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Summary. The sparse generalized eigenvalue problem (GEP) plays a pivotal role in a large
family of high dimensional statistical models, including sparse Fisher’'s discriminant analysis,
canonical correlation analysis and sufficient dimension reduction. The sparse GEP involves
solving a non-convex optimization problem. Most existing methods and theory in the context of
specific statistical models that are special cases of the sparse GEP require restrictive structural
assumptions on the input matrices. We propose a two-stage computational framework to solve
the sparse GEP. At the first stage, we solve a convex relaxation of the sparse GEP. Taking the
solution as an initial value, we then exploit a non-convex optimization perspective and propose
the truncated Rayleigh flow method (which we call ‘rifle’) to estimate the leading generalized
eigenvector. We show that rifle converges linearly to a solution with the optimal statistical rate
of convergence. Theoretically, our method significantly improves on the existing literature by
eliminating structural assumptions on the input matrices. To achieve this, our analysis involves
two key ingredients: a new analysis of the gradient-based method on non-convex objective
functions, and a fine-grained characterization of the evolution of sparsity patterns along the
solution path. Thorough numerical studies are provided to validate the theoretical results.

Keywords: Convex relaxation; Non-convex optimization; Sparse canonical correlation
analysis; Sparse Fisher’s discriminant analysis; Sparse sufficient dimension reduction

1. Introduction

A large class of high dimensional statistical problems such as canonical correlation analysis
(CCA), Fisher’s discriminant analysis (FDA) and sufficient dimension reduction can be formu-
lated as the generalized eigenvalue problem (GEP). Let A € R?*? be a symmetric matrix and
let B R?*? be a positive definite matrix. For a symmetric definite matrix pair (A, B), the GEP
aims to obtain v* € RY satisfying

Av* :)\max(A,B)'BV*a (D
where v* is the leading generalized eigenvector corresponding to the largest generalized eigen-

value Amax (A, B) of the matrix pair (A, B). The largest generalized eigenvalue can also be char-
acterized as
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Amax (A, B) =max vT Av, subject to vIBv=1.
veR?
In many real world applications, the matrix pair (A, B) is a population quantity that is un-
known in general. Instead, we can access only (A, B), which is an estimator of (A, B) based on
n independent observations:

A:A-FEA
and
B=B+Eg,

where E5 and Ep are stochastic errors due to finite sample estimation. For statistical models
that are considered in this paper, E5 and Eg are symmetric matrices.

In the high dimensional setting in which d > n, we assume that the leading generalized eigen-
vector v* is sparse. Let s = ||v¥*||o be the number of non-zero entries in v¥*, and assume that s is
much smaller than n and d. We aim to estimate a sparse v* based on A and B by solving the
optimization problem

maxiu%}ize vIAy, subject to VIBv=1, |v]o<s. 2)
ve

There are three major challenges in solving problem (2). Firstly, in the high dimensional setting,
B is singular and not invertible, and classical algorithms which require taking the inverse of B
are not dlrectly applicable (Golub and Van Loan, 2012). Secondly, because of the normaliza-
tion term vIBv = 1, many recent proposals for solving sparse eigenvalue problems such as the
truncated power method in Yuan and Zhang (2013) cannot be directly applied to solve problem
(2). Thirdly, problem (2) requires maximizing a convex objective function over a non-convex
set, which is ‘NP’ hard even when B is the identity matrix (Moghaddam et al., 2006a, b).

In this paper, we propose a two-stage computational framework for solving the sparse GEP
(2). At the first stage, we solve a convex relaxation of problem (2). Our proposal generalizes the
convex relaxation that was proposed in Gao et al. (2017) in the context of sparse CCA to the
sparse GEP setting. Gao et al. (2017) assumed that A is low rank and positive semidefinite, and
the rank of A is known. Our theoretical analysis removes all of those assumptions. Using the
solution as an initial value, we propose a non-convex optimization algorithm to solve problem (2)
directly. The algorithm proposed iteratively performs a gradient ascent step on the generalized
Rayleigh quotient vI Av/vTBv, and a truncation step that preserves the top k entries of v with the
largest magnitudes while setting the remaining entries to 0. Here, & is a tuning parameter that
controls the cardinality of the solution. Theoretical guarantees are established for the proposed
non-convex algorithm. To the best of our knowledge, this is the first general theoretical result
for sparse GEPs in the high dimensional setting.

We provide a brief description of the theoretical result for the non-convex algorithm at the
second stage. Let {v,}tho be the solution sequence resulting from the algorithm proposed, where
L is the total number of iterations and vy is the initialization point. We prove that, under mild
conditions,

Iy 1+ V{P(EA, 2k +9)* + p(Ep, 2k +5)*}

IV = vl < v/ V0 —v
£(A,B)

optimization error —
statistical error

The quantities v € (0, 1) and £(A, B) depend on the population matrix pair (A, B). These quan-
tities will be specified in Section 4. Meanwhile, p(E4, 2k + s) is defined as
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p(Ea, 2k +5) = sup lu'Eau| 4)
lull2=1, llullo<2k+s
and p(Eg, 2k + s) is defined similarly. The first term on the right-hand side quantifies the ex-
ponential decay of the optimization error, whereas the second term characterizes the statistical
error due to finite sample estimation. In particular, for many statistical models that can be
formulated as a sparse GEP such as sparse CCA, sparse FDA and sparse sufficient dimension
reduction, it can be shown that

&)

max{p(Ea, 2k +5), p(Eg, 2k +5)} < \/{ M{)IOWD}

n

with high probability. Consequently, for any properly chosen k that is of the same order as
s, the algorithm achieves an estimator of v* with the optimal statistical rate of convergence
V{slog(d)/n}.

The sparse GEP (2) is also closely related to the classical matrix computation literature
(see, for example, Golub and Van Loan (2012) for a survey, and more recent results in Ge
et al. (2016)). There are two key differences between our results and existing work. Firstly, we
have an additional non-convex constraint on the sparsity level, which allows us to handle the
high dimensional setting. Secondly, because of the existence of stochastic errors, we allow the
normalization matrix B to be rank deficient, whereas in the classical setting B is assumed to be
positive definite. In comparison with existing generalized eigenvalue algorithms, our algorithm
keeps the iterative solution sequence within a basin that involves only a few co-ordinates of
v such that the corresponding submatrix of B is positive definite. Moreover, our algorithm
ensures that the statistical errors in result (3) are in terms of the largest sparse eigenvalues of the
stochastic errors E5 and Eg, which are defined in equation (4). In contrast, a straightforward
application of classical matrix perturbation theory gives statistical error terms that involve the
largest eigenvalues of Ep and Eg, which are much larger than their sparse eigenvalues (Stewart
and Sun, 1990).

An R package rifle for fitting and solving the sparse GEP can be found on the Compre-
hensive R Archive Network.

1.1. Notation
Letv=(vy,...,vs)T € R?. We define the l;-normofvas|v|,= (E?zl |v(,~|q)1/q for1 <g<oo. Let
Amax (Z) and Apin(Z) be the largest and smallest eigenvalues correspondingly. If Z is positive
definite, we define its condition number as K(Z) = Amax (Z) / Amin (Z). We denote A\;(Z) to be the
kth eigenvalue of Z, and the spectral norm of Z by [|Z|2 = supyy,—; || Zv|l2. Furthermore, let
1ZNI1.1 =i j1Zijl, 1 Zloo,00 =max; ;| Z;;| and | Z|« = tr(Z). For F C{1,...,d},let Z. € R4*IF]
and Zp. € RF1*4 be the submatrix of Z where the columns and rows are restricted to the set
F. With some abuse of notation, let Zy € RIF1*Fl be the submatrix of Z, where the rows and
columns are restricted to the set F. Finally, we define p(Z, 5) = sup yj,=1, jujo<s jul Zu.

2. Sparse generalized eigenvalue problem and its applications

Many high dimensional multivariate statistics methods can be formulated as special instances
of problem (2). For instance, when B =1, problem (2) reduces to the sparse principal component
analysis (PCA) that has received considerable attention within the past decade (among others,
Zou et al. (2006), d’Aspremont et al. (2007, 2008), Witten et al. (2009), Ma (2013), Cai et al.
(2013), Yuan and Zhang (2013), Vu et al. (2013), Vu and Lei (2013), Birnbaum ez al. (2013),
Wang et al. (2013, 2014) and Gu et al. (2014)). In what follows, we provide three examples
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when B is not the identity matrix. We start with sparse FDA for the classification problem
(among others, Tibshirani et al. (2003), Guo et al. (2007), Leng (2008), Clemmensen et al.
(2012), Mai et al. (2012, 2015), Kolar and Liu (2015), Gaynanova and Kolar (2015) and Fan
et al. (2015)).

2.1. Example 1: sparse Fisher’s discriminant analysis

Given n observations with K distinct classes, Fisher’s discriminant problem seeks a low dimen-
sional projection of the observations such that the between-class variance 3y, is large relative
to the within-class variance Xy. Let 3 and 3, be estimators of ¥}, and X, respectively. To
obtain a sparse leading discriminant vector, we solve

maximize v 3y, subject to vViZwv=1, |vlo<s. (6)
\4

This is a special case of problem (2) with A=3, and B=3,,.

