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Abstract

We consider the problem of learning high-

dimensional Gaussian graphical models. The

graphical lasso is one of the most popular methods

for estimating Gaussian graphical models. How-

ever, it does not achieve the oracle rate of con-

vergence. In this paper, we propose the graphical

nonconvex optimization for optimal estimation

in Gaussian graphical models, which is then ap-

proximated by a sequence of adaptive convex pro-

grams. Our proposal is computationally tractable

and produces an estimator that achieves the oracle

rate of convergence. The statistical error intro-

duced by the sequential approximation is clearly

demonstrated via a contraction property. The pro-

posed methodology is then extended to modeling

semiparametric graphical models. We show via

numerical studies that the proposed estimator out-

performs other popular methods for estimating

Gaussian graphical models.

1. Introduction

We consider the problem of learning an undirected graph

G = (V,E), where V = {1, . . . , d} is a set of nodes that

represents d random variables, and E is an edge set that

describes the pairwise conditional dependence relationships

among the d random variables. Gaussian graphical models

have been widely used to represent pairwise conditional

dependencies among a set of random variables. Let X be

a d-dimensional random variables. Under the Gaussian as-

sumption X ∼ N (0,Σ∗), the graph G is encoded by the

sparse concentration matrix Θ
∗ = (Σ∗)−1, or the sparse

inverse correlation matrix Ψ
∗ = (C∗)−1. Here, C∗ is the

correlation matrix such that Σ∗ = WC
∗
W and W
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diagonal matrix with diagonal elements of Σ∗. It is well

known that the jth and kth variables are conditionally in-

dependent given all of the other variables if and only if the

(j, k)-th element of Θ∗ (or Ψ∗) is equal to zero. Thus, in-

ferring the conditional dependencies structure of a Gaussian

graphical model boils down to estimating a sparse inverse

covariance (or correlation) matrix.

A number of methods have been proposed to estimate the

sparse concentration matrix under the Gaussian assumption.

For example, Meinshausen & Bühlmann (2006) proposed a

neighborhood selection approach for estimating Gaussian

graphical models by solving a collection of sparse linear re-

gression problems using the lasso penalty. In addition, Yuan

(2010) and Cai et al. (2011) proposed the graphical Dantzig

and CLIME, both of which can be solved efficiently. From

a different perspective, Yuan & Lin (2007) and Friedman

et al. (2008) proposed the graphical lasso, a penalized likeli-

hood based approach, to estimate the concentration matrix

Θ
∗ directly. Various extensions of the graphical lasso were

proposed and the theoretical properties were also studied

(among others, Banerjee et al., 2008; Rothman et al., 2008;

Ravikumar et al., 2011). The Gaussian graphical models

literature is vast and we refer the reader to Cai et al. (2016a)

and Drton & Maathuis (2016) for a comprehensive review.

Despite the popularity of the graphical lasso on modeling

sparse Gaussian graphical models, it does not achieve the

oracle rate of convergence. More specifically, it is believed

that the optimal rate of convergence in spectral norm for the

graphical lasso is at the order of
√
s log d/n (Rothman et al.,

2008). Here, n is the sample size, d is the number of nodes,

and s is the number of edges in the true graph. In fact, the

graphical lasso and all of the aforementioned methods are

based on the lasso penalty and it is generally believed that

convex penalties usually introduce non-negligible estima-

tion bias. For example, in the linear regression setting, Fan

& Li (2001); Zhang (2010a;b); Fan et al. (2018) have shown

that the nonconvex penalized regression is able to eliminate

the estimation bias and attain a more refined statistical rate

of convergence.

Based on these insights, we propose the following penalized

maximum likelihood estimation with a general nonconvex
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penalty:

Θ̂=argmin
Θ∈Sd

+

{〈
Θ, Σ̂

〉
−log det(Θ)+

∑

i 6=j

pλ
(
Θij

)}
, (1.1)

where Sd
+={A∈R

d×d : A=A
T,A�0} is the symmetric

definite cone formed by all d×d symmetric positive definite

matrices, Σ̂ is the sample covariance matrix, and pλ(·) is a

nonconvex penalty. Here, 〈A,B〉 = tr(AT
B) denotes the

trace of AT
B. However, from the computational perspec-

tive, minimizing a penalized loss function with nonconvex

penalty is a challenging problem due to its intrinsic noncon-

vex structure. For example, Ge et al. (2011) have shown

that solving (1.1) with the `p penalty is strongly NP-hard,

when 0 ≤ p < 1. In other words, there does not exist a fully

polynomial-time approximation scheme for problem (1.1)

unless more structures are assumed.

