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Nonlocal diffusion equations and their numerical approximations have attracted much attention in the
literature as nonlocal modeling becomes popular in various applications. This paper continues the
study of robust discretization schemes for the numerical solution of nonlocal models. In particular, we
present quadrature-based finite difference approximations of some linear nonlocal diffusion equations
in multidimensions. These approximations are able to preserve various nice properties of the nonlocal
continuum models such as the maximum principle and they are shown to be asymptotically compatible
in the sense that as the nonlocality vanishes, the numerical solutions can give consistent local limits.
The approximation errors are proved to be of optimal order in both nonlocal and asymptotically
local settings. The numerical schemes involve a unique design of quadrature weights that reflect the
multidimensional nature and require technical estimates on nonconventional divided differences for their
numerical analysis. We also study numerical approximations of nonlocal Green’s functions associated
with nonlocal models. Unlike their local counterparts, nonlocal Green’s functions might become singular
measures that are not well defined pointwise. We demonstrate how to combine a splitting technique with
the asymptotically compatible schemes to provide effective numerical approximations of these singular
measures.

Keywords: nonlocal models; nonlocal diffusion; peridynamics; nonlocal gradient; asymptotic
compatibility; quadrature collocation approximations; nonlocal Green’s function.

1. Introduction

In this paper, we study numerical approximations of the following multidimensional linear nonlocal
diffusion equation:

—Ly(x) =f(x), xe€ 2 CRY, (1.1)

with £2 being a given domain in R? (d > 2), f a given right-hand side, u® the solution to be sought and
the nonlocal operator £ defined by

Lyu(x) = 2/ ps(|2]) (u(x +2) — u(x)) dz. (1.2)
B5(0)
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The operator L is parametrized by a positive horizon parameter § measuring the range of nonlocal
interactions. The specific form of such nonlocal interactions is prescribed by a non-negative kernel
function p5 = p4(lzl). The integral in (1.2) is interpreted in the principal value sense whenever needed
(Mengesha & Du, 2014). More discussions on the nonlocal model are given in Section 2. A main task
of this work is to develop quadrature-based finite difference approximation schemes and associated
Green’s functions for (1.1). The approximation schemes are able to preserve the maximum principle at
the discrete level and they are shown to be asymptotically compatible in the sense that as the nonlocality
vanishes, the numerical solutions can give consistent local limits. They are also shown to be of optimal
order in both nonlocal and asymptotically local settings. Previous studies of schemes enjoying such
optimal-order error estimates, discrete maximum principles and asymptotical compatibility have been
mostly confined to the one-dimensional space (Tian & Du, 2013). While the algorithmic development
is in a similar spirit to that for the one-dimensional case, the multidimensional extension made
in this work involves both new design elements that reflect the multidimensional nature and more
technical convergence analysis relying on new interpolation error estimates of nonconventionally
defined weighted divided differences.

The motivation for our work is rooted in the need to develop robust approximations of nonlocal
models that serve as alternatives to classical partial differential equations (PDEs). Recently, there
have been many studies on the application of nonlocal modeling to problems in mechanics, physics
and materials, biological and social sciences (Bates & Chmaj, 1999; Applebaum, 2004; Gilboa
& Osher, 2008; Bobaru & Duangpanya, 2010; Buades et al., 2010; Lou et al., 2010; Tadmor &
Tan, 2014). The integral formulations of spatial interactions in nonlocal models can account for
nonlocal effects and allow more singular solutions. An example is the nonlocal peridynamics (PD)
theory (Silling, 2000) and its applications in studying cracks and materials failure, as well as other
mechanical properties and physical processes (Askari er al., 2008; Silling & Lehoucq, 2010; Silling
et al., 2010a; Palatucci et al., 2012). Rigorous mathematics of nonlocal models has proved to be
necessary in order to gain fundamental insights and to guide the modeling and simulation efforts (Silling
& Askari, 2005; Macek & Silling, 2007; Bobaru et al., 2009; Andreu et al. 2010; Kilic & Madenci, 2010;
Zhou & Du, 2010; Chen & Gunzburger, 2011; Du & Zhou, 2011; Du et al., 2012, 2013, 2017b).

