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ASYMPTOTICALLY COMPATIBLE SPH-LIKE PARTICLE

DISCRETIZATIONS OF ONE DIMENSIONAL LINEAR ADVECTION

MODELS\ast 

HWI LEE† AND QIANG DU†

Abstract. Motivated by the smoothed particle hydrodynamics (SPH), we present nonlocal
models for linear advection with a variable coefficient in one spatial dimension together with their
particle based numerical discretizations. We establish that these numerical methods are robust in
the sense that they are convergent as the particle spacing and the smoothing length shrink to zero
independently of each other. We demonstrate the important role of nonlocal continuum models
to ensure the stability of our numerical methods. The nonlocal models constructed here follow two
different strategies: the first model relies on choosing an upwind kernel and the second on introducing
a nonlocal viscous term. We study discrete numerical schemes for both models that are in essence
particle-like quadrature based finite differences, yet the distinction is clearly drawn in the sense that
the scheme for the first model is based on the first moment of the nonlocal kernel while the other is
conceived on the basis of renormalized SPH.

Key words. nonlocal models, particle methods, SPH, linear advection, asymptotically compat-
ible scheme, peridynamics

AMS subject classifications. 45A05, 65M12, 65M75, 65R20, 76M28

DOI. 10.1137/18M1175215

1. Introduction. The smoothed particle hydrodynamics (SPH) has been a pop-
ular numerical method for solving problems in fluid dynamics involving complex flows.
Originally conceived by Lucy [23] and Gingold and Monaghan [18], the SPH is a mesh-
less Lagrangian numerical technique that is based on smoothing kernel approximations
of functions and it has gained popularity due to its simplicity and efficiency. Since its
invention the SPH has undergone numerous developments in various aspects, ranging
from addressing the shortfalls of the SPH such as tensile instability [26] to the devel-
opment of the variant of SPH and other related numerical methods such as the finite
pointset method [20] and Voronoi-SPH method [2].

Despite the practical developments and theoretical analysis, there has been a
limited amount of rigorous mathematical study of the SPH such as its convergence
proof under realistic conditions. We point out an earlier result provided by Moussa
and Vila [3] that proved the convergence of their SPH schemes to the scalar nonlinear
conservation laws. This theoretical result has not only provided an interesting way to
stabilize the SPH via introduction of Riemann problems but it has also highlighted one
of the shortcomings of the SPH in terms of its consistency. That is, the convergence
result in [3] requires the ratio of the particle spacing to the smoothing length of the
SPH kernel to vanish to zero. This requirement has been numerically validated in a
later work [34] and it is quite typical in the analysis of other particle-like methods.
Such a requirement contradicts the often adopted practice of having the smoothing
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128 HWI LEE AND QIANG DU

length proportional to particle spacing to allow efficient evaluation of neighboring
particle interactions.

Indeed the issues of stability and consistency have long been in the purview of
SPH researchers [16, 32] and they are also what our present work is concerned with. In
earlier works, we have connected SPH like approximations with nonlocal relaxations
of conventional local conservation laws given by partial differential equations. In
[13], this connection is mainly provided for a scalar diffusion model, while in [15],
the focus is on a steady state linear Stokes system in multiple space dimensions. The
latter offers a rigorous analysis of a nonlocal relaxation and asymptotically compatible
discretization to the Stokes equation. In fluid mechanics, the advection phenomenon
often plays an essential role. We thus are interested in how earlier works are applicable
to the study of advection. The particular setting in which we begin our study is the
following one dimensional linear advection equation:

(1.1)
ut(x, t) +

∂

∂x
(c(x)u(x, t)) = 0, x \in R, t > 0,

u(x, 0) = u0(x) .

This is one of the simplest prototypical equations in the study of hyperbolic conserva-
tion laws and its simplicity allows us to present our ideas without too many technical
complications. Moreover various nonlocal advection models and nonlocal convection
and diffusion models have already been studied previously (see [12, 10, 27] and ref-
erences cited therein) so it serves us particularly well to continue the investigation
in this direction. Here, we first propose continuum nonlocal advection models from
which we obtain SPH-like particle methods that are asymptotically compatible (AC)
[29]; that is, they converge to the nonlocal models with a fixed smoothing length as
the spatial discretization gets refined, while they converge to the local PDE as the
smoothing length of the kernel and the spatial discretization parameter go to zero
simultaneously in an arbitrary manner. Having the AC property is crucial for the
robustness of the numerical discretization, especially when the number of surround-
ing interacting particles may not be able to keep increasing in practical applications.
While the concept of AC scheme was originally motivated for the robust discretiza-
tion of peridynamics models and nonlocal diffusions that use a horizon parameter to
characterize the range of nonlocal interactions, there are striking similarities with the
SPH-like particle discretization where nonlocal smoothing plays essential roles.

Let us note that a nonlocal model of general advection and diffusion processes
can take on a form

ut(t, x) +

\int 

R

(α\prime 
δ(x, x

\prime )u(t, x\prime ) - αδ(x
\prime , x)u(t, x))dx\prime = 0

for some nonlocal interaction kernels αδ and α\prime 
δ. The parameter δ, often called the

horizon [9], is introduced to characterize the range of interactions. When the kernels
αδ and α\prime 

δ represent jump rates, the nonlocal model can also be used to describe
a Markovian jump process [11]. Upon suitable choices of the kernels, we can view
the classical advection equation as the local limit of the above nonlocal model. In
this work, we present two different constructions that can be localized to the same
equation (1.1). The first is the model proposed in [27], which is in fact a nonlocal
convection diffusion model. Their model constructs the convection term via the kernel
which is not symmetric but biased toward the upwinding direction and this leads to
the stability of the model in the sense of satisfying the maximum principle. In our
first nonlocal model we will adopt a similar idea by encoding the upwinding in the
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AC SPH-LIKE DISCRETIZATION OF LINEAR ADVECTION 129

kernel, but we will take a simpler approach by using kernels that take into account
neighboring particles either to the left or the right of the particle depending only on
the upwinding direction of that particle. Despite the simplification we show that a
stable numerical scheme is obtained when we recast the model as a pairwise interaction
model of [10] by introducing the first moment of the kernel. On the other hand, our
second continuum nonlocal model is a bona fide SPH kernel approximation with an
addition of nonlocal viscosity. We consider the viscosity in the framework of the
nonlocal vector calculus [9], which in fact has already been studied in the context of
peridynamics [28]. We adopt the idea of vanishing viscosity that vanishes in the limit
of δ \rightarrow 0, where δ is the smoothing length of the SPH kernel. The consistency of a
corresponding numerical scheme is ensured by encapsulating the idea of renormalized
SPH of Vila [32].