Next, we consider sparse CCA that explores the relationship between two high dimensional
random vectors (among others Witten et al. (2009), Chen et al. (2013) and Gao et al. (2015,
2017)).

2.2. Example 2: sparse canonical correlation analysis
Let X and Y be two random vectors. Let X, and X, be the covariance matrices for X and Y
respectively, and let 3, be the cross-covariance matrix between X and Y. To obtain sparse
leading canonical direction vectors, we solve
maximize v}f]xvvy, subject to V;{ﬁxvx =VyTZA3yvy =1, |villo<se, Ivyllo<sy, (D)
Vy,Vy ;

where s, and s, control the cardinality of v, and v,. This is a special case of problem (2) with

. (0 3,
i=(s, %)

Theoretical guarantees for sparse CCA have been established recently. Chen et al. (2013) pro-
posed a non-convex optimization algorithm for solving problem (7) with theoretical guarantees.
However, their algorithm involves obtaining accurate estimators of 2;1 and X3!, which is in
general difficult to do without imposing sparsity assumptions on 37! and Zy‘l. In a follow-
up work, Gao et al. (2017) proposed a two-stage procedure that attains the optimal statistical
rate of convergence (Gao et al., 2015). However, they required the matrix X, to be low rank
and positive semidefinite, and that the rank of X, is known a priori. As suggested in Gao et al.
(2015), the low rank assumption on X, may be unrealistic in many real data applications where
one is interested in recovering the first few sparse canonical correlation directions whereas there
might be additional directions in the population structure. Our proposal does not impose any
structural assumptions on X, and X, and we only require 3, to be approximately low rank
in the sense that the leading generalized eigenvalue is larger than the remaining generalized
eigenvalues.
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Next, we consider a regression problem with a univariate response Y and d-dimensional
covariates X, with the goal of inferring the conditional distribution of ¥ given X. Sufficient
dimension reduction is a popular approach for reducing the dimensionality of the covariates
(Li, 1991; Cook and Lee, 1999; Cook, 2000, 2007; Cook and Forzani, 2008; Ma and Zhu,
2013). It can be shown that many sufficient dimension reduction methods can be formulated as
GEPs (Li, 2007; Chen et al., 2010). In what follows we consider sparse sliced inverse regression
(L1, 1991).

2.3. Example 3: sparse sliced inverse regression
Consider the model

Y=fOviX,...,viX,e),

where € is the stochastic error independent of X, and f(-) is an unknown link function. Li (1991)
proved that, under regularity conditions, the subspace that is spanned by vy,...,vg can be
identified. Let 33, be the covariance matrix for X and let X g(x|y) be the covariance matrix of the
conditional expectation E(X|Y). The first leading eigenvector of the subspace that is spanned
by vi,..., Vg can be identified by solving

maximizey vTﬁg(x|nv, subject to VIS ov=1, [v]o<s. )

This is a special case of problem (2) with A=Y E(X|v) and B=3..

Many researchers have proposed methods for sparse sliced inverse regression (Li and Nacht-
sheim, 2006; Zhu et al., 2006; Li and Yin, 2008; Chen et al., 2010; Yin and Hilafu, 2015).
More generally, in the context of sparse sufficient dimension reduction, Li (2007) and Chen
et al. (2010) reformulated sparse sufficient dimension reduction problems into the sparse GEP
(2). However, these approaches lack algorithmic and non-asymptotic statistical guarantees in
the high dimensional setting. Our results are applicable to most sparse sufficient dimension
reduction methods.

3. Methodology and algorithm

In Section 3.1, we propose an iterative algorithm to estimate v* by solving problem (2), which
we refer to as the truncated Rayleigh flow method (and call rifle). Rifle requires an input of
an initial vector vy that is sufficiently close to v*. For this, we propose a convex optimization
approach to obtain such an initial vector vg in Section 3.2.

3.1. Truncated Rayleigh flow method rifle
Optimization problem (2) can be rewritten as
.. vIAy :
maximize —, subject to ||v]g <,
veR? vIBy

where the objective function is referred to as the generalized Rayleigh quotient.

The crux of our proposed algorithm is as follows. Given an initial vector v, we first compute
the gradient of the generalized Rayleigh quotient. We then update the initial vector by its ascent
direction and normalize it such that the updated vector has norm 1. This step ensures that the
generalized Rayleigh quotient for the updated vector is at least as large as that of the initial
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Table 1. Algorithm 1: truncated Rayleigh flow method (rifle)

Input: matrices A and B, initial vector vo, cardinality
ke{l,...,d} and step size n)
Truncate: truncate vy by keeping the largest k absolute
elements, and setting the remaining entries to 0
Let =1 and repeat the following steps until convergence:
1, pr—1 <—V,T_1AV1—1/AV,T_13"[71§
2,C<1+/p—1)(A—p—1B);
3, V; <~ Cvi_1/IICv_1l2;
4,let F; =supp(v;, k) contain the indices of v, with the largest
k absolute values and truncate(v;, Fy) be the truncated
vector of v; by setting (v}); =0 for i ¢ F;
5, V; < truncate(v;, Fy);
6, vi <= V¢/IIVell2;
T,t<—t+1
Output: v;

vector. Indeed, in theorem 1, we show that, if the initial vector vy is close to v*, then this step
ensures that the updated vector is closer to v* compared with vy. Next, we truncate the updated
vector by keeping the elements with the largest k absolute values and setting the remaining
elements to 0. This step ensures that the updated vector is k sparse, i.e. only k entries are non-
zero. Finally, we normalize the updated vector such that it has norm 1. These steps are repeated
until convergence. We summarize the details in algorithm 1 (Table 1).

In addition to an initial vector v, algorithm 1 requires the choice of a step size  and a tuning
parameter k on the cardinality of the solution. As suggested by the theoretical results in Section
4, we need 7 to be sufficiently small such that 7 Apax B)<1.In practice, the tuning parameter
k can be selected by using cross-validation or based on prior knowledge. The computational
complexity for each iteration of algorithm 1is O(kd + d): O(d) for selecting the k largest elements
of a d-dimensional vector to obtain the set F;, and O(kd) for taking the product between a
truncated vector and a matrix with columns restricted to the set F;, and for calculating the
difference between two matrices with columns restricted to the set F;.

3.2. A convex optimization approach to obtain v,
Asmentioned in Section 3.1, it is crucial to obtain an initial vector v that is close to v* for rifle.
Gao et al. (2017) have proposed a convex formulation to estimate the subspace that is spanned
by the K leading generalized eigenvectors for sparse CCA, under the assumption that A is low
rank and positive semidefinite. Rather than estimating the K leading generalized eigenvectors,
the main idea of Gao et al. (2017) is to obtain an estimator of the subspace spanned by the K
leading generalized eigenvectors directly. In this section, we point out that the convex relaxation
proposed can be used more generally to estimate the subspace of a sparse generalized eigenvalue
problem, without the low rank and positive semidefinite structural assumptions on A.
Similarly to problem (2), the optimization problem for estimating the K generalized eigen-
vectors can be written as

minimize —tr(UTAU), subject to UTBU=1x.
Ue Rdx K

Rather than estimating the K generalized eigenvectors which involves minimizing a concave
function, we consider approximating the subspace that is spanned by U. Let P=UUT and let
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Table 2. Algorithm 2: alternating direction methods of multiplier
algorithm for solving problem (10)

Input: matrices A and B, tuning parameters ¢ and K, alternating
direction methods of multiplier parameter v~ and convergence
criterion e

Initialize: matrices Py, Hy and Ty

Let t=1 and repeat the following steps until [P, — P/||p <e:
1, update P by solving the lasso problem

. VA ~ ~
Py =arg min 5 |BY/2PB!/2 —H, + I | ~ tr(AP) + CIIPI:

2, let E‘]{:] wjaijT- be the singular value decomposition of
Iy +Bl/2Pt+1]§1/2 and let

d
~* =arg miny subject to > min{l, max(w; —v,0)} <K;
>0 j=1
update H by

d
Hojp = 3 min{l, max(w; —7*,0)}a;b};
j=1
3, update T" by
T =T +BY2P B2 —H,

4, t<—t+1

O= {Bl/ 2pB!/2: UTBU = Ix}. By a change of variable, the above problem can be rewritten as

minimize —tr(AP), subject to P O, )
PERdxd

where the objective function is now linear in P.
We consider the following convex relaxation of problem (9) with a lasso penalty to encourage
the estimated subspace to be sparse:

mini}{nize —tr(AP) 4 C|[P|l1.1, subject to||B//?PB'/?||« < K and |B/’PB'/?||, <1,
(10)

where || - ||« and || - || are the nuclear norm and spectral norm that encourage the solution to
be low rank and that its eigenvalue to be bounded respectively. Here, ¢ and K are two tuning
parameters that encourage the estimated subspace P to be sparse and low rank respectively.
The convex optimization problem (10) can be solved by using the alternating direction methods
of multiplier algorithm; we summarize the details in algorithm 2 (Table 2) (Boyd et al., 2010;
Eckstein, 2012). The computational bottleneck in algorithm 2 is the singular value decomposi-
tion on a d x d matrix, thus yielding a computational complexity of O(d?). Compared with the
computational complexity of O(kd + d) for algorithm 1, it can be seen that obtaining a good
initial vector v( is much more time consuming than refining the initial value.

