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MAXIMUM PRINCIPLE PRESERVING EXPONENTIAL TIME

DIFFERENCING SCHEMES FOR THE NONLOCAL ALLEN–CAHN

EQUATION\ast 

QIANG DU† , LILI JU‡ , XIAO LI§ , AND ZHONGHUA QIAO¶

Abstract. The nonlocal Allen–Cahn equation, a generalization of the classic Allen–Cahn equa-
tion by replacing the Laplacian with a parameterized nonlocal diffusion operator, satisfies the max-
imum principle as its local counterpart. In this paper, we develop and analyze first and second
order exponential time differencing schemes for solving the nonlocal Allen–Cahn equation, which
preserve the discrete maximum principle unconditionally. The fully discrete numerical schemes are
obtained by applying the stabilized exponential time differencing approximations for time integration
with quadrature-based finite difference discretization in space. We derive their respective optimal
maximum-norm error estimates and further show that the proposed schemes are asymptotically com-
patible, i.e., the approximating solutions always converge to the classic Allen–Cahn solution when
the horizon, the spatial mesh size, and the time step size go to zero. We also prove that the schemes
are energy stable in the discrete sense. Various experiments are performed to verify these theoreti-
cal results and to investigate numerically the relation between the discontinuities and the nonlocal
parameters.
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1. Introduction. In this paper, we consider numerical solution of the initial-
boundary-value problem of the nonlocal Allen–Cahn (NAC) equation as follows:

ut  - ε2\scrL δu+ u3  - u = 0, x \in Ω, t \in (0, T ],(1.1a)

u(\cdot , t) is Ω-periodic, t \in [0, T ],(1.1b)

u(x, 0) = u0(x), x \in Ω,(1.1c)

where u(x, t) denotes the unknown function, Ω = (0, X)d is a hypercube domain in
R

d, ε > 0 is an interfacial parameter, and \scrL δ is a nonlocal operator, parameterized
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876 QIANG DU, LILI JU, XIAO LI, AND ZHONGHUA QIAO

by the positive horizon parameter δ > 0 measuring the range of nonlocal interactions.
Assume that \scrL δ is defined by

(1.2) \scrL δu(x) =
1

2

\int 

Bδ(0)

ρδ(| s| )
\bigl( 
u(x+ s) + u(x - s) - 2u(x)

\bigr) 
ds, x \in Ω,

with Bδ(0) denoting the ball in R
d centered at the origin, with radius δ, ρδ : [0, δ] \rightarrow R

being a nonnegative kernel function, and | \cdot | standing for the usual Euclidean norm.
To enforce the consistency, as δ \rightarrow 0, of the nonlocal operator \scrL δ with the standard
Laplacian operator \scrL 0 := ∆, we further assume the kernel ρδ satisfies

\int δ

0

r1+dρδ(r) dr =
2d

Sd

,

with Sd being the area of the unit sphere in R
d, or, equivalently,

(1.3)

\int 

Bδ(0)

| s| 2ρδ(| s| ) ds = 2d.

Note that (1.3) also means that the kernel ρδ has a finite second order moment. The
continuum property of the nonlocal operator \scrL δ gives [10, 11]

(1.4) max
x\in Ω

| \scrL δu(x) - \scrL 0u(x)| \leq Cδ2\| u\| C4 \forall u \in C4
per(Ω),

where C > 0 is a constant independent of δ. The local limit of the NAC problem (1.1)
is exactly the classic (local) Allen–Cahn (LAC) equation taking the following form:

ϕt  - ε2\scrL 0ϕ+ ϕ3  - ϕ = 0, x \in Ω, t \in (0, T ],(1.5a)

ϕ(\cdot , t) is Ω-periodic, t \in [0, T ],(1.5b)

ϕ(x, 0) = ϕ0(x), x \in Ω.(1.5c)

The LAC equation (1.5) is a well-known phase field model used to describe the motion
of antiphase boundaries in crystalline solids [1].

In recent years, nonlocal models involving the nonlocal operator (1.2), such as
the NAC equation (1.1), have appeared in a variety of applications ranging from
physics and materials science to finance and image processing, for instance, phase
transition [4, 19], peridynamics continuum theory [37, 38], image analyses [20, 21],
and nonlocal heat conduction [7]. Rigorous mathematical analysis of nonlocal models
can be found in the literature, e.g., [3, 4, 16], and a more systematic mathematical
framework of nonlocal problems was developed in [11, 12] in parallel to the analysis
for classic partial differential equations. Since the exact/analytic solutions of these
nonlocal models are usually not available, numerical methods play an important role
in studying these models. Bates, Brown, and Han [5] considered a finite difference
discretization of the NAC equation with an integrable kernel and developed an L\infty 

stable and convergent numerical scheme by treating the nonlinear and nonlocal terms
explicitly. A similar technique was applied on the NAC-type problem coupled with
a heat equation, and an L\infty stable and convergent numerical scheme was obtained
[2]. For nonlocal diffusion models with more general kernels and variable boundary
conditions, finite difference and finite element approximations were addressed in [14,
40, 42, 50]. To illustrate the limit behaviors of the numerical solution of the nonlocal
model to the exact solution of the corresponding local counterpart, Tian and Du
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ETD SCHEMES FOR THE NONLOCAL ALLEN–CAHN EQUATION 877

proposed in [43] the concept of asymptotic compatibility, and the spectral-Galerkin
approximation of the NAC equation was then proved to be asymptotically compatible
in [15]. The convergence of asymptotically compatible schemes is insensitive to the
choices of modeling and discretization parameters so that such schemes provide robust
numerical approximations of nonlocal models.

