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The Channel Capacity of Channelrhodopsin
and Other Intensity-Driven Signal
Transduction Receptors

Andrew W. Eckford

Abstract—Biological systems transduce signals from their
surroundings through a myriad of pathways. In this paper, we
describe signal transduction as a communication system: the sig-
nal transduction receptor acts as the receiver in this system,
and can be modeled as a finite-state Markov chain with tran-
sition rates governed by the input signal. Using this general
model, we give the mutual information under independent, iden-
tically distributed (IID) inputs in discrete time, and obtain the
mutual information in the continuous-time limit. We show that
the mutual information has a concise closed-form expression with
clear physical significance. We also give a sufficient condition
under which the Shannon capacity is achieved with IID inputs.
We illustrate our results with three examples: 1) the light-gated
Channelrhodopsin-2 (ChR2) receptor; 2) the ligand-gated nico-
tinic acetylcholine receptor; and 3) the ligand-gated calmodulin
receptor. In particular, we show that the IID capacity of the ChR2
receptor is equal to its Shannon capacity. We finally discuss how
the results change if only certain properties of each state can be
observed, such as whether an ion channel is open or closed.

Index Terms—Neuroscience, molecular communications, chan-
nel capacity, signal transduction, cell biology.

I. INTRODUCTION

IVING cells take in information from their surround-
L ings through myriad signal transduction processes. Signal
transduction takes many forms: the input signal can be car-
ried by changes in chemical concentration, electrical potential,
light intensity, mechanical forces, and temperature, inter alia.
In many instances these extracellular stimuli trigger intracel-
lular responses that can be represented as transitions among
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a discrete set of states [1]. Models of these processes are of
great interest to mathematical and theoretical biologists [2].

The “transduction” of the signal occurs through the phys-
ical effect of the input signal on the transition rates among
the various states describing the receptor. An early mathe-
matical model of this type was the voltage-sensitive transi-
tions among several open and closed ion channel states in
Hodgkin and Huxley’s model for the conduction of sodium and
potassium ions through the membranes of electrically excitable
cells [3]. Presently, many such models are known for signal
transduction systems, such as: the detection of calcium con-
centration signals by the calmodulin protein [4], binding of
the acetylcholine (ACh) neurotransmitter to its receptor pro-
tein [5], and modulation of the channel opening transition by
light intensity in the channelrhodopsin (ChR) protein [6]. In
each of these examples the channel may be modeled as a
weighted, directed graph, in which the vertices represent the
discrete channel states, and the weighted edges represent per
capita transition rates, some of which can be modulated by
the input signals.

Mutual information, and Shannon capacity, arise in a vari-
ety of biological contexts. For example, mutual information
may predict the differential growth rates of organisms learning
about their environment [7], based on the Kelly criterion [8].
For biological communication systems, achieving a distortion
criterion (expressed as mutual information) need not require
complicated signal processing techniques; see [9, Example 2].
Moreover, the free energy cost of molecular communication
(such as in signal transduction) has a mathematical form sim-
ilar to mutual information [10], leading to thermodynamic
bounds on capacity per unit energy cost (see [11]).

Stochastic modeling of signal transduction as a commu-
nication channel has considered the chemical reactions in
terms of Markov chains [12] and in terms of the “noise”
inherent in the binding process [13]. For simplified two-
state Markov models, Shannon capacity of signal transduction
has been calculated for slowly changing inputs [14] and
for populations of communicating bacteria [15]. Our own
previous work has investigated the capacity of signal transduc-
tion: in [16], we obtained the Shannon capacity of two-state
Markov signal transduction under arbitrary inputs, and showed
that the capacity for multiple independent receptors has the
same form [17]. Related channel models have been studied
in the information-theoretic literature, such as the unit out-
put memory channel [18], the “previous output is the state”
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(POST) channel [19], [20]; capacity results for some channels
in these classes were recently given in [21].

The present paper focuses on the mutual information
and capacity of finite-state signal transduction channels.
Generalizing previous results, we provide discrete-time, finite-
state channel models for a wide class of signal transduction
receptors, giving Channelrhodopsin-2 (ChR2), Acetylcholine
(ACh), and Calmodulin (CaM) as specific examples. We also
provide an explicit formula for the mutual information of
this class of models under independent, identically distributed
(IID) inputs (Theorem 1). Subsequently, we consider the con-
tinuous time limit as the interval between the discrete-time
instants goes to zero, and find a simple closed-form expression
for the mutual information (Theorem 2), with a natural physi-
cal interpretation. We further give conditions under which our
formula gives the Shannon capacity of the channel, namely
that there is exactly one transition in the Markov chain
that is sensitive to the channel input (Theorem 3), and we
use this result to (numerically) find the Shannon capacity
of ChR.

The remainder of the paper is organized as follows: in
Section II, we give a generalized model for discrete-time,
finite-state signal transduction systems; in Section III, we
discuss signal transduction as a communication system, deriv-
ing expressions for the mutual information and giving our
main results; and in Section IV, we discuss the biological
significance of the results, as well as the limitations of our
analysis.

II. MODEL
A. Physical Model

Signal transduction encompasses a wide variety of physi-
cal processes. For example, in a ligand-gated system, signals
are transmitted using concentrations of signaling molecules,
known as ligands, which bind to receptor proteins. As another
example, in a light-gated system, signals are transmitted using
light, where the receptor absorbs photons. Other possibilities
exist, such as voltage-gated ion channels. The receptor, often
located on the surface of the cell, forms the receiver in the
signal transduction system, and conveys (or transduces) the
signal across the cell membrane; the receptor is the focus of
our analysis.

Signal transduction receptors share a mathematical model:
they can be viewed as finite-state, intensity-modulated Markov
chains, in which the transition rates between certain pairs of
states are sensitive to the input (though other transitions may
be independent of the input). Our main examples in this paper
focus on ligand- and light-gated receptors. For example, in
a ligand-gated system, the binding of the ligand results in a
change in the receptor, which then produces second messen-
gers (normally a different species than the ligand) to convey
the message to the cell interior. In a light-gated system, the
incident photon causes a similar change in the receptor, which
may open to allow an ion current to pass to the interior of the
cell. In either case, there may be a relaxation process which
returns the receptor to the “ready” state, and this process may
be independent of the signal; or other processes that are either

sensitive to or independent of the signal, depending on the
purpose of the receptor.