Recently, Loh & Wainwright (2015) proposed an algorithm

to obtain a good local optimum for regression problems

similar to (1.1), under an additional convex constraint that

depends on the unknown true parameters. Loh & Wain-

wright (2015) have established estimation error under var-

ious vector norm such as the `2 and `∞. However, Loh &

Wainwright (2015) failed to provide a faster rate of con-

vergence statistically due to not taking signal strength into

account. Computationally, our algorithm is different from

the path-following algorithm in Wang et al. (2014), which

must start from the largest regularization parameter. Our

algorithm directly starts form the target regularization pa-

rameter, which is in the order of
√
log d/n. This could

help in some cases. For example, if we have some prior

knowledge about the range of λ, then we do not need to start

from the largest regularization parameter. In the context

of Gaussian graphical models, the rate of convergence of√
s log d/n under the spectral norm has been obtained in

the existing literature. In this paper, we further improve the

rate to
√
s/n. To the best of our knowledge, we are the first

in the literature to obtain this sharp rate under the operator

norm.

In this paper, instead of directly solving the nonconvex

problem (1.1), we propose to approximate it by a sequence

of adaptive convex programs. Even though the proposed

method involves solving a sequence of convex programs, we

show that the proposed estimator for estimating the sparse

concentration matrix achieves the oracle rate of convergence

of
√
s/n, as if the locations of the nonzeros in the sparse

concentration matrix were known a priori. This is achieved

by a contraction property. Roughly speaking, each convex

program gradually contracts the initial estimator to the re-

gion of oracle rate of convergence even when a bad initial

estimator is used in the first place:

∥∥Ψ̂(`) −Ψ
∗
∥∥

F
≤ C

√
s

n︸ ︷︷ ︸
Oracle Rate

+
1

2

∥∥Ψ̂(`−1) −Ψ
∗
∥∥

F︸ ︷︷ ︸
Contraction Effect

,

where Ψ̂
(`) is the inverse correlation matrix estimator af-

ter the `-th convex approximation, ‖ · ‖F is the Frobenius

norm, C is a positive constant, and
√

s/n is referred to

as the oracle rate. Each iteration of the proposed method

helps improve the accuracy only when ‖Ψ̂(`−1) − Ψ
∗‖F

dominates the statistical error. The error caused by each

iteration is clearly demonstrated via the proven contraction

property. Suprisingly, we only need to solve about log log d
convex programs to achieve the oracle rate. By rescaling

the inverse correlation matrix using the estimated marginal

variances, we obtain an estimator of the concentration ma-

trix with spectral norm convergence rate in the order of√
log d/n ∨

√
s/n, where a ∨ b = max{a, b}. By exploit-

ing the sparsity pattern matrix of Θ∗, we further sharpen

the rate of convergence to
√
s/n under the spectral norm.

The rest of this paper proceeds as follows. Our proposed

method and its implementation are detailed in Section 2.

Section 3 is devoted to theoretical studies. We show that the

proposed methodology can be extended to the semiparamet-

ric graphical models in Section 4. Numerical experiments

are provided to support the proposed method in Section 5.

We conclude the paper in Section 6. Proofs and technical

details are in the supplementary material.

Notation: We summarize the notation that will be used

regularly throughout the paper. Given a vector u =
(u1, u2, . . . , ud)

T ∈ R
d, we define the `q-norm of u by

‖u‖q = (
∑d

j=1 |uj |q)1/q, where q ∈ [1,∞). For a set A,

let |A| denote its cardinality. For a matrix A = (ai,j) ∈
R

d×d, we use A � 0 to indicate that A is positive definite.