As a nonlocal analogue of the LAC equation (1.5), the NAC equation (1.1) pos-
sesses some similar properties. First, it can be shown that the NAC equation (1.1)
satisfies a maximum principle: if the absolute values of initial and boundary data are
bounded by 1, then the absolute value of the entire solution is also bounded by 1, i.e.,

\| u(\cdot , t)\| L∞ \leq 1 \forall t > 0.

Second, as a phase-field-type model, the NAC equation (1.1a) can be viewed as an L2

gradient flow with respect to the energy functional

(1.6) E(u) =

\int 

Ω

\Bigl( 1
4
(u2(x) - 1)2  - ε2

2
u(x)\scrL δu(x)

\Bigr) 
dx,

and thus the solution u of (1.1) decreases the energy (1.6) in time, that is,

(1.7) E(u(t2)) \leq E(u(t1)) \forall t2 \geq t1 \geq 0,

which is often called the energy dissipation law. These two properties are important in
the study of the stability of the solution of (1.1), and whether they could be inherited
in the discrete level is a significant issue in numerical simulations. A major objective
of this work is to develop maximum principle preserving and energy stable numerical
schemes for approximating the NAC equation (1.1).

Energy stability has been widely investigated for numerical schemes of classic
PDE-based phase field models, such as convex splitting schemes [34, 45], stabilized
schemes [32, 33, 36, 46], invariant energy quadratization methods [47, 48], and so on.
It is interesting to study whether similar analysis can be applied to nonlocal phase field
models due to the lack of the high-order diffusion term. Guan, Wang, and Wise [22]
constructed a convex splitting scheme for the nonlocal Cahn–Hilliard equation by
treating the nonlinear term implicitly and setting the nonlocal term into the explicit
part. Their scheme allows one to evaluate the nonlocal term explicitly only once
each time step, but the nonlinear iterations are still inevitable. In order to avoid
the nonlinear iterations, a linear stabilization strategy was adopted in [13] to develop
stabilized linear schemes, which can be solved efficiently by using the fast Fourier
transform. The energy stability of the fully discrete schemes were only shown under
the assumption that the stabilizer depends implicitly on the uniform bound of the
numerical solution.

The numerical method we will adopt in this work is the exponential time differ-
encing (ETD) method, which involves exact integration of the governing equations
followed by an explicit approximation of a temporal integral involving the nonlinear
terms. The ETD scheme was systematically studied in [6] and then further devel-
oped by Cox and Matthews with applications on stiff systems [9], where higher-order
multistep and Runge–Kutta versions of these schemes were described. Hochbruck and
Ostermann provided several nice reviews of the ETD Runge–Kutta methods [24] and
the ETD multistep methods [25]. In addition, the convergence of these methods were
analyzed in detail under the analytical framework therein. The linear stabilities of
some ETD and modified ETD schemes were investigated by Du and Zhu [17, 18].
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878 QIANG DU, LILI JU, XIAO LI, AND ZHONGHUA QIAO

A distinctive feature of ETD schemes is the exact evaluation of the contribution
of the linear part, which provides satisfactory stability and accuracy even though
the linear terms have strong stiffness. Such an advantage leads to some success-
ful applications of ETD schemes on phase field models which usually yield highly
stiff ODE systems after suitable spatial discretizations. Ju et al. developed stable
and compact ETD schemes and their fast implementations for Allen–Cahn [29, 51],
Cahn–Hilliard [28], and elastic bending energy models [44] by utilizing suitable linear
splitting techniques. All the proposed ETD schemes are explicit and thus highly effi-
cient for practical implementations. A localized compact ETD algorithm based on the
overlapping domain decomposition was first used in [49] for extreme-scale phase field
simulations of three-dimensional coarsening dynamics in the supercomputer, and the
results showed excellent parallel scalability of the method. In [27], the ETD multistep
method was applied on the epitaxial growth model without slope selection [31]. The
energy stability and the error estimates were established rigorously, making it the first
work to analyze the energy stability and convergence of the ETD schemes for phase
field models in the theoretical level. To complete the theoretical analysis, there is no
need for any assumptions on the numerical solutions due to the specific property of the
logarithm term in the no-slope-selection model. However, for other phase field mod-
els, such as the Cahn–Hilliard equation, the assumptions on the uniform boundedness
of the numerical solutions or the Lipschitz continuity of some nonlinear functions are
inevitable to ensuring the energy stability. Therefore, for the models whose solutions
satisfy the maximum principle essentially, it is highly desired to develop numerical
approximations preserving the maximum principle in the discrete sense.

