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Abstract. We prove a theorem concerning the approximation of multivariate functions by deep ReLU networks.
We present new error estimates for which the curse of dimensionality is lessened by establishing a
connection with sparse grids.
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1. Introduction. Deep learning has been successfully applied to many fields, including
computer vision, speech recognition, and natural language processing [9]. It is based on
approximations by deep networks, as opposed to shallow networks. The latter are neural
networks with a single hidden layer and correspond to approximations fN with N units of
multivariate functions f : \BbbR d \rightarrow \BbbR of the form

(1.1) fN (x) =

N\sum 

i=1

\alpha i\sigma (w
T
i x+ \theta i), \alpha i, \theta i \in \BbbR , x,wi \in \BbbR d,

for some activation function \sigma : \BbbR \rightarrow \BbbR . The former are neural networks with one or more
hidden layers, where each unit of each layer performs an operation of the form \sigma (w \cdot x+\theta ). We
define the depth of a network as the number of hidden layers, and the size as the total number
of units. Shallow networks have depth 1 and their size is the number N in (1.1), while
deep networks usually have depth \gg 1. Deep ReLU networks use the activation function
\sigma (x) = max(0, x).

One of the most important theoretical problems is to determine why and when deep
(but not shallow) networks can lessen or break the “curse of dimensionality,” an expression
first coined by Bellman in [1]. A possible way of addressing this problem is to focus on
a particular set of functions which have a very special structure (such as compositional or
polynomial), and to show that for this particular set deep networks perform extremely well
[3, 5, 10, 14, 19]. We follow a different route. We consider a space of functions that is more
generic for multivariate approximation in high dimensions and prove new error estimates for
which the curse of dimensionality is lessened by establishing a connection with sparse grids [2].
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The theory of approximating functions using neural networks goes back to the late 1980s
with the first density results [4, 7]. Cybenko [4] showed that any continuous functions can
be approximated by shallow networks, while Hornik, Stinchcombe, and White [7] proved a
similar result for Borel measurable functions.1 They both used sigmoid functions as activation
functions.2

These results were important from a theoretical point of view, but what ultimately matters
in practice is how fast approximations by neural networks converge. For example, for a real-
valued function f in \BbbR d whose smoothness is characterized by some integer m (typically the
order of integrable or bounded derivatives), and for some prescribed accuracy \epsilon > 0, one tries
to show that there exists a neural network fN of size N that satisfies

(1.2) \| f  - fN\| \leq \epsilon with N = \scrO (\epsilon  - 
d
m ), 3

for some norm \| \cdot \| . For deep networks, one also wants to find the asymptotic behavior of the
depth as a function of the accuracy \epsilon . Results of the form (1.2) are standard approximation
results that suffer from the curse of dimensionality. For small dimensions d, the size N of
the network increases at a reasonable rate as \epsilon goes to zero. However, N grows geometrically

with d.
Many results of the form (1.2) have been derived for shallow and deep networks; we list

some of them in Table 1.1 for different activation functions \sigma . The function spaces considered
in the table are the Sobolev spaces Wm,p(Ω) (for some compact subset Ω \subset \BbbR d) of functions
that have (weak) partial derivatives in Lp(Ω) up to order m, i.e.,

(1.3) Wm,p(Ω) =
\bigl\{ 
f \in Lp(Ω) : Dkf \in Lp(Ω), | k| 1 \leq m

\bigr\} 
,

with multi-index k = (k1, . . . , kd) \in \BbbN d, | k| 1 =
\sum d

j=1 kj , and partial derivatives

(1.4) Dkf =
\partial | k| 1f

\partial xk11 . . . \partial xkdd
.

These are Banach spaces corresponding to the completion of Cm(Ω) (functions with continuous
partial derivatives up to order m) with respect to the norm

(1.5) \| f\| m,p =

\left\{ 
     
     

\Biggl( 
\sum 

0\leq | k| 1\leq m

\| Dkf\| pp

\Biggr) 1
p

, 1 \leq p < \infty ,

max
0\leq | k| 1\leq m

\| Dkf\| \infty , p = \infty ,

with standard Lp(Ω)-norm \| \cdot \| p.

1These results automatically apply to deep networks since deep networks include networks with a single
layer.

2A function \sigma : \BbbR \rightarrow [0, 1] is said to be a sigmoid function if it is nondecreasing, limx→−∞ \sigma (x) = 0, and
limx→+∞ \sigma (x) = 1, e.g., \sigma (x) = 1/(1+e−x). This does not include the ReLU activation function. Some density
results for ReLU functions can be found in the review of Pinkus (e.g., [13, Prop. 3.7]).