Let P be an estimator obtained from solving problem (10). Then, the initial value vy can be
set to be the largest eigenvector of P. The theoretical guarantees for vg that are obtained via this
approach are presented in proposition 1 in Section 4.1. In practice, for obtaining an initial value
vp, we can simply set K =1 and ¢ to be approximately /{log(d)/n}. In fact, we suggest setting ¢
conservatively since there is a refinement step using rifle to obtain an estimator that is closer to v*.
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4. Theoretical results

We show that, if the matrix pair (A, B) has a unique sparse leading generalized eigenvector,
then algorithm 1 can accurately recover the population leading generalized eigenvector from
the noisy matrix pair (A, B). Recall from Section 1 that A is symmetric and B is positive definite.
This condition ensures that all generalized eigenvalues are real. Recall that v* is the leading
generalized eigenvector of (A,B). Let V =supp(v*) be the index set corresponding to the non-
zero elements of v*, and let |V|=s. Let F C{l,...,d} be a superset of V, i.e. VC F, with
cardinality |F| =k . Throughout the paper, for notatronal convenience, let A; and /\ be the jth
generahzed eigenvalue of the matrix pairs (A, B) and (A,B) respectively. Moreover let Aj(F)and
>\ j(F) be the jth generalized eigenvalue of the matrix pairs (A, Br) and (Ar,Br) respectlvely

Our theoretical results depend on several quantities that are specific to the generalized eigen-
value problem. Let

cr(A,B) = ”rnrn {vTAV)? + (vTBv)2}/2 >0 (11)

be the Crawford number of the symmetric definite matrix pair (A, B) (Stewart, 1979). Let
cr(ky= inf cr(Ar,Br),
FI‘Fl <k/ (12)
e(k) = /{p(Ea, k')’ + p(Eg, k)*},

where p(E4, k) is as defined in equation (4). In what follows, we start with an assumption that
these quantities are upper bounded for sufficiently large n.

Assumption 1. For sufficiently large n, there are constants b, ¢ > 0 such that

ek
cr(k’)

~

and
p(Ep, k') < ¢ Amin (B)
for any k' « n, where cr(k’) and e(k") are defined in expression (12).

Provided that n is sufficiently large, it can be shown that assumption 1 holds with high
probability for most statistical models. In fact, we shall show in proposition 2 in Section 4.2
that, as long as n > Ck’log(d) for some sufficiently large constant C, then assumption 1 is
satisfied with high probability for most statistical models. We shall use the following implications
of assumption 1 in our theoretical analysis, which are implied by matrix perturbation theory

(Stewart, 1979; Stewart and Sun, 1990). In detail, by applications of lemmas 1 and 2 in Appendix
A, we have that, for any F C {1,...,d} with |F| =k, there are constants a and c¢ such that

(1= (D <N (D (+a)\(P),
(1—=)\;Br) <ABr) < (1+0)\j(Bp)

and
Clower K(B) < k(BF) < cupper k(B), (13)

where cjower = (1 —¢)/(14¢), cupper = (1 4+¢)/(1 —¢), c is the same constant as in assumption 1
and x(B) is the condition number of the matrix B. Meanwhile, let y= (1 +a)\a/{(1 —a)\; }.
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Finally, we define v(F) to be the solution of a GEP restricted to a superset of V (V C F):

v(F) =arg max vIAy, subject to viBv=1, supp(v) C F. (14)
veR?
The quantity v(F) can be interpreted as the solution of a GEP for a low dimensional problem
when k' < n. In the following theorem, we present our main theoretical result for algorithm 1 as
a function of the /;-distance between v(F) and v*.

Theorem 1. Let k' =2k + s and choose k = Cs for sufficiently large C. In addition, choose n
such that n Apax(B) <1/(1+¢) and

l+¢ -7
_ 1/2 —— N Amin(B) ——————
v=[1+2{(s/k) —I—s/k}]\/{l g nAmln(B)CupperH(B)+v}<l

Input an initial vector vy with ||vo|l> = 1 satisfying |(v¥)Tvo|/[[v¥|2 > 1 — (A, B), where 6(A, B)
is a quantity given in lemma 3 that depends on the matrix pair (A, B). Under assumption 1, we

have
|<v*>Tvt|} . V20 { IV(F)Tv*| }
]—— 0(A,B 1-— . 15
/{ V]| VVOAB) u/ IV(F) 2 v 2 (1)

For simplicity, assume that (v*)'v, is positive w1thout loss of generality. Since v, is a unit
vector, from inequality (15) we have

*)T

1) v 1 Ve
THE _ZH CIvEI |,
VRV 1] v ve|?

I TGIETAE _2‘ VA2 Iv¥ 2 ||

Thus, result (15) states that the I,-distance between v*/||v* |, and v; can be upper bounded by
two terms. The first term on the right-hand side of inequality (15) quantifies the optimization
error, which decreases to 0 at a geometric rate since v < 1. Meanwhile, the second term on the
right-hand side of inequality (15) is the statistical error that is introduced for solving GEPs
restricted to the set F as in problem (14). The result in theorem 1 depends on the estimation
error between v(F) and v*. The following corollary quantifies such estimation error for a general
class of symmetric definite matrix pairs (A, B).

Corollary 1. For a general class of symmetric definite matrix pairs (A, B), let
A=A+ a))\
T J(l +ADV{1+ 1 —a)2X3}

AX= (16)

denote the eigengap for the GEP (Stewart, 1979; Stewart and Sun, 1990). Assume that A\ >
e(k")/cr(k"). Then, under the same conditions as in theorem 1, we have

o9 V10 2 /
\/{1 B IIV*IIZ} SVVO(AB) + AXcr(k') —G(k’)}dk ”

where e(k') = /{p(Ea.k)? + p(Ep, k')?}.

For a large class of statistical models, (k") converges to 0 at the rate of \/{slog(d)/n} with
high probability.
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4.1. Theoretical justification for the initialization in problem (10)

Theorem | involves a condition on the initialization vy: the cosine of the angle between v* and v
needs to be strictly larger than a constant. In other words, the initialization vy needs to be close
to v*. We now present some theoretical guarantees for the initialization procedure in Section
3.2. In the context of sparse CCA, Gao et al. (2017) have shown that the estimated subspace that
is obtained from solving a convex relaxation of the form (10) converges to the true subspace,
under the assumption that A is low rank and positive semidefinite, and that the rank of A is
known. In the following proposition, we remove those assumptions on A. Thus, a similar result
holds more generally for the sparse generalized eigenvalue problem with symmetric definite
matrix pair (A, B).

For this, we define some additional notation. Let V* € R?*? be d generalized eigenvectors
and let A* € R?“ be a diagonal matrix of generalized eigenvalues of the matrix pair (A, B).
Let S, be a set containing indices of non-zero rows of V* € R¢*?. For simplicity, assume that
|Sy| =s and that the eigenvalues of B are bounded. The matrix A can be rewritten in terms of
its generalized eigenvectors and generalized eigenvalues up to sign jointly, A=BV*A*(V*)TB
(Gao et al., 2017). Let A=BV*A*(V*)TB and let P* = kaK(kaK)T, where V¥ are the first K
generalized eigenvectors of (A, B). Let P be a solution to problem (10) with tuning parameters
¢ and K. The following proposition establishes an upper bound for the difference between P
and P* under the Frobenius norm.

Proposition 1. Assume that n is sufficiently large such that p(Eg, s?) < cAmin(B), where ¢ is
the same constant as appears in assumption 1. Let dgap = Ax —ci(B)Ag41/(1 —c), and assume
that dgap > 0. Set ¢ > 2||A — All0,00- Then,

N

nP—Pﬂw<c<5

nA—Amww+mm&—B&m>
gap

where C is a generic constant that does not depend on the generalized eigenvalues and the
dimensions n,d, s and K.

For most statistical models, it can be shown that ||A — [&Hoo,oo < C14/{log(d)/n} and ||]A33U —
Bs, ll2 < C24/(s/n) with high probability for generic constants C; and C,. Thus, picking ¢ >
C34/{log(d)/n}, the upper bound can be simplified to

HP—Pﬂm<c?[s /{bg”f}+KJ<‘)}
dgap n n

Choosing K =1 in expression (10), by a variant of the Davis—Kahan theorem in Vu et al. (2013),
proposition 1 guarantees that, by setting vo to be the leading eigenvector of P, then v will
be sufficiently close to v* as long as the conditions in proposition 1 are satisfied. In the next
section, we shall quantify the sample size condition that is needed for proposition 1 to hold
under various statistical models.

4.2. Applications to sparse principal components analysis and sparse canonical
correlation analysis

In this section, we provide some discussions on the implications of theorem 1 and proposition
1 in the context of sparse PCA and CCA. More specifically, we first verify that the initial vector
vo that is obtained from solving problem (10) is close to v*. Therefore, the assumption on vq in
theorem 1 is satisfied. Next, we compare our results from theorem 1 with the minimax optimal
rate of convergence for the two statistical models.
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4.2.1.  Sparse principal component analysis

We start with the sparse PCA problem. We assume the model X ~ N(0, ). As mentioned in
Section 2, sparse PCA is a special case of the sparse GEP when (A, B) = (3, I) and A,B)=C,D,
where 3 is the sample covariance matrix. Thus, optimization problem (10) reduces to a convex
relaxation of sparse PCA proposed by Vu et al. (2013). In this case, using a variant of the
theoretical results in proposition 1, the initial value vo converges to v* as long as n > Cs? log(d).
Applying corollary 1 directly to the sparse PCA problem will give a loose upper bound (on
the eigenfactor) since the additional information on the matrix pair (A, B) = (X,1), with B
restricted to the identity matrix and A restricted to positive definite matrices, are not used in
the derivation of corollary 1. In other words, the results in corollary 1 are derived under a much
larger class of matrix pair (A, B). For this, we resort to the following corollary on the variant of
the Davis—Kahan perturbation result for sparse PCA (see, for instance, Yu et al. (2014)).