For nonlocal models like (1.1), as § — 0, the nonlocal interactions that define the model can
become localized so that the zero-horizon (or local) limit of the nonlocal operator, when valid both
physically and mathematically, can be represented by a local differential operator. Given such a scenario
the corresponding nonlocal model naturally converges to a conventional differential equation model
in the local limit; see for instance, the convergence analysis of linear state-based PD models to the
classical Navier equation of linear elasticity (Mengesha & Du, 2014). There have been concerns about
whether such consistency can be preserved at the discrete level when the nonlocal models are discretized
numerically. Discrete schemes of nonlocal models that preserve the correct limiting behavior are called
asymptotically compatible (AC) schemes, a notion developed first in the studies by Tian & Du (2013,
2014). In other words, the numerical approximation given by an AC scheme can reproduce the correct
local limiting solution as the horizon é and the mesh spacing (denoted by k) approach zero, if the
convergence to such a limiting local solution is valid on the continuum level. While Tian & Du (2013)
presented results concerning the AC property for a one-dimensional scalar model solved by a number
of different discretization methods, Tian & Du (2014) managed to develop more general results that
are applicable to linear systems in multidimensions based on Galerkin finite element approximations
on unstructured meshes. A few subsequent studies have been carried out. For example, Tao ef al.
(2017) extended the study of AC schemes to nonlocal diffusion equations with Neumann-type volume
constraints, Du & Yang (2016) discussed AC schemes based on Fourier spectral methods for problems
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defined on periodic cells and Du & Yang (2017) proposed an efficient and accurate hybrid algorithm to
implement the Fourier spectral methods, while Du ef al. (2017b) developed discontinuous-Galerkin-
based AC schemes. Moreover, AC schemes were proposed in the study by Chen er al. (2017) for
nonlocal time—space models and in the study by Du er al. (2016) for the robust recovery of the
nonlocal gradient of the solutions to nonlocal models. For technical reasons, much of the numerical
analysis in these works, with the exception of the study by Tian & Du (2014) on conforming Galerkin
finite element approximations, has focused on nonlocal operators defined for a one-dimensional spatial
variable. In comparison with other AC schemes such as those based on the Galerkin finite element and
spectral methods, quadrature-based collocation-type finite difference schemes not only offer optimal-
order convergent approximations with simpler implementations but also preserve the discrete maximum
principle and asymptotic compatibility; see details in Section 3. Furthermore, these quadrature-based
schemes are closely related to other discretizations based on strong forms, such as the original mesh-
free discretization developed in the study by Silling (2000).

As an application of the discretization scheme, we consider in Section 4 the numerical computation
of nonlocal Green’s functions G5 = G(x, y) for the nonlocal diffusion model (1.1). Nonlocal Green’s
functions are important tools for nonlocal continuum models (Weckner et al., 2009; Silling et al., 2010b;
Wang et al., 2016, 2017), just like their local versions, i.e., conventional Green’s functions associated
with PDEs. Since analytical expressions can be expected only in simple cases, the numerical study of
nonlocal Green’s functions has particular significance. We show here that while the local/conventional
and nonlocal Green’s functions enjoy many similarities and are intimately connected through the local
limiting process, there are also some fundamental differences among them. In particular, for a large
class of nonlocal interaction kernels the associated Green’s functions G5 = Gs(X, y) on the continuum
level for § > 0 are measure-valued distributions, which cannot be interpreted as conventional functions
defined pointwise for x and y. These differences are essential features that, if improperly handled, could
present undesirable effects on their numerical approximations. This serves as another reminder of the
subtlety involved in the nonlocal modeling. To better deal with these complications we discuss a splitting
approach that utilizes the developed AC scheme to get effective and robust approximations of nonlocal
Green’s functions.

2. Multidimensional nonlocal diffusion model

For the sake of a clear illustration we let © = u(x) denote a scalar deformation field and consider (1.1)
subject to a nonlocal constraint of the Dirichlet type,

u=20 on 27, 2.1
where £27 is a boundary layer defined as
27 = {x ¢ £2| dist(x, £2) < 8}

For more discussions on nonlocal constraints defined on a domain with a nonzero volume we refer to
Du et al. (2012, 2013).

Furthermore, let us consider suitably scaled kernels so that as § goes to zero, the local limit of
the nonlocal operator L is exactly the Laplace operator A (which is denoted by L). To this end, it
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requires that the kernel is a non-negative and nonincreasing function and has a finite second moment in
z independent of the horizon parameter §:

/ |zl o5 (2]) dz = d.
B5(0)

The limiting local model of (1.1) is then given by
~Ly’ =f in2 and u®=0 on 32, (2.2)

where, without loss of generality, £, = A for the particular case studied here.
We note that a popular choice of pg is a rescaled kernel given by

|z

1
pa(lz) = Sgp (7) ¥z € By(0), 23)

where p = p(£) is a non-negative and nonincreasing function with compact support in [0, 1] and a
normalized moment

1
/ PEETdE = ¢, 24
0
for a given constant c,, though our discussion here is not restricted to such a rescaled form.