3We recall that N = \scrO (\epsilon −
d
m ) means that there exists a constant C > 0 such that N \leq C\epsilon −

d
m for sufficiently

small values of \epsilon . As is the case with sparse grids, we will abusively use this notation even if C = C(d) depends
on the dimension d.
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80 HADRIEN MONTANELLI AND QIANG DU

Table 1.1

Approximation results with the curse of dimensionality. The first line lists function spaces, the second line
the depth and the size of the network to get accuracy \epsilon , and the third line the norm used for the estimates,
together with our favorite reference. The domain is either a hypercube, the unit ball Bd of \BbbR d with respect to the
two-norm of vectors, or a poly-ellipse Eρ with parameter \rho , a generalization of the one-dimensional Bernstein
ellipse.

Shallow Deep

σ ∈ C
∞(\BbbR ) f \in Wm,p([ - 1, 1]d)

(not polynomial) depth 1, size \scrO (\epsilon −
d
m ) –

\| \cdot \| p [11, Thm. 2.1]

σ ∈ C
∞(\BbbR ) f analytic in Eρ

(not polynomial) depth 1, size \scrO (| logρ \epsilon | 
d) –

\| \cdot \| p [11, Thm. 2.3]

σ ReLU f \in Wm,2(Bd) f \in Wm,∞([0, 1]d)

depth 1, size \scrO (\epsilon −
d
m ) depth \scrO (| log2 \epsilon | ), size \scrO (\epsilon −

d
m | log2 \epsilon | )

\| \cdot \| 2 [13, Cor. 6.10] \| \cdot \| ∞ [21, Thm. 1]

Table 1.2

Approximation results without the curse of dimensionality. The first line lists the function spaces, the
second line the depth and the size of the network to get accuracy \epsilon , and the third line the norm used for
the estimates, together with our favorite reference. Deep networks can exploit the compositional structure of
functions to break the curse of dimensionality; shallow networks cannot.

Shallow Deep

σ ∈ C
∞(\BbbR ) f \in Wm,∞([ - 1, 1]d), compositional f \in Wm,∞([ - 1, 1]d), compositional

(not polynomial) depth 1, size \scrO (\epsilon −
d
m ) depth log2 d, size \scrO ((d - 1)\epsilon −

2

m )
\| \cdot \| ∞ [14, Thm. 1] \| \cdot \| ∞ [14, Thm. 2]

σ ReLU f Lipschitz, [ - 1, 1]d, compositional f Lipschitz, [ - 1, 1]d, compositional

depth 1, size \scrO (\epsilon −d) depth log2 d, size \scrO ((d - 1)\epsilon −2)
\| \cdot \| ∞ [14, Thm. 4] \| \cdot \| ∞ [14, Thm. 4]

(see also [10, Cor. 10])

As we mentioned previously, some results without the curse of dimensionality for deep (but
not shallow) networks have been recently derived; some of them are listed in Table 1.2. To
derive such results, one has to consider functions with a very special structure. For example, in
[14], the authors deal with compositional functions. This class includes in particular functions
that are a composition of two-dimensional functions, e.g., in dimension d = 8,

(1.6) f(x1, . . . , x8) = f3

\Bigl( 
f21
\bigl( 
f11(x1, x2), f12(x3, x4)

\bigr) 
, f22
\bigl( 
f13(x5, x6), f14(x7, x8)

\bigr) \Bigr) 

for some bivariate functions f11, f12, f13, f14, f21, f22, and f3. Such functions can be repre-
sented by a binary tree with d inputs variables, log2 d levels, and (d  - 1) nodes, and each of
the nodes can be approximated by a subnetwork of size N/(d - 1); see Figure 1.1.

We will show in this paper that functions in the so-called Korobov spaces X2,p(Ω) (for
some compact subset Ω \subset \BbbR d) of mixed derivatives of order two can be represented to accuracy
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x1 x2 x3 x4 x5 x6 x7 x8

f11 f12 f13 f14

f21 f22

f3
log2 d = 3

Figure 1.1. The binary tree of a compositional function in dimension d = 8. The tree has log2 d = 3
levels and d - 1 = 7 nodes/local functions. To approximate such a function with a deep network of size N , one
can mimic the compositional structure by using a network with depth log2 d and made of 7 subnetworks, each
subnetwork approximating a local function with N/7 units.

\epsilon by deep networks of depth \scrO (| log2 \epsilon | log2 d) and size

(1.7) N = \scrO (\epsilon  - 
1
2 | log2 \epsilon | 

3
2
(d - 1)+1(d - 1)).