Our nonlocal continuum models are to be discretized on moving particles which
may in general exhibit heterogeneous distributions at each instance of time. The AC
property hence bears particular importance to our study, which is aimed at making
the discretization more robust to the changes in modeling and discretization param-
eters. It should be enunciated that there exists a large body of literature related to
the consistency and convergence property of SPH-like particle methods with different
levels of mathematical rigor. Within the SPH community, the dependence of con-
sistency of the SPH on the ratio of the particle spacing h to the smoothing length
δ has been relaxed by the introduction of symmetric tensors that renormalize the
discrete SPH approximations of the first [25] and second spatial derivatives [16]. The
successful applications of the renormalized SPH in various settings [30, 17] motivate
the natural implementation of the renormalization based on the numerical quadrature
used in [10, 28] that can handle the extreme case of no neighboring particles within
the horizon. The resulting outcome is our AC particle method corresponding to our
second formulation of nonlocal models that eliminates any condition (including the
relaxed condition) on the ratio h

δ
.

Meanwhile, there have been many developments of other particle methods such
as the moving least squares methods [21, 6] and the reproducing kernel particle meth-
ods [22, 5] that have been designed to yield more accurate results than the SPH.
Connections between SPH and the discrete peridynamics have also been explored in
[4]. The underlying views adopted in those methods are nevertheless faithful to an
interpretation of the SPH wherein each particle is associated with an interpolant or
shape function, and there still is a scarcity of rigorous theoretical analysis of the AC
property associated with these methods despite their illustrated effectiveness due to
improved consistency. Instead of the particle based interpolant view, we propose a dif-
ferent perspective that utilizes a weighted summation of discrete difference operators,
in the same spirit of the well-posed continuum formulation of the nonlocal operators,
and with the weights computed analytically. We provide a mathematical justification
to confirm the validity of our approach that yields AC particle methods for the first
formulation of nonlocal models.

The main contribution of our work is that it is among the first, as far as we are
aware, to propose and provide mathematical justifications of particle methods with the
full force of the AC property. On one hand, our work can be seen as a extension of the
existing AC numerical schemes developed in the setting of nonlocal models discretized
on stationary uniform grids. On the other hand, our work suggests a possible way
to bring in robustness to the SPH, or alike other deterministic particle methods. In
doing so, our work highlights the importance of continuum nonlocal models as a bridge
between continuum local PDE models and their numerical approximations.
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130 HWI LEE AND QIANG DU

This paper is organized as follows. We propose our first nonlocal advection model
and its numerical discretization in section 2. We first present our numerical method
on a stationary, general grid and its convergence analysis to the nonlocal model as
well as the local PDE as the parameters in our discretization vanish. We then present
our numerical schemes with moving particles and their convergence results. Section
3 is centered around our second nonlocal model and it is structured analogously to
section 2. Some numerical tests and comparisons are presented in section 4. We then
end with some discussions concerning our two approaches in section 5.

2. Model I: Biased interaction kernel. Our first approach is to look for a
nonlocal model in which stabilization effect is provided by the kernel that has a built-in
bias in deciding which neighboring particles to interact with. Such approaches in the
context of nonlocal modeling have been studied previously; see, for example, [10] for
one dimensional nonlinear nonlocal conservation laws and [27] for multidimensional
linear convection diffusion equations.

2.1. Continuum formulation of Model I. In more specific terms, let us define
the kernel

wδ
c(x, y) =

\Biggl\{ 

1y<xη
δ(y  - x) if c(x) > 0,

1y>xη
δ(y  - x) otherwise,

where ηδ(s) = 1
δ2
η( s

δ
) is a scaled kernel for some odd function η. The function η is

assumed to satisfy η(z) \geq 0 on z \geq 0 and to be supported on ( - 1, 1). Note the use of
the subscript c to elucidate the dependence of the kernel on the velocity field c. We
then propose the following nonlocal model (referred to as Model I from here on):

(2.1)
ut(x, t) +

\int 

R

(c(y)u(y, t) - c(x)u(x, t))wδ
c(x, y)dy = 0 ,

u(x, 0) = u0(x) .

In order to ensure (at least formal) consistency of Model I with the local PDE,
we need to impose a suitable normalization condition on wδ

c , and to this end fix x and
assume without loss of generality c(x) > 0. Then we consider the nonlocal operator
Lδ defined as

(2.2) Lδ(u)(x, t) =

\int δ

0

(c(x)u(x, t) - c(x - y)u(x - y, t))ηδ(y)dy

so that we can rewrite (2.1) as

ut + Lδ(u) = 0 .

Under the assumption of smooth u and c, direct calculation based on Taylor expansion
shows that we need the following condition on the kernel:

(2.3)

\int δ

0

yηδ(y)dy = 1,

which we assume from here on.

2.2. Numerical discretization of Model I. We are interested in discretiza-
tion of (2.2) that is asymptotically compatible, so we follow the approach in [10].
Assuming c(x) > 0, we first rewrite the operator Lδ(u)(x, t),

Lδ(u)(x, t) =

\int δ

0

c(x)u(x, t) - c(x - y)u(x - y, t)

y
yηδ(y)dy,
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from which we see that the operator Lδ represents a continuum of one-sided finite
differences. In comparison with the pairwise interaction nonlocal model of [10], our
Model I allows the particle at xj to interact only with the neighboring paticles to
its left. We are motivated to introduce this bias in our model based on the simple
fact that the use of the upwinding flux in discretization of the advection PDE with a
constant velocity brings about numerical stability by default (that is, without explicit
consideration of how much numerical viscosity should be added). An extension of
that simple idea is what we choose to study in the setting of nonlocal advection with
variable speed.

Moving particles at each fixed time instant constitutes a grid that is in general ir-
regular, so let us first consider the case of general stationary grid, denoted by \{ xj\} j\in Z.
We propose the following discretization:

Lδ
h(u)(xj) =

L(j)
\sum 

k=1

(cjuj  - cj - kuj - k)W
L
k,j ,

where
L(j) = max\{ max\{ l : 0 \leq l, | xj  - xj - l| \leq δ\} , 1\} 

and

WL
k,j =

1

xj  - xj - k

\int xj - xj−k

xj - xj−k+1

yηδ(y)dy +
1k=L(j)

xj  - xj - k

\int δ

xj - xj−k

yηδ(y)dy.

For simplicity we adopt the forward Euler time stepping, which then yields the
following fully explicit scheme:

(2.4) un+1
j = un

j  - ∆t

L(j)
\sum 

k=1

(cju
n
j  - cj - ku

n
j - k)W

L
k,j .

Remark 2.1. If the spacing of the grid points is fixed but δ \rightarrow 0, then the scheme
(2.4) reduces to a local finite difference scheme

un+1
j = un

j  - ∆t

xj  - xj - 1
(cju

n
j  - cj - 1u

n
j - 1).

