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ABSTRACT
Deep learning methods have shown great success in pixel-wise
prediction tasks. One of the most popular methods employs an
encoder-decoder network in which deconvolutional layers are used
for up-sampling feature maps. However, a key limitation of the
deconvolutional layer is that it suffers from the checkerboard arti-
fact problem, which harms the prediction accuracy. This is caused
by the independency among adjacent pixels on the output feature
maps. Previous work only solved the checkerboard artifact issue of
deconvolutional layers in the 2D space. Since the number of inter-
mediate feature maps needed to generate a deconvolutional layer
grows exponentially with dimensionality, it is more challenging to
solve this issue in higher dimensions. In this work, we propose the
voxel deconvolutional layer (VoxelDCL) to solve the checkerboard
artifact problem of deconvolutional layers in 3D space. We also
provide an efficient approach to implement VoxelDCL. To demon-
strate the effectiveness of VoxelDCL, we build four variations of
voxel deconvolutional networks (VoxelDCN) based on the U-Net
architecture with VoxelDCL. We apply our networks to address
volumetric brain images labeling tasks using the ADNI and LONI
LPBA40 datasets. The experimental results show that the proposed
iVoxelDCNa achieves improved performance in all experiments.
It reaches 83.34% in terms of dice ratio on the ADNI dataset and
79.12% on the LONI LPBA40 dataset, which increases 1.39% and
2.21% respectively compared with the baseline. In addition, all the
variations of VoxelDCN we proposed outperform the baseline meth-
ods on the above datasets, which demonstrates the effectiveness of
our methods.

CCS CONCEPTS
• Theory of computation → Structured prediction; • Com-
puter systems organization → Neural networks; • Comput-
ing methodologies → Artificial intelligence;
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1 INTRODUCTION
In recent years, deep learning methods play an important role in
various computer vision tasks such as image classification [14],
data completion [17], action recognition [12] and pixel-wise pre-
diction [4, 11, 26]. Some key network layers like convolutional
layers [15], pooling/unpooling layers [21, 34], deconvolutional lay-
ers [28] and some well-known models like generative models [9]
and encoder-decoder architectures [21, 23] are frequently used
for these tasks. In pixel-wise prediction tasks, U-Net [23] with an
encoder-decoder architecture is commonly used. The encoder path
contains convolutional and down-sampling operations to extract
high-level feature maps from raw images, while the decoder path
recovers feature maps to the original spatial size using up-sampling
operations. The architecture of an encoder is very similar to a
classic convolutional neural networks which have been studied
extensively [16, 23]. On the other hand, less attention is paid to
the decoder path. There are three primary ways to up-sample fea-
ture maps; namely deconvolution, unpooling and resampling with
interpolation [2]. In practice, deconvolutional layers are the most
commonly used. However, a key problem with the deconvolutional
layer is the presence of the checkerboard artifact issue [1, 22], which
is caused by the independence among the adjacent pixels on the
output feature maps.

To solve the checkerboard artifact problem, some studies fo-
cused on improving the post-processing [5], which made the whole
process not fully trainable. Some other work focused on adding
smooth constraints [13], which resulted in a more complex pro-
cess. In contrast, the pixel deconvolutional networks [7] solved
the checkerboard artifact problem by generating the intermediate
feature maps sequentially, thereby building direct relationships
among adjacent pixels on output feature maps. This is an effective
way while keeping the learning process trainable. However, it only
solved this issue in 2D deconvolutional layers. The checkerboard
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artifact issue also exists in 3D deconvolutional layers, and it is more
challenging due to the fact that the number of intermediate maps
needed to generate one deconvolutional layer grows exponentially
with dimensionality. There are a total of 2d intermediate feature
maps needed when generating a deconvolutional layer given a d
dimensional input.