The estimate is achieved via sparse grid approximations to functions in X2,p(Ω). The curse of
dimensionality is not totally overcome but is significantly lessened since the exponent d only
affects logarithmic factors | log2 \epsilon | .

4 As we will see in section 2.2, Korobov spaces X2,p(Ω) are
subsets of Sobolev spaces W 2,p(Ω).

The remainder of the paper is structured as follows. We review Korobov spaces and sparse
grids in section 2, and we prove our theorem in section 3.

2. Korobov spaces and sparse grids. We review in this section Korobov spaces and sparse
grids, which go back to Korobov [8] and Smolyak [17], and were rediscovered by Zenger in [22]
for solving partial differential equations. Since 1990, Korobov spaces/sparse grids and related
hyperbolic cross approximation [15, 16] have been used extensively in the context of high-
dimensional function approximation, and the group of Michael Griebel has been particularly
influential. For details, we recommend the exhaustive review [2].

2.1. One-dimensional hierarchical basis. The first ingredient for cooking sparse grids is
a hierarchical basis of functions. To approximate functions of one variable x on Ω = [0, 1],
one considers a family of grids Ωl of level l characterized by a grid size hl = 2 - l and 2l  - 1
points xl,i = ihl, 1 \leq i \leq 2l  - 1. For each Ωl, one considers piecewise linear hat functions \phi l,i

centered at xl,i defined by

(2.1) \phi l,i(x) = \phi 

\biggl( 
x - xl,i

hl

\biggr) 
, 1 \leq i \leq 2l  - 1,

where \phi is the mother of all hat functions,

(2.2) \phi (x) =

\left\{ 
 
 

1 - | x| if x \in [ - 1, 1],

0 otherwise.

4Let us emphasize that the constant in (1.7), however, still depends exponentially on the dimension d.
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Ω1

W1\phi 1,1

Ω2

W2\phi 2,1 \phi 2,3

Ω3

W3\phi 3,1 \phi 3,3 \phi 3,5 \phi 3,7

Ω3

V3\phi 3,1 \phi 3,2 \phi 3,3 \phi 3,4 \phi 3,5 \phi 3,6 \phi 3,7

Figure 2.1. Piecewise linear hierarchical basis (top) and nodal basis (bottom) for n = 3. The hierarchical
basis consists of functions \phi 1,1, \phi 2,1, \phi 2,3, \phi 3,1, \phi 3,3, \phi 3,5, and \phi 3,7, which live on three different grids. Note
that for each grid the supports of the hierarchical basis functions are mutually disjoint. The nodal basis consists
of functions \phi 3,i, 1 \leq i \leq 7, which live on the same grid. Both bases span the same space of dimension
2n  - 1 = 7 since V3 = W1

\bigoplus 
W2

\bigoplus 
W3.

Note that \| \phi l,i\| \infty \leq 1 for all l and i. One then considers the function spaces Vl spanned by
such functions,

(2.3) Vl = span\{ \phi l,i : 1 \leq i \leq 2l  - 1\} ,

and the hierarchical increment spaces Wl given by

(2.4) Wl = span\{ \phi l,i : i \in Il\} ,

where Il = \{ i \in \BbbN : 1 \leq i \leq 2l  - 1, i odd\} . These increment spaces satisfy the relation

(2.5) Vn =
\bigoplus 

1\leq l\leq n

Wl.

The basis that corresponds to the Wl’s for 1 \leq l \leq n is called the hierarchical basis, while the
basis of Vn is called the nodal basis. We show both bases for n = 3 in Figure 2.1.

Let us conclude this subsection by mentioning that one-dimensional hierarchical bases are
not limited to piecewise linear functions (2.1). These can be generalized to piecewise higher-
order polynomials [2, Thm. 4.8], and also to other multiscale bases such as wavelets [6] (see,
e.g., [18]).

2.2. Multidimensional hierarchical basis and Korobov spaces. The second ingredient
is to employ a tensor product construction to approximate functions of d variables x =
(x1, . . . , xd) in Ω = [0, 1]d. One considers a family of grids Ωl of level l = (l1, . . . , ld) with
points xl,i = i \cdot hl, 1 \leq i \leq 2

l
− 1, obtained by the tensor product of d one-dimensional

grids with levels l1, . . . , ld.
5 For each Ωl, one considers hat functions \phi l,i centered at points

5Multiplications and inequalities have to be understood componentwise. We use the notation 1 = (1, . . . , 1).
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xl,i defined by the product of the one-dimensional basis functions,

(2.6) \phi l,i(x) =

d\prod 

j=1

\phi lj ,ij (xj), 1 \leq i \leq 2
l
− 1.