3. Quadrature-based finite difference schemes and asymptotic compatibility

AC schemes provide robust numerical approximations of nonlocal models (Tian & Du, 2013, 2014)
since the convergence of such schemes is insensitive to the choices of modeling and discretization
parameters, in particular with respect to either a sufficiently small horizon § or a sufficiently refined
mesh spacing (denoted by h).

3.1 The discretization scheme

We now develop an AC quadrature-based finite difference discretization to the nonlocal diffusion
equation (1.1) that extends a similar scheme presented first in the study by Tian & Du (2014) and
also studied by Du & Tian (2014) for the one-dimensional case.

For simplicity, we let {Xj e U .QI} be the set of nodes (grid points) of a uniform Cartesian mesh

7T, with mesh size h. Here, j denotes a multiindex corresponding to X; = hj. We note that the particular
ordering of the nodes affects the matrix structure corresponding to the discrete system but does not affect
the numerical solution. First, at any node x; € £2, the nonlocal operator can be rewritten as

_ u(z + x;) — u(x;)
Lsu(x;) = 2/65(0) —W(z) W(z)p;s(|z]) dz, 3.1
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where W(z) represents a weight function. Then a quadrature-based finite difference scheme of the
nonlocal operator (1.2) can be given as

L), su(x;) = 2/ ) W(z)ps(|z|) dz, (3.2)

I, (u(z +x;) — u(x;)
Bs(0)

W(z)

where 7, (-) represents the piecewise d-multilinear interpolation operator in z associated with the mesh
T, that is, Z,, (1) is piecewise linear with respect to each component of the spatial variable. The nonlocal
constraint with u = 0 is imposed at nodes in £27. For the one-dimensional case, in the study by Tian
& Du (2014) the function W(z) = Izl was used for z € R. A key ingredient in its extension to the
high-dimensional case is given by

|z|?
W(z) = ——, (3.3)
|Z|1

where the notation |-|; stands for the £; norm in the d-dimensional vector space while I-| denotes the
standard Euclidean norm.

The auxiliary function W = W(z) plays an important role in ensuring asymptotic compatibility
for the multidimensional case. The resulting quadrature-based finite difference scheme for solving the
nonlocal diffusion problem can be more conveniently written as the following: find {uz (xi)} such that
ufl (x;) =0 forx; € £27 and

L) = > (ug(xj) - ui(xi)) P =) VX €2, (3.4)

XjEBS (x{)

where the sum over X; is for grid points in B (x;) but not including x;, pii’xj = 2B;i/W(x; — x;) with

Bji = / ¢i(z + x)W(2)p;(|z]) dz, (3.5)
Bs(0)

and ¢; is the piecewise multilinear basis function satisfying ¢;(x;) = 0 when i # j and ¢;(x;) = 1.

REMARK 3.1 The discrete scheme (3.4) is valid for general kernels p5; = p4(z) with bounded second
moment in z. This is another benefit of using the weight W = W(z) in (3.3). Indeed, consider a kernel
ps(lzl) = cs , J2I™* with o € [d, d + 2) for z € B;(0); then the integral in (3.5) may be unbounded for
li —jl = 1 if we do not use such a weight, or say, if W(z) = 1 is taken instead.

REMARK 3.2 By the symmetry and translation invariance of the uniform mesh it can be observed that
ﬂji = B (xi —X; for some function B;. In fact, let ¢, be the piecewise multilinear basis function
located at the origin satisfying ¢, (x;) = 0 with x; # 0 and ¢((0) = 1; then

Bi = Bs(xi — X)), By(®) = /B o 0@+ OW@ (12 . (3.6)

Moreover, it is easy to see that B is symmetric with respect to any axis hyperplane. Also, B = 0 if
the support of ¢; does not overlap with the ball Bs(x;). In comparison, we give the conventional central
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finite difference scheme for the local diffusion equation (2.2):

—Loho) == > (uf (%) = uf () |x—;2 —f(x) Vx €, 3.7
J

Ixj—xil=h sl
that is, it involves only the nearest neighbors along the axes.