Remark 2.2. By construction WL
k,j are nonegative with a weighted sum satisfying

the identity
L(j)
\sum 

k=1

(xj  - xj - k)W
L
k,j = 1.

2.3. Convergence of the numerical scheme to Model I and its local

limit. We are interested in the convergence of numerical solutions obtained by the
numerical scheme (2.4) in two cases:

(2.5)

\biggl\{ 
\bullet h̄ \rightarrow 0 with δ > 0 fixed,
\bullet h̄, δ \rightarrow 0 arbitrarily,

where h̄ = supi | xi+1  - xi| . Since the scheme is linear, it suffices to establish consis-
tency and stability. At the expense of assuming smooth solutions and data, we can
show the convergence in the L\infty norm.
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132 HWI LEE AND QIANG DU

Convergence to the nonlocal Model I. Let us first present a consistency estimate.

Lemma 2.3 (consistency). Suppose c, u, c\prime , ux are bounded. If c\prime and ux are

Lipscthiz, then

sup
j

| Lδ(u)(xj , t) - Lδ
h(u)(xj , t)| \leq Ch̄

for some constant C independent of δ.

Proof. Let us define

G(s) =
c(x)u(x, t) - c(x - s, t)u(x - s, t)

s

and note that direct calculation shows the uniform boundedness of G\prime (s). Then
applying the argument of Lemma 5.1 in [28] yields the result.

The next lemma is concerned with stability.

Lemma 2.4 (L\infty -stability). Assume c, c\prime are uniformly bounded. Provided that

the following CFL condition holds,

∆t\| c\| L∞(R)

h
\leq 1,

where h = infi | xi+1  - xi| , then

\| un+1\| L∞(R) \leq \| un\| L∞(R)(1 + ∆t\| c\prime \| L∞(R)) for all n \geq 0.

Proof. We can rewrite the scheme as

un+1
j = (1 - ∆tcj

L(j)
\sum 

k

WL
k,j)u

n
j +∆t

L(j)
\sum 

k=1

cjW
L
k,ju

n
j - k +∆t

L(j)
\sum 

k=1

(cj - k  - cj)W
L
k,ju

n
j - k.

Then since

0 \leq ∆t

L(j)
\sum 

k=1

cjW
L
k,j \leq 

∆t\| c\| L∞(R)

h

L(j)
\sum 

k=1

(xj  - xj - k)W
L
k,j =

∆t\| c\| L∞(R)

h

and

L(j)
\sum 

k=1

\bigm| 
\bigm| (cj - k  - cj)W

L
k,j

\bigm| 
\bigm| \leq \| c\prime \| L∞(R)

L(j)
\sum 

k=1

(xj  - xj - k)W
L
k,j = \| c\prime \| L∞(R),

the result follows.

We note that one can immediately observe that the CFL condition in Lemma 2.4
is in fact that of local PDE. Moreover, if c(\cdot ) = constant, we indeed have the maximum
principle \| un\| L∞(R) \leq \| u0\| L∞(R).

Asymptotic convergence to the local advection equation (1.1). We note that the
CFL condition in Lemma 2.4 is independent of δ. Hence if we choose the time steps
∆t to satisfy that CFL condition, the scheme (2.4) is Lax–Richtmyer stable in L\infty 

uniformly in δ. It only remains then to show consistency to the local PDE.

Lemma 2.5 (consistency). If u, ux, uxx, c, c
\prime , c\prime \prime are bounded, then

sup
j

\bigm| 
\bigm| Lδ

h(u)(xj , t) - (c(x)u(x, t))x | x=xj

\bigm| 
\bigm| = O(max(h̄, δ)).
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Proof. Using Taylor series expansion, we have

c(xj)u(xj , t) - c(xj - k)u(xj - k, t) = (c(x)u(x, t))x
\bigm| 
\bigm| 
x=xj

(xj  - xj - k) +O(| xj  - xj - k| 2).

Now for | xj  - xj - 1| > δ,

L(j)
\sum 

k=1

(c(xj)u(xj , t) - c(xj - k)u(xj - k, t))W
L
k,j

= (c(x)u(x, t))x | x=xj
+ O(| xj  - xj - 1| )

\int δ

0

yηδ(y)dy

= (c(x)u(x, t))x | x=xj
+ O(| xj  - xj - 1| ),

whereas for | xj  - xj - 1| \leq δ,

L(j)
\sum 

k=1

(c(xj)u(xj , t) - c(xj - k)u(xj - k, t))W
L
k,j

= (c(x)u(x, t))x | x=xj
+

L(j)
\sum 

k=1

O(| xj  - xj - k| )(xj  - xj+k)W
L
k,j

= (c(x)u(x, t))x | x=xj
+ O(δ)

L(j)
\sum 

k=1

(xj  - xj+k)W
L
k,j = (c(x)u(x))x | x=xj

+ O(δ).

This leads to the conclusion of the lemma.

In summary, we state the following.

Theorem 2.6. Let T > 0 be a fixed terminal time. Assume c and c\prime are bounded.

Let Un
j denote the numerical solution given by the scheme (2.4) at x = xj and t =

n∆t, n \in N, where ∆t is chosen to satisfy the CFL condition of Lemma 2.4. Let

u(x, t), uδ(x, t) denote the solutions of (1.1) and (2.1), respectively, and N \in N so

that N∆t = T .

1. Suppose c\prime is Lipschitz in R. If uδ
x is Lipschitz in R uniformly in t \in [0, T ]

and uδ, uδ
x, u

δ
tt \in L\infty (R\times [0, T ]), then

sup
j

| uδ(xj , T ) - UN
j | \leq Cδ(h̄+∆t)

for some Cδ > 0 depending on \| \cdot \| L∞(R\times [0,T ]) norms of uδ and uδ
tt, and

Lipschitz constant of uδ
x.

2. If c\prime \prime \in L\infty (R) and u, ux, uxx, utt \in L\infty (R\times [0, T ]), then

sup
j

| u(xj , T ) - UN
j | = O(max(h̄, δ)) +O(∆t).

Proof. The proof follows from the Lax equivalence theorem.

