across 50 itera-

tions, are presented in Table 6. From Table 6, we see that, depending on the choice of the constant

C, the soft thresholding rule has a similar performance to that of the truncation rule, suggesting

that substituting the soft thresholding rule in steps 4 and 5 of algorithm 1 will also work.

In the case when vÅ is approximately sparse, i.e. s = d, the current theoretical results are

no longer applicable. To address this issue, we can redefine the notion of sparsity level s. As

suggested by one of the reviewers, we can define the effective sparsity level s′ as the lq-norm .q<1/

or the ratio between, for example, l1- and l∞-norms of vÅ. The theoretical properties for the

thresholding strategy and weak sparsity are challenging to establish under our current theoretical

framework. In particular, because of the normalization constraint vTB̂v on the denominator,

to analyse the gradient ascent step in step 2, we require that the cardinality of the input vector

must have support k′. This condition is needed to control the condition number of B̂F , where F

is an index set such that |F |=k′. Developing a new theoretical framework for solving the sparse

generalized eigenvalue problem is out of the scope of this paper and we leave it for future work.

There are several additional future directions for the sparse GEP. It will be interesting to

study whether rifle can be generalized to the case for estimating subspace spanned by the top

K leading generalized eigenvectors. The computational bottleneck for the current approach is

on the convex relaxation method for obtaining the initial vector v0, which has a computational

complexity of O.d3/ per iteration. This yields a total computational complexity of O.d3/ +
O.kd + d/ for the proposed two-stage computational framework. In future work, it will be of
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paramount importance to propose an efficient convex algorithm to obtain v0 such that our

proposal is scalable to accommodate large-scale data.
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Appendix A: Proof of theorem 1

To establish theorem 1, we first quantify the error that is introduced by maximizing the empirical version
of the GEP, restricted to a superset of V (V ⊂F ), i.e.

v.F/=arg max
v∈R

d

vTÂv, subject to vTB̂v =1, supp.v/⊆F:

Then we establish an error bound between v′
t in step 2 of algorithm 1 and v.F/. Finally, we quantify the

error that is introduced by the truncated step in algorithm 1.
We first state a series of lemmas that will facilitate the proof of theorem 1. The proofs for the technical

lemmas are deferred to Appendix C. We start with some results from perturbation theory for eigenvalues
and GEPs (Golub and Van Loan, 2012).

Lemma 1. Let J and J +EJ be d ×d symmetric matrices. Then, for all k ∈{1, : : : , d},

λk.J/+λmin.EJ/�λk.J +EJ/�λk.J/+λmax.EJ/:

In what follows, we state a result on perturbed generalized eigenvalues for a symmetric definite matrix
pair .J, K/ in the following lemma, which follows directly from theorem 3.2 in Stewart (1979) and theorem
8.7.3 in Golub and Van Loan (2012).

Lemma 2. Let .J, K/ be a symmetric definite matrix pair with generalized eigenvalues λ1.J, K/�: : :�
λd.J, K/. Let (J +EJ,K +EK) be the perturbed matrix pair and assume that EJ and EK satisfy

ε=
√

.‖EJ‖2
2 +‖EK‖2

2/< cr.J, K/,

where cr.J, K/ is as defined in expression (10). Then, .J + EJ, K + EK/ is a symmetric definite matrix
pair with generalized eigenvalues λ1.J +EJ, K +EK/�: : :�λd.J +EJ, K +EK/. Then,

λk.J, K/ cr.J, K/− ε

cr.J, K/+ ελk.J, K/
�λk.J +EJ, K +EK/�

λk.J, K/cr.J, K/+ ε

cr.J, K/− ελk.J, K/
:

Recall from Section 4 that vÅ is the first generalized eigenvector of .A, B/ with generalized eigenvalue
λ1, and that V = supp.vÅ/. For any given set F such that V ⊂F , let λk.F/ and λ̂k.F/ be the kth generalized
eigenvalues of .AF , BF / and .ÂF , B̂F / respectively. Under assumption 1 and by application of lemma 2, we
have