One of the typical phase field models satisfying the maximum principle is the
LAC equation (1.5). Recently, there have been some investigations on the maximum
principle preserving numerical schemes for (1.5). Tang and Yang [39] proved that the
first order implicit-explicit schemes, with or without the stabilizing term, preserve
the maximum principle under some condition on the time step size. Then the energy
stability and the maximum-norm error estimates are obtained by using the discrete
maximum principle. Shen, Tang, and Yang [35] generalized the results presented
in [39] to the case of the Allen–Cahn-like equation in a more abstract form with the
potential and mobility satisfying certain conditions. Hou, Tang, and Yang [26] studied
the numerical approximation of the fractional Allen–Cahn equation by considering the
conventional Crank–Nicolson scheme. They proved that the Crank–Nicolson scheme
preserves the maximum principle, and this is the first work on the second order
schemes preserving the maximum principle. More than ten years ago, Du and Zhu
[18] showed that the first order ETD scheme in the space-continuous version for (1.5)
satisfies the maximum principle, where some properties of the heat kernel were used
in their proof. However, the fully discrete ETD schemes were never studied.

The organization of this paper is as follows. In section 2, we construct the first and
second order ETD time-stepping schemes for the NAC equation with the quadrature-
based finite difference approximation used for spatial discretization. Efficient imple-
mentation issues of the schemes are also briefly discussed. In section 3, both schemes
are shown to satisfy the discrete maximum principle unconditionally. Error estimates
and asymptotic compatibility of the schemes are obtained in section 4, and the dis-
crete energy stability is proved in section 5. Various numerical experiments are carried
out in section 6 to verify the theoretical results and to investigate the effects of the
nonlocal parameters. Finally, some concluding remarks are given in section 7.D
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2. Fully discrete exponential time differencing schemes. In this section,
we present the fully discrete ETD schemes for the NAC equation in general dimen-
sions, where the finite difference method, based on the contribution made in [14], is
adopted for the spatial discretization of the nonlocal diffusion operator. In particular,
we also give the specific expression of the discrete nonlocal operator in 2D later.

2.1. Quadrature-based finite difference semidiscretization. Given a pos-
itive integer N , we set h = X/N as the uniform square mesh size and define xi = hi
as the nodes in the mesh, where i \in Z

d denotes a multi-index. Let Ωh be the set of
nodes in Ω. At any node xi, the nonlocal operator (1.2) can be rewritten as

(2.1) \scrL δu(xi) =
1

2

\int 

Bδ(0)

u(xi + s) + u(xi  - s) - 2u(xi)

| s| 2 | s| 1 \cdot 
| s| 2
| s| 1

ρδ(| s| ) ds,

where | \cdot | 1 stands for the vector 1-norm. Then a quadrature-based finite difference
discretization of the nonlocal operator (2.1) can be defined as [14]

\scrL δ,hu(xi) =
1

2

\int 

Bδ(0)

\scrI h
\biggl( 
u(xi + s) + u(xi  - s) - 2u(xi)

| s| 2 | s| 1
\biggr) | s| 2
| s| 1

ρδ(| s| ) ds,

where \scrI h represents the piecewise d-multilinear interpolation operator with respect
to s associated with the mesh. More precisely, for a function v(s), the interpolation
\scrI hv(s) is piecewise linear with respect to each component of the spatial variable s

and

\scrI hv(s) =
\sum 

sj

v(sj)ψj(s),

where ψj is the piecewise d-multilinear basis function satisfying ψj(si) = 0 when
i \not = j and ψj(sj) = 1. Therefore, the resulting quadrature-based finite difference
discretization of the nonlocal operator (2.1) reads
(2.2)

\scrL δ,hu(xi) =
\sum 

0 \not =sj\in Bδ(0)

u(xi + sj) + u(xi  - sj) - 2u(xi)

| sj | 2
| sj | 1βδ(sj), xi \in Ωh,

where the periodicity conditions are used for the nodes not in Ωh, and

βδ(sj) =
1

2

\int 

Bδ(0)

ψj(s)
| s| 2
| s| 1

ρδ(| s| ) ds.

It is easy to check that the operator \scrL δ,h is self-adjoint and negative semidefinite.
The discretized scheme (2.2) is proposed in [14] for the problem with a homoge-

neous Dirichlet-type nonlocal constraint, and it has been proved [14, 41] that, for any
fixed δ > 0, the discrete operators \scrL δ,h is consistent with \scrL δ with the errors \scrO (h2)
as h \rightarrow 0. For the case of periodic boundary condition considered here, all similar
estimates also hold, so we give the following consistency estimates without proof.

Lemma 2.1. Assume that u \in C4
per(Ω); then it holds that

(2.3) max
xi\in Ωh

| \scrL δ,hu(xi) - \scrL δu(xi)| \leq Ch2\| u\| C4 ,

where C > 0 is a constant independent of δ and h.
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By ordering the nodes in the lexicographical order, we can obtain the nonlocal
stiffness matrix, denoted byDh \in R

dN\times dN , associated with \scrL δ,h. It is obvious thatDh

is symmetric, negative semidefinite, and weakly diagonally dominant with all negative
diagonal entries. The space-discrete scheme of (1.1) is to find a vector-valued function
U : [0, T ] \rightarrow R

dN such that

dU

dt
= ε2DhU + U  - U .3, t \in (0, T ],(2.4a)

U(0) = U0,(2.4b)

where U .3 = (U3
1 , U

3
2 , . . . , U

3
dN )T and U0 \in R

dN is given by the initial data. For the
sake of the stability of the time-stepping schemes developed later, we introduce a
stabilizing parameter κ > 0 and define

(2.5) Lh :=  - ε2Dh + κIdN , f(U) := (κ+ 1)U  - U .3,

where IdN is the dN \times dN identity matrix, so Lh is symmetric, positive definite, and
strictly diagonally dominant with all positive diagonal entries. Then the ODE system
(2.4a) could be written as

dU

dt
+ LhU = f(U),

whose solution satisfies

(2.6) U(t+ τ) = e - LhτU(t) +

\int τ

0

e - Lh(τ - s)f(U(t+ s)) ds \forall t \geq 0, τ > 0.