In this paper, we propose the voxel deconvolutional layer (Vox-
elDCL) to address the checkerboard artifact of 3D deconvolutional
layers. We build four variations of VoxelDCLs, which are known
as iVoxelDCLc, iVoxelDCLa, VoxelDCLc, and VoxelDCLa, based
on different approaches when generating the intermediate feature
maps. The iVoxelDCLc and iVoxelDCLa use the input along with
the generated intermediate feature maps to generate new interme-
diate feature maps by concatenation and addition, respectively. The
VoxelDCLc and VoxelDCLa only use the generated intermediate
feature maps to generate new intermediate feature maps. We also
provide an efficient implementation method to improve the compu-
tational efficiency by reducing unnecessary dependencies among
the intermediate feature maps. To demonstrate the effectiveness
of the proposed VoxelDCL, we build the voxel deconvolutional
networks (VoxelDCN) based on the U-Net with four variations of
VoxelDCL and apply them to the volumetric brain image labeling
task [6, 29, 31, 33, 37] using the Alzheimer’s disease neuroimaging
initiative (ADNI) [20] and the LONI LPBA40 [25] datasets. The
results show that our methods outperform the U-Net with regular
deconvolutional layers significantly in terms of dice ratio. Specifi-
cally, the iVoxelDCLa achieves the best performance on both the
ADNI and LONI LPBA40 datasets with 83.34% and 79.12% dice ratio,
respectively.

2 RELATEDWORK
2.1 Deep Learning for Pixel-Wise Prediction
In computer vision, many problems can be formulated as assigning
a label to every pixel of an image, such as semantic segmenta-
tion [11, 21, 23, 26]. The goal of semantic segmentation is to label
each pixel of the image so that pixels belonging to the same class
get the same label. In recent years, convolutional neural networks
(CNNs) have had great success in computer vision and brought
great improvement in semantic segmentation tasks. The fully con-
volutional network (FCN) [26] can generate segmentation maps
with an input image of any size. It is much faster and more effective
than the traditional patch-wise classification methods [3]. Multiple
encoder-decoder based architectures [16, 23] are also proposed. The
encoder part reduces the spatial sizes with pooling layers and ex-
tracts high-level feature maps while the decoder part recovers them
to the original spatial size. U-Net [23] is one of the most widely
used networks in natural and medical image segmentation tasks.

2.2 Operations for Up-Sampling
To recover the spatial size of the extracted feature maps to the orig-
inal size as the input image, up-sampling layers are essential in the
decoder path of a dense prediction network. Unpooling, resampling
with interpolation, and deconvolution are the most commonly used
operations for up-sampling. Unpooling layers [21, 34] put each ac-
tivation back to its original location based on the recorded location
of maximum activation selected during the corresponding pooling

operations. Up-sampling layers using resampling with interpola-
tion [2] scales an feature map to the desired size and calculates the
value of each pixel using an interpolation method such as bilinear
interpolation. In the above two methods, there is no learning pa-
rameters required in the operation. The third method, known as the
deconvolutional layer [1, 22, 28], is the most popular method for
up-sampling tasks. It up-samples feature maps by using operations
that can be formulated as convolutional operations with learned
kernels. More details are explained in Section 3.1. However, decon-
volutional layers suffer from the checkerboard artifact issue. This is
because there is no direct relationship among adjacent pixels on the
output feature map. To solve this problem, pixel deconvolutional
networks [7] built direct relationship among adjacent pixels on
the output of a deconvolutional layer by generating intermediate
feature maps sequentially. This process is different in traditional
deconvolutional layers where the intermediate feature maps are
generated independently. Details of the concepts of intermediate
feature maps and the sequential process are given in Section 3. The
dependencies among the intermediate feature maps add direct rela-
tionships among adjacent pixels on the output feature map, thereby
alleviating the checkerboard artifact in 2D deconvolutional layers.

2.3 3D Brain Image Labeling
3D brain image labeling is an important task since plenty of quan-
titative brain image analysis often relies on it. It becomes a popular
topic in the medical image analysis field. In computer vision area,
this task can be seen as a 3D semantic segmentation task [35, 38].
Some existing methods [8, 18, 24, 30, 32, 36] use multi-atlas based
labeling models to predict the labels of new images. These methods
first transfer the segmentation labels from pre-labeled atlases to
a new image and then apply the label fusion method to combine
the transferred labels as predicted results. There are also several
learning-based labeling methods using random forests, support vec-
tor machine, and neural networks [19] to train a prediction model.
Among these methods, neural networks have an unique advantage
in that it does not require hand-crafted feature extraction in ad-
vance. It enables end-to-end learning, which improves efficiency of
the training process. In this work, we introduce a novel deep neural
network architecture and apply the variations of this network on
the 3D brain image labeling task.