λ̂2.F/ =λ̂1.F/�γ,

where γ = .1+a/λ2={.1−a/λ1}.
Let y.F/=v.F/=‖v.F/‖2 and yÅ =vÅ=‖vÅ‖2 such that ‖y.F/‖2 =‖yÅ‖2 =1. We now present a key lemma

on measuring the progress of the gradient descent step. It requires an initial solution that is sufficiently
close to the optimal value in expression (14). With some abuse of notation, we indicate y.F/ to be a k′-
dimensional vector restricted to the set F ⊂ {1, : : : , d} with |F | = k′. Recall that c > 0 is some arbitrary
small constant stated in assumption 1 and cupper is defined as .1+ c/=.1− c/.
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Lemma 3. Let F ⊂{1, : : : , d} be some set with |F |=k′. Given any ṽ such that ‖ṽ‖2 =1 and ṽ
T

y.F/> 0,
let ρ= ṽ

T
ÂF ṽ=ṽ

T
B̂F ṽ, and let v′ =CF ṽ=‖CF ṽ‖2, where

C= I + .η=ρ/.Â −ρB̂/

and η > 0 is some positive constant. Let δ =1−y.F/Tṽ. Pick η sufficiently small such that

ηλmax.B/< 1=.1+ c/,

and δ is sufficiently small such that

1− δ �1−θ.A, B/,

where

θ.A, B/=min

[

1

8cupperκ.B/
,

1=γ −1

3cupperκ.B/
,

1−γ

30.1+ c/c2
upperηλmax.B/κ2.B/{cupperκ.B/+γ}

]

:

Then, under assumption 1, we have

y.F/Tv′
�y.F/Tṽ +

1+ c

8
ηλmin.B/{1−y.F/Tṽ}

{

1−γ

cupperκ.B/+γ

}

:

The following lemma characterizes the error that is introduced by the truncation step. It follows directly
from lemma 12 in Yuan and Zhang (2013).

Lemma 4. Consider y′ with F ′ = supp.y′/ and |F ′| = k̄. Let F be the indices of y with the largest k
absolute values, with |F |=k. If ‖y′‖2 =‖y‖2 =1, then

|truncate.y, F/Ty′|� |yTy′|− .k̄=k/1=2 min[
√

{1− .yTy′/2}, {1+ .k̄=k/1=2}{1− .yTy′/2}]:

Recall from algorithm 1 that we define vt = v̂t=‖v̂t‖2. Since ‖v′
t‖2 =1, and v̂t is the truncated version of v′

t ,
we have that ‖v̂t‖2 �1. This implies that |.yÅ/Tvt |� |.yÅ/Tv̂t |. We now quantify the progress of each iteration
of algorithm 1. For this, assume that k>s, where s is the cardinality of the support of yÅ = vÅ=‖vÅ‖2

2, and
k is the truncation parameter in algorithm 1. Let k′ =2k + s and let

ν =
√

[1+2{.s=k/1=2 + s=k}]

√
{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

:

Recall that V is the support of vÅ, the population leading generalized vector, and also yÅ = vÅ=‖vÅ‖2.
Let Ft−1 = supp.vt−1/ and Ft = supp.vt/ and let F =Ft−1 ∪Ft ∪V . Note that the cardinality of F is no more
than k′ =2k + s, since |Ft |= |Ft−1|=k. Let

v′
t =CF vt−1=‖CF vt−1‖2,

where CF is the submatrix of CF restricted to the rows and columns that are indexed by F . We note that
v′

t is equivalent to that in algorithm 1, since the elements of v′
t outside the set F take value 0. Without loss

of generality and for simplicity, we assume that the inner product between two eigenvectors is positive,
because otherwise we can simply do appropriate sign changes in the proof.

Applying lemma 3 with the set F , we obtain

y.F/Tv′
t �y.F/Tvt−1 +

1+ c

8
ηλmin.B/

{

1−y.F/Tvt−1

} 1−γ

cupperκ.B/+γ
:

Subtracting 1 from both sides of the equation and rearranging the terms, we obtain

1−y.F/Tv′
t �{1−y.F/Tvt−1}

{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

: .19/

This implies that

‖y.F/− v′
t‖2 �‖y.F/− vt−1‖2

√
{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

: .20/
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By the triangle inequality, we have

‖y − v′
t‖2 �‖y.F/− v′

t‖2 +‖y.F/−yÅ‖2

�‖y.F/− vt−1‖2

√
{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

+‖y.F/−yÅ‖2

�‖y − vt−1‖2

√
{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

+2‖y.F/−yÅ‖2, .21/

where the second inequality follows from inequality (19). This is equivalent to

√
.1−|yTv′

t |/�
√

.1−|yTvt−1|/
√

{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

+2
√

{1−|y.F/TyÅ|}: .22/

We define

ν =
√

[1+2{.s=k/1=2 + s=k}]