2.4. Moving mesh particle-like approximations. With our convergence re-
sults in the case of general nonuniform stationary particles, we can easily establish
the corresponding results for moving particles. To this end, we first introduce moving
coordinates x(t) subject to some prescribed velocity field b(x), which is not neces-
sarily the underlying velocity field c(x) in a similar spirit as in the arbitrary Euler–
Lagrangian methods [19],

(2.6) ẋ(t) = b(x(t)), x(0) = x0.
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The local PDE can then be rewritten in the Lagrangian frame

(2.7)
d

dt
u(x(t), t) + b\prime (x(t))u(x(t), t) + (c\prime (x(t)) - b\prime (x(t)))u(x(t), t)) = 0

so that our nonlocal integral relaxation of the the flux term yields

d

dt
u(x(t), t) + b\prime (x(t))u(x(t), t) +

\int x(t)+δ

x(t) - δ

((c(y) - b(y))u(y, t) - \cdot \cdot \cdot 

(c(x(t)) - b(x(t)))u(x(t), t))wδ
c - b(x(t), y)dy = 0.(2.8)

Note the dependence of the kernel on the relative velocity field ĉ = c  - b. With
ĉj,n = ĉ(xj(n∆t)) > 0, we then obtain the following discretization:

(2.9) un+1
j = un

j  - ∆t(b\prime j,nu
n
j +

L(j)
\sum 

k=1

(ĉj,nu
n
j  - ĉj - k,nu

n
j - k)W

L
k,j).

We assume for simplicity that the initial distribution of particles is uniform with
a spacing of size h. We also assume the velocity field b is smooth with a bounded first
derivative, which implies that there exist constants C1 and C2 depending only on the
terminal time T such that

C1(T )h \leq | xj+1  - xj | \leq C2(T )h

for all j \in Z and t \in [0, T ] [24]. Then it is a straightforward extension of the results
in subsection 2.3 to establish the following.

Theorem 2.7. Let T > 0 be a fixed terminal time. Assume c, c\prime , b, b\prime are uni-

formly bounded. Let Un
j denote the numerical solution given by the scheme (2.9) at

x = xj and t = n∆t, n \in N, where ∆t is chosen to satisfy the CFL condition

∆t\| c - b\| L∞(R)

C1(T )h
\leq 1.

Let u(x, t), uδ(x, t) denote the solutions of (2.7) and (2.8), respectively, and N \in N

so that N∆t = T .

1. Suppose c\prime and b\prime are Lipschitz in R. If uδ
x is Lipschitz in R uniformly in

t \in [0, T ] and uδ, uδ
x, u

δ
tt \in L\infty (R\times [0, T ]), then

sup
j

| uδ(xj , T ) - UN
j | \leq Cδ(h̄+∆t)

for some Cδ > 0 depending on \| \cdot \| L∞(R\times [0,T ]) norms of uδ and uδ
tt, and

Lipschitz constant of uδ
x.

2. If c\prime \prime , b\prime \prime \in L\infty (R) and u, ux, uxx, utt \in L\infty (R\times [0, T ]), then

sup
j

| u(xj , T ) - UN
j | = O(max(h̄, δ)) +O(∆t).

Proof. The arguments are analogous to the case of a stationary nonuniform grid
in subsection 2.3.
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The appearance of the local derivative term in (2.8) suggests that one may con-
sider its nonlocal relaxation to obtain the following fully nonlocal equation:

d

dt
u(x(t), t) +

\Biggl( 
\int x(t)+δ

x(t) - δ

(b(y) - b(x(t)))wδ
ĉ(x(t), y)dy

\Biggr) 

u(x(t), t) + \cdot \cdot \cdot 

\int x(t)+δ

x(t) - δ

((c(y) - b(y))u(y, t) - (c(x(t)) - b(x(t)))u(x(t), t))wδ
ĉ(x(t), y)dy = 0.(2.10)

This formulation fits well with our nonlocal framework when the velocity field b(x) is
chosen to be equal to c(x), in which case (2.8) reduces to a local PDE. We can see
that the use of the kernel wδ

ĉ in our nonlocal relaxation of b\prime is a convenient choice as
it yields, in the case of ĉj,n > 0, the following simple numerical discretization:

(2.11) un+1
j = un

j  - ∆t

L(j)
\sum 

k=1

((cj,n  - bj - k,n)u
n
j  - ĉj - k,nu

n
j - k)W

L
k,j .

The convergence of the above discretization can be shown as follows.

Theorem 2.8. Suppose the same assumptions are made as in Theorem 2.7. Then
with u and uδ now denoting the solutions of (2.7) and (2.10), respectively, the same

conclusions as in Theorem 2.7 hold.

Proof. The proof is exactly analogous to that of Theorem 2.7.

We make some observations concerning the two schemes in (2.9) and (2.11). It is
clear that the computational complexity of the latter involves \scrO (N) more operations
than the former, where N denotes the number of particles. In terms of memory
storage, however, the former requires additional \scrO (N) storage for the terms (b\prime )nj
than the latter, which only needs the values of bj that have already been computed
for the nonlocalized flux. Meanwhile we note that computations of the weights WL

k,j

for both schemes can be significantly simplified by choosing a singular kernel such as

ηδ(z) =
1(−δ,δ)

δz
.

3. Model II: Vanishing nonlocal viscosity. It is a well-known practice in
the study of conservation laws to seek solutions of an inviscid problem by taking the
limit solutions of the corresponding viscous problem as the viscosity effect vanishes.
In the particular case of an advection equation, one way to bring in the idea of
vanishing viscosity is through advection-diffusion equations where the diffusive terms
are introduced through nonlocal operators such as a fractional power of the Laplacian
[1, 7, 10]. In this section we present a nonlocal continuum advection-diffusion model
which will in turn give rise to another AC particle method for the local advection
equation (1.1).

3.1. Continuum formulation of Model II. In more specific terms, we pro-
pose the following nonlocal advection-diffusion model (referred to as Model II from
here on):

ut(x, t) +

\int 

R

c

\biggl( 
x+ y

2

\biggr) 

(u(x, t) + u(y, t))wδ(y  - x)dy  - \cdot \cdot \cdot 

δµ

\int 

R

(u(y, t) - u(x, t))
wδ(y  - x)

y  - x
dy = 0,(3.1)

u(x, 0) = u0(x),
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where δ > 0 is a nonlocal horizon and µ > 0 is a positive coefficient depending only
on the velocity field c. We assume that wδ(z) = 1

δ2
w( z

δ
), where w is an antisymmetric

integrable kernel that is supported on ( - 1, 1) and satisfies wδ(z) \geq 0 on z \geq 0. In
the language of nonlocal vector calculus [9], the model can be rewritten as

ut +\scrA δ(u) - δµ\scrD δ(u) = 0,

where \scrA δ corresponds to a nonlocal divergence operator with the vector two-point
function v(x, y) = c(x+y

2 )u(x, t) and the antisymmetric two point function α =
y - x
| y - x| | wδ(y  - x)| , whereas \scrD δ corresponds to a nonlocal diffusion operator with the

symmetric kernel wδ(y - x)
y - x

. As the focus of this work is on initial Cauchy value prob-

lems, discussions on the nonlocal boundary conditions, or constrained values [8], and
modifications to the nonlocal diffusion operators near the boundary [13], if any, are
not presented here.