As in one dimension, one considers the function spaces spanned by these functions,

(2.7) Vl = span\{ \phi l,i : 1 \leq i \leq 2
l
− 1\} ,

and the hierarchical increments

(2.8) Wl = span\{ \phi l,i : i \in Il\} ,

with Il = \{ i \in \BbbN d : 1 \leq i \leq 2
l
− 1, ij odd for all j\} and

(2.9) Vn =
\bigoplus 

1\leq l\leq n

Wl.

Themultidimensional hierarchical basis is the basis that corresponds to theWl’s for 1 \leq l \leq n.
We show all subspaces Wl in two dimensions for n = (3, 3) in Figure 2.2.

Equipped with a multidimensional hierarchical basis, one may approximate functions of
d variables. The appropriate function spaces in this context are the Korobov spaces X2,p(Ω)
defined for 2 \leq p \leq +\infty by6

(2.10) X2,p(Ω) = \{ f \in Lp(Ω) : f | ∂Ω = 0, Dkf \in Lp(Ω), | k| \infty \leq 2\} ,

with | k| \infty = max1\leq j\leq d kj and norm

(2.11) | f | 2,\infty =

\bigm\| \bigm\| \bigm\| \bigm\| 
\partial 2df

\partial x21 . . . \partial x
2
d

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

.

These spaces go back to the 1959 paper of Korobov [8]. Note the difference with the Sobolev
spaces W 2,p(Ω) defined in (1.3): smoothness for X2,p(Ω) is measured in terms of mixed deriva-

tives of order two. For example, in two dimensions, from | k| \infty = max(k1, k2) \leq 2, one can see
that the Korobov spaces X2,p(Ω) require

(2.12)
\partial f

\partial x1
,
\partial f

\partial x2
,
\partial 2f

\partial x21
,
\partial 2f

\partial x22
,

\partial 2f

\partial x1\partial x2
,

\partial 3f

\partial x21\partial x2
,

\partial 3f

\partial x1\partial x22
,

\partial 4f

\partial x21\partial x
2
2

\in Lp(Ω),

whereas | k| 1 = (k1 + k2) \leq 2 for W 2,p(Ω) yields

(2.13)
\partial f

\partial x1
,
\partial f

\partial x2
,
\partial 2f

\partial x21
,
\partial 2f

\partial x22
,

\partial 2f

\partial x1\partial x2
\in Lp(Ω).

In other words, Korobov spaces X2,p(Ω) are subsets of Sobolev spaces W 2,p(Ω).

6For simplicity, we only consider functions that are zero at the boundary. Sparse grids for functions that
are nonzero at the boundary can be derived in an analogous fashion and have similar approximation properties.
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l1 = 1 l1 = 2 l1 = 3

l2 = 1

l2 = 2

l2 = 3

Figure 2.2. Left: Subspaces Wl in two dimensions for (l1, l2) \leq (3, 3), and sparse and full grids V
(1)
3

and V
(∞)
3 . The sparse grid consists of all subspaces above the dashed line (| l| 1 = l1 + l2 \leq 4). The full grid

consists of all subspaces (| l| ∞ = max(l1, l2) \leq 3). By omitting many of the cross-terms that have small support
in multiple dimensions, sparse grids have a significantly smaller number of degrees of freedom than full grids,
while their accuracy is only slightly deteriorated. The dots represent the points at which the basis functions take
the value 1. Each basis function lives inside a rectangle, i.e., for each l the supports of the hierarchical basis
functions spanning Wl are mutually disjoint. Right: A sparse grid in two dimensions.

The key fact is that any function f \in X2,p(Ω) has a unique (infinite) expansion in the
hierarchical basis,

(2.14) f(x) =
\sum 

l

\sum 

i\in Il

vl,i\phi l,i(x).

The hierarchical coefficients vl,i \in \BbbR of f are defined by [2, Lem. 3.2]

(2.15) vl,i =

\int 

Ω

d\prod 

j=1

\Bigl( 
 - 2 - (lj+1)\phi lj ,ij (xj)

\Bigr) \partial 2df

\partial x21 . . . \partial x
2
d

(x)dx

and satisfy [2, Lem. 3.3]

(2.16) | vl,i| \leq 2 - d2 - 2| l| 1 | f | 2,\infty .