√
{

1−
1+ c

8
ηλmin.B/

1−γ

cupperκ.B/+γ

}

:

By lemma 4 and picking k>s, we have

√
.1−|yTv̂t |/�

√
[1−|yTv′

t |+{.s=k/1=2 + s=k}.1−|yTv′
t |2/]

�
√

.1−|yTv′
t |/

√
[1+{.s=k/1=2 + s=k}.1+|yTv′

t |/]
�

√
.1−|yTv′

t |/
√

[1+2{.s=k/1=2 + s=k}]

�ν
√

.1−|yTvt−1|/+
√

20
√

{1−|y.F/TyÅ|}, .23/

where the third inequality holds by using the fact that |yTv′
t |�1, and the last inequality holds by inequality

(22).
Finally, we have

√
{1−|.yÅ/Tvt |}�

√
{1−|.yÅ/Tv̂t |}

�ν
√

{1−|.yÅ/Tvt−1|}+
√

20
√

{1−|y.F/TyÅ|}: .24/

By recursively applying inequality (23), we have, for all t �0,
√

{1−|.yÅ/Tvt |}�ν t√{1−|.yÅ/Tv0|}+
√

20
√

{1−|y.F/TyÅ|}=.1−ν/,

as desired.

Appendix B: Proof of corollary 1

Let F ⊃V be a superset of the support of yÅ. Recall that y.F/= v.F/=‖v.F/‖2 and yÅ =yÅ=‖yÅ‖2. We first
prove that y.F/ is close to yÅ for a general class of symmetric definite matrix pairs .A, B/. For this, we
present the following lemma resulting from theorem 4.3 in Stewart (1979).

Lemma 5. Let F be a set such that V ⊂F with |F |=k′ >s and let

δ.F/=
√

.‖EA,F ‖2
2 +‖EB,F ‖2

2/:

Let

χ{λ1.F/, λ̂k.F/}=
|λ1.F/− λ̂k.F/|

√
{1+λ1.F/2}

√
{1+ λ̂k.F/2}

,

∆λ̂.F/=min
k>1

χ{λ1.F/, λ̂k.F/}> 0:

If δ.F/=∆λ̂.F/< cr.ÂF , B̂F /, then

min{‖v.F/− vÅ‖2, v.F/+ vÅ‖2}

‖vÅ‖2

�
δ.F/

∆λ̂.F/cr.ÂF , B̂F /
:
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This implies that

min{‖y.F/−yÅ‖2, ‖y.F/+yÅ‖2}�
2

∆λ{cr.k′/− ε.k′/}
ε.k′/,

where ∆λ, cr.k′/ and ε.k′/ are as defined in expressions (16) and (12).

By lemma 5, we have

√
{

1−
|.vÅ/Tvt |
‖vÅ‖2

}

�
21=2

∆λ{cr.k′/− ε.k′/}
ε.k′/:

Substituting the above inequality into theorem 1 yields the results in corollary 1.

Appendix C: Proof of technical lemmas

C.1. Proof of lemma 3
Recall that F ⊂ {1, : : : , d} is some set with cardinality |F | = k′. Also, recall that y.F/ is proportional to
the largest generalized eigenvector of .ÂF , B̂F /. Throughout the proof, we write κ̂ to denote κ.B̂F / for
notational convenience. In addition, we use the notation ‖v‖2

B̂F
to indicate vTB̂F v.

Let ξj be the jth generalized eigenvector of .ÂF , B̂F / corresponding to λ̂j.F/ such that

ξT
j B̂F ξk =

{

1 if j =k,
0 if j 	=k:

Assume that ṽ =Σ
k′
j=1αjξj and by definition we have y.F/ = ξ1=‖ξ1‖2. By assumption, we have y.F/Tṽ =

1− δ. This implies that ‖y.F/− ṽ‖2
2 =2δ. Also, note that

‖ṽ −y.F/‖2

B̂F
=‖ṽ −α1ξ1 −{y.F/−α1ξ1}‖2

B̂F

=‖ṽ −α1ξ1‖2

B̂F
+‖y.F/−α1ξ1‖2

B̂F
−2.y.F/−α1ξ1/

TB̂F .ṽ −α1ξ1/:

Since y.F/−α1ξ1 is orthogonal to ṽ −α1ξ1 under the normalization of B̂F , we have

k′
∑

j=2

α2
j =‖ṽ −α1ξ1‖2

B̂F
�‖ṽ −y.F/‖2

B̂F
�2 λmax.B̂F /δ, .25/

in which the last inequality holds by an application of Hölder’s inequality and the fact that ‖y.F/− ṽ‖2
2 =2δ.