3.2 Convergence analysis

Due to the symmetry of the kernel we may rewrite the nonlocal operator as
Lsu(x) = / ps(|2) (u(x + 2) + u(x — z) — 2u(x)) dz
Bs(0)
and the discrete operator as

ulx; +z; ) +ulx; —z; ) — 2u(x;)
Ly (%) = D ( J) Iz(.|2 J) 121, Bs (2))-
i#0 J

We first state a few technical lemmas concerning the nonlocal operators and the nonlocal discrete
schemes that are nonlocal analogs of their well-known local versions.

First, by the fact that W = W(z), the kernel p;, as well as the multilinear basis functions ¢>j, is
non-negative, we see that g5, f;; and thus pijxi are non-negative. This implies the M-matrix property of
the coefficient matrix, just like the case corresponding to the central difference approximations of the
diffusion operator.

LEMMA 3.3 (M-matrix). The coefficient matrix, also denoted by £, 5, corresponding to the linear system
(3.4) is an M-matrix.

An important stability property can be derived via the discrete maximum principle that follows from
the M-matrix property of the coefficient matrix. By constructing a suitable quadratic barrier function
similar to the one-dimensional case by Tao er al. (2017), as well as the local counterpart, we can get the
following lemma.

LEmMA 3.4 (Uniform stability). For any § > 0, L’;; is bounded. Furthermore, for any 0 < § < §,
we have

Hc,;; HOO < C(3y) (3.8)

for some constant C(8,) independent of 7 and § as h — 0.

Next we consider the uniform consistency derived via the truncation error calculation. Here the
uniform consistency means that the truncation error is independent of § for small §. We first state the
following useful and vital lemma, which is a nonlocal analog of the fact that the central difference
approximation to the Laplacian, as given by (3.7), is exact for quadratic polynomials.
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LEMMA 3.5 (Quadratic exactness). For any quadratic polynomial in R? given as u(x) = X @ X : M,
where M = (my) is a constant matrix, we have

Ly 5u(x) = Lyu(x) = D my Vi (3.9)
k

Proof. The fact that

| 2wy dz=1,
Bs (0)

where I, is the d x d identity matrix, yields
KSM(Xi) = kak
k
Meanwhile, when u(x) = x ® X : M, it is obvious that
u (xi +zj) +u (Xi - zj) —2u(x) =2, @12 : M.

Thus,

Ly, 5u(x) = D % )zj‘ 1Bs (zj) =0:M.

#0 %

We now need another observation on the coefficient matrix, that is, B (Zj) is an even function;

moreover, it depends only on the absolute values of the individual components of z;. Thus, when doing
the summation over j, it is easy to check that Q;; = 0 for k # [. We can further check that Oy, is
independent of k, and

;] |2/
> O = / > lzli¢5@ | —-ps(lz)) dz
T 50 \i% |z;1 |zl
- / 21y (120) dz = d,
Bs(0)
where in the last step we have used the property that |zl; is piecewise linear, and thus
PN AR ACED N ANAGETE
J#0 J
Hence, we can derive that Q = I ;, which gives

k

This completes the proof. (]
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614 Q.DU ET AL.

Before proceeding to the main theorem of this work we introduce some notation for simplicity of
presentation. For any function # = u(x) : R? — R and a € N¥ Jet

d
x* = []a, 0% =0, - 0,,ux,
i=1

and D*u(x) be the set containing all the kth-order derivatives in the form of 9%u(x) with lol; = k, and

‘Dku = Imax sup 0% u(x).

0
‘ alj=k x

We further use D, to denote the Hessian and define

H*(z) =u(x+12z) + u(x —z) — 2u(x), Hj(2) =2®z: Du(x)

and
H*(z) H{(z)
X2Z) = —2\z|,, JX@) =Lz,
@) = 5l == )
and let H,*(z) = H*(z) — H,*(z) and J,*(z) = JX(z) — J,*(z). By Taylor’s expansion and the mean
value theorem we can show that

Hy(z) = D Cozd%u(x,(2),
3 lee|1=4
SH@ = D Car " iu(x,(z). (3.10)
& = '
2
Hy(z) = D Cor*d**tiu(x;(z)),
| aZiaZj o =2

where e; and e; are unit vectors with only one nonzero element at the ith and jth positions, respectively,
and x;(z) are some points dependent on both x and z. The following is an elementary but technical result
to be used later.

LeEMMA 3.6 For J,*(z) defined above, if u € C*($2), for any z and x, we have
D3| < C|D*u|_ |zl (3.11)

where C is generic constant.