In the next two sections, we describe the Markov chain
model for receptors, both in continuous and in discrete time.
Although we focus on ligand- and light-gated receptors, we
emphasize that our framework is general enough to include
other kinds of receptors.

B. Continuous Time: Master Equation Kinetics

Receptors are finite-state Markov chains. For a receptor with
k discrete states, there exists a k-dimensional vector of state
occupancy probabilities p(¢), given by

p(t) = [p1(t), p2(t), ..., p(1)], )

where p;(t) represents the probability of a given receptor
occupying state i at time ¢. The environmental conditions at
the receptor, such as light level or ligand concentration, are
known as the input x(t).

The chemical kinetics of the receptor are captured by a
differential equation known as the master equation [22]. Let
@ = [q;j ()] represent a k x k matrix of per capita transition
rates, where ¢;;(z) represents the instantaneous rate at which
receptors starting in state i enter state j. It is helpful to visualize
the matrix Q using a graph:

o There are k vertices, representing the states; and

e A directed edge is drawn from vertex i to j if and only
if g;j(z) > 0 for some x.

Changing from one state to another is called a transition, so
the graph corresponding to Q depicts the possible transitions.
A transition { — j may be sensitive, i.e., g;; varies as a function
of the input x(¢), or insensitive, q;; is constant with respect to
x(1).
Using Q, the master equation is given by
RO _ 1t @
t

We use the notation from [23]:

o States take a compound label, consisting of a state prop-
erty and a state number. The state number is unique
to each state, but the state property may be shared by
multiple states. For example, in each state the recep-
tor’s ion channel might be either open O or closed C;
the state label C; means that in state 1 the channel
is closed, and Oo means that in state 2 the channel is
open. In this paper we use the state number rather than
the state property. (Since we show that the state num-
bers form a Markov chain, in general the state properties
form a hidden Markov chain; we discuss this further in
Section IV.)

e We assume that rates which are sensitive to the input
are directly proportional to the input x(#). For example,
q12z(t) is the transition rate from 1 — 2, which is sen-
sitive, while ¢31 is the transition rate from 3 — 1, which
is insensitive.

o The ith diagonal element of Q is written R;, and is set
so that the ith row sums to zero (so, if x(¢) appears in the
ith row, R; may depend on x(¢)).
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Fig. 1. Depiction of allowed state transitions for ChR2. Sensitive transitions
are depicted with bold arrows. States are labelled by their ion channel state:
{C, O} for closed and open, respectively; state number is in subscript. Dashed
lines surround all states in either the closed or open state. Transition rates,
listed in Table I, correspond to the vertices associated with each directed edge:
for example, the rate from state Og to state C3 is ¢23.

TABLE I
RATE PARAMETERS FOR CHR2, ADAPTED FROM [6], WHERE
z(t) € [0,1] REPRESENTS THE RELATIVE LIGHT INTENSITY

Parameter from [6] Units
qi2z(t) (5x10%)z(t) | s T
q23 50 s !
q31 17 s71T

Taking sensitive rates to be proportional to the signal x(f) is
a key modeling assumption; it is satisfied for the examples
we consider, but there exist systems in which the signal acts
nonlinearly on the rate.

The following three examples illustrate the use of our nota-
tion, and give practical examples of receptors along with their
transition graphs and rate constants.

Example 1 (Channelrhodopsin-2): The Channelrhodopsin-
2 (ChR2) receptor is a light-gated ion channel. The recep-
tor has three states, named Closed (C;), Open (O2), and
Desensitized (C3). The channel-open (O) state O is the only
state in which the ion channel is open, passing an ion current.
The channel-closed (C) states, C; and Cg, are distinct in that
the receptor is light-sensitive in state Cy, and insensitive in
state C3 [6]. The rate matrix for ChR2 is

Ry qpz(t) 0
Q=10 Ry 023
431 0 R3

3

where z(t) € [0,1] is the relative intensity. To keep the row
sums equal to zero, we set Ry = —qioz(t), Ry = —¢o3,
and R3 = —q31. Fig. 1 shows state labels and allowed state
transitions. Parameter values from the literature are given in
Table I.

Example 2 (Acetylcholine): The Acetylcholine (ACh)
receptor is a ligand-gated ion channel. Following [5], we
model the receptor as a conditional Markov process on five

Fig. 2. Depiction of allowed state transitions for ACh. Sensitive transitions
are depicted with bold arrows. States are labelled by their ion channel state:
{C, O} for closed and open, respectively; state number is in subscript. Dashed
lines surround all states in either the closed or open state. Transition rates,
listed in Table II, correspond to the vertices associated with each directed
edge: for example, the rate from state Oo to state Cg is g23.

TABLE II
RATE PARAMETERS FOR ACH, ADAPTED FROM [5], WHERE x(?)
REPRESENTS THE MOLAR CONCENTRATION OF ACH IN MOL//.
HERE WE USE A RANGE OF z(t) € [10~7,1075]

Parameter | Name in [5] Value/range Units
q12z(t) kiox (5 x 10%)z(t) | s !
q14 a 3 x 103 s 1
q21 2k* 0.66 s 1
923 s 5 x 102 s—1
q32 Ba 1.5 x 10% s—T
q34 2k_o 4% 103 s—1
q41 51 15 s~ 1
q43$(t) kyox (5 X 108)z(t) s T
q45 k_1 2 x 102 s~ 1
gsax(t) 2k (1 x10®z(t) | s !
states, with rate matrix
Ry qox(t) 0 q4 0
@1 Ry 3 0 0
Q=10 432 Rs 434 0 4)
Q1 0 q137(t) Ry Qs
0 0 0 gsaz(t) Rs

There are three sensitive transitions: qiox(t), ga32(t), and
gs42(t), which are proportional to ligand concentration x(7).
For the purposes of our analysis, we use a range of z(¢) €
[10~7,1075]. Fig. 2 shows the allowed state transitions.

The states in ACh correspond to the binding of a ligand to
one of two binding sites on the receptor. In state Cs, neither
site is occupied; in states C4 and O1, one site is occupied; and
in states C3 and O9, both sites are occupied.

Table II gives parameter values; the concentration of ACh,
x(t), is measured in mol//.