Corollary 2. Let (A,B)=(3,1) and let 3 be a symmetric positive definite matrix. Let A=3
be the sample covariance matrix. We have that

pA—A.s) <CJA1(A)/ {“Of(d)}

holds with high probability for some constant C > 0. Suppose that |F|=k" and that k' = O(s).
Then, by the Davis—Kahan theorem,

J{l_lvm”*l}q/ VAIA) {slog(d)}
VA2V S~ XA = Aa(A) p

holds with high probability for some constant C’ > 0.

Combining corollary 2 with theorem 1, our results indicate that, as the optimization error
decays to 0, our proposed estimator has a statistical rate of convergence of approximately

VAL(A) {Slog(d)}
A1(A) — Aa(A) nJ

which matches the minimax optimal rate of convergence for sparse PCA problems (Cai et al.,
2013).

4.2.2.  Sparse canonical correlation analysis
For sparse CCA, we assume the model

X
(%) 0

3 Xy

(z}y 3,
Recall from example 2 the definitions of A and B in the context of sparse CCA. The following
proposition characterizes the rate of convergence between X and X. It follows from lemma 6.5

of Gao et al. (2017). For ease of presentation, we omit the dependence on the eigenvalues of A
and B for CCA.

and

Proposition2. Let b3 f}y and EAJU be the sample covariances of X, 33, and X, respectively.
For any C > 0 and positive integer k, there is a constant C’ > 0 such that
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S-S0 < c/{ roe(d) }
S -3 B) < C\/{klof(d) }
and
p(EAxy - nya ];) < C\/{ klof(d) }5

with high probability. Moreover, |2, — Xy lloo.co < Cv/{l0g(d)/n} with high probability.

We now verify the sample size condition in proposition 1. From proposition 2, we have
p(Eg, s?) = Op[ \/{sz log(d)/n}]. Thus, we need n > Cs?log(d) for some generic constant C.
Under the sample size condition and using the results in proposition 2, it can be shown that
||A A”oo 0o <A = Alloo,00 + ||A A”oo 0o = @p{\/log(d)/n} Moreover, ||BS Bs,ll2 =
Op{+/(s/n)}. Thus, as long as n > Cs?log(d), vy converges to v*. This verifies the assumption
on vy in theorem 1.

Recently Ma and Li (2016) showed that the minimax optimal eigenfactor takes the form
V(1= A%)J (1- A%) /(A1 — Ap) in the low dimensional setting in which n > d, under the assump-
tion that 3, =3, =1. Adapting the results in Ma and Li (2016) in a similar fashion to that in
corollary 2, theorem 1 indicates that, with high probability, our proposed estimator obtains the
minimax statistical rate of convergence of approximately

J(1 = Azwa —\3) {slog(d) }
AL —

for the case when 3, =3, =1. However, the minimax optimal eigenfactor for general 33, and
3, remains an open problem in the literature.

To obtain the rate of convergence for general 3, and X, we shall apply corollary 1 to the
sparse CCA problem. Choosing & to be of the same order as s, proposition 2 implies that both
p(Ea, k') and p(Eg, k) are of the order of /{slog(d)/n} with high probability. Thus, corollary
1 indicates that, as the optimization error decays to 0, our proposed estimator has a statistical
rate of convergence of approximately

\/(1+)\2)\/(1+>\ ) {slog(d)}
Al —

a7)

(18)

The upper bound is expected to be loose in terms of the eigenfactor since the class of paired
matrices (A, B) that was considered in corollary 1 is a much larger class of matrices than that
of the sparse CCA.

In short, our theoretical results are very general and are not based on any statistical model.
Moreover, the results in theorem 1 are written as a function of the estimation error between
v(F), the solution of a GEP restricted on the set F, and v*. Therefore, existing minimax optimal
results for various statistical models in the low dimensional setting can be adapted to the high
dimensional setting in a similar fashion to that in corollary 2.

5. Numerical studies

We perform extensive numerical studies to evaluate the performance of our proposal, rifle,
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compared with existing methods. We consider sparse FDA and sparse CCA, each of which can
be recast as the sparse GEP (2), as shown in examples 1 and 2.

Rifle involves an initial vector vo and a tuning parameter k on the cardinality. We employ
the convex optimization approach that was proposed in Section 3.2 to obtain an initial vector
vo. The convex approach involves two tuning parameters: we simply select { = /{log(d)/n}
and K =1 as suggested by the theoretical analysis. Note that these tuning parameters can be
selected conservatively since there is a refinement step to obtain a final estimator by using
rifle.

It is challenging to propose a general model selection technique for the selection of & in a
sparse GEP since it is not based on any statistical model and it includes both unsupervised
learning and supervised learning methods as its special cases. For supervised learning methods
such as sparse FDA, we perform cross-validation to select the truncation parameter k. For
unsupervised learning methods such as sparse PCA and CCA, it is generally agreed in the
literature that the model selection problem is challenging. In principle, we could also use cross-
validation techniques to select k in these settings such as the procedure that was considered in
Witten et al. (2009). For simplicity, in our simulation studies, we assess the performance of our
estimator in the context of sparse CCA across several values of k and examine the role of k
under finite sample settings.

5.1. Fisher’s discriminant analysis
We consider high dimensional classification problems using sparse FDA. The data consist of
an n x d matrix X with d features measured on n observations, each of which belongs to one of
K classes. We let x; denote the ith row of X, and let Cy C {1,...,n} contain the indices of the
observations in the kth class with ny = |Cy| and E _ Mk =n.

Recall from example 1 that this is a special case of the sparse GEP with A =3, and B=3,,.
Let fi, = X;cc, Xi/ni be the estimated mean for the kth class. The standard estimates for X, and
3 are

A 1 K N .
D= Z Z (xi — ) (Xi — )
k=1ieCy
and
R 1 K o
o= mefigfy -
n =1

We consider two simulation settings similar to that of Witten ez al. (2009).

(a) Binary classification: in this example, we set p; =0, po;=0.5 for j={2,4,...,40} and
p2j =0 otherwise. Let X be a block diagonal covariance matrix with five blocks each
of dimension d/5 x d/5. The (j, j/)th element of each block takes value 0.8/ =/ 1. As sug-
gested by Witten e al. (2009), this covariance structure is intended to mimic the co-
variance structure of gene expression data. The data are simulated as x; ~ N(u, X) for
ieCy.

(b) Multiclass classification: there are K =4 classes in this example. Let p; = (k —1)/3 for
j=12,4,...,40} and p; =0 otherwise. The data are simulated as x; ~ N(p;, %) for
i € Cy, with the same covariance structure for binary classification. As noted in Wit-
ten et al. (2009), a one-dimensional vector projection of the data fully captures the class
structure.
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Table 3. Number of misclassified observations out of 1000 test samples and
number of non-zero features (and standard errors) for binary and multiclass clas-
sification problems, averaged over 200 data setst

Problem Results for the following methods:

I penalized  11-FDA  Direct Rifle Oracle

Binary Error 32(1) 208(1)  29(1) 15(1)  8(I)
Features 88 (1) 23(1) 105(2) 42(1)  41(0)
Multiclass ~ Error 495(2)  497(1) 247(2) 192(2) 153(1)
Features 54 (2) 2(1) 102(2)  42(1)  41(0)

1The results (rounded to the nearest integer) are for models trained with 400 training
samples with 500 features.

Four approaches are compared:

(a) rifle;

(b) I1-penalized logistic or multinomial regression implemented by using the R package
glmnet;

(c) Il1-penalized FDA with a diagonal estimate of X, implemented by using the R package
penalizedLDA (Witten ef al., 2009);

(d) adirect approach to sparse discriminant analysis (Mai et al., 2012, 2016) implemented by
using the R package dsda and msda for binary and multiclass classification respectively.

For each method, models are fitted on the training set with tuning parameter selected by
using fivefold cross-validation. Then, the models are evaluated on the test set. In addition to
the aforementioned models, we consider an oracle estimator using the theoretical direction v*,
computed by using the population quantities 3y, and Xy,.

To compare the performance of the various proposals, we report the misclassification error
on the test set and the number of non-zero features that are selected in the models. The results
for 400 training samples and 1000 test samples, with d =500 features, are reported in Table
3. From Table 3, we see that rifle has the lowest misclassification error compared with other
competing methods. This suggests that algorithm 1 works well with the initial value that is
obtained from the convex approach in Section 3.2. The method of Witten et al. (2009) has the
highest misclassification error in both of our simulation settings, since it does not take into
account the dependences between the features. The methods of Mai et al. (2012, 2015) perform
slightly worse than our proposal in terms of misclassification error. Moreover, they used a
large number of features in their model, which renders interpretation difficult. In contrast,
the number of features that are selected by our proposal is very close to that of the oracle
estimator.