3 VOXEL DECONVOLUTIONAL NETWORKS
In this section, we introduce the concept of deconvolutional layers
and other related operations, including transposed convolutional
layers [28] and sub-pixel convolutional layers [1, 22, 28]. We show
the equivalence among these concepts in the 1D case. After that, we
describe 2D and 3D deconvolutional layers in the form of sub-pixel
deconvolutional layer and show the checkerboard artifact that they
suffer [22]. We discuss existing approaches to solve the checker-
board artifact and propose the voxel deconvolutional layers and
networks, which can overcome the checkerboard problem of 3D
deconvolutional layers. We show that our methods achieve better
labeling performance on the Alzheimer’s disease Neuroimaging Ini-
tiative (ADNI) [20] and the LONI LPBA40 [25] datasets as compared
with other baseline methods.
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Figure 1: Illustration of a 1D deconvolutional layer. The green and yellow colors represent the odd and even columns of the
kernel, respectively. ⊕ denotes the periodical shuffling and combination operation. y is the input and x̃ is the output from the
deconvolutional layer. By multiplying each column of the weight matrix C with y, we can obtain its corresponding output x̃i
(see (a)). Since all the odd columns of x̃ are computed only byw1 andw3 and all the even columns of x̃ are computed byw2 and
w4, the operation can be decomposed into two convolutions with two independent kernels of sizes 1 × 2, resulting in kernel1
and kernel2. The intermediate results are then shuffled and combined to obtain the final output x̃ . x̃ can be cropped by two
pixels from both ends to make the up-sampling factor to be 2.

3.1 Deconvolutional Layer
Deconvolutional layers can be viewed as a form of convolutional
layers. The relationship between convolutional and deconvolutional
layers can be best understood when both of them are considered as
fully connected layers. Specifically, convolutional layers can be con-
sidered as fully connected layers with sparse connection matrices.
Let us consider the following example in 1D. Given an input vector
x ∈ R8, we pad the input by adding two zeros to both ends of x ,
yielding the padded input x̃ ∈ R12. We then apply a 1D convolution
with a stride of 2 and a kernel of size 4 to produce an output vector
y ∈ R5. This convolution operation can be equivalently viewed as
a fully connected operation as

y = Cx̃ , (1)

with a 5 × 12 sparse connection matrix C , defined as follows:

C =



w1 w2 w3 w4 0 0 0 0 0 0 0 0
0 0 w1 w2 w3 w4 0 0 0 0 0 0
0 0 0 0 w1 w2 w3 w4 0 0 0 0
0 0 0 0 0 0 w1 w2 w3 w4 0 0
0 0 0 0 0 0 0 0 w1 w2 w3 w4



. (2)

In this example, y can be cropped by one pixel from the right end
to make the down-sampling factor to be 2.

The above example reduces x to a lower-dimension by a con-
volution of stride 2. A similar operation can be used to convert a
lower-dimensional input to a high-dimensional output, resulting in
the deconvolutional operation. Specifically, assume y is the input

and x̃ is the output, then their relationship can be expressed as

x̃ = CTy, (3)

where C is defined in Eq. (2). It can be seen from Eq. (3) that, given
a lower-dimensional input, a higher-dimensional output can be ob-
tained via a fully connected layer with a sparse connection matrix.
This results in the so-called deconvolutional layer. Since deconvo-
lution layers use the transposed weight matrix of its corresponding
convolutional operation C , it is also known as transposed convolu-
tions.

Since C is a sparse matrix, another way to understand the de-
convolutional layer is to interpret it as a standard convolution.
Specifically, it can be considered as performing multiple indepen-
dent convolutions on the input followed by a periodical shuffling
operation [27]. An example is given in Figure 1 to illustrates this
idea.