The same state-naming convention is used in the figure as
with ChR2: states with an open ion channel are O and Oo;
states with a closed ion channel are C3, Cy4, and Cs.

Example 3 (Calmodulin): The Calmodulin (CaM) receptor
is a ligand-gated receptor. The CaM receptor consists of four
binding sites, two on the C-terminus of the CaM protein and
two on the N-terminus [24]-[26]. Each end of the protein can
bind 0, 1, or 2 calcium ions, leading to nine possible states. For
CaM, rather than an ion channel, it is important whether the
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Fig. 3. Depiction of allowed state transitions for CaM. Sensitive transitions
are depicted with bold arrows. States are labelled by the status of the C or N
end of the receptor: () if neither end is completely bound; C if the C end is
completely bound; N if the N end is completely bound; and NC if both ends
are completely bound. Transition rates, listed in Table III, correspond to the
vertices associated with each directed edge.

TABLE III
RATE PARAMETERS FOR CAM, ADAPTED FROM [4], WHERE
z(t) € [10~7,10~6] REPRESENTS THE MOLAR CONCENTRATION
OF CALCIUM IN MOL/{

Parameter Name in [4] Value/range Units
q01%(t), g34w(t), ge7w(t) kon(T),N (7.7 x10%)=z(t) | s 1
q10, 443, 976 oft(T),N 1.6 x 10° s 1T
qi2x(t), qasx(t), qrsz(t) kon(r),N (3.2 x 100z (¢) s T
g21, q54, 987 oft(r),N 2.2 x 10% s 1
q032(t), qraz(t), g2s2(t) | kon(my,c | (84 x10Max(t) | s7T
430, q41, 952 kom(T),C 2.6 x 103 s~ 1
g36%(t), qarz(t), gs8x(t) | kon(m),c (25 x10M)x(t) | s7T
q63> 974, 985 kosr(r),C 6.5 s~ 1

C or N end of the receptor is completely bound (i.e., has both
binding sites occupied by ligands). This property is represented
by four symbols: ) if neither end is completely bound; C if
the C end is completely bound; N if the N end is completely
bound; and NC if both ends are completely bound.

State configuration and allowed transitions are depicted in
Figure 3. The rate matrix is given in (5) as shown at bottom of
this page, with values given in Table III, and where the molar
concentration of calcium is z(t) € [10~7,1079].

For each of the preceding examples, the rate constants

IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 4, NO. 1, MARCH 2018

differently in different sources (see [27] for different rate
constants for ChR2).

C. From the Master Equation to Discrete-Time
Markov Chains

The continuous-time master equation for the receptor
dynamics (2) describes the evolution of a conditional probabil-
ity p(t) = E[Y (t)| Fx (t)], where Y(¢) is the continuous time,
discrete state cadlag process giving the channel state, Fx (t) is
the filtration generated by the input process X(¢), and E[: | ]
is conditional expectation [28]. Establishing the appropriate
ensemble of input processes and analyzing mutual information
and capacity involve technical issues that do not shed light on
the nature of biological signal transduction. Therefore we do
not undertake a rigorous analysis of the continuous-time com-
munications channels described by (2) in this paper. Rather,
we introduce a discrete-time, discrete-state channel, motivated
by the continuous-time channel, which can be rigorously ana-
lyzed, and study its properties both with a fixed timestep At,
and later in the limit At — 0. The discrete-time Markov chain
model allows us to rely on capacity results for discrete-time
Markov channels.

We obtain a discrete-time approximation to the master
equation by writing
dp(t) _ p(t+ Al —p(t)

0 p(t)Q = As

+ o(At), as At — 0,
(6)

where we simplify the notation by writing Q(x(¢)) as simply
Q. Manipulating the middle and right expression in (6) gives

p(t+At) = Atp(t)Q + p(t) + o(At) (7
= Atp(t)Q + p(t)I + o(At) (®)
=p(t)(I + AtQ) + o(At), as At —0, (9)

where [ is the identity matrix. In order to arrive at a discrete-
time model, we introduce the approximation {p;}ien,
satisfying

p; = P(iAt) + o(At), as At — 0, (10)
and arrive at a discrete-time approximation to (6),
Pi+1 =Pi(l + At Q). (1D

Thus, we have a discrete-time Markov chain with transition
probability matrix

depend on environmental conditions, and thus can be reported P =1+ AtQ. (12)
—RO qm:t(t) 0 qogx(t) 0 0 0 0 0 ]
q10 Ry q22(t) 0 q142(1) 0 0 0 0
0 921 Ry 0 0 q25% ( t) 0 0 0
30 0 0 R3 a342(t) 0 q362(t) 0 0
Q=10 a1 0 w3 Ry qu52(t) 0 qura(t) 0 ()
0 0 452 0 54 Rs 0 0 a8 (1)
0 0 0 q63 0 0 Rg q67$( t) 0
0 0 0 0 74 0 76 Ry qrsz(t)
| 0 0 0 0 0 85 0 87 Rg
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The matrix P satisfies the conditions of a Markov chain
transition probability matrix (nonnegative, row-stochastic) as
long as At is small enough. However, note that P (and Q)
are dependent on x(f), so the Markov chain is not generally
time-homogeneous if x(¢) is known (see (24)).

III. SIGNAL TRANSDUCTION AS A
COMMUNICATIONS SYSTEM

In this section we give our main results, in which we
describe and analyze signal transduction as a communication
system. A brief roadmap to our results is given as follows:
we first define the communication system in terms of input,
output, and channel; we give the mutual information of the
general discrete-time model under IID inputs (Theorem 1 and
equation (35)); we take the continuous-time limit of the mutual
information rate, showing that the expression for mutual
information has a simple factorization (Theorem 2 and equa-
tion (71)); we give a physical interpretation of the factorization
in (71); we give general conditions under which the Shannon
capacity is satisfied by IID inputs (Theorem 3); and finally,
we give an example calculation using ChR2 (Example 4).

A. Communication Model of Receptors

We now discuss how the receptors can be described as
information-theoretic communication systems: that is, in terms
of input, output, and conditional input-output PMF.