5.2. Canonical correlation analysis
In this section, we study the relationship between two sets of random variables X € R%? and
Y € R%? in the high dimensional setting using sparse CCA. Let X, and X y be the covariance
matrices of X and Y, and 3, be the cross-covariance matrix of X and Y. We consider two
different scenarios in which X, is low rank and approximately low rank.

Throughout the simulation studies, we compare our proposal with that of Witten ez al. (2009),
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implemented by using the R package PMA. Their proposal involves choosing two tuning param-
eters that control the sparsity of the estimated directional vectors. We consider a range of tuning
parameters and choose tuning parameters that yield the lowest estimation error for Witten et al.
(2009). We assess the performance of rifle by considering multiple values of k = {6, 8,10, 15}.
The output of both our proposal and that of Witten ez al. (2009) is normalized to have norm
1, whereas the true parameters v and v;" are normalized with respect to X and X,. To evaluate
the performance of the two methods, we normalize v and v¥ such that they have norm 1 and
compute the squared /5-distance between the estimated and the true directional vectors.

5.2.1.  Low rank 3,
Assume that (X,Y) ~ N(0, X) with

and
Ty =iy,

where 0 < A\; <1 is the largest generalized eigenvalue and v and v;" are the leading pair of
canonical directions. The data consists of two n x d/2 matrices X and Y. We assume that each
row of the two matrices is generated according to (x;,y;) ~ N(0,3). The goal of CCA is to
estimate the canonical directions v and v}’ on the basis of the data matrices X and Y.

Let X, and X, be the sample covariance matrices of X and Y, and let 3, be the sample
cross-covariance matrix of X and Y. Recall from example 2 that the sparse CCA problem can
be recast as the GEP with

and

In our simulation setting, we set A\; =0.9, v* = vy ;=1//3for j={1,6, ll} and v’ vy, J_O
otherwise. Then, we normalize v} and vy such that (V*)szv = (v;")TE yv) =1.We cons1der the
case when X, and 33, are block d1agonal matrices with five blocks, each of dimension d/5 x d/5,
where the (j, j/)th element of each block takes value 0.817=/'|. The results for d = 500 and s =6,
averaged over 200 data sets, are summarized in Table 4.

From Table 4, we see that our proposal outperforms that of Witten ez al. (2009) uniformly
across different sample sizes. This is not surprising since Witten et al. (2009) used diagonal
estimates of X, and X, to compute the directional vectors. The /;-distance for our proposal
decreases as we increase n. Moreover, the I>-distance increases when we increase k. These results
confirm our theoretical analysis in theorem 1.
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Table 4. Results for low rank Xt

n Results for the following methods:
PMA Rifle (k=6) Rifle (k=8) Rifle (k=10) Rifle (k=15)

Vx

200 0.72(0.01) 0.21 (0.02) 0.11 (0.02) 0.08 (0.02) 0.07 (0.01)
400 0.61 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
600 0.58 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Vy

200 0.70 (0.01) 0.24 (0.02) 0.24 (0.02) 0.35(0.02) 0.58 (0.01)
400 0.62(0.01) 0.02 (0.01) 0.07 (0.01) 0.15(0.01) 0.32(0.01)
600 0.59 (0.01) 0.01 (0.01) 0.04 (0.01) 0.08 (0.01) 0.19 (0.01)

tSquared /,-distance between the estimated and true leading generalized eigenvector as a function
of the sample size n for d =500 and s = 6. The results are averaged over 200 data sets.

5.2.2.  Approximately low rank X,

In this section, we consider the case when X, is approximately low rank. We consider the same
simulation set-up as in the previous section, except that X, is now approximately low rank,
generated as follows:

T =S Vi) S+ S VIAVHTE,

with \; =0.9. Here, A € R?0*2% i5 3 diagonal matrix with diagonal entries 0.1, and Vi Vie
R4/2x290 are normalized orthogonal matrices such that (V¥)TX, V¥ =1 and (V*)TE},V;" =1
respectively. The goal is to recover the leading generalized eigenvector v} and va . The results
for d =1000 and s =6, averaged over 200 data sets, are summarized in Table 5.

From Table 5, we see that the performance of rifle is much better than that of PMA across all
settings. As we increase the number of samples n, the [,-distance decreases for all values of k. In-
teresting, as we increase k from k =6 to k = 10 for the case when n =400, the /,-distance decreases

Table 5. Results for approximately low rank Xyt

n Results for the following methods:
PMA Rifle (k=6) Rifle (k=38) Rifle (k=10) Rifle (k=15)

Vx

400 0.63(0.01) 0.30 (0.02) 0.19 (0.02) 0.13(0.02) 0.07 (0.01)
600 0.62(0.01) 0.11 (0.01) 0.07 (0.01) 0.09 (0.01) 0.07 (0.01)
800 0.57(0.01) 0.02 (0.01) 0.05(0.01) 0.08 (0.01) 0.07 (0.01)
vy

400 0.66 (0.01) 0.31 (0.02) 0.26 (0.02) 0.22(0.02) 0.25(0.01)
600 0.63 (0.01) 0.10 (0.01) 0.11 (0.01) 0.13(0.01) 0.16 (0.01)
800 0.55(0.01) 0.02 (0.01) 0.07 (0.01) 0.11 (0.01) 0.13(0.01)

tSquared /,-distance between the estimated and true leading generalized eigenvector as a function
of the sample size n for d =1000 and s = 6. The results are averaged over 200 data sets.
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slightly. This is because, in the high dimensional setting, the initial value is not estimated accu-
rately. Thus, when we choose k =5 =6, some of the true support is not selected after truncating
the initial value vg and therefore it has a higher /5-distance. In this case, by selecting a larger value
of k, we can ensure that the true support is selected, which yields a lower /,-distance. If an even
larger k is selected, then the /5-distance will eventually increase like in the case when k=15 forv,.

6. Data application

In this section, we apply our method in the context of sparse sliced inverse regression as in
example 3. The data sets that we consider are as follows.

(a) Theleukaemia (Golubetal., 1999)data set consists of 7129 gene expression measurements
from 25 patients with acute myeloid leukaemia and 47 patients with acute lymphoblastic
leukaemia. The data are available fromhttp: //www.broadinstitute.org/cgi-b
in/cancer/datasets.cgi. Recently, this data set has been analysed in the context
of sparse sufficient dimension reduction in Yin and Hilafu (2015).

(b) The lung cancer (Spira et al., 2007) data set consists of 22283 gene expression
measurements from large airway epithelial cells sampled from 97 smokers with lung can-
cer and 90 smokers without lung cancer. The data are publicly available from the gene
expression omnibus, accession number GDS2771.

We preprocess the leukaemia data set following Golub et al. (1999) and Yin and Hilafu (2015).
In particular, we set gene expression readings of 100 or fewer to 100, and expression readings of
16000 or more to 16000. We then remove genes with difference and ratio between the maximum
and minimum readings that are less than 500 and 5 respectively. A log-transformation is then
applied to the data. This gives us a data matrix X with 72 rows or samples and 3571 columns
or genes. For the lung cancer data, we simply select the 2000 genes with the largest variance
as in Petersen et al. (2016). This gives a data matrix with 167 rows or samples and 2000
columns or genes. We further standardize both data sets so that the genes have mean 0 and
variance 1.

Recall from example 3 that, to apply our method, we need the estimates A=3 EX|y) and
B=3,. The quantity 3, is simply the sample covariance matrix of X. Let n; and n, be the
number of samples of the two classes in the data set. Let f]x,l and f]x’z be the sample covariance
matrix calculated by using only data from class 1 and class 2 respectively. Then, the covariance
matrix of the conditional expectation can be estimated by

A A 12 A

YExXy =2y — = Y Mk,

n =1

where n =n1 +n3 (Li, 1991; Li and Nachtsheim, 2006; Zhu et al., 2006; Li and Yin, 2008; Chen

et al., 2010; Yin and Hilafu, 2015). Let v, be the output of algorithm 1. Similarly to Yin and

Hilafu (2015), we plot the boxplot of the sufficient predictor XV, for the two classes in each data

set. The results with k =25 for the leukaemia and lung cancer data sets are in Figs 1(a) and 1(b)
respectively.

From Fig. 1(a), for the leukaemia data set, we see that the sufficient predictors for the two
groups are much more well separated than the results in Yin and Hilafu (2015). Moreover, our
proposal is with theoretical guarantees whereas their proposal is sequential without theoretical
guarantees. For the lung cancer data set, we see that there is some overlap between the sufficient
predictors for subjects with and without lung cancer. These results are consistent with the
literature where it is known that the lung cancer data set is a much more difficult classification
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Sufficient Predictor

ALL AML

Sufficient Predictor
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T T
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(b)

Fig. 1. Boxplots of the sufficient predictor XvV; obtained from algorithm 1 for the leukaemia and lung cancer
data sets: patients with acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML); (b) patients
with (case) and without (control) lung cancer

problem compared with that of the leukaemia data set (Fan and Fan, 2008; Petersen et al.,
2016).