Moreover, we have

k′
∑

j=1

α2
j =‖ṽ‖2

B̂F
�λmax.B̂F /=κ̂,

α2
1 �λmax.B̂F /=κ̂−

k′
∑

j=2

α2
j �2λmax.B̂F /=.3κ̂/,

.26/

where the last inequality is obtained by result (25) and the assumption that δ �1=.8cupperκ/.
We also need a lower bound on ‖y.F/‖B̂F

. By the triangle inequality, we have

‖y.F/‖B̂F
�‖ṽ‖B̂F

−‖ṽ −y.F/‖B̂F
�

√

( k′
∑

j=1

α2
j

)

−
√

λmax.B̂F /‖ṽ −y.F/‖2

�
1

2

√

( k′
∑

j=1

α2
j

)

+
1

2

√

{

λmax.B̂F /

κ̂

}

−
√

{2λmax.B̂F /δ}�
1

2
α1, .27/

where the second inequality holds by the definition of ‖ṽ‖B̂F
and an application of Hölder’s inequal-

ity, the third inequality follows from expression (26), and the last inequality follows from the fact that
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1
2

√
{λmax.B̂F /=κ̂}�

√
{2λmax.B̂F /δ} under the assumption that δ �1=.8cupperκ/.

C.1.1. Lower and upper bounds for { λ̂1(F)−ρ} =ρ
To obtain a lower bound for the quantity y.F/Tv′, we need both the lower bound and the upper bound for
the quantity {λ̂1.F/ − ρ}=ρ. Recall that ρ= ṽ

T
ÂF ṽ=ṽ

T
B̂F ṽ. Using the fact that ṽ

T
ÂF ṽ =Σ

k′
j=1α

2
j λ̂j.F/, we

obtain

λ̂1.F/−ρ

ρ
=

k′
∑

j=1

{λ̂1.F/− λ̂j.F/}α2
j

k′
∑

j=1

λ̂j.F/α2
j

�

λ̂1.F/
k′
∑

j=2

α2
j

λ̂1.F/α2
1

�
2λmax.B̂F /δ

α2
1

�3δκ̂, .28/

where the second-to-last inequality holds by result (25) and the last inequality holds by expression (26).
We now establish a lower bound for {λ̂1.F/−ρ}=ρ. First, we observe that

δ �2δ − δ2 = .1− δ/2 +1−2.1− δ/y.F/Tṽ =‖ṽ − .1− δ/y.F/‖2
2 �‖ṽ −α1ξ1‖2

2, .29/

where the first equality follows from the fact that y.F/Tṽ = 1 − δ, and the second inequality holds by the
fact that .1− δ/y.F/ is the scalar projection of y.F/ onto the vector ξ1. Thus, we have

λ̂1.F/−ρ

ρ
=

k′
∑

j=1

{λ̂1.F/− λ̂j.F/}α2
j

k′
∑

j=1

λ̂j.F/α2
j

�

{λ̂1.F/− λ̂2.F/}
k′
∑

j=2

α2
j

λ̂1.F/α2
1 + λ̂2.F/

k′
∑

j=2

α2
j

=
{λ̂1.F/− λ̂2.F/}‖ṽ −α1ξ1‖2

B̂F

λ̂1.F/α2
1 + λ̂2.F/‖ṽ −α1ξ1‖2

B̂F

�
.1−γ/{λmax.B̂F /=κ̂}‖ṽ −α1ξ1‖2

2

α2
1 +γ{λmax.B̂F /=κ̂}‖ṽ −α1ξ1‖2

2

�
.1−γ/λmax.B̂F /δ

α2
1κ̂+γ λmax.B̂F /δ

, .30/

where the second-to-last inequality holds by dividing the numerator and denominator by λ̂1.F/ and using
the upper bound λ̂2.F/=λ̂1.F/�γ, and the last inequality holds by result (29).