For q ≥ 1, we use ‖A‖q = maxu ‖Au‖q/‖u‖q to denote

the operator norm of A. For index sets I,J ⊆ {1, . . . , d},

we define AI,J ∈ R
d×d to be the matrix whose (i, j)-th

entry is equal to ai,j if i∈I and j∈J , and zero otherwise.

We use A�B = (aijbij) to denote the Hadamard product

of two matrices A and B. Let diag(A) denote the diagonal

matrix consisting diagonal elements of A. We use sign(x)
to denote the sign of x: sign(x) = x/|x| if x 6= 0 and

sign(x) = 0 otherwise. For two scalars fn and gn, we use

fn & gn to denote the case that fn ≥ cgn, and fn . gn
if fn ≤ Cgn, for two positive constants c and C. We say

fn � gn, if fn & gn and fn . gn. OP(·) is used to denote

bounded in probability. We use c and C to denote constants

that may vary from line to line.
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2. Graphical Nonconvex Optimization

Let X = (X1, X2, . . . , Xd)
T be a mean zero d-

dimensional Gaussian random vector. Then its density can

be parameterized by the concentration matrix Θ
∗ or the

inverse correlation matrix Ψ
∗. The family of Gaussian dis-

tributions respects the edge structure of a graph G = (V,E)
in the sense that Ψ∗

ij = 0 if and only if (i, j) 6∈ E. This

family is known as the Gauss-Markov random field with

respect to the graph G.

Given n independent and identically distributed observa-

tions {X(i)}ni=1 of a mean zero d-dimensional random vec-

tor X ∈ R
d, we are interested in estimating the inverse

correlation matrix Ψ
∗ and concentration matrix Θ

∗. Let

Σ̂ = n−1
∑n

i=1 X
(i)(X(i))T be the sample covariance ma-

trix and let Ĉ = Ŵ
−1

Σ̂Ŵ
−1, where Ŵ

2 = diag(Σ̂). To

estimate Ψ
∗, we propose to adaptively solve the following

sequence of convex programs

Ψ̂
(`) = argmin

Ψ∈Sd

+

{〈
Ψ, Ĉ

〉
− log det(Ψ)

+ ‖λ(`−1) �Ψ‖1,off

}
, for ` = 1, . . . , T, (2.1)

where ‖Ψ‖1,off =
∑

i 6=j |Ψij |, λ(`−1) = λ · w
(
Ψ̂

(`−1)
ij

)
is

a d × d adaptive regularization matrix for a given tuning

parameter λ and a weight function w(·), and T indicates

the total number of convex programs needed. The weight

function w(·) can be taken to be w(t) = p′λ(t)/λ, where

pλ(t) is a folded concave penalty such as the SCAD or the

MCP proposed by Fan & Li (2001) and Zhang (2010a),

respectively.

To obtain an estimator for the concentration matrix Θ
∗, we

rescale Ψ̂
(T ) back to Θ̃

(T ) = Ŵ
−1

Ψ̂
(T )

Ŵ
−1 after the T -

th convex program. This rescaling helps improve the rate of

convergence for Θ̃(T ) significantly by eliminating the effect

introduced through the unpenalized diagonal elements. The

detailed routine is summarized in Algorithm 1.

The computational complexity of Step 2 in Algorithm 1 is

O(d3): this is the complexity of the algorithm for solving

the graphical lasso problem. We will show in the latter

section that the number of iterations of Algorithm 1 can be

chosen to be T ≈ log log d based on our theoretical analysis,

yielding a computational complexity of O(log[log(d)]d3).
Algorithm 1 can be implemented using existing R packages

such as glasso. We note that our algorithm is an adaptive

version of the SPICE algorithm in Rothman et al. (2008).

3. Theoretical Results

In this section, we study the theoretical properties of the

proposed estimator. We start with some assumptions needed

for the theoretical analysis.

Algorithm 1 A sequential convex approximation for the

graphical nonconvex optimization.

Input: Sample covariance matrix Σ̂, regularization pa-

rameter λ.

Step 1: Obtain sample correlation matrix Ĉ by Ĉ =

Ŵ
−1

Σ̂Ŵ
−1, where Ŵ

2 is a diagonal matrix with diag-

onal elements of Σ̂.