Following discussions in [9, 11, 27], it is immediate to see that with a fixed δ > 0
the model is a nonlocal analogue of the modified equation

ut(x, t) + (c(x)u(x, t))x  - δµ

2
uxx(x, t) = 0

\int δ

 - δ

hwδ(h)dh = 1,(3.2)

which we assume from here on. Note that the integrability assumption of w implies
that

(3.3) \| wδ\| L1(R) = O

\biggl( 
1

δ

\biggr) 

.

A connection to the SPH can be made by setting wδ(z) =  - ∂z(
1
δ
ρ( z

δ
)), where ρ is a

radially symmetric, nonnegative, differentiable function that decreases with increasing
radial distances and is compactly supported on ( - 1, 1) with \| ρ\| L1(R) = 1.

The presence of nonlocal diffusion term in (3.1) suggests that a simple minded
discretization of the model may not need additional stabilization and that such dis-
cretization, with vanishing δ, is expected to converge to the advection equation. This
is indeed the case as we establish the convergence results of our discretization of Model
II. We assume \| c\| L∞(R) < \infty and we choose to take

µ \geq \| c\| L∞(R).

This leads to sufficient damping to the nonlocal model to ensure desirable physical
features related to stability. For example, for constant velocity c, the above condition
implies a maximum principle for the resulting nonlocal convection-diffusion model.

3.2. Numerical discretization of Model II. Similar to our discretization of
Model I, we present our numerical discretization of Model II, wherein the kernels
of the nonlocal integral operators are integrated analytically. What is distinct in
this case, however, is that we adopt the idea presented in the renormalized SPH by
Vila [32] instead of considering the first moment of the kernel. Before presenting
our discretization on a set of moving particles, we first consider a set of stationary
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particles \{ xi\} i\in Z and propose the following discretization:

\scrA h
δ (u(xj , t)) =

1

Nj,δ

rj\sum 

k= - lj

c

\biggl( 
xj + xj+k

2

\biggr) 

(u(xj , t) + u(xj+k, t))Wj,j+k,

\scrD h
δ (u(xj , t)) =

1

Nj,δ

rj\sum 

k= - lj

(u(xj+k, t) - u(xj , t))

xj+k  - xj

Wj,j+k,

where lj = max\{ max\{ l \in Z
+ | xj - xj - l \leq δ\} , 1\} ,rj = max\{ max\{ r \in Z

+ | xj+r - xj \leq 
δ\} , 1\} ,

Wj,j+k =

\int xj+k

xj+k−1

wδ(y  - xj)dy + 1k=rj

\int xj+δ

xj+k

wδ(y  - xj)dy

for k > 0 (analogously for Wj,j+k with k < 0) and the renormalization factor

Nj,δ =

rj\sum 

k= - lj

(xj+k  - xj)Wj,j+k.

Let us then summarize the properties of Nj,δ that will be used in our analysis to
follow.

Lemma 3.1. There exists a constant C such that

0 \leq Nj,δ  - 1 \leq C
h̄

δ
.

Moreover

(3.4)
1

Nj,δ

rj\sum 

k= - lj

Wj,j+k = 0,
1

Nj,δ

rj\sum 

k= - lj

(xj+k  - xj)Wj,j+k = 1

and

(3.5)

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\sum rj
k= - lj

(xj+k  - xj)
2Wj,j+k

Nj,δ

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
= O(max(h̄, δ)).

Proof. Assume without loss of generality xj = 0 and note

Nj,δ  - 1 =

rj\sum 

k=1

\int xj+k+1k=rj
(δ - xj+k)

xj+k−1

(y
\bigm| 
\bigm| 
y=xj+k

 - y)wδ(y)dy + \cdot \cdot \cdot 

 - 1\sum 

k= - lj

\int xj+k+1

xj+k+1k=lj
( - δ - xj+k)

(y
\bigm| 
\bigm| 
y=xj+k

 - y)wδ(y)dy.

Then the first claim follows from the nonnegativity of the integrands and (3.3). The
identity (3.4) is immediate from the definition of Nj,δ. The identity (3.5) is a conse-
quence of the nonnegativity of each (xj+k  - xj)Wj,j+k in Nj,δ.

We adopt the forward Euler time stepping, thereby obtaining the following explicit
scheme:

(3.6) un+1
j = un

j  - ∆t(\scrA h
δ (u

n
j ) - µmax\{ δ, xj  - xj - lj , xj+rj  - xj\} \scrD h

δ (u
n
j )).

As will be seen in the proof of Lemma 3.3, approximating δ with max\{ δ, xj  - xj - lj ,

xj+rj  - xj\} in the viscosity term ensures that sufficient numerical viscosity is present
when δ < xj  - xj - lj or δ < xj+rj  - xj .
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3.3. Convergence of the numerical scheme to Model II and its local

limit. Again, we show that the numerical solutions obtained by the scheme (3.6)
are convergent in L\infty norm in the following two regimes outlined in (2.5). Since the
scheme (3.6) is linear, we establish consistency and stability.

Convergence to the nonlocal Model II. The consistency is stated first below.

Lemma 3.2. If u, ux, uxx, c, c
\prime , c\prime \prime are uniformly bounded, then

sup
j

| \scrA h
δ (u(xj , t)) - \scrA δ(u(xj , t))| = O(h̄) +O

\biggl( 
h̄2

δ

\biggr) 

.

If uxxx is uniformly bounded, then

sup
j

| \scrD h
δ (u(xj , t)) - \scrD δ(u(xj , t))| = O(h̄) +O

\biggl( 
h̄3

δ2

\biggr) 

.

Proof. For convenience of notation, let us denote f(y, t) = c(
xj+y

2 )(u(xj , t) +
u(y, t)) and apply Taylor series expansion to write

f(y, t) = f(xj , t) + (y  - xj)fy(xj , t) +R1(y, t),

where R1(y, t) =
\int y

xj
(y  - s)fyy(s, t)ds. Then the antisymmetry of wδ together with

the moment condition subsection 3.1 yields

\scrA δ(u(xj , t)) = fy(xj , t) +

\int xj+δ

xj - δ

R1(y, t)w
δ(y  - xj)dy.

On the other hand, we can apply Taylor series expansion and the identities (3.4) to
obtain

\scrA h
δ (u(xj , t)) = fy(xj , t) +

1

Nj,δ

rj\sum 

k= - lj

R1(xj+k, t)Wj,j+k.