C.1.2. Lower bound for ‖CF ṽ‖−1
2

In what follows, we first establish an upper bound for ‖CF ṽ‖2
2. By the definition that ρ= ṽ

T
ÂF ṽ=ṽ

T
B̂F ṽ, we

have

ṽ
T

ÂF ṽ −ρṽ
T

B̂F ṽ =0:

Moreover, by the definition of ṽ =Σ
k′
j=1αjξj and the fact that ÂF ξj = λ̂j.F/B̂F ξj , we have

‖.ÂF −ρB̂F /ṽ‖2
2 =

∥

∥

∥

∥

k′
∑

j=1

αjÂF ξj −ρ
k′
∑

j=1

αjB̂F ξj

∥

∥

∥

∥

2

2

=
∥

∥

∥

∥

k′
∑

j=1

αj{λ̂j.F/−ρ}B̂F ξj

∥

∥

∥

∥

2

2

: .31/

Thus, by equation (31) and the fact that ṽ
T

ÂF ṽ −ρṽ
T

B̂F ṽ =0, we obtain

‖CF ṽ‖2
2 =

∥

∥

∥

∥

{

I +
η

ρ
.ÂF −ρB̂F /

}

ṽ

∥

∥

∥

∥

2

2

=1+
∥

∥

∥

∥

k′
∑

j=1

αj

η

ρ
{λ̂j.F/−ρ}B̂F ξj

∥

∥

∥

∥

2

2

: .32/

It remains to establish an upper bound for the second term in equation (32). By the assumption that
δ �1=.3cupperκ/.1=γ −1/ and result (28), we have

λ̂2.F/�ρ� λ̂1.F/:

Moreover, since ‖ṽ‖2
2 =1, we have α2

1 �λmax.B̂F /. Thus,
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∥

∥

∥

∥

∥

k′
∑

j=1

αj.η=ρ/{λ̂j.F/−ρ}B̂F ξj

∥

∥

∥

∥

∥

2

2

�α2
1{λ̂1.F/−ρ}2λmax.B̂F /.η=ρ/2 +λmax.B̂F /

k′
∑

j=2

α2
j.η=ρ/2{λ̂j.F/−ρ}2

�λ2
max.B̂F /η2.3δκ̂/2 +λmax.B̂F /η2{λ̂1.F/=ρ−1}2

k′
∑

j=2

α2
j

�λ2
max.B̂F /η2.3δκ̂/2 +2λ2

max.B̂F /η2δ.3δκ̂/2

=9λ2
max.B̂F /η2δ2κ̂2 +18λ2

max.B̂F /η2δ3κ̂2, .33/

where the second inequality is from result (28) and the third inequality follows from result (25). Substituting
equation (33) into equation (32), we have

‖CF ṽ‖2
2 �1+9λ2

max.B̂F /η2δ2κ̂2 +18λ2
max.B̂F /η2δ3κ̂2

�1+12λ2
max.B̂F /η2δ2κ̂2, .34/

where the last inequality follows from the fact that 2δ �
1
4
, which holds by the assumption that δ �

1=.8cupperκ/. Meanwhile, note that the second term in the upper bound is less than 1 by the assumption
δ �1=.8cupperκ/ and ηcupperλmax.B/< 1. Hence, by invoking inequality (34) and the fact that 1=

√
.1+y/�

1−y=2 for |y|< 1, we have

‖CF ṽ‖−1
2 �1−6λ2

max.B̂F /η2δ2κ̂2: .35/

C.1.3. Lower bound for y(F)TCF ṽ
We have

y.F/TCF ṽ =y.F/Tṽ +
η

ρ
y.F/T.ÂF −ρB̂F /ṽ

=1− δ +
η

ρ
{λ̂1.F/−ρ}y.F/TB̂F ṽ

=1− δ +
η

ρ
{λ̂1.F/−ρ}α1

ξT
1 B̂F ξ1

‖ξ1‖2

=1− δ +ηα1

λ̂1.F/−ρ

ρ
‖y.F/‖B̂F

�1− δ +
1

2
ηα2

1

.1−γ/λmax.B̂F /δ

α2
1κ̂+γ λmax.B̂F /δ

�1− δ +
1

2
η
α2

1.1−γ/δ

κ̂+γ

�1− δ +
1

3
ηλmin.B̂F /

.1−γ/δ

κ̂+γ
, .36/

where the first inequality follows from expressions (27) and (30), the second inequality uses the fact that
α2

1 �λmax.B̂F / and the last inequality follows from expression (26).