3.2 3D Deconvolutional Layer
In the previous section, we describe how to understand deconvo-
lutional layers as a form of convolutional layers in 1D space. The
same strategy can be used in 2D and 3D spaces as well. In 2D case,
the first step is to generate 4 intermediate feature maps from padded
input. This step simply requires 2D convolutional operations. Next,
these feature maps are periodically shuffled and combined together
to form the output. The same steps can be applied to perform de-
convolutional operations in 3D space, which will be discussed next.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1228



0 1 1 2 1,2 3 1,2,3 4

1,2,3,4 5 1,2,3,4,5 6 1,2,3,4,5,6 7 1,2,3,4,5,6,7 8

0 1 0 2 0 3 0 4

0 5 0 6 0 7 0 8

Deconvolution
Voxel deconvolution

Deconvolution
Voxel deconvolution

(a)

(b) (c) (Output)

71 2 3 65 840

Figure 2: Illustration of the 3D deconvolutional layer and voxel deconvolutional layer. For convenience, we use number 0 to
denote the input, and number 1 - 8 to denote the eight intermediate feature maps which are generated from convolutional
operations. The input size is 2 × 2 × 2 and the desired out size is 4 × 4 × 4. The size of each intermediate feature map is also
2×2×2. (a) shows how the intermediate featuremaps are generated independently from eight different kernels in a regular 3D
deconvolutional layer. This independent generation process is also indicated in the lower orange bar in (c). (b) shows how the
intermediate feature maps are generated sequentially in a voxel deconvolutional layer. The ith feature map are built on the
1st , · · · , (i−1)th featuremaps. In iVoxelDCLa and iVoxelDCLc layers, input data is also included in this process. This sequential
generation process is also indicated in the lower blue bar in (c). (c) displays the periodically shuffling and combination process
of eight feature maps to form the final output of a deconvolutional layer.

Assume X ∈ Rl×m×n is the input and Y ∈ R2l×2m×2n is the
output of a deconvolutional layer. Here the up-sampling factor is 2.
We first perform eight 3D convolutional operations on the input.
Each of such operation generates one intermediate feature map Yi
with size l ×m × n given by

Yi = X ⊗ ki , i = 1, 2, · · · , 8, (4)

where ⊗ denotes the convolutional operation,Yi denotes the ith fea-
ture map and ki denotes the corresponding kernel. We add padding
to the input in order to make sure that spatial size remains the same.
Finally, these 8 feature maps are periodically shuffled and combined
together as

Y = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5 ⊕ Y6 ⊕ Y7 ⊕ Y8, (5)

where ⊕ denotes the periodical shuffling and combination operation,
as illustrated in Figure 2.

Compared to deconvolutional layers in 2D space, the number of
feature maps needed in 3D space grows exponentially. In general,
assume the up-sampling factor is 2 and the dimensionality is d, the
number of intermediate feature maps need to generate one decon-
volutional layer is 2d . This indicates that deconvolutional layers in

higher dimensional space are much more complex and computa-
tionally expensive than those in lower dimensional space. These
are factors to consider when we introduce voxel deconvolutional
layers in Section 3.3.

3.3 Voxel Deconvolutional Layer
When we consider a deconvolutional layer as the shuffled combi-
nation of several intermediate feature maps, discontinuities among
adjacent pixels can be observed frequently. This is not surprising
since the adjacent pixels are coming from independent feature maps.
This is the checkerboard artifact problem that all deconvolutional
layers suffer, no matter calculated in 2D or 3D space.

Gao et al. [7] solved the checkerboard artifact of deconvolutional
layers in 2D space by adding relations to the intermediate feature
maps. Inspired by [7], we propose the voxel deconvolutional layer to
solve the same issue in 3D space. Aswementioned in Section 3.2, the
computational cost and complexity of deconvolutional operations
in 3D space are much higher than those in 2D space, therebymaking
this task challenging.