We then have

| \scrA δ(u(xj , t)) - \scrA h
δ (u(xj , t))| 

=
1

Nj,δ

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

rj\sum 

k= - lj

R1(xj+k, t)Wj,j+k  - Nj,δ

\int xj+δ

xj - δ

R1(y, t)w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\leq 

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

rj\sum 

k= - lj

R1(xj+k, t)Wj,j+k  - 
\int xj+δ

xj - δ

R1(y, t)w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

+ \cdot \cdot \cdot 

O

\biggl( 
h̄

δ

\biggr) 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\int xj+δ

xj - δ

R1(y, t)w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
,

where the last inequality is due to Nj,δ \geq 1 and Nj,δ = 1 +O( h̄
δ
) in Lemma 3.1. But

| R1(y)| \leq Cδ2 together with (3.3) implies

| \scrA δ(u(xj , t)) - \scrA h
δ (u(xj , t))| 

\leq 

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

rj\sum 

k= - lj

R1(xj+k, t)Wj,j+k  - 
\int xj+δ

xj - δ

R1(y, t)w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

+O(h̄).D
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Then the first claim follows from the estimate
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

rj\sum 

k=1

R1(xj+k, t)Wj,j+k  - 
\int xj+δ

xj

R1(y, t)w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

=

rj\sum 

k=1

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\int xj+k+1k=rj
(xj+δ - xj+k)

xj+k−1

(R1(y, t)
\bigm| 
\bigm| 
y=xj+k

 - R1(y, t))w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\leq 
rj\sum 

k=1

\int xj+k+1k=rj
(xj+δ - xj+k)

xj+k−1

\left( 

 
 
 
 
 

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\int y

xj

(xj+k  - y)fyy(s, t)ds

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\underbrace{}  \underbrace{}  

O(δh̄)

+ \cdot \cdot \cdot 

\bigm| 
\bigm| 
\bigm| 
\bigm| 

\int xj+k

y

(xj+k  - s)fyy(s, t)ds

\bigm| 
\bigm| 
\bigm| 
\bigm| 

\underbrace{}  \underbrace{}  

O(h̄2)

\right) 

 
 
 
 
 

| wδ(y  - xj)| dy \leq O(h̄) +O

\biggl( 
h̄2

δ

\biggr) 

,

where (3.3) is used in the last inequality, and the analogous estimate
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

 - 1\sum 

k= - lj

R1(xj+k, t)Wj,j+k  - 
\int xj

xj - δ

R1(y, t)w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\leq 
 - 1\sum 

k= - lj

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\int xj+k+1

xj+k+1k=−lj
(xj - δ - xj+k)

(R1(y, t)
\bigm| 
\bigm| 
y=xj+k

 - R1(y, t))w
δ(y  - xj)dy

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\leq O(h̄) +O

\biggl( 
h̄2

δ

\biggr) 

.

The second estimate follows analogously from Taylor series expansion of u(y, t) up to
third order in y.

So far as the stability of the scheme (3.6) is concerned, our choice of a nonlocal
viscosity term ensures sufficient numerical viscosity to show the following L\infty stability
result.

Lemma 3.3. Assume c, c\prime are bounded. If

2∆tµ

h
\leq 1,

then \| un+1\| L∞(R) \leq (1 + ∆t\| c\prime \| L∞(R))\| un\| L∞(R) for all n \geq 0.

Proof. The scheme can be rewritten as

un+1
j

=

\left( 

 1 - ∆t

Nj,δ

rj\sum 

k= - lj

\biggl( 

c j,j+k
2

+
max\{ δ, xj  - xj - lj , xj+rj  - xj\} µ

xj+k  - xj

\biggr) 

Wj,j+k

\right) 

 un
j

+

\left( 

  - ∆t

Nj,δ

rj\sum 

k= - lj

\biggl( 

c j,j+k
2

 - max\{ δ, xj  - xj - lj , xj+rj  - xj\} µ
xj+k  - xj

\biggr) 

Wj,j+k

\right) 

 un
j+k.
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Then since \sum rj
k= - lj

| Wj,j+k| 
Nj,j+k

\leq 1

h

\sum rj
k= - lj

(xj+k  - xj)Wj,j+k

Nj,j+k

=
1

h

and
\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\sum rj
k= - lj

c j,j+k
2

Wj,j+k

Nj,k

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 
=

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\sum rj
k= - lj

(c j,j+k
2

 - cj)Wj,j+k

Nj,k

\bigm| 
\bigm| 
\bigm| 
\bigm| 
\bigm| 

\leq 
1
2\| c\prime \| L∞(R)

\sum rj
k= - lj

(xj+k  - xj)Wj,j+k

Nj,k

=
\| c\prime \| L∞(R)

2
,

the claim follows from the positivity of the coefficients of un
j and un

j+k.

Convergence to the local advection equation (1.1). We have the CFL stability con-
dition in Lemma 3.3 that is independent of δ, so it only remains to show consistency.

Lemma 3.4. If u, ux, uxx, uxxx, c, c
\prime , c\prime \prime are uniformly bounded, then

sup
j

| \scrA h
δ (u(xj , t)) - (c(x)u(x, tn))x

\bigm| 
\bigm| 
x=xj

| = O(max(h̄, δ)),

sup
j

| max\{ δ, xj  - xj - lj , xj+rj  - xj\} \scrD h
δ (u(xj , t))| = O(max(h̄, δ)).

Proof. The results follow from Taylor series expansions, the identities (3.4), and
the estimate (3.5) in Lemma 3.1.

In summary, we deduce the following.

Theorem 3.5. Let T > 0 be a fixed terminal time. Assume c, c\prime , c\prime \prime are bounded.

Let Un
j denote the numerical solution given by the scheme (3.6) at x = xj and t =

n∆t, n \in N, where ∆t is chosen to satisfy the CFL condition of Lemma 3.3. Let

u(x, t), uδ(x, t) denote the solutions of (3.1) and (1.1), respectively, and N \in N so

that N∆t = T .

1. If uδ, uδ
x, u

δ
xx, u

δ
xxx, u

δ
tt \in L\infty (R\times [0, T ]), then

sup
j

| uδ(xj , T ) - UN
j | = O(h̄) +O

\biggl( 
h̄2

δ

\biggr) 

+O

\biggl( 
h̄3

δ2

\biggr) 

+O(∆t).

2. If u, ux, uxx, uxxx, utt \in L\infty (R\times [0, T ]), then

sup
j

| u(xj , T ) - UN
j | = O(max(h̄, δ)) +O(∆t).

Proof. The proof follows from the Lax equivalence theorem.