C.1.4. Combining the results
We now establish a lower bound on y.F/Tv′. From expressions (35) and (36), we have

y.F/Tv′ =y.F/TCF ṽ · ‖CF ṽ‖−1
2

�

{

1− δ +
1

3
ηλmin.B̂F /

.1−γ/δ

κ̂+γ

}

{1−6λ2
max.B̂F /η2δ2κ̂2}

�1− δ +
1

3
ηλmin.B̂F /

.1−γ/δ

κ̂+γ
−6λ2

max.B̂F /η2δ2κ̂2 −2κ̂2η3λ3
max.B̂F /δ2 .1−γ/δ

κ̂+γ
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�1− δ +
1

3
ηλmin.B̂F /

.1−γ/δ

κ̂+γ
−6:25λ2

max.B̂F /η2δ2κ̂2

�1− δ +
1

8
ηλmin.B̂F /

.1−γ/δ

κ̂+γ
, .37/

in which the third inequality holds by the assumption that the step size η is sufficiently small such that
ηλmax.B̂F /< 1, and the last inequality holds under the condition that

1−γ

κ̂+γ
�30ηλmax.B̂/δκ̂2,

which is implied by the following inequality under assumption 1:

δ �
1−γ

30.1+ c/c2
upperηλmax.B/κ2.cupperκ+γ/

:

By assumption 1, we have

y.F/Tv′
�1− δ +

1+ c

8
ηλmin.B/

{

1−y.F/Tṽ
} 1−γ

cupperκ+γ
,

as desired.

C.2. Proof of lemma 5
The first part of lemma 5 on the following inequality follows directly from theorem 4.3 in Stewart (1979):

‖v.F/− vÅ‖2

‖vÅ‖2

�
δ.F/

∆λ̂cr.ÂF , B̂F /
:

We now prove the second part of the lemma.
Setting y.F/= v.F/=‖v.F/‖2 and yÅ = vÅ=‖vÅ‖2 such that ‖y.F/‖2 =1 and ‖yÅ‖2 =1, we have

‖y.F/−yÅ‖2 �

∥

∥

∥

∥

v.F/

‖v.F/‖2

−
vÅ

‖vÅ‖2

∥

∥

∥

∥

2

�
1

‖v.F/‖2‖vÅ‖2

‖v.F/‖vÅ‖2 − vÅ‖v.F/‖2‖2

�
2

‖vÅ‖2

‖v.F/− vÅ‖2

�2
δ.F/

∆λ̂ cr.ÂF , B̂F /

where the third inequality holds by adding and subtracting v.F/‖v.F/‖2. By definition, δ.F/ � ε.k′/ and
∆λ̂�∆λ. Moreover, by theorem 2.4 in Stewart (1979), cr.ÂF , B̂F /� cr.k′/− ε.k′/. Thus, we obtain

‖y.F/−yÅ‖2 �
2

∆λ{cr.k′/− ε.k′/}
ε.k′/:

The other case for ‖y.F/+yÅ‖2 can be proved similarly.

Appendix D: Proof of proposition 1

The proof of proposition 1 is an adaptation of the proof of theorem 4.1 in Gao et al. (2017) and the
proof of theorem 1 in Tan et al. (2018), with some modifications to the curvature lemma to remove the
structural assumptions on A. Without loss of generality, we assume that A is full rank. For ease of notation,
throughout the proof, we write V, Λ and P to indicate VÅ, ΛÅ and PÅ respectively.

Let V = .V·K, V·Kc /∈R
d×d

, where V·K ∈R
d×K

are the K leading generalized eigenvectors of .A, B/ and
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V·Kc ∈ R
d×.d−K/

are the last d − K generalized eigenvectors. Let Λ ∈ R
d×d

be a diagonal matrix of the
generalized eigenvalues. Let Sv be a set containing indices of non-zero rows of V ∈R

d×d
, with cardinality

|Sv|= s. In other words, each generalized eigenvector has at most s non-zero elements. Let P=V·KVT
·K and

let S and Sc be the support of P and complementary set of S respectively. To facilitate the proof, we define
some new notation:

Ã = B̂VΛVTB̂,

Ṽ·K =V·K.VT
·KB̂V·K/−1=2,

P̃= Ṽ·KṼT
·K:

Let P̂ be a solution of problem (10) with tuning parameter K and ζ, and let ∆= P̂ − P̃. Finally, for two
matrices E and F, we write 〈E, F〉= tr.EF/.