Step 2: Solve a sequence of graphical lasso problems

adaptively

Ψ̂
(`) = argmin

Ψ∈Sd

+

{
〈Ψ, Ĉ〉 − log det(Ψ)

+‖λ(`−1) �Ψ‖1,off

}
,

and λ
(`) = λ · w(Ψ̂(`)

ij ), for ` = 1, . . . , T.

Step 3: Obtain an estimator of Θ
∗ by Θ̃

(T ) =

Ŵ
−1

Ψ̂
(T )

Ŵ
−1.

3.1. Assumptions

Let S=
{
(i, j) : Θ∗

ij 6= 0, i 6= j
}

be the support set of the

off-diagonal elements in Θ
∗. Thus, S is also the support set

of the off-diagonal elements in Ψ
∗. The first assumption

we need concerns the structure of the true concentration and

covariance matrices.

Assumption 3.1 (Structural Assumption). We assume that

|S| ≤ s, ‖Σ∗‖∞ ≤ M < ∞, 0 < ε1 ≤ σmin ≤ σmax ≤
1/ε1 < ∞, 0 < ε2 ≤ λmin(Θ

∗)≤ λmax(Θ
∗) ≤ 1/ε2 <

∞. Here, σ2
max = maxj Σ

∗
jj and σ2

min = minj Σ
∗
jj , where

Σ
∗ =

(
Σ∗

ij

)
.

Assumption 3.1 is standard in the existing literature for

Gaussian graphical models (see, for instance, Meinshausen

& Bühlmann, 2006; Yuan, 2010; Cai et al., 2016b; Yuan

& Lin, 2007; Ravikumar et al., 2011). We need σmin and

σmax to be bounded from above and below to guarantee rea-

sonable performance of the concentration matrix estimator

(Rothman et al., 2008). Throughout this section, we treat

M, ε1, ε2 as constants to simplify the presentation.

The second assumption concerns the weight functions,

which are used to adaptively update the regularizers in Step

2 of Algorithm 1. Define the following class of weight

functions:

W=
{
w(t) : w(t) is nonincreasing,

0 ≤ w(t) ≤ 1 if t ≥ 0,w(t) = 1 if t ≤ 0
}
. (3.1)

Assumption 3.2 (Weight Function). There exists an α such

that the weight function w(·) ∈ W satisfies w(αλ) =
0 and w(u) ≥ 1/2, where u = cλ for some constant c.
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The above assumption on the weight functions can be easily

satisfied. For example, it can be satisfied by simply taking

w(t) = p′λ(t)/λ, where pλ(t) is a folded concave penalty

such as the SCAD or the MCP (Fan & Li, 2001; Zhang,

2010a). Next, we impose an assumption on the magnitude

of the nonzero off-diagonal entries in the inverse correlation

matrix Ψ
∗.

Assumption 3.3 (Minimal Signal Strength). The minimal

signal satisfies min(i,j)∈S Ψ∗
ij ≥ (α + c)λ & λ, where

c > 0 is the same constant that appears in Assumption 3.2.

Assumption 3.3 is a mild condition. In the sub-Gaussian

design case, λ can be taken to be the order of
√
log d/n,

which diminishes quickly as n increases. It is an analogue

to the minimal signal strength assumption frequently as-

sumed in nonconvex penalized regression problems (Fan &

Li, 2001; Zhang, 2010a). Taking the signal strength into

account, we can then obtain the oracle rate of convergence.

3.2. Main Theory

We now present several main theorems concerning the rates

of convergence of the proposed estimator for the sparse

inverse correlation and the concentration matrices, respec-

tively. The following theorem concerns the rate of con-

vergence for the one-step estimator Ψ̂
(1) obtained from

Algorithm 1 when ` = 1.

Proposition 3.4 (One-step Estimator). Let λ �
√

log d/n.

Under Assumption 3.1, we have

∥∥Ψ̂(1)−Ψ
∗
∥∥

F
.

√
s log d

n

with probability at least 1− 8/d,

Proof of Proposition 3.4. We collect the proof of Proposi-

tion 3.4 in Appendix A in the supplementary material.