Proof. To carry out the estimates we first note that

9|z|? d|z|?
i =2z; and 1 =245
0z; 92,0
Now, by the definition of J,*(z), we have
32 3 Hi() d Hy(z) 3> Hi()

| @
J3(z) = sign(z,)— + s1gn(z;) —— Tz ’
7(2) = sig (’)azj e & (/)az. |z|2 | "az,-azj |z|?

1

8ZiaZj
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where sign (-) is the sign function. For the first term in the above, we have from (3.10) that

< c( )|D4u|oo,

where | ,Bl} | = 3 and | ﬁ2| 1 = 5. The second term satisfies a similar estimate. Moreover, by (3.10)

again, we get
< c( ) ID*ul

where lot;l; = 4 and lar,|; = 8. For any @ € N it is obvious that

zﬂl

|22

zBZ

Jzf*

.0
sign(z) -~
]

z%!

|zI*

%2

|z|®

32 H3(z)
821'82]' |Z|2

+

o o

< |zl;.

|z|leeh |z]leeli 1

Combining the above estimates we can get the desired result (3.11). (]

We now present the truncation error analysis for the quadrature-based difference approximation of
the nonlocal model.

LEMMA 3.7 (Uniform nonlocal truncation error). Assume that u € C*(2 U £27). Then it holds that

max |£, su(x;) — Lsu(x;)| < C|D*u| K (3.12)
1<i<N, ©

where C is a constant independent of § and /.

Proof. Without loss of generality we take x; = 0 to be the origin. Note that

2
VA
L) = [ S e
B5(0) |z];
and
2
z
thau(O)z/ 7, (J"(z)) up,3(|z|)dz.
Bs(0) |z|,

Simple subtraction gives us

2
L), 5u(0) — Lsu(0)| = 1, (@) - @) 2 dz|,
|£5,5(0) = Lsu()| ‘ /B o @ (@) = @) e
0 0 |z)?
< |, (@ () - @) [
0 0 |z)?
#| [ (@ (Be) =) e o

= El + Ez,
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616 Q.DU ET AL.

where

2®1z:D,u(0)

0 _
="

lzl, and J(z) =J"2z) - (@).
From Lemma 3.5, we know that £, = 0. For E,, we have

|z|?

E, < Chz/ ‘Dzjg) (2l dz.
Bs(0) oo |z|;

Thus, by using Lemma 3.6 and the moment condition on the kernel that
| wPostandz=a.
Bs(0)

we complete the proof. g

Combining the stability result in Lemma 3.4 and the consistency result in Lemma 3.7, we immedi-
ately get the convergence of the quadrature-based finite difference scheme.

THEOREM 3.8 (Convergence to nonlocal solution). Assume that the nonlocal exact solution u® of (1.1)
is smooth enough, such as u’ € C* (2 U .QI) , and 4% is the numerical solution obtained by the scheme
(3.4). Then for any fixed & there exists some constant C; independent of & as &~ — 0 such that

| = 1| < cn, (3.13)
o

where / hu‘S is the interpolation of the exact solution on the grid points. For any § < §, the constant Cj
is uniformly bounded by some generic constant C(8).

Next we show the asymptotic compatibility of the quadrature-based finite difference scheme to the
local limiting model. We assume that the local equation (2.2) is discretized by the classical central finite
difference scheme denoted by Eh,o’ whose truncation error is

max |£;, gu(x) = Lou(xp)| = O(h?), (3.14)

1<i<Ng

by the standard numerical PDE analysis, if u € C*(£2).
We now estimate the modeling error at the discrete level, that is, the error between the discrete
nonlocal operator £, s and L, ;.

LEMMA 3.9 (Discrete model error). Assume that u € C* (.Q U £27). Then it holds that

max |5, su(x) — Lyux)l = O (82) +0 (1) (3.15)

1<i<Ny

when & and / are sufficiently small.
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DISCRETIZATION OF NONLOCAL MODELS AND APPROXIMATION OF GREEN’S FUNCTIONS 617

Proof. The triangle inequality gives

A

+|£0M(Xl) — ,Ch’ou(xi”

By Lemma 3.7 we have

For u € C*(£2) the continuum property of nonlocal operators gives

It is well known that

The three equalities above together complete the proof. O

Combining the consistency in Lemma 3.9 with the stability Lemma 3.4 again, we get convergence
(and asymptotic compatibility) to the local limit.