It can be shown that P̃ satisfies both constraints in problem (10) and therefore is a feasible solution of
problem (10). Since P̃ is a feasible solution of problem (10) and P̂ is the optimal solution of problem (10),
we have

−〈Â, P̂〉+ ζ‖P̂‖1,1 �−〈Â, P̃〉+ ζ‖P̃‖1,1:

By picking ζ > 2‖Â − Ã‖∞,∞, the triangle inequality, rearranging the terms and using the fact that P̃ and
P share the same support, it can be shown that

−〈Ã, ∆〉�
3ζ

2
‖∆S‖1,1 −

ζ

2
‖∆Sc ‖1,1: .38/

The main difference between our proof and that of Gao et al. (2017) and Tan et al. (2018) is in obtaining
the lower bound for −〈Ã, ∆〉. By the definition of Ã and P̃, we obtain

−〈Ã, ∆〉=〈B̂VΛVTB̂, P̃− P̂〉
=〈B̂1=2VΛVTB̂1=2, B̂1=2.P̃− P̂/B̂1=2〉
=〈B̂1=2VΛVTB̂P̃B̂1=2, I − B̂1=2P̂B̂1=2〉−〈.I − B̂1=2P̃B̂1=2/B̂1=2VΛVTB̂1=2, B̂1=2P̂B̂1=2〉
= I – II: .39/

It suffices to obtain a lower bound for I and an upper bound for II.

D.1. Lower bound for I
We have

I= tr{B̂1=2VΛVTB̂V·K.VT
·KB̂V·K/−1VT

·KB̂1=2.I − B̂1=2P̂B̂1=2/}

= tr{B̂Sv
VSv ,K.VT

·KB̂V·K/−1VT
·KB̂1=2.I − B̂1=2P̂B̂1=2/B̂1=2VΛVT

Sv·}

�
λmin.B̂Sv

/

λmax.BSv
/

tr{B̂1=2VΛVT
Sv·BSv

VSv ,K.VT
·KB̂V·K/−1VT

·KB̂1=2.I − B̂1=2P̂B̂1=2/}

�
λmin.BSv

/−ρ.EB, s/

λmax.BSv
/

tr{B̂1=2VΛVT
Sv·BSv

VSv ,K.VT
·KB̂V·K/−1VT

·KB̂1=2.I − B̂1=2P̂B̂1=2/}

�
1− c

κ.B/
tr{B̂1=2VΛVT

Sv·BSv
VSv ,K.VT

·KB̂V·K/−1VT
·KB̂1=2.I − B̂1=2P̂B̂1=2/}, .40/

where the second inequality holds by Weyl’s inequality, i.e. λmin.BSv
/ � λmin.B̂Sv

/+ρ.EB, s/, and the last
inequality follows from assumption 1. Note that

tr{B̂1=2VΛVT
Sv·BSv

VSv ,K.VT
·KB̂V·K/−1VT

·KB̂1=2.I − B̂1=2P̂B̂1=2/}

= tr
{

B̂1=2.V·K, V·Kc /
(

ΛK 0
0 ΛKc

)(

IK

0

)

.VT
·KB̂V·K/−1VT

·KB̂1=2.I − B̂1=2P̂B̂1=2/
}

= tr{B̂1=2V·KΛK.VT
·KB̂V·K/−1VT

·KB̂1=2.I − B̂1=2P̂B̂1=2/}:

Substituting this into inequality (40), we obtain
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I �
.1− c/λK

κ.B/
〈B̂1=2P̃B̂1=2, I − B̂1=2P̂B̂1=2〉: .41/

D.2. Upper bound for II
Observe that

.I − B̂1=2P̃B̂1=2/B̂1=2VΛVTB̂1=2 = B̂1=2V·KΛKVT
·KB̂1=2 + B̂1=2V·KcΛKc VT

·Kc B̂1=2 − B̂1=2V·KΛKVT
·KB̂1=2

− B̂1=2V·K.VT
·KB̂V·K/−1VT

·KB̂V·KcΛKc VT
·Kc B̂1=2

= .I − B̂1=2P̃B̂1=2/B̂1=2V·KcΛKc VT
·Kc B̂1=2,

where the last equality holds since the first equality depends only on ΛKc . Thus, we have