The above proposition indicates that the statistical error

under the Frobenius norm for the one-step estimator is at

the order of
√

s log d/n, which is believed to be unimprov-

able when one-step convex regularization is used (Rothman

et al., 2008; Ravikumar et al., 2011). However, when a

sequence of convex programs is used as in our proposal, the

rate of convergence can be improved significantly. This is

demonstrated in the following theorem.

Theorem 3.5 (Contraction Property). Suppose that n &

s log d and select λ such that λ �
√
log d/n. Under As-

sumptions 3.1, 3.2 and 3.3, with probability at least 1− 8/d,

Ψ̂
(`) satisfies the following contraction property:

∥∥Ψ̂(`)−Ψ
∗
∥∥

F
≤ 8‖Ψ∗‖22‖∇L(Ψ∗)S‖F︸ ︷︷ ︸

Oracle Rate

+
1

2

∥∥Ψ̂(`−1)−Ψ
∗
∥∥

F︸ ︷︷ ︸
Contraction

,

for 1 ≤ ` ≤ T. Moreover, if T & log(λ
√
n) & log log d,

we have

∥∥Ψ̂(T )−Ψ
∗
∥∥

F
= OP

(√
s

n

)
.

Proof of Theorem 3.5. The proof is collected in Appendix

A in the supplementary material.

Theorem 3.5 establishes a contraction property: each con-

vex approximation contracts the initial estimator towards

the true sparse inverse correlation matrix until it reaches the

oracle rate of convergence,
√

s/n. To achieve the oracle

rate, we need to solve no more than approximately log log d
convex programs. Note that log log d grows very slowly as

d increases and thus, in practice, we only need to solve a

few convex programs to get a better estimator than existing

method such as the graphical lasso. The rate of convergence√
s/n is better than the existing literature on likelihood-

based methods for estimating sparse inverse correlation ma-

trices (Rothman et al., 2008; Lam & Fan, 2009; Ravikumar

et al., 2011). By rescaling, we obtain a concentration matrix

estimator with a faster rate of convergence.

Theorem 3.6 (Faster Rate in Spectral Norm). Under the

same conditions as in Theorem 3.5, we have

∥∥Θ̃(T ) −Θ
∗
∥∥
2
= OP

(√
s

n
∨
√

log d

n

)
.

Proof of Theorem 3.6. The proof is deferred to Appendix

A in the supplementary material.

The theorem above provides the optimal statistical rate for

estimating sparse concentration matrices using likelihood

based methods (Rothman et al., 2008; Lam & Fan, 2009;

Ravikumar et al., 2011). The extra log d term is a conse-

quence of estimating the marginal variances.

Definition 3.7 (Sparsity Pattern Matrix). For a matrix A =(
aij

)
, we say Asp =

(
asp
ij

)
is the corresponding sparsity

pattern matrix if asp
ij = 1 when aij 6= 0; and asp

ij = 0,

otherwise.

Let M∗ be the sparsity pattern matrix of Ψ∗ or Θ∗. Our

next theorem provides an improved rate of convergence.
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Theorem 3.8 (Improved Convergence Rate). Suppose that

n & (s + s2max) log d and take λ such that λ �
√

log d/n.

Let T & log s. Under Assumptions 3.1, 3.2 and 3.3, we

have

∥∥Ψ̂(T ) −Ψ
∗
∥∥
2
= OP

(
‖M∗‖2

√
1

n

)
,

∥∥Θ̃(T ) −Θ
∗
∥∥
2
= OP

(
‖M∗‖2

√
1

n
∨
√

log d

n

)
.

Proof of Theorem 3.8. The proof is deferred to Appendix B

in the supplementary material.