2.3. Discretization. The third and last ingredient is a clever truncation of the expan-
sion (2.14). Sparse grids are discretizations of X2,p(Ω) defined by

(2.17) V (1)
n =

\bigoplus 

1\leq | l| 1\leq n+d - 1

Wl

and correspond to a number of grid points N given by [2, Lem. 3.6]

(2.18) N = \scrO (h - 1
n | log2 hn| 

d - 1) = \scrO (2nnd - 1).
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A sparse grid in two dimensions is shown in Figure 2.2. Note that full grids V
(\infty )
n , with

(2.19) V (\infty )
n =

\bigoplus 

1\leq | l| ∞\leq n

Wl,

correspond to a much larger \scrO (h - d
n ) = \scrO (2nd) number of grid points.

For any f
(1)
n \in V

(1)
n ,

(2.20) f (1)
n (x) =

\sum 

| l| 1\leq n+d - 1

\sum 

i\in Il

vl,i\phi l,i(x),

and for any f \in X2,p(Ω), the approximation error satisfies [2, Lem. 3.13]

(2.21) \| f  - f (1)
n \| \infty = \scrO (N - 2| log2N | 3(d - 1)),

and, for any accuracy \epsilon > 0,

(2.22) \| f  - f (1)
n \| \infty = \epsilon with N = \scrO (\epsilon  - 

1
2 | log2 \epsilon | 

3
2
(d - 1)).

The approximation error in (2.21) is slightly worse than the \scrO (N - 2
d ) error for approximating

functions in X2,p(Ω) with full grids [2, Lem. 3.5], but uses a much smaller number of points.

3. Error bounds using sparse grids. The results listed in Table 1.1 are typically proven
using the following technique. One shows that certain functions f can be approximated by
polynomials fM of degree M to any prescribed accuracy \epsilon , and so can polynomials fM by
neural networks fN of size N , with N bounded by some function of \epsilon , as in (1.2). This
amounts to decomposing the approximation error as

(3.1) \| f  - fN\| \leq \| f  - fM\| + \| fM  - fN\| 

for some norm \| \cdot \| . We use the same idea, but instead of polynomials we use approximations
by sparse grids.

We first explain in section 3.1 how to approximate the hat functions \phi l,i using ideas
introduced independently by Liang and Srikant [10] and Yarotsky [21]. We then prove in
section 3.2 our theorem concerning approximation of functions in X2,p(Ω) by deep networks.

3.1. Approximating multidimensional hat functions by deep networks. The following
proposition of Yarotsky shows how deep networks can implement multiplication.

Proposition 1 ([21, Prop. 3]). For any 0 < \epsilon < 1, there is a deep ReLU network with

inputs x1 and x2, with | x1| \leq M and | x2| \leq M , that implements the multiplication x1x2 with

accuracy \epsilon , outputs 0 if x1 = 0 or x2 = 0, and has depth and size \scrO (| log2 \epsilon | + log2M).

From Proposition 1, we obtain the following result, which shows how deep networks can
approximate the multidimensional hat functions (2.6) with a binary tree structure. The
corresponding network is shown in Figure 3.1, and the proof can be found in Appendix A.

Proposition 2. For any dimension d and 0 < \epsilon < 1, there is a deep ReLU network with d
inputs x1, . . . , xd that implements the multiplication \phi l,i(x) =

\prod d
j=1 \phi lj ,ij (xj) with accuracy \epsilon ,

outputs 0 if one of the \phi lj ,ij (xj) is 0, and has depth \scrO (| log2 \epsilon | log2 d) and size \scrO (| log2 \epsilon | (d - 1)).
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x1 x2 x3 x4

. . .
xd - 3 xd - 2 xd - 1 xd

\phi l1,i1(x1) . . . \phi ld,id(xd)

\phi l1,i1(x1)\widetilde \times \phi l2,i2(x2) . . .

. .
. . . . . .

. . . .

\widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\widetilde d\prod 

j=1

\phi lj ,ij (xj)

\scrO (| log2 \epsilon | )

2

\scrO (| log2 \epsilon | log2 d)

\scrO (| log2 \epsilon | (log2 d - 1))

Figure 3.1. A network that implements the (d - 1) products in
\prod d

j=1 \phi lj ,ij (xj) with a binary tree structure.
Each product is computed with a subnetwork that has depth and size \scrO (| log2 \epsilon | ). The total product has accuracy
\epsilon and uses a network that has depth \scrO (| log2 \epsilon | log2 d) and size \scrO (| log2 \epsilon | (d - 1)).

3.2. Approximating sparse grids by deep networks. We use the fact that functions in
X2,p([0, 1]d) can be approximated by sparse grids, and then show that sparse grids can be
represented by deep networks using the multiplication presented in the previous subsection.
The resulting network is shown in Figure 3.2.