THEOREM 3.10 (Asymptotic compatibility). Assume that the local exact solution u0 of (2.2) is smooth
enough, such as u’ € C* (2 U £27). Then for any § < §, there is some constant C independent of § and
h as h — 0 such that

[ = 10| < (12 +9%), (3.16)
o

where / huo is the interpolation of the exact solution on the grid points.

REMARK 3.11 For problems on the same domain but with periodic boundary conditions (PBCs) all
similar estimates also hold, which requires only that the exact solution of the local model is a Cger(.Q )
function.

REMARK 3.12 We now give a more explicit form of the algebraic system in two dimensions. We let uj,ﬁ'
denote the nodal value of the nonlocal difference solution at the mesh point (xj, yk) € 2 = (—m, 7'[)2 -

RR2. Then let r = [8/h] be the smallest integer larger than or equal to 8/A; we have

8,h 8, h
‘Ch@ujk _ZZ (J+pk+q+u—pk+q+”+Pk g T Ulp k- q_4uj,k)’
p=0 ¢=0

where Co0 = 0 and

h+ qh
o A I] tn()

2h2 + q2h2

242
t
+t dsdr,

with B, (0, §) denoting the first quadrant of the disc at the origin with radius §. One may also observe
thatc, , = ¢, , for any p and g.
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4. Green’s functions of a nonlocal operator with integrable kernels

By definition, the Green’s function of the nonlocal equation (corresponding to the particular nonlocal
operator L) solves the nonlocal equation with right-hand side given by the Dirac delta measure
8y(x) = §(x —y) of the variable x for a given y. Discussions of Green’s functions for nonlocal models
such as PD have been presented in a number of earlier studies (Weckner et al., 2009; Silling et al.,
2010b; Wang et al., 2016, 2017). Here we pay particular attention to the case where the nonlocal
interaction kernel is given to be an integrable one. A consequence is that, unlike Green’s functions
for local diffusion equations, the nonlocal analog is generically a measure function. Hence, we focus on
effective constructions in this case.

4.1 Periodic case

For the case of PBCs with 2 = [—7, 7]¢, we may impose the zero mean compatibility condition
for both the right-hand side and the solution over §2. Thus, we formally have the following modified
equation of (1.1):

—L;G’ (x) =8, — —,
=4 g

where |21 is the area of the domain. Taking the L?-inner product of the above equation with u%(x) over
X yields

1
(—ESGf,,u‘S) — i (y) — o /- W dx = i (y).

By the nonlocal Green’s identity (Du et al., 2012, 2013), which remains valid for the periodic case, we
have (—E(;Gg, us) = (Gf,, —/.Z(Su‘s). We then get

u) = (£.G3).

which demonstrates how Green’s function G‘Sy can be used to represent solutions to the nonlocal
equation (1.1).
Now, for the case where the kernel is integrable we denote

Cs =/ ps(|z]) dz.
Bs(0)

Then the nonlocal operator —L; can be written as
—Lsu=—pg*u+ Csu.
Let us perform the splitting Gg =8| + go with §; and g to be determined; we then arrive at

1

—Ls8,(X) — ps 8o+ Cs80 = 8y - ﬁ
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Setting

_ 1 _
gozcal(ay—ﬁ) and g, =Cjylp;* g 4.1)

leads to

—L58,(%) = py * go(%) = Cyg; - 4.2)
REMARK 4.1 Note that while g, is a singular measure we have generically that g; L! for an integrable
05 If additional regularity of p; can be assumed then we also get g; of the same regularity class as p;.
For example, if p; is of the class C*° (as a function in the whole space having compact support in the

ball of radius §) then we also have g; and S| in C*°. Another example, in the one-dimensional case, is
that if pg is a bounded variation (BV) function then so are g; and ;.

In turn, if we perform a similar splitting once again as §; =S, + g;, we have
—L5S5(X) = ps * 8-
Similarly, repeating this splitting technique n times we get recursively that

8n = C(S_lpS *8n—1> _£8Sn+l(x) = Ps * &p>

and generically, the later terms obtained by the recursion are more regular than the preceding terms,
similarly to the observation in Remark 4.1. In the end, we get

o
s
Gy = Zgn
n=0
with the following recursive relation:

1
-1 -1
g =GC; (6y—| l), 8. =C5 ps*g,_,n=1,2,....

Thus, we obtain an explicit series form of Gi (x), which is given below.