Theorem 3.8 suggests that the rates of convergence can

be bounded using the spectral norm of the sparsity pattern

matrix M
∗, which can be much sharper than those provided

in Theorems 3.5 and 3.6. To demonstrate this observation,

we consider a sequence of chain graphs specified by the

following sparsity pattern matrices:

M
c
k =

[
Ak 0

0 Id−k−1

]
, for k = 4, . . . , 50,

where Ak ∈ R
(k+1)×(k+1) is such that the (i, j)-th entry

Ak,ij = 1 if |i−j| ≤ 1, and Ak,ij = 0 otherwise. Id−k−1 ∈
R

(d−k−1)×(d−k−1) is the identity matrix. Let sk be the total

sparsity of Mc
k, that is sk = 2k. We plot the ratio of the two

rates of convergence for estimating Ψ
∗ in Theorems 3.5 and

3.8, ‖Mc
k‖22/sk, versus sk in Figure 1. From Figure 1, we

can see that the ratio goes to 0 as the total sparsity increases.

This demonstrates that the convergence rate in Theorem 3.8

is indeed much sharper than that in Theorem 3.5, as least for

the chain graphs constructed above. We also observe similar

but less significant improvement for star-shape graphs. In

Figure 2, we give an geometric illustration of the star and

chain graphs.

4. Extension to Semiparametric Graphical

Models

In this section, we extend the proposed method to mod-

eling semiparametric graphical models. We focus on

the nonparanormal family proposed by Liu et al. (2012),

which is a nonparametric extension of the normal fam-

ily. More specifically, we replace the random variable

X = (X1, . . . , Xd)
T by the transformed variable f(X) =

(f1(X1), . . . , fd(Xd))
T, and assume that f(X) follows a

multivariate Gaussian distribution.

Definition 4.1 (Nonparanormal). Let f = {f1, . . . , fd}T
be a set of monotone univariate functions and let

Σ
npn ∈ R

d×d be a positive-definite correlation matrix with

diag(Σnpn) = 1. A d-dimensional random variable X =
(X1, . . . , Xd)

T has a nonparanormal distribution X ∼

NPNd(f,Σ
npn) if f(X) ≡ (f(X1), . . . , fd(Xd))

T ∼
Nd(0,Σ

npn).

We aim to recover the precision matrix Θ
npn = (Σnpn)−1.

The main idea behind this procedure is to exploit Kendall’s

tau statistics to directly estimate Θ
npn, without explicitly

calculating the marginal transformation functions {fj}dj=1.

We consider the following Kendall’s tau statistic:

τ̂jk =
2
∑

1≤i<i′≤n sign
(
(X

(i)
j −X

(i′)
j )(X

(i)
k −X

(i′)
k )

)

n(n− 1)
.

The Kendall’s tau statistic τ̂jk represent the nonparametric

correlations between the empirical realizations of random

variables Xj and Xk and is invariant to monotone transfor-

mations. Let X̃j and X̃k be two independent copies of Xj

and Xk. The population version of Kendall’s tau is given

by τjk ≡ Corr
(
sign(Xj − X̃j), sign(Xk − X̃k)

)
. We need

the following lemma which is taken from (Liu et al., 2012).

It connects the Kendall’s tau statistics to the underlying

Pearson correlation coefficient Σnpn.

Lemma 4.2. Assuming X ∼ NPNd(f,Σ), we have Σ0
jk =

sin
(
τjk ·π/2

)
.

Motivated by this Lemma, we define the following estima-

tors Ŝ = [Ŝjk] for the unknown correlation matrix Σ
npn:

Ŝτ
jk =

{
sin

(
τ̂jk ·π/2

)
, j 6= k,

1, j = k.

Now we are ready to prove the optimal spectral norm rate

for the Gaussian copula graphical model. The results are

provided in the following theorem.

Theorem 4.3. Assume that n & s log d and let λ �√
log d/n. Under Assumptions 3.1, 3.2 and 3.3, Θ̂(`) satis-

fies the following contraction property:

∥∥Θ̂(`)−Θ
∗
∥∥

F
≤ 4‖Θ∗‖22‖∇L(Θ∗)S‖F︸ ︷︷ ︸

Optimal Rate

+
1

2

∥∥Θ̂(`−1)−Θ
∗
∥∥

F︸ ︷︷ ︸
Contraction

, 1 ≤ ` ≤ T,

with probability at least 1 − 8/d. If T & log(λ
√
n) &

log log d, we have

∥∥Θ̂(T )−Θ
∗
∥∥

F
= OP

(√
s

n

)
.