7. Discussion

We propose a two-stage computational framework for solving the sparse GEP. The method suc-
cessfully handles ill-conditioned normalization matrices that arise from the high dimensional
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Table 6. Estimation error between the true standardized generalized eigenvector
Iv¥|lo =1 and the estimated generalized eigenvector for the binary classification
problem, averaged over 50 data setst

Results for soft-rifle Results for rifle

c=1 c=05 C=025 k=35 k=40 k=55

Estimation error 0.180 0.048 0.072  0.181 0.048 0.072
Features 33.5 39.7 53.3 35 40 55

+The numbers of non-zero features are also reported. The results are with n =200 and
d =200. The true sparsity level is s =40.

setting because of finite sample estimation, and the final estimator enjoys geometric convergence
to a solution with the optimal statistical rate of convergence. Our method and theory have appli-
cations to a large class of statistical models including but not limited to sparse FDA, sparse CCA
and sparse sufficient dimension reduction. Compared with existing theory for each specific statis-
tical model, our theory is very general and does not require any structural assumptions on (A, B).

Our theoretical results in theorem 1 rely on selecting the tuning parameter & such that k =Cs
for some constant C > 1. However, in practice, the true sparsity level s is unknown and it may be
difficult to select the value of k. To remove the dependences on s, one of the reviewers suggested
a thresholding strategy, i.e. instead of truncating the vector v, and keeping the top k elements,
one can perform C./{log(d)/n} thresholding on the updated vector v, from step 3 of algorithm
1, where C is some user-specified constant. To evaluate the thresholding strategy, we perform a
small scale numerical study on the FDA binary classification example similar to that of Section
5.1 with n =200 and d =200. We compare the estimator that is obtained by using the soft thresh-
olding rule, soft-rifle, and that of our proposed truncation rule by calculating the estimation
error between these estimators and the oracle direction. The results, averaged across 50 itera-
tions, are presented in Table 6. From Table 6, we see that, depending on the choice of the constant
C, the soft thresholding rule has a similar performance to that of the truncation rule, suggesting
that substituting the soft thresholding rule in steps 4 and 5 of algorithm 1 will also work.

In the case when v* is approximately sparse, i.e. s=d, the current theoretical results are
no longer applicable. To address this issue, we can redefine the notion of sparsity level s. As
suggested by one of the reviewers, we can define the effective sparsity level s’ as the /,-norm (¢ < 1)
or the ratio between, for example, /- and lo,-norms of v*. The theoretical properties for the
thresholding strategy and weak sparsity are challenging to establish under our current theoretical
framework. In particular, because of the normalization constraint vI By on the denominator,
to analyse the gradient ascent step in step 2, we require that the cardinality of the input vector
must have support k. This condition is needed to control the condition number of Br, where F
is an index set such that | F| =k’. Developing a new theoretical framework for solving the sparse
generalized eigenvalue problem is out of the scope of this paper and we leave it for future work.

There are several additional future directions for the sparse GEP. It will be interesting to
study whether rifle can be generalized to the case for estimating subspace spanned by the top
K leading generalized eigenvectors. The computational bottleneck for the current approach is
on the convex relaxation method for obtaining the initial vector vy, which has a computational
complexity of O(d?) per iteration. This yields a total computational complexity of O(d?) +
O(kd + d) for the proposed two-stage computational framework. In future work, it will be of
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paramount importance to propose an efficient convex algorithm to obtain vy such that our
proposal is scalable to accommodate large-scale data.
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Appendix A: Proof of theorem 1

To establish theorem 1, we first quantify the error that is introduced by maximizing the empirical version
of the GEP, restricted to a superset of V (V C F), i.e.

v(F) =arg max VTAV, subject to viBv=1, supp(v) C F.
veR?

Then we establish an error bound between v, in step 2 of algorithm 1 and v(F). Finally, we quantify the
error that is introduced by the truncated step in algorithm 1.

We first state a series of lemmas that will facilitate the proof of theorem 1. The proofs for the technical
lemmas are deferred to Appendix C. We start with some results from perturbation theory for eigenvalues
and GEPs (Golub and Van Loan, 2012).

Lemma 1. LetJ and J+Ej be d x d symmetric matrices. Then, for allke {1,...,d},
)\k(J) + )\min(EJ) < )\k(J + EJ) < )\k(J) + Amax(EJ)-

In what follows, we state a result on perturbed generalized eigenvalues for a symmetric definite matrix
pair (J, K) in the following lemma, which follows directly from theorem 3.2 in Stewart (1979) and theorem
8.7.3 in Golub and Van Loan (2012).

Lemma 2. Let (J,K) be a symmetric definite matrix pair with generalized eigenvalues A\ (J,K) >... >
Ma(J,K). Let (J + Ey, K + Ex) be the perturbed matrix pair and assume that Ey and Ex satisfy

e=(IEs|3 + I|Ek3) < cr(J, K),

where cr(J, K) is as defined in expression (10). Then, (J + Ej, K+ Eg) is a symmetric definite matrix
pair with generalized eigenvalues \|(J +Ej, K+Eg) >... > A\;(J+E;, K+ Eg). Then,

M(J,K)er(J,K) —e (I, K)er(J,K) +€
<MI+E;, K+Eg) < .
alK) L@ g SRR RO e T 0K

Recall from Section 4 that v* is the first generalized eigenvector of (A, B) with generalized eigenvalue
A1, and that V =supp(v*). For any given set F such that V C F, let A, (F) and A, (F) be the kth generalized
eigenvalues of (Ar, Br) and (Ar, Br) respectively. Under assumption 1 and by application of lemma 2, we
have

M (B (P <7,

where y=(1+a)X2/{(1 —a)\ }.

Lety(F)=v(F)/|[v(F)|, and y* =v*/||v*||; such that ||y(F)|» = |ly*||, = 1. We now present a key lemma
on measuring the progress of the gradient descent step. It requires an initial solution that is sufficiently
close to the optimal value in expression (14). With some abuse of notation, we indicate y(F) to be a k'-
dimensional vector restricted to the set F C{1,...,d} with |F|=k'. Recall that ¢ >0 is some arbitrary
small constant stated in assumption 1 and cypper is defined as (1+¢)/(1 —c).
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Lemma 3 Let F 'C{l,...,d} be some set with |F|=k'. Given any V such that ||V||,=1 and vy (F) >0,
let p=V Apv/v pr and let vV =CzV/||CrV|,, where

C=1+(n/p)(A—pB)
and n > 0 is some positive constant. Let § =1 — y(F)Tv. Pick 7 sufficiently small such that
N Amax(B) <1/(1+0),
and ¢ is sufficiently small such that
1-6>1-6(A,B),
where

(A, B) =min

1/vy-1 1—~ }
8Cuppcr"’g(B) ’ 3Cuppcr"{(B) ’ 30(1 + C)Cﬁppern)‘max (B) K2 (B){Cuppch(B) + 7} '

Then, under assumption 1, we have

. 14c - 1—x
Ty > T+ —— 9 Amin(B){1 — Ty {7}
y(F) y(F) g B){1-y(F) v} Comper i (B) F7
The following lemma characterizes the error that is introduced by the truncation step. It follows directly
from lemma 12 in Yuan and Zhang (2013).

Lemma 4. Consider y’ with F' =supp(y’) and |F'| =k. Let F be the indices of y with the largest k
absolute values, with |F|=k. If |y'|l,=|lyll.=1, then

ltruncate(y, F)Ty| > IyTy'| - (/b min[ /{1 - (yTy)*}. {1 + (k/0) ' H{1 - 6Ty}

Recall from algorithm 1 that we define v, =V, /||V,||». Since |||, =1, and V, is the truncated version of v;,
we have that ||V,]|, < 1. This implies that | (y*)Tv,| > |(y*)T¥,|. We now quantify the progress of each iteration
of algorithm 1. For this, assume that k > s, where s is the cardinality of the support of y* =v*/|v* ||§, and
k is the truncation parameter in algorithm 1. Let &’ =2k +s and let

- +z{<s/k>'/2+s/k}]\/ { mm(B>1_77}.

upper/{(B) +7

Recall that V is the support of v*, the population leading generalized vector, and also y* =v*/||v¥|,.
Let F,_; _supp(v, 1) and F, =supp(v,) and let F = F,_; U F, U V. Note that the cardinality of F is no more
than k' =2k +s, since |F,|=|F,_;|=k. Let

v, =CpVie1/1Cpviaill2,

where Cr is the submatrix of Cr restricted to the rows and columns that are indexed by F. We note that
v, is equivalent to that in algorithm 1, since the elements of v, outside the set F' take value 0. Without loss
of generality and for simplicity, we assume that the inner product between two eigenvectors is positive,
because otherwise we can simply do appropriate sign changes in the proof.

Applying lemma 3 with the set F, we obtain

e A BY {1 =y (A1}

, 1 1-
NOREIORREES i

Cuppch(B) +v .