THEOREM 4.2 For an integrable kernel p; the nonlocal Green’s function G‘;, for equation (1.1) with
PBCs can be represented by

oo
1
S —(n+1) n _
G => ¢ (ps*)" (sy _ISZI) : (4.4)
n=0
Moreover, the solution u® of the nonlocal diffusion equation (1.1) is given by

= (£.6).
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REMARK 4.3 Due to the lack of elliptic smoothing of the nonlocal diffusion equation corresponding to
the integrable kernels, the nonlocal Green’s function remains a composition of a singular part in the form
of a Dirac delta measure and an integrable part. In this case and unlike local Green’s functions for elliptic
PDEs, G§ should not be viewed as a function defined almost everywhere. Moreover, the regularity of the
solution of #° is in general the same as the right-hand side f, since the regularity ( £ Gg) is dominated
by the first term (g, f), which is proportional to f. One could also split the solution into two parts, one
given by (g, f) while the other accounts for a more regular part.

REMARK 4.4 It is worth mentioning that the series expression for the Green’s function is a Neumann

series expansion for the equation (I — A)G = f where Au = Cs_l,os xyand f = Ca_l (Sy - |512_|)

4.2 Other cases of nonlocal constraints

The approach of constructing Green’s function through a series expansion is also applicable to other
nonlocal constraints. For instance, we consider the Dirichlet-type volume-constrained problems given
by (1.1) and (2.1). For any y € £2 let us define P =68x—-y),xe U £27. It is easy to see that, with g"
recursively defined by

g =Cylpxg" (), xe,

g"(x) =0, X € 27,
the nonlocal Green’s function is given by

Gy(x) =D g"(x).
n=0

As in the case with PBC, we can also use the above expansion to get a series expression for a
general solution, though the regularity pickup in the later terms of the series gets more delicate due to
the dependence on matching the boundary data with the right-hand side and remains an interesting topic
to be further studied.

REMARK 4.5 Other types of series expansions, in particular Fourier series expansion, of the nonlocal
Green’s functions have been presented in the literature by Weckner et al. (2009), Silling et al. (2010b)
and Wang et al. (2016, 2017). Such expansions are valid formally, but for integrable kernels the series
do not converge pointwisely.

4.3 Discrete nonlocal Green’s function

Following the discussion above on the continuum level we can present a discrete analog with the AC
quadrature-based finite difference scheme.

Given the uniform mesh [XJ] the discrete Green’s function (matrix) GZ;’S (xj) is given by

1 1
—L, G"9_ ( ) = 8 — —,
h,8 xi \Xj hd 1 |£2]

where §;; is the Kronecker delta function, that is, 8 = 1 and &;; = 0 for i # j. It follows that the discrete

solution to the nonlocal model with a discrete right-hand side { fl} is given by

uh’a(xi) = ijGQ;S (xj) for Zfl =0.
J

i#i

6102 AeIN 20 UO Jasn AsIaAlun eIquiniod Aq ¥98666+/L09/2/6€ABASqE-0oIME/RUlRWI/W0D dNO"dlWspeoe)/:SA]jY WOJ) POPEOUMOQ



DISCRETIZATION OF NONLOCAL MODELS AND APPROXIMATION OF GREEN’S FUNCTIONS 621

§=0.1 6=0.1
0.05
0.1
)
04
-0.05
-0.15 -0.2
0.2
-0.3
0.25 ? 0.5 05 1
0 0
5=0.01 6=0.01
)
0.1 04

-0.1 4

-0.2 4

. 03 -0.3
-0.4

-0.5

05 -0.6

06 -oq -\/ 1
0.5 0.5

0 0

Fi1G. 1. The function uﬁ"s of the regular part of the nonlocal Green’s function.

The study of discrete nonlocal Green’s functions can be seen as a nonlocal analog of similar works
on discrete Green’s functions for local PDEs (Chung & Yau, 2000). Although the nonlocal Green’s
function at the continuum level is measure valued for integrable interaction kernels the discrete nonlocal
Green’s function given above is well defined at all the grid points for any finite § and 4. Due to the lack
of regularity, however, we do not expect strong (or pointwise) convergence of G?"S (x) to Gg (x)ash —
0 for a given §. Instead, we could attempt to get better approximations by the splitting technique, that is,
we numerically solve for the regular part while invoking the analytical solution of singular part.

Therefore, we obtain a hybrid approximation of Gij (x;) by

_ 1
Gy’ (x) = G5 (sxj (x;) = ﬁ) oy,

where the approximation uil"a of the regular part of the nonlocal Green’s function S; in (4.2) satisfies
h,§ _
=Ly 51" %1 (X;) = ps * go(Xy).