3.4. A moving particle approximation. It is now straightforward to consider
the case of moving particles that advect according to the velocity field b(x). If we
recall the PDE in Lagrangian frame (2.7), we see that the corresponding nonlocal
Model II is given by

d

dt
u(x(t), t)+b\prime (x(t))u(x(t), t) + \cdot \cdot \cdot 

\int 

R

(c - b)

\biggl( 
x(t) + y

2

\biggr) 

(u(x(t), t) + u(y, t))wδ(y  - x(t))dy  - \cdot \cdot \cdot (3.7)

µ

\int 

R

(u(y, t) - u(x(t), t))
wδ(y  - x(t))

y  - x(t)
dy = 0,
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which in turn leads to the following scheme:

un+1
j = un+1

j  - ∆t(b\prime j,nu
n
j +\scrA h

δ,b(\cdot )(u
n
j ) - \cdot \cdot \cdot 

µmax\{ δ, (xj,n  - xj - lj ,n), (xj+rj ,n  - xj,n)\} \scrD h
δ (u

n
j )),(3.8)

where \scrA h
δ,b(\cdot ) is the modification of \scrA h

δ obtained by replacing c with c - b, Nj,δ within

\scrA h
δ,b(\cdot ) and \scrD h

δ is evaluated using \{ xi,n\} i\in Z = \{ xi(∆tn)\} i\in Z, and

µ \geq \| c - b\| L∞(R).

As in the case of Model I, we take initial distribution of particles to be uniform with
a particle spacing of size h, and velocity b to be smooth such that

C1(T )h \leq | xj+1  - xj | \leq C2(T )h

for all j \in Z and t \in [0, T ]. Then one can show the following.

Theorem 3.6. Let T > 0 be a fixed terminal time. Assume c, c\prime , c\prime \prime , b, b\prime , b\prime \prime are

bounded. Let Un
j denote the numerical solution given by the scheme (3.8) at x = xj

and t = n∆t, n \in N, where ∆t is chosen to satisfy the CFL condition

2∆tµ

C1(T )h
\leq 1.

Let u(x, t), uδ(x, t) denote the solutions of (2.7) and (3.7), respectively, and N \in N

so that N∆t = T .

1. If uδ, uδ
x, u

δ
xx, u

δ
xxx, u

δ
tt \in L\infty (R\times [0, T ]), then

sup
j

| uδ(xj , T ) - UN
j | = O(h̄) +O

\biggl( 
h̄2

δ

\biggr) 

+O

\biggl( 
h̄3

δ2

\biggr) 

+O(∆t).

2. If u, ux, uxx, uxxx, utt \in L\infty (R\times [0, T ]), then

sup
j

| u(xj , T ) - UN
j | = O(max(h̄, δ))) +O(∆t).

Proof. The arguments are analogous to the case of stationary particles in subsec-
tion 3.3.

Following our approach in the case of Model I, we consider the fully nonlocalized
equation

d

dt
u(x(t), t)+2

\biggl( \int 

R

b

\biggl( 
x(t) + y

2

\biggr) 

wδ(y  - x(t))dy

\biggr) 

u(x(t), t) + \cdot \cdot \cdot 
\int 

R

(c - b)

\biggl( 
x(t) + y

2

\biggr) 

(u(x(t), t) + u(y, t))wδ(y  - x(t))dy  - \cdot \cdot \cdot (3.9)

δµ

\int 

R

(u(y, t) - u(x(t), t))
wδ(y  - x(t))

y  - x(t)
dy = 0,

which in turn leads to the following scheme:

un+1
j = un+1

j  - ∆t(\scrB h
δ (u

n
j ) +\scrA h

δ,b(\cdot )(u
n
j ) - \cdot \cdot \cdot 

µmax\{ δ, (xj,n  - xj - lj ,n), (xj+rj ,n  - xj,n)\} \scrD h
δ (u

n
j )),(3.10)
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where

\scrB h
δ (u

n
j ) =

\left( 

 
2

Nj,δ

rj\sum 

k= - lj

b

\biggl( 
xj,n + xj+k,n

2

\biggr) 

Wj,j+k

\right) 

 un
j .

Then the following can be shown.

Theorem 3.7. Suppose the same assumptions are made as in Theorem 3.6. Then
with u and uδ now denoting the solutions of (2.7) and (3.9), respectively, the same

conclusions as in Theorem 3.6 hold.

Proof. The proof is exactly analogous to that of Theorem 3.6.

4. Numerical experiments. We present some numerical tests to demonstrate
the convergence of our particle schemes. We take the interval [0, 2π] as our computa-
tional domain and impose periodic boundary conditions. The underlying velocity field
is prescribed as c(x) = 1

3 cos(2x) and the particle velocity is taken to be b(x) = sin(x)
so that the trajectories of the particles are given analytically by

x(t) = 2 cot - 1(exp(c - t)), where c = log

\biggl( 
cot(x(0))

2

\biggr) 

.

The terminal time is chosen to be T = 1 and the initial data is u0(x) = cos(x).
By the method of manufactured solutions we take the exact solution to be u(x, t) =
cos((x  - t)) and solve the corresponding inhomogeneous problems. The nonlocal
integrals in the resulting inhomgeneous terms are evaluated using a MATLAB built-
in integration routine. In all our numerical experiments, numerical solution errors
are measured in L\infty norm in accordance with our theoretical analysis. The initial
distribution of the particles is chosen to be uniform with the discretization parameter
h = 2π

N
, where N denotes the number of particles. In order to satisfy the CFL

conditions, we pick ∆t = h
4 and ∆t = h

8 for all our numerical experiments on Model I
and II, respectively, when validating each model individually. On the other hand, we
choose the smaller time step size, i.e., ∆t = h

8 for both models when comparing them
side by side. Our particular choices of time step sizes are immaterial to demonstrating
the theoretically predicted convergence rates of the schemes so far as the step sizes
are chosen to meet the CFL conditions. All the convergence results are presented
with respect to the spatial parameters δ and h only, which has been the focus of our
theoretical analysis thus far presented.

4.1. Tests with Model I. We take the singular kernel ηδ(z) =
1(−δ,δ)

δz
and

compute the numerical solutions using both schemes (2.9) and (2.11) (referred to as
Scheme 1 and Scheme 2 in this subsection).

Example 1: Fixed horizon. We fix the horizon length δ = 0.2 and study the
convergence of the numerical solutions to the exact solution as h \rightarrow 0. In particular,
we take the mesh refinement path h = 2π

160 ,
2π
320 ,

2π
640 ,

2π
1280 . For both Schemes 1 and

2, the convergence rates are expected to be first order in h, which is experimentally
validated in Figure 1.

Example 2: Asymptotic compatibility. We consider the three parameter refine-
ment paths (i) (δ, h) = (4h, h), (ii) (δ, h) = (

\surd 
h, h), and (iii) (δ, h) = (h2, h) to

illustrate the convergence in the cases δ = \scrO (h), h = o(δ), and δ = o(h), respectively.
We refine h \rightarrow 0 along h = 2π

320 ,
2π
640 ,

2π
1280 ,

2π
2560 . Our theoretical analysis predicts the

convergence rates to be the first order in max\{ h, δ\} = δ, δ, and h along the refine-
ment paths (i), (ii) and (iii), respectively, which agrees with our simulation results in
Figure 2.
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Fig. 1. Convergence of the numerical solution errors in the L
∞ norm.
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(a) Scheme 1

10
-2

10
-1

10
-3

10
-2

10
-1

(b) Scheme 2

Fig. 2. Asymptotic convergence of the numerical solution errors in the L
∞ norm.