Input: As discussed in Section II, the receptor is sensitive
to given properties of the environment; previous examples
included light intensity or ligand concentration. The recep-
tor input x(¢#) is the value of this property at the surface
of the receptor. The input is discretized in time: for inte-
gers i, the input is x(IAr); we will write z; = =z(iAt).
We will also discretize the amplitude, so that for every ¢,
€ {X1,%2,X3,...,Xp} = X. We will assume that the x;
are distinct and increasing; further, we assign the lowest and
highest values special symbols:

13)
(14)

XL = X1

XH = X

In Section II, we gave the concentrations or intensities over
a range of values (such as z(t) € [0,1] for ChR2). Thus, we
select x| and xy as the minimum and maximum values of this
range, respectively.

Output: In this paper, the output y(#) of the communication
system is the receptor state number, given by the subscript of
the state label: for example, if the state is Cg, then y(f) = 3.
This is discretized to y; = y(iAt). The discrete channel inputs
and outputs form vectors: in terms of notation, we write x =
[x1,22,...,2p] and y = [y1, ¥2,- -, Yn]-

Conditional Input-Output PMF: From (6)—(12), y forms a
Markov chain given x, so

n

112 [ 9i1),

i=1

p(ylx) = (15)

where p(y; | z;, y;—1) is given by the appropriate entry in the
matrix P, and where yq is null.! The following diagram (16)
indicates the conditional dependencies:

X1 X X3 Xy X5

+ + + + +

(Yo) — Y7 — Y9 — Y3 — Yy ---
(16)

As an example, consider ACh: suppose y,—1 = 1, y; = 2,
and z; = xy. Then from (12) and Table II, we have
Py, v, (2 | Lxn) = Atqa(t) = (5 x 10%)xyAt.
From (16) and the definition of P, p(y; | yi—1, %) does not
depend on i; that is, the channel’s input-output structure is
time-invariant.

For a discrete-time Markov chain, the receptor states form
a graph with vertex set ) and directed edges £ C ) x ), with
pair (yi—1,%i) € € if maxgex p(yi | 7i,yi-1) > 0, that is,
for at least some input value there is a direct transition from
y;_1 to y;. Notice that, under this definition, self-transitions
are included in &, even though (for convenience) they are not
depicted in the state-transition diagrams.

We say the transition from state y;_1 to y; is insensitive
to the input, or just insensitive, if, for all z; € X, we have
p(yi | i, vi—1) = p(y; | yi—1) (see Section II-B). Otherwise,
the transition is sensitive. We let S C £ denote the subset of
sensitive edges. (If state y;_1 € Y is the origin for a sensitive
transition, i.e., there is at least one (y;—1,¥; # ¥i—1) € S,
then the self-transition (y;—1, ¥; = y;—1) is normally sensitive
as well, but this condition is not required for our analysis.)

For a channel with inputs x and outputs y (both of
length #n) the mutual information /(X; Y) gives the maxi-
mum information rate that may be transmitted reliably over
the channel for a given input distribution. Mutual information

is given by
Z p(x p(y [x)
p(y)
where p(y|x) is the cond1t10na1 probability mass function
(PMF) of Y.
As n — oo, generally I(X; Y) — oo as well; in this case, it
is more useful to calculate the mutual information rate, which
we introduce in the next section.

p(y | x)log Y 1E (17)

B. Receptor IID Capacity

Our focus in the remainder of this paper is on IID input
distributions. Although IID inputs may not be realistic for
chemical diffusion channels, such as for ligand-gated recep-
tors (as concentration may persist for long periods of time),
they can be capacity-achieving in these channels (see [16]);
moreover, [ID input distributions may be physically realistic
for light-gated channels.

Starting with (17), where x and y are both of fixed and finite
length n, the Shannon capacity C(n) is found by maximizing
I(X; Y) with respect to the input distribution p(x), i.e.,

C(n) =max I(X;Y). (18)
p(%)

INotation: (1) We will drop subscripts if it is unambiguous to do so, i.e.,
normally p(x) signifies px (z); (2) We say a variable is “null” if it vanishes
under conditioning, i.e., if yq is null, then p(yy | 21, o) = p(y1 | z1)-



32 IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 4, NO. 1, MARCH 2018

where the limit is taken over all possible length-n input
distributions p(x) (not necessarily IID).

If the input p(x) is restricted to the set of IID input dis-
tributions, which is well defined for each n (ie., p(x) =
[T p(2)), then I(X; Y) is also well defined for each n
(see (17)). Furthermore, for each n we have the IID capacity,
written Cijq(n):

Cyq(n) = max I(X;Y). (19)
p(=i)

where the maximum is taken over all possible settings
of p(z;).

We can use (17) and (19) to obtain information rates per
channel use. For a given IID input distribution p(x), the IID
mutual information rate is given by

Z(X;Y) = lim lI(X;Y).

n—o00 7,

(20)
Furthermore, the maximum IID information rate is given by

. 1
Giyg = lim_ - Ciia(n).

2L

We derive these quantities in the remainder of the section, in
which it will be clear that the limits in (20), (21) exist. We
start by deriving /(X; Y) under IID inputs, and showing how it
is calculated using quantities introduced in Section IL. Finally,
in Theorem 1, we give an expression for Z(X; Y'), and show
that I(X; Y) = Ciid-

Recall p(y!x) from (15). Under IID inputs, it can be
shown (see [16], [18]) that the receptor states Y™ form a
time-homogeneous Markov chain, that is,

n
p(y) =[] (i | vi-1), (22)
i=1
where g is again null, and where
(23)

p(i | yio1) =Y p(yi | 26, yio1)p().

Furthermore, let P represent the transition probability matrix
of Y. Recall (12), in which P was dependent on x; using (23),
we can write

P = E[P] = I + AtE[Q)], (24)

and since the sensitive terms in P and Q are assumed to be
linear in x(¢), we replace x(¢) in these terms with E[x] to form
P and Q = E[Q)], respectively.

Using (15) and (22), (17) reduces to

oV o Vloe P % Yio1)
I(XvY)*ZZZZp(yu zvyzfl)lg p(yz‘|yi71) .