In the above, we have used a property of the differentiation of matrix exponentials
(see Lemma 2.2 (5)). We list below some other properties of matrix functions useful
to the analysis later.

Lemma 2.2 (see [23]). Let φ be defined on the spectrum of A \in C
m\times m, that is,

the values
φ(j)(λi), 0 \leq j \leq ni  - 1, 1 \leq i \leq m,

exist, where \{ λi\} mi=1 are the eigenvalues of A and ni is the order of the largest Jordan
block where λi appears. Then

(1) φ(A) commutes with A;
(2) φ(AT ) = φ(A)T ;
(3) the eigenvalues of φ(A) are \{ φ(λi) : 1 \leq i \leq m\} ;
(4) φ(P - 1AP ) = P - 1φ(A)P for any nonsingular matrix P \in C

m\times m;
(5) d

ds (e
As) = AeAs = eAsA for any s \in R.

2.2. Exponential time differencing schemes for time-stepping. Given a
positive integer Kt, we divide the time interval by \{ tn = nτ : 0 \leq n \leq Kt\} with a
uniform time step τ = T/Kt. Setting t = tn in (2.6) gives us

U(tn+1) = e - LhτU(tn) +

\int τ

0

e - Lh(τ - s)f(U(tn + s)) ds.

The first order ETD (ETD1) scheme comes from approximating f(U(tn + s)) by
f(U(tn)) in s \in [0, τ ] and calculating the resulting integral exactly [9]. The ETD1
scheme of (1.1) is as follows: for n = 0, 1, . . . ,Kt  - 1,

(2.7) Un+1 = e - LhτUn +

\int τ

0

e - Lh(τ - s)f(Un) ds,
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that is,

(2.8) Un+1 = φ0(Lhτ)U
n + τφ1(Lhτ)f(U

n),

where

φ0(a) := e - a, φ1(a) :=
1 - e - a

a
, a \not = 0.

The second order ETD Runge–Kutta (ETDRK2) scheme is obtained by approximat-

ing f(U(tn+s)) by a linear interpolation based on f(U(tn)) and f(\widetilde Un+1), where \widetilde Un+1

is an approximation of U(tn+1). The ETDRK2 scheme of (1.1) takes the following
form: for n = 0, 1, . . . ,Kt  - 1,

\widetilde Un+1 = e - LhτUn +

\int τ

0

e - Lh(τ - s)f(Un) ds,(2.9a)

Un+1 = e - LhτUn +

\int τ

0

e - Lh(τ - s)
\Bigl[ \Bigl( 

1 - s

τ

\Bigr) 
f(Un) +

s

τ
f(\widetilde Un+1)

\Bigr] 
ds,(2.9b)

or, equivalently,

\widetilde Un+1 = φ0(Lhτ)U
n + τφ1(Lhτ)f(U

n),(2.10a)

Un+1 = \widetilde Un+1 + τφ2(Lhτ)(f(\widetilde Un+1) - f(Un)),(2.10b)

where

φ2(a) :=
e - a  - 1 + a

a2
, a \not = 0.

We know that φ0(a), φ1(a), and φ2(a) are all positive when a > 0.

2.3. Efficient implementations of the ETD schemes. We close this section
by giving a brief illustration of the practical implementation of the proposed schemes
(2.8) and (2.10). Using the 2D case as the example, we first give the explicit for-
mula of the discrete operator \scrL δ,h (as illustrated in [14]) and then discuss efficient
implementation of the actions of the matrix exponentials.

Let ui,j be the nodal value of the numerical solution at the mesh point (xi, yj) \in 
Ωh \subset R

2, and let r = [δ/h] + 1 be the smallest integer larger than δ/h. Then we have

\scrL δ,hui,j =

r\sum 

p=0

r\sum 

q=0

cp,q(ui+p,j+q + ui - p,j+q + ui+p,j - q + ui - p,j - q  - 4ui,j),

where c0,0 = 0 and

(2.11) cp,q =
p+ q

(p2 + q2)h

\int \int 

B+

δ

ψp,q(x, y)ρδ(
\sqrt{} 
x2 + y2)

x2 + y2

x+ y
dxdy,

with ψp,q denoting the bilinear basis function located at the point (ph, qh) and B+
δ the

first quadrant of the disc centered at the origin with radius δ. Note that cp,q = cq,p
for any p and q. One can apply efficient quadrature rules on the double integrals in
(2.11).