Theorem 1. For any dimension d and 0 < \epsilon < 1, there is a deep ReLU network with d
inputs x1, . . . , xd capable of expressing any function f in X2,p([0, 1]d) that satisfies | f | 2,\infty \leq 1

with accuracy \epsilon , and has depth \scrO (| log2 \epsilon | log2 d) and size \scrO (\epsilon  - 
1
2 | log2 \epsilon | 

3
2
(d - 1)+1(d - 1)).

Proof. Let us consider f \in X2,p([0, 1]d) and suppose we want to approximate f with a
deep ReLU network fN of size N . Let us write

(3.2) \| f  - fN\| \infty \leq \| f  - f (1)
m \| \infty + \| f (1)

m  - fN\| \infty ,

where f
(1)
m \in V

(1)
m is the sparse grid approximation of f with M = \scrO (2mmd - 1) points. We

know from (2.22) that for any \epsilon > 0, we can equal the first term to \epsilon /2 with

(3.3) M = \scrO ((\epsilon /2) - 
1
2 | log2 \epsilon /2| 

3
2
(d - 1)) = \scrO (\epsilon  - 

1
2 | log2 \epsilon | 

3
2
(d - 1)).

Let us now approximate f
(1)
m by a network fN consisting of M subnetworks, each sub-

network implementing the approximate multiplication introduced in the previous subsection,
which we write as \widetilde \phi l,i(x), that is,

(3.4) fN (x) =
\sum 

| l| 1\leq m+d - 1

\sum 

i\in Il

vl,i\widetilde \phi l,i(x).
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M = \scrO (\epsilon −
1

2 | log2 \epsilon | 
3

2
(d−1))

x1 x2 x3

. . . . . . . . . . . .
xd

. . . . . . . . . . . . . . . . . . . . . . . . \scrO (| log2 \epsilon | log2 d)

fN (x)

S1 S2 S3 SM

Figure 3.2. The sparse grid-based deep network used for the proof of Theorem 1. The network consists of
M subnetworks S1, S2, . . . , SM , which implement the multiplication

\prod d

j=1 \phi lj ,ij (xj) presented in section 3.1.

Let us suppose that each \widetilde \phi l,i(x) is computed to accuracy \delta with a network of depth and size
\scrO (| log2 \delta | log2 d) for some 0 < \delta < 1 (using Proposition 2). From (3.4), we get

(3.5) | f (1)
m (x) - fN (x)| \leq 

\sum 

| l| 1\leq m+d - 1

\sum 

i\in Il

| vl,i| | \phi l,i(x) - \widetilde \phi l,i(x)| .

For a given l, a given x belongs to the support of at most one \phi l,i(x) because these have
disjoint supports,7 so the inequality becomes

(3.6) | f (1)
m (x) - fN (x)| \leq 

\sum 

| l| 1\leq m+d - 1

| vl,il | | \phi l,il(x) - 
\widetilde \phi l,il(x)| 

for some il, which yields, using | \phi l,il(x) - \phi l,il(x)| \leq \delta ,

(3.7) | f (1)
m (x) - fN (x)| \leq \delta 

\sum 

| l| 1\leq m+d - 1

| vl,il | .

Using the property of the decay of the coefficients (2.16),
\sum 

| l| 1\leq m+d - 1 2
 - 2| l| 1 \leq 1 and 2 - d \leq 1,

we obtain

(3.8) | f (1)
m (x) - fN (x)| \leq \delta | f | 2,\infty \leq \delta ,

7Note that the same holds true for \widetilde \phi l,i(x) using the 0-in-0-out property of Proposition 2.
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since | f | 2,\infty \leq 1. Hence, for \delta = \epsilon /2, one has

(3.9) \| f  - fN\| \infty \leq \| f  - f (1)
m \| \infty + \| f (1)

m  - fN\| \infty = \epsilon /2 + \epsilon /2 = \epsilon .

The depth of the network is \scrO (| log2 \delta | log2 d) = \scrO (| log2 \epsilon | log2 d), and its size is

N = \scrO (| log2 \delta | (d - 1)\times M) = \scrO (\epsilon  - 
1
2 | log2 \epsilon | 

3
2
(d - 1)+1(d - 1)).(3.10)

This completes the proof.

4. Discussion. We have proven new rigorous upper bounds for the approximation of func-
tions in Korobov spacesX2,p(Ω) by deep ReLU networks, for which the curse of dimensionality
is lessened. The proof is based on the ability of deep networks to approximate sparse grids
via a binary tree structure (Figure 3.1), which resembles the compositional structure used in
[14].