=1 ¥ Yi-1 T

(25)

Recall that a transition may be sensitive ((y;_1,%;) € S)
or insensitive ((y;—1,y;) € S). For terms in (25), consider the
insensitive transitions:
p(yi | 7, yi-1)

p(yi | yi-1)
p(yi | yi—1)
p(yi | yi-1)

p(Yi, Ti, yi—1) log

= p(¥s, i, yi—1) log (26)

27)
(28)

= p(yi, 7, yi—1)log 1
=0.

where (26) follows since the transition is insensitive, and is
not a function of z;; see (23). Thus for IID inputs, the mutual
information (25) is calculated using the sensitive transitions
only, i.e., those transitions in §. With this in mind, we can
rewrite (25) as

1K) =3 S 3 bl s, i) log P T80 (09

=1 (g, y)es @ p(yi | yi-1)

n
P\Yi| Zi,Yi—1
=3 (il @, vim1)p(yio1)p(wi) log 2o |2 vio1)
ey p(yi | yi-1)

(30)

where we let A; = {yi, yi—1,% : (¥i,vi—1) € S?,1; € X},
i.e., the same terms as the sum in (30), for the sake of brevity.
Also note that (30) follows from (29) because the input X
is 1ID.

Now consider the individual PMFs in (30), starting with
p(yi|z;, yi—1). All transitions in S are dependent on the input
z;, and throughout this paper we assume that the sensitive
transition rates depend linearly on the input signal intensity.
Thus (recall (12)) for non-self-transitions (y;_1,y;) € S (i.e.,

Yie1 7 Yi)s

p(yz | Ly, yi—l) = Qyiflyixz‘At 3D
For self-transitions in S (i.e., y;—1 = y; = y) we have
Py, X, Y1 (Y | 7is y)
=1- Z Qyy' Ti — Z Gyy'| At, (32)
Y'#y,(y,y)eS v'#Y,(v ) ES

as seen in the diagonal entries of (12). Similarly, the terms
p(y; | yi_1) can be obtained using (23), (24); we replace z;
in (31), (32) with 7.

The terms p(y;—1) represent the steady-state marginal
probability that the receptor is in state y; for compact nota-
tion, let 7y, , = p(y;—1). If the input x is IID, as we
assume throughout this paper, then my, _, exists if the Markov
chain is irreducible, aperiodic, and positive recurrent; these
conditions hold for all the examples we consider (recall
(22)-(24)).2

Define the partial entropy function

L 170
and let
H(p) = —d(p) — ¢(1 - p) (34)

represent the binary entropy function. Then we have the
following result.

2For clarity, although 7y may be written with a time-indexing subscript,
e.g., Ty, , this refers to the steady-state distribution of state y; € ), and does
not imply that 7y changes with time.
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Theorem 1: For an IID input distribution p(z;), the mutual
information rate Z(X; Y) is given by

I(X;Y)= Y, my (Z p()o(p(yi | =iy yi-1))
(9171791)65 & €X
- ¢< > pla)p(yi | =, %1))) ~
T, €X
(35)
Furthermore, Cjjq = max,,) Z(X; Y).

Proof: Divide the terms in (30) into the i = 1 term, and
all the remaining terms. Let T7(p(x;)) represent the i = 1
term, emphasizing its dependence on the IID input distribution
p(x;), so that

) = . o) Tog 2L 71 90)
T1(p(zi)) = p(y1 | =1, y0)p(y1)p(21) log L1 10) 36)

p(y1 | =)

=p(y1 | z1)p(y1)p(21) log ————=, (37)
p(y1)

where (37) follows since yg is null. Let T5(p(z;), n) represent
the remaining terms, again dependent on p(x;) but also on n,

so that
n) =YY p(yi | zi, vi-1)p(yi—1)p(zi)
= A4,
p(yi | zisyi—1)
p(¥i | yi-1)
= (=1 p(yi | 2, yim1)p(yie1)p(:)
p(yi | i, vi-1)
p(¥i | yi-1)

recalling the definition of A; from the discussion after (30).
Using (20),

x log (38)

x log (39)

7080 ¥) = tim PO ¢ iy DEELD o)
= Zp Yi | iy yi—1)p(yi—1)p(z;)
y 1ogw (41)
p(yi | yi-1)

and (35) follows after some manipulation.

. .'I.‘o show that Ci;q = max,  (q) I(X; Y), recall the. def-
initions of Ci;jq(n) and Cjgq in (19) and (21), respectively.
Referring to p(z;) as p for brevity,

Gia(n) = m;}X(Tl(P) + Ta(p, n)).

Let p; represent the IID input distribution maximizing the

term 7T7(p), and let po represent the IID input distribution

maximizing the term T5(p, n). From (39), ps is independent

of n. Furthermore,

Ti(p2) | Ta(p2,n) lCﬁd(n) < Ti(py) | To(p2,n)
n n n n n

(42)

IN

(43)

Taking the limit throughout (43) as n — oo, the 77 terms
vanish as they are constant with respect to n. Comparing
(39) and (41), po also maximizes Z(X;Y). The result
follows. [ ]

C. Limit of T(X; Y )/ At as At — 0

In this section we consider the continuous time limit of
I(X;Y)/At as At — 0, and give our second main result
(Theorem 2): that in the continuous time limit, the mutual
information rate is expressed simply as a product of the aver-
age flux through sensitive edges, and the relative entropy
between the prior distribution on x, and the posterior given
a transition. While we do not claim to derive the mutual
information rate of the continuous time channel, the continu-
ous time limit of the discrete-time mutual information rate is
a quantity of interest in its own right.

First, we show that the steady-state distribution 7y is
independent of At.

Lemma 1: Suppose my is the normalized left eigenvector
of () with eigenvalue O (see (24)). Define the set 7 so that
At € T if P from (12) is a valid transition probability matrix
for all x € X. Then 7y is the normalized left eigenvector of
P with eigenvalue 1, for all At € 7.

Proof: The proof is given in the Appendix. [ ]

Note that 7 contains all “sufficiently small” At. It follows
from the lemma that the steady state distribution m, is the
same for both continuous and discrete time.

Note that the mutual information rate Z(X; V) in (35) has
units of nats per channel use, and that channel uses have dura-
tion Ar. Moreover, the transition probabilities p(y; | z;, y;—1)
in (31), (32) are linear functions of At. Substituting the
discrete-time transition probabilities (12) into (35), the non-
self-transition probabilities go to zero while the self-transition
probabilities go to 1, so Z(X; Y') — 0 as At — 0. This should
not be surprising: intuitively, as the time step shrinks, less
information can be expressed per time step. However, divid-
ing by At (and obtaining Z(X; Y)/At), the information rate
per second is finite. It is then useful to consider how this rate
behaves as At — 0.