Back to the example in Section 3.2, we use X ∈ Rl×m×n to
denote the input and Y ∈ R2l×2m×2n to denote the output. The
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eight intermediate feature maps are Y1,Y2, · · · ,Y8, each of size
l ×m × n.

In voxel deconvolutional layers, Y1,Y2, · · · ,Y8 are formed se-
quentially to build direct relations in-between. SupposeY1,Y2, · · · ,Yi−1
are already generated,Yi will be built onX togetherwithY1,Y2, · · · ,Yi−1
instead of simple X as in traditional deconvolutional layers. The
generation of Y1 remains the same as it is the first intermediate fea-
ture map. There are mainly twoways to combineX ,Y1,Y2, · · · ,Yi−1
together; namely addition or concatenation.

We first introduce the naming conventions of the proposed voxel
deconvolutional layers and corresponding networks in below:
• Suffix c: We use concatenation when combining multiple in-
puts to generate a new intermediate feature map.
• Suffix a:We use addition when combining multiple inputs to
generate a new intermediate feature map.
• Prefix iVoxel: Both the original input and existing intermedi-
ate feature maps are included to generate a new feature map.
• Prefix Voxel: Only existing intermediate feature maps are in-
cluded to generate a new feature map.
We first introduce iVoxelDCLc. In iVoxelDCLc, the input X

and intermediate feature maps Y1,Y2, · · · ,Yi−1 are concatenated
together to form the input to generate Yi as

Y1 = X ⊗ k1;Yi = [X ,Y1, , · · · ,Yi−1] ⊗ ki , for i = 2, · · · , 8, (6)

where ⊗ denotes a convolutional operation, [·, ·] represents the con-
catenation and ki denotes the corresponding convolutional kernel.
By using concatenation, X ,Y1, · · · ,Yi−1 are stacked as channels of
a single input to generate Yi . There will be weights assigned to
each of X ,Y1, · · · ,Yi−1, indicating their importance to Yi . However,
concatenation will cause memory and computational issues due
to the large amount of parameters needed. This problem can be
reduced by using addition when combining multiple related feature
maps as input, which will be denoted as iVoxelDCLa.

In iVoxelDCLa, the input X and intermediate feature maps
Y1,Y2, · · · ,Yi−1 are added together to form the input to generate
Yi as

Y1 = X ⊗ k1;Yi = *.
,
X +

i−1∑
j=1

Yj
+/
-
⊗ ki , for i = 2, · · · , 8. (7)

In iVoxelDCLc and iVoxelDCLa, the input X is included in the gen-
eration of every intermediate feature map. This might be redundant
since the information carried in X will be carried over in Y1 to Y8
through this sequential process. In the next two versions of Vox-
elDCL, we take out the input X when generating Y2, · · · ,Y8. Only
the first intermediate feature mapY1 is generated using X. Similarly,
we first use concatenation to combine multiple inputs, which will
be denoted as VoxelDCLc.

In VoxelDCLc, the intermediate feature maps Y1,Y2, · · · ,Yi−1
are concatenated together to form the input to generate Yi while
Y1 is generated from the input X :

Y1 = X ⊗ k1;Yi = [Y1, · · · ,Yi−1] ⊗ ki , for i = 2, · · · , 8. (8)

To further reduce memory usage and computational complexity, we
use addition instead of concatenation the same way as we described
in iVoxelDCLa layer. This layer is known as VoxelDCLa.

In VoxelDCLa, intermediate feature maps Y1,Y2, · · · ,Yi−1 are
added together to form the input to generate Yi while Y1 is gener-
ated from the input X :

Y1 = X ⊗ k1;Yi = *.
,

i−1∑
j=1

Yj
+/
-
⊗ ki , for i = 2, · · · , 8. (9)

Once all the eight intermediate feature maps are generated, we
can obtain the final output using Eq. (5). In Figure 2, we provide an
example to illustrate how the VoxelDCLa and VoxelDCLc work.