There are many ways in which this work could be profitably continued. To show an
advantage of deep networks versus shallow, it would be desirable to obtain a lower bound for
approximations in X2,p(Ω) by shallow networks, for which the curse of dimensionality is not
lessened.8 Another extension would be to derive similar estimates for smoother functions,
e.g., functions with mixed derivatives of order m > 2. Piecewise smooth functions could also
be considered (as in [12]), as well as Jacobi-weighted Korobov spaces [16] and energy-based

sparse grids (for which the curse of dimensionality can be totally overcome [2, Thm. 3.10]).
More generally, we could apply our methodology to any expansion of the form (2.14), as long
as the expansion coefficients satisfy a property like (2.16) (which controls the width of the
network) and the basis functions can be implemented efficiently using the multiplication of
section 3.1 (which controls the depth).

Our theorem provides an upper bound for the approximation complexity when the same
network is used to approximate all functions in a given Korobov space. In other words, the
network architecture does not depend on the function being approximated; only the weights
vl,i do. Alternatively, we could consider adaptive architectures where not only the weights but
also the architecture is adjusted to the function being approximated. We would expect that
this would decrease the complexity of the resulting network. Adaptive network architectures
in the context of approximating multivariate functions have been studied by, e.g., Yarotsky
in [21].

As mentioned in the introduction, breaking the curse of dimensionality often relies on
taking advantage of special properties of the functions being approximated. In this paper, we
followed a different route and considered a more generic space of functions, and approximations
by sparse grids. Let us emphasize, however, that sparse grids—in particular the norm (2.11)—
are highly anisotropic: to be efficient, these require the functions being approximated to be
aligned with the axes. This is in fact the case for many algorithms for the approximation of
multivariate functions, including low-rank compressions and quasi–Monte Carlo methods; we
refer the interested reader to [20] for details.

8For approximations by shallow networks in Sobolev spaces W 2,2(Ω), it is well known that both the lower
and upper bounds depend exponentially on the dimension d [13, Thm. 6.1].
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Appendix A. Proof of Proposition 2. Let us first note that \phi lj ,ij can be written as

(A.1) \phi lj ,ij (xj) = \sigma 

\Biggl( 
1 - \sigma 

\biggl( 
xj  - xlj ,ij

hlj

\biggr) 
 - \sigma 

\biggl( 
xlj ,ij  - xj

hlj

\biggr) \Biggr) 
, \sigma (x) = max(0, x);

i.e., it can be implemented by a network of depth 2 and size 3.
Let us now prove the result concerning the multiplication by induction over d. For sim-

plicity we will suppose that d = 2p is a power of 2, and we will prove the result by induction
over p.

For p = 1, i.e., d = 2, we want to show that for any 0 < \epsilon < 1 there is a deep ReLU network
with two inputs x1 and x2 that implements the multiplication \phi l1,i1(x1) \times \phi l2,i2(x2) with
accuracy \epsilon , outputs 0 if \phi l1,i1(x1) = 0 or \phi l2,i2(x2) = 0 (which we call the 0-in-0-out property),
and has depth and size \scrO (| log2 \epsilon | ). To create such a network, one can combine two networks
that compute \phi l1,i1(x1) and \phi l2,i2(x1) from x1 and x2 (each having depth 2 and size 3) with the
network of Proposition 1 (with M = 1 since \| \phi lj ,ij\| \infty \leq 1) to multiply \phi l1,i1(x1) by \phi l2,i2(x2)
(depth and size \scrO (| log2 \epsilon | )). The resulting network has depth \scrO (2+| log2 \epsilon | ) = \scrO (| log2 \epsilon | ) and
size \scrO (3\times 2 + | log2 \epsilon | ) = \scrO (| log2 \epsilon | ) and inherits the 0-in-0-out property from Proposition 1.

Let us suppose now that this is true in dimension d/2 = 2p - 1 for some p \geq 1, and let us
show this is still true in dimension d = 2p for any 0 < \epsilon < 1. The induction hypothesis (which
we use with \epsilon /4) states that there is a deep ReLU network with d/2 inputs x1, . . . , xd/2

that implements the multiplication
\prod d/2

j=1 \phi lj ,ij (xj) with accuracy \epsilon /4, outputs 0 if one of
the \phi lj ,ij (xj) is 0, and has depth \scrO (| log2 \epsilon /4| (log2 d  - 1)) = \scrO (| log2 \epsilon | (log2 d  - 1)) and size
\scrO (| log2 \epsilon /4| (d/2 - 1)) = \scrO (| log2 \epsilon | (d/2 - 1)). Let

(A.2)

\widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

=

\Biggl( \widetilde d/4\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\widetilde \times 
\Biggl( \widetilde d/2\prod 

j=d/4+1

\phi lj ,ij (xj)