Let 8’ C &S represent the set of sensitive transitions
excluding self transitions, i.e.,

S ={(yi—1, i) : (Yi—1. %) € S, yi—1 # vi}-

Also let S\S’ represent the components of S excluding &’
(i.e., only the sensitive self transitions).

For any edge (y y') define the limiting value of that edge’s
contribution to the mutual information rate, as At — 0, as

(44)

Wy, y) = Alggoé y(Z p()o(p(v' | z,v))
zeEX
- fb(Z p(z)p(y' | :Ey)>>
zeX
(45)

The limit calculation depends on whether y = y'. In case
y # Y, we have p(y' | z,y) = gy zAt (see (31)) and

ZP (ZP p(y |z, y)>

= At{ (Z q:rp(:p)) log q + (Z gp(z)z log :p>

(v 1z,9))
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_ (zz: qxp(x)> log (zx: qxp($)> }

+ o(At), as At — 0" (46)
= qAt(E(zlogz) — E(x)log(E(x))) + o(At),
as At — 0T 47)
= qAt(Ed(z) — ¢(Ex)) + o(At), as At — 0T, (48)
On the other hand, in the case when y = y/,

2 P(@)o(p(y | 2,y)) — 63, p(2)p(y' | 2, y)) = o(Al),
as At — 01, Therefore, these terms do not contribute to the
mutual information.

Using these results, we can rewrite (35) as

I(X;Y)
lim ———* =
A=A 2
(yi-1,9:)€S’
+ >
(yi—1,4:)€S\S’

Using (31), (32), we consider the two additive terms in (49)
separately. For the first term (summing over S'), we use
I’Hbpital’s rule: in the denominator we have (trivially)

d
dAt
and from the numerator, we have

t(Yi—1,vi)

(Yi—1, Yi)- (49)

At =1, (50

d
li —_—
A%Eo dAt Z
(yi—1,y:)ES’

s ( > p(e)d(ay1uziA)

r,eX

- ¢< Z p(Ii)qyzlsziAt>> (51)

r,eX

= dimo >

(Yi—1,¥i)€S’

d
Ty, 1 ( Z p(ﬁ)mﬂqulyﬂiﬁt)

,€EX

d
B m(ﬁ( Z p(Ii)qy11szz‘At>>

T, €X
(52)

P>

(Yi—1,yi)€S’

Tyi—1 ( Z p(Ii)qyzflszi lOg(qyzflszi)

r,eX

- qyzlszIOg(Qyzlsz)> (53)

where 7 =}y 7;p(z;) is the average input concentration.
For the second term (summing over S\&'), a similar derivation
shows that the limit is zero.
Simplifying further, we have
I(X;Y)
im ——=
At—0 At

- 2

(yi—1,yi)€S’

Ty;—1 Z p(xi)qyiflyixi 10g(qy¢71y¢$i)
r,€X

= Qyi1y T 1Og(q%e1yr’f) (54)

- ¥

(yi—1,yi)€S’

Ty 1 qyiflyij 10%(%171 yi)

X

Tyi—1 Qyi—1ys Z p(i)zi log(z;)

(yi—1,4:)ES’ EX
- Z Ty qyi—lyii 10g(q%71y¢)
(yi—1,yi)€S’
B Z Tyt Qyi—1y; T 10g(:f) (55)
(yi—1,yi)€S’
= Z Tyi—19yi—1ys Z p(zi)w; log(z;)
(yi—1,y:)€S’ LEX
B Z Tyt Qyi—1y; T 10g(:f) (56)
(yi—1,yi)€S’
= Z Ty 1 9yi—1ys
(yi—1,9i)€S’
x| > plxi)zilog(z;) — zlog z (57)

r,€X

The steady-state flux J,, .., through an edge (y;—1,¥;) in
the state transition graph is defined as

(58)

Similarly, the net steady-state flux through the sensitive (non-
self) edges in the graph is

‘]yifl v = Ty Qyi_1y: T

Jsr = Z Jyi_1yi (59)
(yi—1,4:)€S’
= Z Ty 1 Qyi 1y T (60)
(yi—1,4:)€S’
Expressing (57) in terms of Jg/, we have
CI(X:Y) 1 o
Aligo % = %JS/ Z p(x;)z; log x; — Tlog T
r,€X
(61)
= Jg Z M log z; —logZ | (62)
T
T, €X
We define
v(z;) =L ("g)xi. (63)
Since v(=;) is positive for all z;, and since
(64)

7
it follows that v(z;) forms a probability distribution, in general
different from p(x;). We discuss the physical interpretation of
Jgr and v(z;) in the next section.
Using v(z;), we can rewrite (62) as

I(X:Y)

Jdim == = T > v(w;)logz; —log (65)

Z v(z;) log z; — Z v(z;)log
r,€X
(66)
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=Js | Y V(:ri)log% (67)
r,€X
B 4 p(z;)m;
=Jg z;{ v(z;) log ()5 (68)
v(z;)
= Js xze;( v(z;) log o) (69)
= Js'D(v | p), (70)

where D(- || -) represents the Kullback-Leibler divergence.
The preceding derivation, including Lemma 1, allows us to
state the following result.
Theorem 2: For finite-state Markov signal transduction
systems described by (12), with IID inputs,

I(;(Q ) )
m —— = JgD
% 0 At s D(v | p),

with Jg/ defined in (60) and v defined in (63).

(71)

D. Physical Interpretation

The factorization in (57) gives us a useful physical
interpretation of the mutual information in this system.

First consider Jg:. Physically, if one watched only for transi-
tions along edge (y;_1, y;) (with the rest of the graph assumed
to be at steady state), Jy, ,y, gives the average rate at which
those transitions would be observed; that is, Jy, ,, is the
mean flux through the transition y;_1 — ;. Thus, Jg is the
average rate through all the sensitive edges, i.e., the net flux.