Proof of Theorem 4.3. The proof is deferred to Appendix C

in the supplementary material.





Graphical Nonconvex Optimization for Gaussian Graphical Models

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Random graph (n=150)

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

●●●●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●●●

Our Proposal

NS

Glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Random graph (n=200)

False positive rate
T
ru

e
 p

o
s
it
iv

e
 r

a
te

●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●

Our Proposal

NS

Glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Band graph (n=150)

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●

●

●

●

●

●

Our Proposal

NS

Glasso

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Band graph (n=200)

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●

●

●

●

●

●

Our Proposal

NS

Glasso

0.0 0.1 0.2 0.3 0.4

2

3

4

5

6

7

8

Random graph (n=150) 

False positive rate

F
ro

b
e

n
iu

s
 n

o
rm

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●●●●

●

●

●

●

●

●

●
●
●
●
●
●
●●
●●
●●●
●●●●●
●●●●●●●●●●

Our Proposal

Glasso

0.0 0.1 0.2 0.3 0.4

2

3

4

5

6

7

8

Random graph (n=200) 

False positive rate

F
ro

b
e

n
iu

s
 n

o
rm

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●
●
●
●
●
●●
●●
●●●
●●●●●●
●●●●●●●●●

Our Proposal

Glasso

0.0 0.1 0.2 0.3 0.4

2

3

4

5

6

7

8

Band graph (n=150) 

False positive rate

F
ro

b
e

n
iu

s
 n

o
rm

●

●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

Our Proposal

Glasso

0.0 0.1 0.2 0.3 0.4

2

3

4

5

6

7

8

Band graph (n=200) 

False positive rate

F
ro

b
e

n
iu

s
 n

o
rm

●

●

●

●

●
●
●●●●●●●

●

●

●

●

●

●

●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

Our Proposal

Glasso

Figure 3. Row I: True and false positive rates, averaged over 100 data sets with d = 150, for random and band graphs, respectively. Row

II: Difference between the estimated and the true inverse covariance matrices under the Frobenius norm. The different curves are obtained

by varying the sparsity tuning parameter for each of the methods.

with n = 150, we see that the minimum error under the

Frobenius norm for our proposal is smaller than that of the

graphical lasso. As we increase the number of observations

to n = 200, the difference between the minimum error for

the two proposals are more apparent. More interestingly,

the region for which our proposal has lower Frobenius norm

than the graphical lasso is the primary region of interest.

This is because an ideal estimator is one that has a low

false positive rate while maintaining a high true positive rate

with low error under the Frobenius norm. In contrast, the

region for which the graphical lasso does better under the

Frobenius norm is not the primary region of interest due to

the high false positive rate. We see similar results for the

band graph setting.

6. Conclusion and Discussions

We propose the graphical nonconvex optimization, which

we approximate via a sequence of convex programs, for es-

timating the inverse correlation and concentration matrices.

We prove that our proposed estimators have better statistical

rates of convergence compared to existing approaches. The

proposed method is sequential convex in nature and thus

is computationally tractable. Yet surprisingly, it produces

estimators with oracle rate of convergence as if the global

optimum for the penalized nonconvex problem could be

obtained. Our results stem from the contraction property

we have proven, i.e., every convex problem contracts the

previous estimator by a 0.5-fraction towards the optimal rate

of convergence. Roughly speaking, since the first convex

program achieves rate of convergence
√
s log d/n and the

optimal rate is
√
s/n under the Frobenius-norm, it can be

shown that we need log[log(d)] convex programs to achieve

the optimal rate of
√
s/n from

√
s log d/n.

Our work can be applied to many different topics: low rank

matrix completion problems, high-dimensional quantile re-

gression and many others. We conjecture that in all of the

aforementioned topics, a similar sequential convex approx-

imation can be proposed and can possibly give faster rate,

with controlled computing resources. It is also interesting

to see how our algorithm works in large-scale distributed

systems. Are there any fundamental tradeoffs between statis-

tical efficiency, communication and algorithmic complexity?

We leave these as future research topics.
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