\Biggr) 

=

\Biggl( \widetilde d/8\prod 

j=1

\phi lj ,ij (xj)\widetilde \times 
\widetilde d/4\prod 

j=d/8+1

\phi lj ,ij (xj)

\Biggr) 
\widetilde \times 
\Biggl( \widetilde 3d/8\prod 

j=d/4+1

\phi lj ,ij (xj)\widetilde \times 
\widetilde d/2\prod 

j=3d/8+1

\phi lj ,ij (xj)

\Biggr) 

= \cdot \cdot \cdot 

denote this network, where \widetilde \times is the approximate multiplication of Proposition 1. In other
words, this network corresponds to the hierarchical combination of d/2  - 1 products; see
Figure 3.1. The induction hypothesis tells us that this network has accuracy \epsilon /4,

(A.3)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d/2\prod 

j=1

\phi lj ,ij (xj) - 

d/2\prod 

j=1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \epsilon /4,
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which yields

(A.4)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| 

d/2\prod 

j=1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| + \epsilon /4 \leq 1 + \epsilon /4.

In a similar fashion, we consider the network with d/2 inputs, xd/2+1, . . . , xd, that implements\prod d
j=d/2+1 \phi lj ,ij (xj),

(A.5)

\widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj) =

\Biggl( \widetilde 3d/4\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
\widetilde \times 
\Biggl( \widetilde d\prod 

j=3d/4+1

\phi lj ,ij (xj)

\Biggr) 
= \cdot \cdot \cdot ,

with

(A.6)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj) - 
d\prod 

j=d/2+1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \epsilon /4,

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 1 + \epsilon /4,

and 0-in-0-out property. To construct a network that implements the full multiplication\prod d
j=1 \phi lj ,ij (xj), we combine (A.2) with (A.5), that is,

(A.7)

\widetilde d\prod 

j=1

\phi lj ,ij (xj) =

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\widetilde \times 
\Biggl( \widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
.

Note that (A.7) satisfies the 0-in-0-out property since (A.2) and (A.5) do. Let us now examine
the accuracy of this network:
(A.8)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d\prod 

j=1

\phi lj ,ij (xj) - 

d\prod 

j=1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\widetilde \times 
\Biggl( \widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
 - 

\Biggl( 
d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( 
d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 

\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\widetilde \times 
\Biggl( \widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
 - 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( \widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 

+

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( \widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
 - 

\Biggl( 
d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( 
d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| .
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Lets us first consider the second term:
(A.9)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( \widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
 - 

\Biggl( 
d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( 
d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 

\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( \widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
 - 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( 
d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 

+

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl( \widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( 
d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) 
 - 

\Biggl( 
d/2\prod 

j=1

\phi lj ,ij (xj)

\Biggr) 
\times 

\Biggl( 
d\prod 

j=d/2+1

\phi lj ,ij (xj)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d/2\prod 

j=1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d\prod 

j=d/2+1

\phi lj ,ij (xj) - 

d\prod 

j=d/2+1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| 

+

\bigm| \bigm| \bigm| \bigm| \bigm| 

d\prod 

j=d/2+1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\bigm| \bigm| \bigm| \bigm| \bigm| 

\widetilde d/2\prod 

j=1

\phi lj ,ij (xj) - 

d/2\prod 

j=1

\phi lj ,ij (xj)

\bigm| \bigm| \bigm| \bigm| \bigm| 

\leq (1 + \epsilon /4)\times \epsilon /4 + 1\times \epsilon /4 = \epsilon /2 + \epsilon 2/16,

using (A.3), (A.4), and (A.6). Therefore to bound (A.8) by \epsilon we would like to bound the
first term in (A.8) by \epsilon /2 - \epsilon 2/16. Note that this term corresponds to the top multiplication
of Figure 3.1. To achieve accuracy \epsilon /2  - \epsilon 2/16, we use Proposition 1 with M = 1 + \epsilon /4.
Therefore, this multiplication is implemented by a network that has depth and size

(A.10) \scrO (| (log2(\epsilon /2 - \epsilon 2/16))| + log2(1 + \epsilon /4)) = \scrO (| log2 \epsilon | + 3\epsilon /8).

The full network has depth

(A.11) \scrO (| log2 \epsilon | (log2 d - 1) + | log2 \epsilon | + 3\epsilon /8) = \scrO (| log2 \epsilon | log2 d)

and size

(A.12) \scrO (2\times | log2 \epsilon | (d/2 - 1) + | log2 \epsilon | + 3\epsilon /8) = \scrO (| log2 \epsilon | (d - 1)).

This completes the proof.
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