We represent Un \in R
N\times N in the matrix form with entries uni,j and define the

operator \scrL h = κ\scrI  - ε2\scrL δ,h whose matrix form is given by Lh defined in (2.5), where
\scrI is the identity mapping. The key process of calculating Un+1 from the scheme (2.8)
or (2.10) is the efficient implementation of the actions of the operator exponentials
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φγ(\scrL hτ), γ = 0, 1, 2. Since \scrL h comes from the discretization of \scrL δ with the periodic
boundary condition, the exponentials φγ(\scrL hτ) can be implemented by the 2D discrete
Fourier transform (DFT). More precisely, if we denote by \scrF the 2D DFT operator,

then, for any V = (Vk,l) \in C
N\times N , the action of the operator \widehat \scrL h := \scrF \scrL h\scrF  - 1 can be

implemented via
( \widehat \scrL hV )k,l = λk,lVk,l, 1 \leq k, l \leq N,

where λk,l’s, the eigenvalues of \scrL h, are given by

λk,l = κ+ 4ε2
r\sum 

p=0

r\sum 

q=0

cp,q

\biggl( 
1 - cos

2π(k  - 1)p

N
cos

2π(l  - 1)q

N

\biggr) 
, 1 \leq k, l \leq N.

According to Lemma 2.2 (4), we have

φγ(\scrL hτ) = \scrF  - 1φγ( \widehat \scrL hτ)\scrF , (φγ( \widehat \scrL hτ)V )k,l = φγ(λk,lτ)Vk,l, γ = 0, 1, 2.

The actions of \scrF and \scrF  - 1 can be implemented by the 2D fast Fourier transform
(FFT) and its inverse transform, respectively. Such implementation can be naturally
generalized to higher-dimensional spaces, and the computational complexity is thus
\scrO (Nd logN) per time step.

3. Discrete maximum principle. Denote by \| \cdot \| \infty the standard vector or
matrix \infty -norm and by \| \cdot \| 2 the standard vector or matrix 2-norm. The following
lemma is a special case of Theorem 2 in [30].

Lemma 3.1. Let A = (aij) \in R
m\times m with aii < 0, 1 \leq i \leq m, and there exists

κ > 0 such that

| aii| \geq 
m\sum 

j=1
j \not =i

| aij | + κ, 1 \leq i \leq m.

Then the nontrivial solution θ = θ(t) of the linear differential system

(3.1)
dθ

dt
= Aθ, t > 0,

satisfies
\| θ(t2)\| \infty \leq e - κ(t2 - t1)\| θ(t1)\| \infty \forall t2 \geq t1 \geq 0.

The following result is a key ingredient in proving the discrete maximum principle.

Lemma 3.2. For any κ > 0 and τ > 0, we always have \| e - Lhτ\| \infty \leq e - κτ .

Proof. Since Lh is strictly diagonally dominant with all positive diagonal entries,
the matrix A :=  - Lh satisfies the conditions of Lemma 3.1 with κ > 0. For any
nonzero θ0 \in R

dN , we know that the solution of the linear differential system (3.1)
with the initial value θ(0) = θ0 is given by θ(t) = e - Lhtθ0 and, by using Lemma 3.1,
satisfies

\| e - Lhτθ0\| \infty = \| θ(τ)\| \infty \leq e - κτ\| θ0\| \infty , τ > 0.

Therefore, the result follows from the arbitrariness of θ0.

Remark 3.1. Although our deduction above is restricted to the periodic boundary
condition case, the result of Lemma 3.2 is also suitable for the case of the Dirich-
let boundary condition, since the corresponding nonlocal stiffness matrix Dh is still
weakly diagonally dominant with all negative diagonal entries. The analysis results
in this paper could be obtained similarly for the Dirichlet boundary condition.
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Since the nonlinear mapping f : RdN \rightarrow R
dN defined in (2.5) is actually a set of

dN independent one-variable functions, we just need to consider any one of them.

Lemma 3.3. Define f0(ξ) := (κ+ 1)ξ  - ξ3 for any ξ \in R. If κ \geq 2, then

| f0(ξ)| \leq κ \forall ξ \in [ - 1, 1].

Proof. Obviously, f0( - 1) =  - κ and f0(1) = κ. For any ξ \in [ - 1, 1], if κ \geq 2, we
have

(3.2) f \prime 0(ξ) = κ+ 1 - 3ξ2 \geq κ - 2 \geq 0,

which gives us the result.

Theorem 3.4. Assume that the initial data satisfies \| u0\| L∞ \leq 1. For any time
step size τ > 0, ETD1 scheme (2.7) preserves the discrete maximum principle, i.e.,

\| Un\| \infty \leq 1 \forall n \geq 0,

provided the stabilizing parameter κ \geq 2.

Proof. We prove this theorem by induction. Obviously, \| U0\| \infty \leq \| u0\| L∞ \leq 1.
Now assume that the result holds for n = k, i.e., \| Uk\| \infty \leq 1. Next we check whether
this holds for n = k + 1. According to the scheme (2.7), we have

\| Uk+1\| \infty \leq \| e - Lhτ\| \infty \| Uk\| \infty +

\int τ

0

\| e - Lh(τ - s)\| \infty ds \cdot \| f(Uk)\| \infty .

It follows from Lemma 3.2 that

(3.3) \| e - Lhτ\| \infty \leq e - κτ ,

\int τ

0

\| e - Lh(τ - s)\| \infty ds \leq 
\int τ

0

e - κ(τ - s) ds =
1 - e - κτ

κ
.