Now consider D(v || p), and note that the distribution v(z;)
is a posterior distribution of z;. To see this, consider a random
variable y € {0, 1}, with conditional distribution

py|x (L] zi) = ki, (72)

where k is a positive constant (0 < Kk < zi to make a valid
probability), and py | x (0[z;) = 1fpy|X(1f:r¢). The marginal
distribution py (1) is then given by

py (1) = pl@i)py x (1] 3) (73)
= ZP(%‘)H%‘ (74)
S (75)

With this definition, v(z;) is the posterior distribution of x
given y = 1:

p(zi)py|x (1] =)

1) = 76
px |y (i |1) oy (D (76)
— pllen (77)

RT
= PO iy, (78)

x

Physically, consider the example of a ligand-gated channel
where z; is the concentration of ligands near the receptor at
input i. With 7 € {L,H} (i.e., inputs 2 and x), suppose we
select one molecule at random from those near the receptor,

and set y = 1 if the molecule is a ligand; y = 0 otherwise.
Then py|x(1[a2L) < z, and py|x (1| ay) oc zy, with £ as
the constant of proportionality; this satisfies (72). For example,
suppose 1z is measured in number concentration of ligands,
i.e., number of ligands per volume V. Then py | x(1|z;) =
z;/n (for i € {L,H}), where n is the number concentra-
tion of all molecules, ligands and otherwise, near the receptor,
and K = 1/n.

In general, physical systems where the probability of
response p(y | x) is directly proportional to the input x fit into
this framework, emphasizing the importance of this modeling
assumption made in Section II.

E. Shannon Capacity of Receptors With a Single Sensitive
Non-Self Transition

We now give our third main result, showing that the
Shannon capacity C is equal to the IID capacity Cj;q for
a number of sensitive transitions |S'| < 1, and further-
more that the capacity-achieving distribution has a simple
form. As a consequence, this leads directly to the Shannon
capacity of ChR2; we give this capacity in the exam-
ple below. The result is a generalization of related results
in [16].

Recall 8’ C S represent the set of transitions, excluding
self-transitions.

Theorem 3: For any receptor with |S’] <1,

1) Cjiq is achieved with all probability mass on 2 and zy;

and
2) C = Cig.
Proof: The case of |S'| = 0 is trivial: the state is

never sensitive to the input, so Z(X; Y) = 0 for all input
distributions.

Now consider |S’| = 1. We sketch the proof: results in [16]
were presented for a two-state receptor where only one tran-
sition was sensitive; many of the results have the same form.
The first part of the theorem follows from [16, Th. 1], not-
ing from (35) that any system with |S’| = 1 has the same
form, apart from the marginal distribution 7y, ,, which is
held constant in the proof of [16, Th. 1]. The second part
of the theorem follows from [16, Th. 2], noting that C is
only a function of the input distribution in the sensitive
state. u

F. Example

We now give an example calculation of the mutual
information and IID capacity, by which we obtain the channel
capacity of channelrhodopsin.

Example 4 (ChR2): Referring to the rate matrix for
ChR2 (3), there are exactly two sensitive transitions: first,
the transition from Cq to O, represented by g¢ioz(t); and
second, the self-transition from C; to Cy, represented by
Ry = —qiox(t). Thus, S = {(C1,02),(C1,Cy)} and S =
{(C1,02)}.

Suppose X = {z, 24}, i.e., the input light source can only
be off (2) or on (ay). Let pp = Pr(z = z) and py =
Pr(z =2y) =1-p_.
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Recalling the transformation of rates into probabilities (12),
and substituting into (35), we have

I(X;Y) = mc, (pLd(AtqrzaL) + pro(Atgrazn)
— d(pLAtqram + pylAtqiazy))
+ mc, (pLe(1 — Atqraa) + pre(1 — Atqraay)
— ¢(1 — pLAtqr2am. — pHAtqi27H))
(79)

where the first term represents the transition (Cq,0O2), and
the second term represents the self-transition (Cy, Cy), both
of which are sensitive. Continuing the derivation,

I(X; Y) = e, (A (pLAtqram + pyAtqraay)
— pL A (Atqrom ) —pu (Atgraay)) (80)

_ ( 423431 ) &)
423931 + 212931 + 12923
x (H(Atqa7) — pL A (Atgram)
— pu I (Atgr2zn)), (82)

where Z is the average input.

Finally, consider Z(X; Y)/At as At — 0, as in (53). The
steady-state occupancy probability of Cy, 7c,, is independent
of At. Thus, from Theorem 2, we have

I(X;Y)

——= =Jg' D 83
Jim T s p ) 53)
= Z Tyi—19yi—1yi

(yi—1,9:)€S’
< |3 wla)log v(z:) (84)
rneX p(%)

L L TH H
= TC, Q12 (pLT log — + py— log T)
T T T T
(85)
412923931
23931 +2q12931 + Tq12423

X X X X
X (pLngoggL—l—pHngog ?H) (86)

In Figure 4, we illustrate the effect of step size on the mutual
information calculation, using (81) for the solid lines (for vari-
ous values of Ar > 0) and (86) for the dotted line (as At — 0).
From this figure, the IID capacity and the capacity-achieving
value of p; may be found by taking the maximum over the
curve of interest. This value clearly changes for different val-
ues of At; however, the IID capacity is around Cjig &~ 65 bits/s,
and the capacity-achieving p; is around p_ ~ 0.99. For any
finite value of At, it is interesting to note that the discrete-
time approximation over-estimates the mutual information as
At — 0.

From Example 4, ChR2 has |S’| = 1. Thus, ChR2 satisfies
the conditions of Theorem 3, and has C' = Cj;q, where Cjg
is given in (86). Performing the maximization numerically, on
the Ar — 0 line, the maximum value of Z(X; Y) is found
near p. = 0.99 where Z(X; Y) = 66 bits/s, which gives the
channel capacity C (sensu Shannon) of channelrhodopsin.

80

Mutual information (bits/s)

i i i
0.80 0.85 0.90 0.95 1.00
Probability of low light intensity p_

Fig. 4. Plot for ChR2, illustrating the effect of At on Z(X; Y) from (81).
The dashed black line represents At — 0. Solid lines, from bottom, represent:
At = 0.01 (blue), At = 0.02 (green), At = 0.04 (red), At = 0.06 (cyan),
At = 0.08 (magenta), and At = 0.1 (tan), all in milliseconds.