Subtracting 1 from both sides of the equation and rearranging the terms, we obtain

1+c -y
1— T’g 1— Ty, 1— Amin(B) —————— 19
Y v, <{1-y(F) Y, 1}{ 8 g 1 ( )cupperK(B)+’7} 0
This implies that
1+¢ 1-v
v < —V,_ 1— Amin (B) —————— 20
Iy (F) =Vl < Iy (P — v, 1||2\/{ —5 P in(B) upperMB)ﬂ} o



1078 K. M. Tan, Z. Wang, H. Liu and T. Zhang
By the triangle inequality, we have

Iy =vill2 <IY(F) = v/l + Iy (F) —y* 2
I+c¢ —
< ”y(F)_Vt—IHZ\/{l_Tn/\min(B) 7

[ N _v*
CupperK(B)-i-v} ly(F) =y~

I+c 1—~ "
<y —vi_ 1— Amin(B) ———————— 4 +2[[y(F) = y*[|».
Iy —vi 1||z\/{ g MAmin(B) comr(B) 17 }+ IY(F) =y~ ll2

where the second inequality follows from inequality (19). This is equivalent to

1—
VA=l <A =y'vi 1|)\/{1— nAmln(B)iy}Jﬂx/{l—IY(DTY*I}-

Cupper ¥ (B) +
We define

1+c 1-v
_ 12 __.T¢ _—
V= J[1+2{(s/k) +s/k}]\/{1 g "Amm(B)cuppﬂn(B)ﬂ}

By lemma 4 and picking k > s, we have
VA=YV <V = Iy {5/0) 2 457k = lyTV 1)
<VA= YD +{(s/0' 2 +s/kF A+ 1y"VD]
<VA =YDV +2{(s/0)' +5/k}]
v /A =1y ) +20/{1 = ly(P)Ty*|},

@n

(22

(23)

where the third inequality holds by using the fact that |yTv/| < 1, and the last inequality holds by inequality

(22).
Finally, we have

V=1 <AL =16}
v /{1 = 1™ Voot [} + /2041 = [y () "y*|}.

By recursively applying inequality (23), we have, for all >0,
=1 < AT =105 ol F+ V2041 = 1y(A) Ty* 1}/ (=),

as desired.

Appendix B: Proof of corollary 1

(24)

Let F DV be a superset of the support of y*. Recall that y(F) =v(F)/||[v(F)||, and y* =y*/|ly* .. We first
prove that y(F) is close to y* for a general class of symmetric definite matrix pairs (A, B). For this, we

present the following lemma resulting from theorem 4.3 in Stewart (1979).
Lemma 5. Let F be a set such that V C F with |F|=k' > s and let
8(F)=/(IEa.£ 15+ | Es.£[15).
Let
M () = AP
VT MO+ Y
AN =min x{ A1 (F). M(D)} > 0.

XM F), (P} =

If §(F)/AXNF) < cr(Ar, Br), then

min[[V(F) = v [, V(P +v¥[la} _ 5(F)
V¥ AA(F)cr(AF,Bn'




Optimal Rates via Truncated Rayleigh Flow 1079

This implies that

: " * 2 /
min{[ly(F) —y*ll2, ly(F) +y ”2}<—A)\{cr(k’)—e(k/)}e(k)’

where A\, cr(k’) and e(k’) are as defined in expressions (16) and (12).

\/{1_|(v*>Tvt|}< 212 o,
V¥l J S Ax{er(k) —ek)]} €

Substituting the above inequality into theorem 1 yields the results in corollary 1.

By lemma 5, we have

Appendix C: Proof of technical lemmas

C.1. Proof of lemma 3
Recall that F C {1,...,d} is some set with cardinality |F|=k’". Also, recall that y(F) is proportional to
the largest generahzed eigenvector of (Ar, Br). Throughout the proof, we write 4 to denote x(B) for
notational convenience. In addition, we use the notation ||v||123 to indicate VTB FV.

Let £; be the jth generalized eigenvector of (Ar, Br) corresponding to /\ ;(F) such that

TH _ if j=k,
Assume that v= 7104,5, and by definition we have y(F) =£&,/|&||,. By assumption, we have y(F)Tv=

1 — 6. This implies that lly(F) — V|3 =26. Also, note that

IV=y(PIIg, = IV = 1€ = {y(F) — &} IIg, )
=[V-ai& ||f;F +y(F) — & ||ng —2(y(F) — 1) " Br(V — i &)).

Since y(F) — a1 €; is orthogonal to Vv — «;&; under the normalization of B, we have
Za —||V—m£1|| <IV=y(Hl <2)\max(ﬁl’)6a (25)

in which the last inequality holds by an application of Holder’s inequality and the fact that [|y(F) — v||3 =26.
Moreover, we have

14 N .
ng a% = ”‘7”]2%)? 2 )\max(BF)/Ks
14 (26)
aF 2 Anan Br) /£ = 32 03 > 20ax Br) /BR),
j=2

where the last inequality is obtained by result (25) and the assumption that 6 < 1/(8cypper).
We also need a lower bound on [ly(F)||3,. By the triangle inequality, we have

k, A
¥l > 191, = I =y (), >\/ (2307) ~vAns BT = y(Pl:

1 k, 1 max(B )
>2\/(2‘@4%/{,{‘;} V{2Anan Br)6} > al, Q7

j=1

where the second inequality holds by the definition of ||V||z, and an application of Hoélder’s inequal-
ity, the third inequality follows from expression (26), and the last inequality follows from the fact that
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%\/ { Amax Br)/ R} 2 {2Amax B £)0} under the assumption that 6 < 1/(8cupperk)-

C.1.1. Lower and upper bounds for {\\(F)—p}/p

To obtain a lower bound for the quantity y(F)Tv we need both the lower bound and the upper bound for
the quantity {\,(F) — p}/p. Recall that p=v" A;¥/¥' By¥. Using the fact that V' A;v =X . 1az/\ i(F), we
obtain

K K
: AP =3P} Al A
Gp—p_ OO MOBG oy B

R X 7 D P
g 5 4P’ ABoq i

< 30K, (28)

where the second-to-last inequality holds by result (25) and the last inequality holds by expression (26).
We now establish a lower bound for {\,(F) — p}/p. First, we observe that

§<26-82=(1—-862+1-21=8)y(AHV=[V—1=8y(P 3 < IV— & 3, 29

where the first equality follows from the fact that y(F)Tv=1—§, and the second inequality holds by the
fact that (1 — 8)y(F) is the scalar projection of y(F) onto the vector &;. Thus, we have

kK 14
. M) =X 2 NE =\ 2
/\1(F)—p:j:21{ 1(F) = X;(F)}o? >{ 1(F) Z(F)}jgza,

kKo . . K
P > A (Pa? APt + 5P Y 2
j=1 j=2

B =PIV - &l = =D Br)/E}IT— €3
M(Pai+ APV -l 7 a7 D B AT — il

(1 - ’Y) /\max (BI' )6
al K +’7)‘max(BF)6

(30

where the second-to-last inequality holds by dividing the numerator and denominator by A1 (F) and using
the upper bound A, (F)/; (F) <7, and the last inequality holds by result (29).

C.1.2.  Lower bound for ||CFV||
In what follows, we first establish an upper bound for ||CV||2. By the definition that p=v TAV/VI BV, we
have

VIARV — pV Bpv=0.

Moreover, by the definition of v= E_’},:l ;€; and the fact that Az&;=X;(F)B¢;, we have

¥ . 2 2
IAr = pBRVI3 = Z aArEj—p> aBrg; S
j=1 Jj=1 2
Thus, by equation (31) and the fact that V' Azv — pv' BV =0, we obtain
- R 2 Koop o R 2
||CF‘7||§=H{H’;(AF—PBF)}‘7 =1+’ Za.i;{)‘j(F)—P}BFﬁj (32)
2 =1 2

It remains to establish an upper bound for the second term in equation (32). By the assumption that
0 < 1/Beypper) (1/y — 1) and result (28), we have

M(H<p<Ai(P.

Moreover, since [|[V[|3 =1, we have a? < Amax (Br). Thus,
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2

A N . K A
< CM%{)\] (F) - p}z/\max (BF)(ﬁ/P)2 + /\max (BF) Z a?(n/ﬂf{)\](f—') - P}2
j=2

2
A ~ k/
e BT B6R) + Amax B {M1 (P /p— 1} 3 o]
j=2
<N B (36R)* +202 (B)n6(36%)>
=9\ B8R 4+ 1822, (Br)n?6°R2, (33)

where the second inequality is from result (28) and the third inequality follows from result (25). Substituting
equation (33) into equation (32), we have

ICAVI2<T+9X2, (Br)n?82 42 + 18 X2, (B8 /2

<14+12X2 (Bp)n?62i?2, (34

where the last inequality follows from the fact that 26 < 4, which holds by the assumption that 6 <
1/(8cyppers). Meanwhile, note that the second term in the upper bound is less than 1 by the assumption
6 <1/ Bcypperk) and neypper Amax (B) < 1. Hence, by invoking inequality (34) and the fact that 1/,/(1+y) >
1 —y/2 for |y| <1, we have

ICEVI;" 21 =67, (B8R, (39

max

C.1.3.  Lower bound for y(F)TCF\7
We have

V(O Cri=y(F)'V+ Z YO (A — pBp)¥
—1-6+ g{ﬁm —p}y(P)" BV
.
=1—5+g{5\1(F)—P}a1£1BF£I

1112
A _
—1 -6+ % ly(F)llg,

1 (1= Anax(BR)S
7704 I e—

>1-64+= ~
2 2’%""'Y)\max(Bl”)(S
1 a?(1—
S1os4 L=
2 K+
(1=796

>1-6+ 577 Amin (Br) , (36)

R+~
where the first inequality follows from expressions (27) and (30), the second inequality uses the fact that

02 < Amax (Br) and the last inequality follows from expression (26).