3.4 Efficient Implementation
We propose an efficient way to implement all of the above voxel
deconvolutional layers in order to scale down the computational
cost. The goal is to reduce unnecessary dependencies among the
intermediate feature maps. The basic principle is that, for voxels
that are not adjacent to each other but linked to the same pivot
voxel in the output, we generate their corresponding feature maps
in parallel. In this way, we remove the dependency of unrelated
inputs when generating new feature maps, hence simplifying the
process and expediting the computation. In this new design, the
intermediate feature maps are generated in 4 steps. Specifically,
Y1, which denotes the 1st intermediate feature map, is generated
from the input X . Then Y2 is generated from Y1. Since voxels from
Y3,Y4,Y5 are not adjacent to each other but are all linked to voxels
fromY1, we generate them in parallel using previously generatedY1
andY2. The same strategy is used for generatingY6,Y7,Y8. They are
generated in parallel from all the previously generated Y1, · · · ,Y5.
In iVoxelDCLa and iVoxelDCLc, the input X is also included in
each step. By using parallel generation in steps 3 and 4, the com-
putational time for VoxelDCL is reduced. In this way, we build a
reasonable relationship among these intermediate feature maps.
Figure 3 illustrates how VoxelDCLa and VoxelDCLc work.

3.5 Overview of Network Architectures
U-Net [23] is a convolutional neural network architecture com-
monly used for dense prediction. It has an encoder path which
extracts high-level feature maps from raw images and a decoder
path which recovers feature maps to the original spatial size. In the
classic U-Net architecture, there is repeated application of three
convolutional layers, followed by a max pooling layer for down-
sampling in each encoder block. Batch normalization [10] is used
after each convolutional layer. The number of channels is doubled
after each down-sampling operation. In each decoder block, there
is a deconvolutional layer followed by two convolutional layers.
The output of the deconvolutional layers are concatenated with
corresponding feature maps from encoder blocks before going to
the next block. The proposed architecture in this work, which is
denoted as voxel deconvolutional network (VoxelDCN), is based on
this U-Net framework. But we replace the deconvolutional layers
in the decoder path with voxel deconvolutional layers. So there are
five architectures implemented for comparison:
• U-Net: We use U-Net as our baseline method. It is a classic
neural network architecture with encoder and decoder parts. It
uses deconvolutional layers for up-sampling in decoder path.
• iVoxelDCNc: In this method, we replace all deconvolutional
layers in U-Net with iVoxelDCLc layers.
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VoxelDCLc layers they are concatenated.
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Figure 4: Network architecture implemented on the ADNI
dataset. The encoder has two max pooling layers with sizes
of 2×2×2.We replace the regular deconvolutional layers inU-
Net with variations of the proposed voxel deconvolutional
layers in the decoder path.

• iVoxelDCNa: In this method, we replace all deconvolutional
layers in U-Net with iVoxelDCLa layers.
• VoxelDCNc: In this method, we replace all deconvolutional
layers in U-Net with VoxelDCLc layers.
• VoxelDCNa: In this method, we replace all deconvolutional
layers in U-Net with VoxelDCLa layers.

Figure 4 shows the architecture we implemented on the ADNI
dataset. On the LONI LPBA40 dataset, we use a similar architecture
with more blocks in both encoder and decoder paths to avoid under-
fitting problem.

4 EXPERIMENTAL STUDIES
In this section, we demonstrate the performance of our proposed
methods on two public datasets that have beenwidely used for brain
images labeling, namely the Alzheimer’s disease neuroimaging
initiative (ADNI) dataset [20] and the LONI LPBA40 dataset [25].
We select these two datasets since they represent different types of
brain image labeling. The ADNI dataset has rich brain MR images
for labeling hippocampal regions. It can be treated as a segmentation
task with binary classes. On the contrary, the LONI LPBA40 dataset
has various regions of interest, mostly inside the cortex of the
brain. It can be treated as a multi-class segmentation task. Examples
from these datasets are provided in Figure 5. Our code is publicly
available1.