Using Lemma 3.3 and \| Uk\| \infty \leq 1, we have \| f(Uk)\| \infty \leq κ. Consequently,

\| Uk+1\| \infty \leq e - κτ \cdot 1 + 1 - e - κτ

κ
\cdot κ = 1,

which completes the proof.

Theorem 3.5. Assume that the initial data satisfies \| u0\| L∞ \leq 1. For any time
step size τ > 0, ETDRK2 scheme (2.9) preserves the discrete maximum principle,
i.e.,

\| Un\| \infty \leq 1 \forall n \geq 0,

provided the stabilizing parameter κ \geq 2.

Proof. We again prove this by induction. Obviously, it holds that \| U0\| \infty \leq 
\| u0\| L∞ \leq 1. Now assume that the result holds for n = k, i.e., \| Uk\| \infty \leq 1. Next we
check this for n = k + 1. According to formula (2.9a) and the proof of Theorem 3.4,

we have \| \widetilde Uk+1\| \infty \leq 1. According to formula (2.9b), we have
(3.4)

\| Uk+1\| \infty \leq \| e - Lhτ\| \infty \| Uk\| \infty +

\int τ

0

\| e - Lh(τ - s)\| \infty 
\bigm\| \bigm\| \bigm\| 
\Bigl( 
1 - s

τ

\Bigr) 
f(Uk)+

s

τ
f(\widetilde Uk+1)

\bigm\| \bigm\| \bigm\| 
\infty 

ds.

Since \| Uk\| \infty \leq 1 and \| \widetilde Uk+1\| \infty \leq 1, using Lemma 3.3, we have

\| f(Uk)\| \infty \leq κ, \| f(\widetilde Uk+1)\| \infty \leq κ,
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and then, for s \in (0, τ),

\bigm\| \bigm\| \bigm\| 
\Bigl( 
1 - s

τ

\Bigr) 
f(Uk) +

s

τ
f(\widetilde Uk+1)

\bigm\| \bigm\| \bigm\| 
\infty 

\leq 
\Bigl( 
1 - s

τ

\Bigr) 
κ+

s

τ
κ = κ.

Again, by using (3.3), we obtain from (3.4) that

\| Uk+1\| \infty \leq e - κτ \cdot 1 + 1 - e - Sτ

κ
\cdot κ = 1,

which completes the proof.

Remark 3.2. We will then always require κ \geq 2 for the proposed ETD1 and
ETDRK2 schemes in the rest of the paper so that they preserve the discrete maximum
principle.

4. Error estimates and asymptotic compatibility. We will analyze two
types of convergence behaviors of the numerical solution of ETD1 scheme (2.7) and
ETDRK2 scheme (2.9), respectively. First, for any fixed δ > 0, we prove that the nu-
merical solution converges to the exact solution of NAC equation (1.1) as the spatial
mesh size h and the time step size τ go to zero. Second, we show that the numerical so-
lution converges to the exact solution of LAC equation (1.5) as the horizon parameter
δ, the spatial size h, and the temporal step τ approach zero. The latter convergence
behavior of the numerical solution is often called the asymptotic compatibility [43] in
nonlocal modeling.

We first establish the L\infty error estimates for the numerical solution produced by
ETD1 scheme (2.7) for NAC equation (1.1) with any fixed δ > 0. Denote by Ih the
operator limiting a function on the mesh Ωh.

Theorem 4.1. Given a fixed δ > 0, assume that the exact solution u of the NAC
equation (1.1) belongs to C1([0, T ];C4

per(Ω)) and \{ Un\} Kt

n=0 is generated by the ETD1

scheme (2.7) with U0 = Ihu0. If \| u0\| L∞ \leq 1, then we have

(4.1) \| Un  - Ihu(tn)\| \infty \leq Cetn(h2 + τ), tn \leq T,

for any h > 0 and τ > 0, where the constant C > 0 depends on the C1([0, T ];C4
per(Ω))-

norm of u, but independent of δ, h, and τ .

Proof. Recalling the construction of ETD1 scheme (2.7), we observe that, for a
known Un, the solution Un+1 is actually given by Un+1 = W1(τ) with the function
W1 : [0, τ ] \rightarrow R

dN determined by the following evolution equation:

(4.2)

\left\{ 
 
 

dW1(s)

ds
=  - κW1(s) + ε2DhW1(s) + f(Un), s \in (0, τ),

W1(0) = Un.

Then, for NAC equation (1.1), we can give a similar illustration as follows: For
given u(x, tn), the solution u(x, tn+1) is determined by u(x, tn+1) = w(x, τ) with the
function w(x, s) satisfying

(4.3)

\left\{ 
    
    

∂w

∂s
=  - κw + ε2\scrL δw + f0(w), x \in Ω, s \in (0, τ),

w(\cdot , s) is Ω-periodic, s \in [0, τ ],

w(x, 0) = u(x, tn), x \in Ω.
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Let e1(s) =W1(s) - Ihw(s). Then the difference between (4.2) and (4.3) yields

(4.4)

\left\{ 
 
 

de1(s)

ds
=  - Lhe1(s) + f(Un) - f(Ihu(tn)) +R

(1)
hτ (s), s \in (0, τ),

e1(0) = Un  - Ihu(tn) =: en1 ,

where R
(1)
hτ (s) is the truncated error, that is,

R
(1)
hτ (s) = ε2(DhI

hu(tn + s) - Ih\scrL δu(tn + s)) + f(Ihu(tn)) - f(Ihu(tn + s)).