4.2. Tests with Model II. We take wδ(z) =  - d
dz

\bigl( 
1
δ
ρ( z

δ
)
\bigr) 
, where ρ(z) is the

classical B-spline kernel [3] defined as

ρ(z) =
2

3

\left\{ 

    

    

1 - 3

2
z2 +

3

4
z3 if 0 \leq | z| \leq 1,

1

4
(2 - z)3 if 1 \leq | z| \leq 2,

0 otherwise

and compute the numerical solutions using both schemes (3.8) and (3.10) (referred to
as Scheme 1 and Scheme 2 in this subsection). We take µ = \| c  - b\| L∞(R). Note the

support of wδ is in fact ( - 2δ, 2δ), which we will take into account in our numerical
experiments in this subsection by letting δ̄ = 2δ.

Example 1: Fixed horizon. We fix the horizon δ̄ = 0.2 and take the refinement
path h = 2π

160 ,
2π
320 ,

2π
640 ,

2π
1280 as in Model I. For both Schemes 1 and 2, the convergence

rates are expected to be first order in h, which we can observe in Figure 3.
Example 2: Asymptotic compatibility. We consider the three parameter refine-

ment paths (i) (δ̄, h) = (4h, h), (ii) (δ̄, h) = (
\surd 
h, h), and (iii) (δ̄, h) = (h2, h) along

h = 2π
320 ,

2π
640 ,

2π
1280 ,

2π
2560 . Figure 4 verifies our theoretical prediction of the first order

convergence rate in max\{ h, δ̄\} = δ̄, δ̄, and h along the refinement paths (i), (ii), (iii),
respectively.

4.3. Comparisons and discussions. Beyond validation of our theoretical anal-
ysis, it is of practical interest to conduct additional empirical investigation of our nu-
merical schemes. After all it remains to answer important and practical questions such
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10
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h
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Fig. 3. Convergence of the numerical solution errors in the L
∞ norm.
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Fig. 4. Asymptotic convergence of the numerical solution errors in the L
∞ norm.

as which of our particle methods one should use. We focus in particular on compar-
ing the accuracy of the particle methods for Model I and Model II, thereby providing
some insights into gauging practical effectiveness of the methods. We choose the ker-
nel wδ(z) to be  - 2 d

dz

\bigl( 
1
δ
ρ( z

δ
)
\bigr) 
for Model I, where ρ is the B-spline kernel. Note that

this choice of kernel satisfies the moment condition (2.3). We then perform our nu-
merical experiments for Model I with h = 2π

320 ,
2π
640 ,

2π
1280 ,

2π
2560 along (i) (δ̄, h) = (4h, h),

(ii) (δ̄, h) = (
\surd 
h, h), and (iii) (δ̄, h) = (h2, h). The numerical results thus obtained

are compared with the corresponding results for Model II obtained in the previous
subsection.

It can be seen from Figure 5 that the particle methods for Model II produce
numerical solutions that are more accurate than those obtained by the methods for
Model I except in the regime δ =

\surd 
h for the fully nonlocalized schemes. One heuristic

explanation of the better accuracy of the former might be that their truncation errors
contain approximation of the vanishing second moment of the antisymmetric kernel
whereas those for the latter methods involve the nonvanishing second moment of
the upwinding kernel. On the other hand, the poorer accuracy of the scheme (3.10)
relative to the scheme (2.11) when δ \gg h could be attributed to the pronounced
influence of the nonlocal viscosity term in Model II, which is taken to be proportional
to δ. This in turn alludes to the importance of nonlocal continuum models in designing
effective numerical methods for the corresponding local continuum models.

5. Conclusion. We have presented two nonlocal advection models and their
asymptotically compatible particle discretizations. In summary both models are
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(a) Schemes (2.9) and (3.8)
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(b) Schemes (2.11) and (3.10)

Fig. 5. Comparison of numerical solution errors in L
∞ norm: m1 and m2 denote Model I and

II, respectively.

equipped with stabilizers on the continuum level: one via use of biased kernels and
the other via nonlocal diffusion. This is in sharp contrast to the classical SPH in
which a simple minded discretization of the continuum model is unstable unless nu-
merical/artificial viscosity is introduced at the discretization level. We reiterate that
these built-in stability features are reminiscent of the corresponding ideas well known
in the setting of numerical methods for PDE, namely, upwinding and vanishing arti-
ficial viscosity.

At the discrete level we can also delineate some differences between Model I and
Model II. On one hand, our particle methods for Model I achieve consistency with
the local PDE by ensuring that the discrete flux between each pair of particles is
captured at the correct spatial scale. On the other hand, our particle discretization of
Model II assures that the sum of all pairwise nonlocal fluxes between a particle and
all its neighbors is normalized to the desired local flux value. More on the practical
side, we see that the particle methods for Model I admit singular kernels as well as
integrable kernels, hence possibly offering a greater flexibility in numerical simulations
than the methods for Model II, which rely on integrable kernels. The latter methods,
however, are simpler in the sense that they do not require any information of the
upwinding directions, which in the case of the former methods is necessary for each
moving particle at each instance of time.

Despite the robustness of our particle methods, we point out that they are all lim-
ited in terms of their accuracy being only first order accurate. Moreover our particle
methods fail to be conservative schemes, hence possibly limited in their applicability
to nonlinear problems. On a related note, we remark that the scope of our current
study is limited to scalar one dimensional linear problems, though nonlocal formu-
lations of the Stokes systems in multidimensional spaces have also been considered
recently [15] and there are natural connections with earlier studies on numerical dis-
cretizations of other nonlocal models such as nonlocal diffusion and peridynamics
[8, 29]. Indeed the practicality of SPH-like particle methods makes it imperative to
extend our current work to the simplest multidimensional setting of two dimensional
linear problems, for which some speculations can be offered. As far as the stability is
concerned, one may conceive a two dimensional generalization of the one dimensional
upwinding kernel so that the domain of nonlocal interactions is limited to a semidisc
depending on the direction of the velocity field. However, the generic difficulty of two
dimensional interpolation on nonuniformly distributed data [33] poses a significant
challenge to determination of suitable quadrature weights to ensure the AC property.
The special case of no neighboring particle within the horizon could potentially be
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treated with a rather simple idea of using the closest particle and seeking appropriate
interpolation schemes on just two data points. The more likely situation where there
are some neighboring particles present is yet to be further investigated, possibly in
similar spirits as in the recent works [31, 14]. In addition, issues related to model
nonlinearity and effects of physical boundary are also important topics to be further
explored.
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