We use classic U-Net as the baseline method to evaluate the
performance of our proposedmethods . Dice ratio is used tomeasure
the labeling accuracy. It calculates the degree of overlap between
the predicted area and its corresponding ground truth for each
target class. It is defined by

DICE (A,B) =
2|A ∩ B |
|A| + |B |

, (10)

1https://github.com/divelab/VoxelDCN
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Figure 5: Examples of MR images from the ADNI dataset
(left) and the LONI LPBA40 dataset (right). The top row dis-
plays the intensity images, and the bottom row displays the
manually segmented labels.

whereA is the predicted result and B is the corresponding true label.
For k different regions of interest (ROI), an averaged dice ratio is
calculated, given by

DICE =
1
k

k∑
i=1

DICE (Ai ,Bi ) =
1
k

k∑
i=1

2|Ai ∩ Bi |
|Ai | + |Bi |

, (11)

whereAi represents the prediction for the ith ROI and Bi represents
the corresponding ground truth label.

4.1 ADNI Dataset
The ADNI dataset is mostly used to label hippocampus in brains.
The task is to determine whether a certain part of the brain is
hippocampus or not. We consider it as a segmentation task with
binary classes.

Data Preparation: There are 64 samples in the ADNI dataset
with sizes of 96 × 124 × 96. We randomly split the dataset into
training data with 59 samples and testing data with 5 samples. We
repeat this process for five times and build five segmentationmodels
respectively. The averaged dice ratio is the reported performance
of this experiment.

Experimental Setup:We build the baseline model using U-Net
architecture as shown in Figure 4. The number of output channels
in the first encoder block is 16. The convolutional kernel size is
3×3×3 and the stride size used in the max pooling layers is 2×2×2.
The last convolutional operation in the final decoder block has 2
output channels, which corresponds to the total number of classes.
We apply batch normalization after each convolutional layer, except
for the output layer. The training batch size is 4. We implement

Table 1: Experimental results on the ADNI and LONI
LPBA40 datasets.

Dataset Model Dice Ratio (%)

ADNI

U-Net 82.1985
iVoxelDCNc 82.8784
iVoxelDCNa 83.3403
VoxelDCNc 82.2777
VoxelDCNa 82.9553

LONI LPBA40

U-Net 77.4209
iVoxelDCNc 78.3524
iVoxelDCNa 79.1294
VoxelDCNc 78.7590
VoxelDCNa 77.7654

our methods on Tensorflow and use AdamOptimizer to update the
network with moment estimates β1 = 0.9 and β2 = 0.999.

Analysis of Results: Table 1 shows the overall dice ratios of
the baseline method and the proposed methods. We can see that
all the proposed methods have higher dice ratios than the baseline
method. Model iVoxelDCNa achieves 83.34% in dice ratio, which
improves the baseline method by 1.39%. The result demonstrates
that the proposed methods, which intend to build relationships
among intermediate feature maps, can help networks better capture
local information of images than the baseline method.

4.2 LONI LPBA40 Dataset
The LONI LPBA40 dataset is designed as a multi-class labeling
task. It requires 54 regions of interest to be labeled in brain images
automatically.

Data Preparation There are 40 brain image samples with sizes
of 220 × 220 × 220 in the dataset. Each image has 54 manually
labeled ROIs along with cerebrum, brainstem, and background.
When calculating result, only dice ratios of the 54 ROIs are included.
Since we are not interested in predicting background, we first crop
the image to drop the excessive background area around boundaries.
The cropped image size is 180× 145× 137. Then we split the dataset
into training set with 16 samples, validation set with 4 samples
and testing set with the remaining 20 samples. We flip the images
across all three directions on training and validation datasets. This
increases the number of training samples to 128 and the number of
validation samples to 32. The size of testing data remains 20 as we
do not apply data augmentation on testing data.