A similar calculation can be performed for ACh and
CaM. However, the resulting expressions are not as com-
pact as (86), so we exclude them from the paper. Mutual
information plots for ACh and CaM (from which Cj;q may
also be obtained numerically) are given in Figures 5 and 6,
respectively. However, ACh and CaM both have |S'| > 1
(see Figures 2 and 3), and do not satisfy the condition
in Theorem 3. It remains an open question as to whether
C = C};q for these receptors. The proof of [16, Th. 2] (and of
Theorem 3) relies on the feedback capacity being achieved
by the IID input distribution. However, if there is more
than one sensitive transition, the receiver can use the feed-
back to distinguish between these transitions, and can select
an optimal input distribution for each. Thus, the feedback-
capacity-achieving input distribution depends on the feedback,
and is not necessarily IID. If C = Cj;q, a different proof
technique is required, and we do not address this case.

IV. DISCUSSION

In this paper we have presented a general framework for
signal transduction systems, in which the states of a recep-
tor form a directed graph, some subset of the edges of which
represent transitions with intensities modulated by an exter-
nal signal. This signal provides the channel input, and the
state of the receptor — a trajectory on the graph — repre-
sents the channel output. We illustrate the signal transduction
model, the calculation of mutual information and the IID
capacity for several examples: light intensity transduction
by channel rhodopsin, acetylcholine concentration transduc-
tion by the nicotinic acetylcholine receptor, and transduction
of intracellular calcium ion concentration by the calmodulin
protein.

Several caveats are in order, which qualify our results and
motivate our future work.

In many signal transduction systems, only a subset of
the receptor states engender an observable output signal.
For example, the channelrhodopsin receptor states Cy, Og, C3



ECKFORD AND THOMAS: CHANNEL CAPACITY OF ChR AND OTHER INTENSITY-DRIVEN SIGNAL TRANSDUCTION RECEPTORS 37

Mutual information (bits/s)
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Probablility of low ligand concentration p,

Fig. 5. Plots of Z(X; Y) and Z(X; Z) for ACh, using Ar = 0.02 ms. Solid
line is from (35), while dots represent Monte Carlo simulations.
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Fig. 6. Plots of Z(X; Y) and Z(X; Z) for CaM, using At = 0.002 ms.

Solid line is from (35), while dots represent Monte Carlo simulations.

(see Fig. 1) are not directly observed by the cell in the mem-
brane of which the receptor is embedded; rather it is the
net current (zero for states Cq,C3 and finite for state Os)
that impacts the rest of the cell. Similarly, for the nicotinic
acetylcholine receptor (see Fig. 2) the state of the receptor
as observed by the cell is either “open” (states O1,0s2) or
“closed” (states C3, C4, C5). For the calmodulin receptor, there
are understood to be four functionally distinct states: both
occupied Ca’>*t binding sites on the N-terminus end of the
protein, both occupied Ca’>* binding sites on the C-terminus
end of the protein, all four Ca* binding sites occupied, or
fewer than two on each end (see Fig. 3; dashed lines indicate
physiologically equivalent states). The diagram (87) shows the
general structure of such a channel, with output Z(¢) a function
of the channel state Z = f(Y(¢)) (compare with the diagram
in (16)):

X1 Xo X3 X4 X5

A A A A A
( Yo) — Y1 — Y2 — Yg — Y4
A A A A
Z1 Z Z3 Zy

(87)

By virtue of the information processing inequality, the mutual
information rate between X and Z cannot exceed that between
X and Y. Preliminary results suggest that the size of the differ-
ence — the information gap — depends strongly on the network
architecture, and the positioning of sensitive edges relative to
observable transitions (data not shown). Detailed consideration
of mutual information for Markovian signal transduction chan-
nels with such partially observed outputs will be undertaken
elsewhere.

We have assumed that the directed edges comprising the
receptor’s state transition graph fall into two classes, either
insensitive (fixed transition rates) or sensitive (transition rates
proportional to the input signal intensity). A more realistic
assumption would allow for a dark current (finite transition rate
at zero signal intensity), a nonlinear, monotonically increasing
transition rate as a function of increasing intensity, or a signal-
ing threshold or minimum intensity value. Under the IID input
scenario it is optimal to limit the input values to those induc-
ing the maximal and minimal transition rates, in which case
several more realistic scenarios could in principle be reduced
to the scenario we consider here. For example, a dark current
could be captured by adding an additional insensitive channel
parallel to a sensitive channel.

We have considered a general class of signal transduction
models that are naturally framed as continuous time channels.
Our basic signal transduction channel model process is condi-
tionally Markovian, given the (time varying) input signal. The
simplest model in this class would correspond to Kabanov’s
Poisson channel [29], consisting of a single transition with
rate modulated by the input. In order to simplify the analysis
of such models it is convenient to translate them into anal-
ogous discrete-time models. The general structure of such as
model is a finite state, discrete-time channel in which the prob-
ability transition matrix is modulated by the (discrete time)
input sequence. Our previously-discussed results [16] intro-
duced a minimal such model, the BIND channel, consisting
of a single receptor molecule with two states (bound, B, and
unbound, U) with one transition rate (U — B) sensitive to
the input (ligand molecule concentration) and the other tran-
sition rate (B — U) insensitive. In general, the structure of
a conditionally Markovian signal-transduction channel under
time discretization corresponds to the Unit Output Memory
(UOM) channel class analyzed by Chen and Berger,che0S5.
As mentioned previously, in [19] and [20] Asnani, Permuter
and Weissman present several examples of UOM channels
that they call POST (prior output is the state) channels,
which are also special cases of the channels analyzed by
Chen and Berger. (The BIND channel can be interpreted as a
type of POST channel although it is distinct from the exam-
ples in [19] and [20].) Thus our channel models for channel
rhodopsin, the nicotinic acetylcholine receptor and calmod-
ulin may all be seen as examples of Chen and Berger’s UOM
channel class.

APPENDIX
By definition (see (24))

Ty Q@ =0-my =0, (88)
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SO

wyAtQ =07y =0, (89)

ie., my is also the zero eigenvector of At(Q, for any At.
It is well known that adding / to a matrix adds 1 to each
eigenvalue. Thus,

myP=my(I+AtQ) = (0+ )y =my.  (90)

Uniqueness of 7y, follows from the Perron-Frobenius theorem,
since () is irreducible, so the lemma follows from (90).
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