II=〈.I − B̂1=2P̃B̂1=2/B̂1=2V·KcΛKc VT
·Kc B̂1=2, B̂1=2P̂B̂1=2〉

� λK+1〈.I − B̂1=2P̃B̂1=2/B̂1=2V·Kc VT
·Kc B̂1=2, B̂1=2P̂B̂1=2〉

� λK+1‖VT
·Kc B̂V·Kc ‖2〈I − B̂1=2P̃B̂1=2, B̂1=2P̂B̂1=2〉

� λK+1{1+‖VT
·Kc .B̂−B/V·Kc ‖2}〈I − B̂1=2P̃B̂1=2, B̂1=2P̂B̂1=2〉, .42/

where the last inequality holds by adding and subtracting VT
·Kc BV·Kc and the triangle inequality. Since only

s rows of V·Kc are non-zero, by Holder’s inequality, we obtain

‖VT
·Kc .B̂−B/V·Kc ‖2 � ‖B−1=2B1=2V·Kc ‖2

2 ρ.EB, s/

� cλmin.B/‖B−1=2‖2
2

� c,

where the second inequality holds under assumption 1. Substituting this into inequality (42), we obtain

II � cλK+1〈I − B̂1=2P̃B̂1=2, B̂1=2P̂B̂1=2〉: .43/

By definition, tr.B̂1=2P̂B̂1=2/ = tr.B̂1=2P̃B̂1=2/ = K. Substituting inequalities (41) and (43) into inequality
(39), we obtain

−〈Ã, ∆〉�

{

.1− c/λK

κ.B/
− cλK+1

}

.K −〈B̂1=2P̂B̂1=2, B̂1=2P̃B̂1=2〉/

�
1

2

{

.1− c/λK

κ.B/
− cλK+1

}

‖B̂1=2
∆B̂1=2‖2

F: .44/

The rest of the proof follows from the proof of theorem 1 in Tan et al. (2018) or the proof of theorem 4.1 in
Gao et al. (2017). We hereby provide a proof sketch and refer the reader to Tan et al. (2018) for the details.
For notational convenience, let δgap = .1 − c/λK=κ.B/ − cλK+1. Combining inequalities (38) and (44), we
have

‖B̂1=2
∆B̂1=2‖2

F �
3ζ

δgap

‖∆S‖1,1: .45/

Moreover, −〈Ã, ∆〉 � 0 implies that ‖∆Sc ‖1,1 �3‖∆S‖1,1.
Similarly to Tan et al. (2018), we partition the set Sc into J sets such that Sc

1 is the index set of the
largest l entries in absolute values of ∆, Sc

2 is the index set of the second largest l entries of ∆, and so
forth, with |Sc

J | � l. By lemma S4 of Tan et al. (2018) and the fact that ‖∆Sc ‖1,1 � 3‖∆S‖1,1, we obtain
Σ

J
j=2‖∆S

c
j
‖F � 3sl−1=2‖∆S‖F. Under assumption 1, picking l= c1s

2, it can be shown that

‖B̂1=2
∆B̂1=2‖F � ‖B̂1=2

∆S∪S
c
1
B̂1=2‖F −

J
∑

j=2

‖B̂1=2
∆S

c
j
B̂1=2‖F

�

{

.1− c/λmin.B/−
3.1+ c/λmax.B/

c1

}

‖∆S∪S
c
1
‖F

� C‖∆S∪S
c
1
‖F, .46/

where C is a generic constant, and the last inequality holds by picking c1 to be sufficiently large.
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Combining inequalities (45) and (46),

‖∆S∪S
c
1
‖F � C

(

ζ

δgap

‖∆S‖1,1

)1=2

�C

(

ζs

δgap

‖∆S∪S
c
1
‖F

)1=2

:

By squaring both sides, we obtain ‖∆S∪S
c
1
‖F � Cζs=δgap. By the triangle inequality,

‖∆‖F � ‖∆S∪S
c
1
‖F +‖∆.S∪S

c
1
/c ‖F

� ‖∆S∪S
c
1
‖F +

J
∑

j=2

‖∆S
c
j
‖F

� .1+3=c1/‖∆S∪S
c
1
‖F

� C
ζs

δgap

, .47/

where the second inequality holds by lemma S4 of Tan et al. (2018) and the third inequality holds by
picking l= c1s

2. Finally, by the triangle inequality and lemma S1 of Tan et al. (2018), we obtain

‖P̂−P‖F � ‖∆‖F +‖P− P̃‖F �C

(

ζs

δgap

+K‖B̂Sv
−BSv

‖2

)

:
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