Experimental Setup: The architecture of U-Net implemented
on this dataset consists of five blocks in both the encoder path and
decoder path. The number of output channels in the first encoder
block is 32. The convolutional kernel size is 3× 3× 3 and stride size
used in the max pooling layers is 1 × 2 × 2. The last convolutional
operation in the final decoder block has 57 output channels, which
corresponds to the total number of classes (54 ROIs, cerebrum,
brainstem and background). The training batch size is 1. Since each
data sample provided is too large to be stored in memory, we use
training patch with size of 128 × 128 × 32 as input in the training
process. Each training patch are randomly cropped from training
data. At the testing time, we pick one patch at a time from a single
testing data samplewith the same size in turn. The predicted patches
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Figure 6: Experimental results on the LONI LPBA40 datasets. Each set of bars represents the dice ratios of 3DU-Net, VoxelDCLa,
VoxelDCLc, iVoxelDCLa, iVoxelDCLc on testing data for each ROI.

are concatenated together with a linear weighted summation on
overlapped part to get the final prediction results. We implement
our models on Tensorflow and use AdamOptimizer to update the
network with moment estimates β1 = 0.9 and β2 = 0.999.

Analysis of Results: The dice ratio of ROIs in the left and the
right hemispheres are provided in Figure 6. Compared with the base-
line method, iVoxelDCNa shows improvement in 44 out of 54 ROIs;
VoxelDCNc shows improvement in 35 out of 54 ROIs; iVoxelDCNc
shows improvement in 30 out of 54 ROIs; VoxelDCNa shows im-
provement in 29 of 54 ROIs. Table 1 shows the experimental results
in terms of average dice ratio. All the proposed methods have better
performance than the baseline model. Network iVoxelDCNa has
the best performance and achieves 2.21% improvement compared
with baseline. The result demonstrates that the proposed methods
can help networks better capture the local information of images
than the baseline method by eliminating the checkerboard artifact,
yielding a better labeling result.

4.3 Timing Comparison
Table 2 shows the comparison of the training and testing time
between baseline and proposed methods. We can see that iVoxelD-
CLa and iVoxelDCLc take more time to train than VoxelDCLa and
VoxelDCLc in that they take original input when generating each
intermediate feature map. In VoxelDCL, the use of concatenation
slightly increases the training and testing time. All the proposed
methods take more time to train and test than the baseline model,

but the increase is not dramatic. Overall, we do not expect this to
be a major bottleneck of the proposed methods.

5 CONCLUSION AND DISCUSSION
In this work, we propose the VoxelDCL to address the checkerboard
artifact problem of 3D deconvolutional layers. VoxelDCL generates
the intermediate feature maps of 3D deconvolutional layers sequen-
tially, thereby building relationships among the adjacent voxels on
the output feature maps. We then build four variations of the voxel
deconvolutional networks (VoxelDCN) and apply them to the ADNI
and LONI PBA40 datasets for volumetric brain image labeling tasks.
Experimental results demonstrate the effectiveness of our methods.
All of the proposed methods outperform U-Net with regular 3D de-
convolutional layers. This indicates that developing dependencies
among the intermediate feature maps in deconvolutional layers
indeed alleviates the checkerboard artifact issue, thereby improving
the prediction results. In out current study, we apply the VoxelDCL
to U-Net for voxel-wise prediction tasks. Generally, this layer can be
applied to various 3D deep network architectures with up-sampling
operations. We plan to apply the proposed methods to models like
3D generative adversarial networks for image generation task in
the future.
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Table 2: Training and testing time on the two datasets us-
ing Tesla K80 GPU. We compare the training time of 10,000
(ADNI) and 100,000 iterations (LONI LPBA40), and testing
time of 5 (ADNI) and 20 testing subjects for the baseline U-
Net and the proposed methods.

Dataset Model Training time Testing time

ADNI

U-Net 45 h 43 min 19.45 sec
VoxelDCNa 54 h 57 min 20.80 sec
VoxelDCNc 57 h 12 min 19.18 sec
iVoxelDCNa 59 h 31 min 19.87 sec
iVoxelDCNc 59 h 54 min 19.65 sec

LONI LPBA40

U-Net 52 h 05 min 12 min 12 sec
VoxelDCNa 60 h 37 min 20 min 35 sec
VoxelDCNc 63 h 24 min 19 min 85 sec
iVoxelDCNa 71 h 12 min 20 min 32 sec
iVoxelDCNc 75 h 40 min 20 min 05 sec
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