Since | f \prime (ξ)| \leq κ + 1 for any ξ \in [ - 1, 1] and both the exact and numerical solutions
satisfy the maximum principles, we have

(4.5) \| f(Un) - f(Ihu(tn))\| \infty \leq (κ+ 1)\| Un  - Ihu(tn)\| \infty = (κ+ 1)\| en1\| \infty .

According to the consistency result given by Lemma 2.1, if the exact solution u is
sufficiently smooth, at least u \in C1([0, T ];C4

per(Ω)), then we have

(4.6) \| DhI
hu(t) - Ih\scrL δu(t)\| \infty \leq C1h

2 \forall t \in [0, T ],

and for s \in (0, τ),

\| f(Ihu(tn)) - f(Ihu(tn + s))\| \infty \leq (κ+ 1)\| Ih(u(tn) - u(tn + s))\| \infty \leq C2(κ+ 1)τ,

where C1 and C2 depend on the C1([0, T ];C4
per(Ω))-norm of u, but independent of δ,

h, and τ . Thus, we obtain

\| R(1)
hτ (s)\| \infty \leq C(h2 + τ) \forall s \in (0, τ),

where C = max\{ C1ε
2, C2(κ+ 1)\} . Integrating the ODE in (4.4) leads to

e1(t) = e - Lhte1(0) +

\int t

0

e - Lh(t - s)[f(Un) - f(Ihu(tn)) +R
(1)
hτ (s)] ds, t \in [0, τ ].

Setting t = τ and using (3.3), we have

\| en+1
1 \| \infty \leq \| e - Lhτ\| \infty \| en1\| \infty + [(κ+ 1)\| en1\| \infty + C(h2 + τ)]

\int τ

0

\| e - Lh(τ - s)\| \infty ds

\leq e - κτ\| en1\| \infty +
1 - e - κτ

κ
[(κ+ 1)\| en1\| \infty + C(h2 + τ)]

=
\Bigl( 
1 +

1 - e - κτ

κ

\Bigr) 
\| en1\| \infty +

1 - e - κτ

κ
C(h2 + τ)

\leq (1 + τ)\| en1\| \infty + Cτ(h2 + τ),(4.7)

where in the last step we have used the fact that 1  - e - s \leq s for any s > 0. By
induction, we obtain

\| en1\| \infty \leq (1 + τ)n\| e01\| \infty + Cτ(h2 + τ)

n - 1\sum 

k=0

(1 + τ)k

= (1 + τ)n\| e01\| \infty + C[(1 + τ)n  - 1](h2 + τ)

\leq enτ\| e01\| \infty + Cenτ (h2 + τ).

Therefore, we obtain (4.1) since e01 = 0 and nτ = tn.

D
o

w
n
lo

ad
ed

 0
5
/0

2
/1

9
 t

o
 1

6
0
.3

9
.1

4
1
.2

3
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

886 QIANG DU, LILI JU, XIAO LI, AND ZHONGHUA QIAO

Now, we turn to the L\infty error estimates for ETDRK2 scheme (2.9) with any fixed
δ > 0.

Theorem 4.2. Given a fixed δ > 0, assume that the exact solution u of NAC
equation (1.1) belongs to C2([0, T ];C4

per(Ω)) and \{ Un\} Kt

n=0 is generated by ETDRK2

scheme (2.9) with U0 = Ihu0. If \| u0\| L∞ \leq 1, then we have

(4.8) \| Un  - Ihu(tn)\| \infty \leq Cetn(h2 + τ2), tn \leq T,

for any h > 0 and 0 < τ \leq 1, where the constant C > 0 depends on the C2([0, T ];
C4

per(Ω))-norm of u, but independent of δ, h, and τ .

Proof. For a known Un, the solution Un+1 of ETDRK2 scheme (2.9) is actually
given by Un+1 = W2(τ), with the function W2 : [0, τ ] \rightarrow R

dN determined by the
evolution equation
(4.9)\left\{ 
 
 

dW2(s)

ds
=  - κW2(s) + ε2DhW2(s) +

\Bigl( 
1 - s

τ

\Bigr) 
f(Un) +

s

τ
f(\widetilde Un+1), s \in (0, τ),

W2(0) = Un,

where \widetilde Un+1, defined by (2.9a), is given by \widetilde Un+1 = W1(τ), with W1(s) satisfying
(4.2). Let e2(s) =W2(s) - Ihw(s). The difference between (4.9) and (4.3) leads to

(4.10)

\left\{ 
     
     

de2(s)

ds
=  - Lhe2(s) +

\Bigl( 
1 - s

τ

\Bigr) 
[f(Un) - f(Ihu(tn))]

+
s

τ
[f(\widetilde Un+1) - f(Ihu(tn+1))] +R

(2)
hτ (s), s \in (0, τ),

e2(0) = Un  - Ihu(tn) =: en2 ,

where R
(2)
hτ (s) is the truncated error given by

R
(2)
hτ (s) = ε2(DhI

hu(tn + s) - Ih\scrL δu(tn + s))

+
\Bigl[ \Bigl( 

1 - s

τ

\Bigr) 
f(Ihu(tn)) +

s

τ
f(Ihu(tn+1)) - f(Ihu(tn + s))

\Bigr] 
.