C.1.4. Combining the results
We now establish a lower bound on y(F)Tv'. From expressions (35) and (36), we have

y(P)T ’=y(F)TCFv~- ICFV5!
{1 —6+3 nAmm(BF> ”5} {1—6X2, B’ 8?47}

1 5
>1—6+ 377Amm(BF)( :) — 62, (Bpyps? i — 2620 (B8
Y

(1-796
R+

max
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1—
>1—6+- 7]/\mm(BF)( D0 62532 Bpyfsti?
ity
1 (1-mé
2 1 _6+ >\mm B s 37
g (Br) e 37

in which the third inequality holds by the assumption that the step size 7 is sufficiently small such that
7 Amax (Br) < 1, and the last inequality holds under the condition that

max (B)A?,

which is implied by the following inequality under assumption 1:
-y
3001+ C)Clzlppern Amax (B)ﬁz (Cupperfi +7) '

0<

By assumption 1, we have

Y(F)TV/ 6+ 7])\mm(B) 1 —Y(F)TV -
{ } upper’{"f_’y

as desired.

C.2. Proof of lemma 5
The first part of lemma 5 on the following inequality follows directly from theorem 4.3 in Stewart (1979):

IV —=v*ll2 _  8(F)
V¥l Ader(As,Bp)

‘We now prove the second part of the lemma.
Setting y(F) =v(F)/||v(F)|z and y* =v*/||v* ||y such that |ly(F)|l;=1 and ||y*|l.=1, we have

_y¥ < V(F) _ V*
||Y(F) y ”2 ‘ ||V(F)||2 HV*HZ 5
1 . ,
S W IVCE IV 12 = V¥ [V CE) 2l
|| *” HV(F)_V ”2
6(F)

QL
A CI'(AF, BF)

where the third inequality holds by adding and subtracting v(F) [|[v(F)||,. By definition, 6(F) < e(k’) and
AA> AN Moreover, by theorem 2.4 in Stewart (1979), cr(Ar, Br) >cr(k’) — e(k’). Thus, we obtain

2
* ’
1Y =" 1 < S —eery <€

The other case for ||y(F) +y*||, can be proved similarly.

Appendix D: Proof of proposition 1

The proof of proposition 1 is an adaptation of the proof of theorem 4.1 in Gao et al. (2017) and the
proof of theorem 1 in Tan et al. (2018), with some modifications to the curvature lemma to remove the
structural assumptions on A. Without loss of generality, we assume that A is full rank. For ease of notation,
throughout the proof we write V, A and P to 1nd1cate V*, A* and P* respectively.

Let V=(Vg,V.ge) e R Where V.x € R”¥ are the K leading generalized eigenvectors of (A, B) and
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V.xe € R are the last d — K generalized eigenvectors. Let A € R be a dia§onal matrix of the
generalized eigenvalues. Let S, be a set containing indices of non-zero rows of Ve R *“dwith cardinality
|S,| =s. In other words, each generalized eigenvector has at most s non-zero elements. Let P=V VL and
let S and S° be the support of P and complementary set of S respectively. To facilitate the proof, we define
some new notation:

A=BVAV'B,
V=V (V,TKBV-K)A/Z,
PV, V.
Let P be a solution of problem (10) with tuning parameter K and ¢, and let A =P —P. Finally, for two
matrices E and F, we write (E, F) =tr(EF).
It can be shown that P satisfies both constraints in problem (10) and therefore is a feasible solution of

problem (10). Since P is a feasible solution of problem (10) and P is the optimal solution of problem (10),
we have

—(A,P)+CIPll1 1 < —(A,P)+CIP|l1;1

By picking ¢ >2||A — AHOO,OO, the triangle inequality, rearranging the terms and using the fact that P and
P share the same support, it can be shown that

- 3
—(A,A)<7<||As||1,1—gllAsclll,l- (38)

The main difference between our proof and that of Gao et al. (2017) and Tan et al. (2018) is in obtaining
the lower bound for —(A, A). By the definition of A and P, we obtain

—(A,A)=(BVAV'B,P-P)
— <]‘31/2VAVT1‘31/2’ ]‘31/2(13 _ 13)]:’»]/2)
= (B'2VAV'BPB"2,1-B'?PB'?) — (1—B'?PB"/*)B'2VAV'B'/2 B'/2PB'/?)
=1-1I (39)

It suffices to obtain a lower bound for I and an upper bound for II.

D.1. Lower bound for/
We have

I=tr{B'’VAVTBV x (VL BV x)"'VIB2(1 - B!/’ PB'/%)}
=tr{Bs, Vs, x (ViBV.x)'VLB2(1—B?PB*)B'2VAVY, }
Amin(Bs,)
” Amax(Bs,)
Amin(Bs,) — p(Eg, )
Amax (Bs,)
1-—

> (—Bj tr{B'?VAV Bs, Vs, x(ViBV.x)"'VLB201—B'?PB'/)}, (40)
. :

tr{B>VAVE B, Vs, x (VEBV. 0~ 'VIB2(1—B'?PB!/2)}

=

tr{B'?VAVY Bs, Vs, x(VEBV ) "' Vi B2 01— B'*PB'/?)}

where the second inequality holds by Weyl’s inequality, i.e. Apin(Bs,) < Amin (]ASSU) + p(Eg, s), and the last
inequality follows from assumption 1. Note that

tr{B'2VAVY Bs, Vs, x(ViBV.0) 'V B2 (1-B'*PB'/?)}
= (B2 Vi (06 0 ) () VB0 VIR - BPE) |
=tr{B2V ¢ A (VLBV ()" 'VI B2 (1 - B/2PB!/2)}.

Substituting this into inequality (40), we obtain
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S (1 —C))\K

> B (B'2PB'2 1—B'2PB/?). @1

D.2. Upper bound for Il
Observe that

(I—B'?PB/*)B'2VAVTB>=B'2V ¢ A VI B2 + B2V c A g VI B2 — B2V A VI B!/
— B2V (VEBV ) 'V BV ge Age VI B2

=1 —B"*PB*)B?V yc A V. B'2,
where the last equality holds since the first equality depends only on A k.. Thus, we have
(I=B2PBV)B2V e A (VI B2, BI2PB!/2)
Ak+1(I—B?PBY2)B2V 4 VL B2 B'*PB'?)
A1 VBV ke[ (I-B°PB>, B'*PB' %)
<Akt {1 + IV B—B)V ke[, }(1—B*PB'2 B'PB'?), 42)

NN ||

where the last inequality holds by adding and subtracting V%.. BV . and the triangle inequality. Since only
s rows of V g are non-zero, by Holder’s inequality, we obtain
IVieB=B)V kell> < IB™' BV ke 3 p(Eg, s)
< uin(B)IB~123
< C’

where the second inequality holds under assumption 1. Substituting this into inequality (42), we obtain
I < cAgyr (1 BY2PB'2, B/2PB!2). 43)

By definition, tr(B'/2PB!/2) = tr(B'/2PB!/2) = K. Substituting inequalities (41) and (43) into inequality
(39), we obtain

—(A,A)> {% — ks } (K — (B'?PB'2, B'*PB'/%))
K

1 (=) N R
> 5{7%) £ —cAK+1}||B“2AB‘/2||%. (44)

The rest of the proof follows from the proof of theorem 1 in Tan et al. (2018) or the proof of theorem 4.1 in
Gao et al. (2017). We hereby provide a proof sketch and refer the reader to Tan et al. (2018) for the details.
For notational convenience, let 6y, = (1 — ) Ax/£(B) — cAg41. Combining inequalities (38) and (44), we
have

3¢

6%‘1}3

IB2ABE < =l Aslh,1- 45)
Moreover, —(A, A) > 0 implies that || Ascll1,1 <3 Aslli1-

Similarly to Tan ez al. (2018), we partition the set S°® into J sets such that S§ is the index set of the
largest [ entries in absolute values of A, S5 is the index set of the second largest / entries of A, and so
forth, with |S§| < [. By lemma S4 of Tan et al. (2018) and the fact that [|Agsc |11 < 3]|Aslli,1, we obtain
E]’.:2||A5§ g < 3s17'2||Agl|lg. Under assumption 1, picking / = ¢, s?, it can be shown that

IB'2AB"?||r > B Asuse B ||k — Z IIBl/zASCBl/ZIIF
Jj=2

3(1+0) Amax (B
AP s

2 {(1 _C))\min(B) -
2 CllAsustllF, (46)

where C is a generic constant, and the last inequality holds by picking ¢, to be sufficiently large.
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Combining inequalities (45) and (46),

¢ 12 s 12
IAsussllF < C(inAS”l,l) <C( ||Asusf||F) .
Ogap Ogap

By squaring both sides, we obtain ||A3U5f llr < C(s/bgap. By the triangle inequality,

IAlle < lAsusslIF + 1A susse e

< lAsusslir+ Z Aselr

=
< (A+3/enllAsuss v
<c

X

, “47)

bgap

where the second inequality holds by lemma S4 of Tan et al. (2018) and the third inequality holds by
picking I =c;s?. Finally, by the triangle inequality and lemma S1 of Tan et al. (2018), we obtain

S
IP—Plle < [Allp+ [P —PJr < (;

+K|Bs, —Bsu||2>~

gap
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