Given the higher regularity of §; we expect to have good convergence of uﬁl’a to S, for any given &,
which is illustrated in Fig. 1 for a kernel that is a positive constant over the horizon and vanishes outside
(thus piecewise continuous). Moreover, due to the AC property of the discrete scheme, we also have
convergence of GQJT‘S (x;) to the local Green’s function as both / and § approach zero. Notice that both

Theorems 3.8 and 3.10 require that the solutions to be approximated are C* (2 U .QI). Thus, if we
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FI1G. 2. Numerical comparison. Left: numerical solutions; right: zoom in around 7.

subtract enough terms of the Green’s function series expansion from the right-hand side, in principle
we should be left with a smooth enough right-hand side that the results of both theorems are applicable.
More discussions on this splitting technique are to be presented later. We thus can expect a robust
approximation of the local and nonlocal Green’s functions.

4.4 More discussion on the splitting technique

We next discuss a potential application of the splitting technique presented above in the numerical
solution of nonlocal equations. By avoiding using derivatives, nonlocal models allow more singular
solutions, which is a distinct advantage in physical modeling such as the study of material cracks. As an
illustration we present a typical example showing how the splitting technique improves the performance
of Fourier spectral methods for numerically solving nonlocal equations with discontinuous solutions.
For simplicity, we take a one-dimensional nonlocal diffusion model (1.1) over a periodic cell £2 =
[0, 27r] with a constant kernel p;(s) = 8% X[—s.5)> Which is of the rescaled form given in (2.3), and a
discontinuous right-hand side

fx) =sign(x —m), xe€l[0,27],

where sign(-) is the sign function. In this setting, the exact solution has a jump at x = 7, e.g., like
studied in Du & Yang (2016). One numerical solution is obtained by applying the Fourier spectral
method directly. It is not surprising that the well-known Gibbs phenomena occur around x = 7 when
standard Fourier spectral methods are directly used to approximate discontinuous solutions. On the other
hand, if we use the splitting technique described above once, by first constructing the discontinuous
part of the solution analytically, and then solving a new nonlocal diffusion equation with a smoother
right-hand side by Fourier spectral methods, we can eliminate the Gibbs phenomena, as demonstrated
in Fig. 2.

5. Conclusion

In this work, a quadrature-based finite difference scheme for a nonlocal diffusion model in multidimen-
sions is proposed. Our analysis is given for problems with Dirichlet volumetric constraints. The case of
a Neumann-type nonlocal volumetric constraint may involve additional complications, due to the need
for ghost points, which require further attention to ensure second-order accuracy. One may adapt the
scheme developed here to more general models. In fact, an extension based on the idea presented in a
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draft version of this work has been given for nonlocal convection diffusion equations in the study by Tian
et al. (2018) (where only a partial analysis of the diffusion term has been documented and one should
refer to the more complete analysis presented in the current work). In deriving the error analysis our
attention is focused on the case where the underlying solutions are smooth. Since nonlocal models are
effective in describing physical processes with solution singularities, extending the analysis to cases with
minimal regularity will be of interest. One can of course also consider extensions to systems involving
vector fields such as the bond-based and state-based PD models.

Our study here also illustrated an important difference between the nonlocal Green’s function and
their local analog as the former may take on a possibly singular measure form. Nonlocal Green’s
functions can be useful in various applications such as the mean exit time computation of jump processes
and analysis of mechanical responses to point loads in nonlocal mechanics (Weckner et al., 2009; Silling
et al., 2010b; Du et al., 2012; Wang et al., 2016, 2017). The splitting technique presented here offers
an effective algorithm for computing singular Green’s functions. Moreover, one may further explore
the applications of such techniques to the computation of singular solutions to more general nonlocal
models as alluded to in Section 4.4.

In comparison with the Galerkin finite element AC scheme developed in the study by Tian & Du
(2014) that works for linear systems in multidimensions using unstructured meshes, we see that the
quadrature-based finite difference AC schemes given here are developed only for uniform Cartesian
meshes with the same mesh size in all directions. However, the schemes given here are simpler to
implement as they avoid the evaluation of integrals in R?¢. Furthermore, they lead to M-matrices and
the discrete maximum principle that are in general not the case for the finite element discretization.
Hence, an interesting future work is to develop hybrid schemes and particle discretization (Liu ef al.,
1996; Silling, 2000; Askari ef al., 2008; Bessa et al., 2014) that can preserve the nice properties of the
quadrature-based finite difference AC schemes while applicable to more general meshes.
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