According to error estimates for the linear interpolation, we have, for s \in (0, τ), that
\bigm\| \bigm\| \bigm\| 
\Bigl( 
1 - s

τ

\Bigr) 
f(Ihu(tn)) +

s

τ
f(Ihu(tn+1)) - f(Ihu(tn + s))

\bigm\| \bigm\| \bigm\| \leq C3τ
2,

where C3 depends on the C2([0, T ];C4
per(Ω))-norm of u, but independent of δ, h, and

τ . Thus, combined with (4.6), we obtain

\| R(2)
hτ (s)\| \infty \leq C4(h

2 + τ2) \forall s \in (0, τ),

where C4 = max\{ C1ε
2, C3\} . According to (4.7) in the proof for the ETD1 scheme,

we have

\| \widetilde Un+1  - Ihu(tn+1)\| \infty \leq (1 + τ)\| Un  - Ihu(tn)\| \infty + C5τ(h
2 + τ),

where C5 depends on the C1([0, T ];C4
per(Ω))-norm of u. Then, using the Lipschitz

continuity of f , we obtain

\| f(\widetilde Un+1) - f(Ihu(tn+1))\| \infty \leq (κ+ 1)\| \widetilde Un+1  - Ihu(tn+1)\| \infty 
\leq (κ+ 1)(1 + τ)\| en2\| \infty + C5τ(κ+ 1)(h2 + τ).
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Combining with (4.5), we have, for any s \in (0, τ), that

\bigm\| \bigm\| \bigm\| 
\Bigl( 
1 - s

τ

\Bigr) 
[f(Un) - f(Ihu(tn))] +

s

τ
[f(\widetilde Un+1) - f(Ihu(tn+1))]

\bigm\| \bigm\| \bigm\| 
\infty 

\leq 
\Bigl( 
1 - s

τ

\Bigr) 
(κ+ 1)\| en2\| \infty +

s

τ
(κ+ 1)(1 + τ)\| en2\| \infty + C5s(κ+ 1)(h2 + τ)

= (s+ 1)(κ+ 1)\| en2\| \infty + C5s(κ+ 1)(h2 + τ).

Integrating the ODE in (4.10) leads to

e2(t) = e - Lhte2(0) +

\int t

0

e - Lh(t - s)
\Bigl\{ \Bigl( 

1 - s

τ

\Bigr) 
[f(Un) - f(Ihu(tn))]

+
s

τ
[f(\widetilde Un+1) - f(Ihu(tn+1))] +R

(2)
hτ (s)

\Bigr\} 
ds, t \in [0, τ ].

Setting t = τ and using (3.3), we have

\| en+1
2 \| \infty \leq \| e - Lhτ\| \infty \| en2\| \infty + [(κ+ 1)\| en2\| \infty + C4(h

2 + τ2)]

\int τ

0

\| e - Lh(τ - s)\| \infty ds

+ [(κ+ 1)\| en2\| \infty + C5(κ+ 1)(h2 + τ)]

\int τ

0

s\| e - Lh(τ - s)\| \infty ds

\leq e - κτ\| en2\| \infty +
1 - e - κτ

κ
[(κ+ 1)\| en2\| \infty + C4(h

2 + τ2)]

+
e - κτ  - 1 + κτ

κ2
[(κ+ 1)\| en2\| \infty + C5(κ+ 1)(h2 + τ)]

=
\Bigl( 
1 + τ +

e - κτ  - 1 + κτ

κ2

\Bigr) 
\| en2\| \infty 

+
1 - e - κτ

κ
C4(h

2 + τ2) +
e - κτ  - 1 + κτ

κ2
C5(κ+ 1)(h2 + τ)

\leq 
\Bigl( 
1 + τ +

τ2

2

\Bigr) 
\| en2\| \infty + C4τ(h

2 + τ2) +
1

2
C5(κ+ 1)τ(τh2 + τ2)

\leq 
\Bigl( 
1 + τ +

τ2

2

\Bigr) 
\| en2\| \infty + Cτ(h2 + τ2),

where C = C4+
1
2C5(κ+1). The condition τ \leq 1 is used in the last step of the above

derivation. By induction, we obtain

\| en2\| \infty \leq 
\Bigl( 
1 + τ +

τ2

2

\Bigr) n
\| e02\| \infty + Cτ(h2 + τ2)

n - 1\sum 

k=0

\Bigl( 
1 + τ +

τ2

2

\Bigr) k

\leq 
\Bigl( 
1 + τ +

τ2

2

\Bigr) n
\| e02\| \infty + C

\Bigl[ \Bigl( 
1 + τ +

τ2

2

\Bigr) n
 - 1
\Bigr] 
(h2 + τ2)

\leq enτ\| e02\| \infty + Cenτ (h2 + τ2),

which then gives us (4.8).

Now, let us investigate the asymptotic compatibility of both the ETD1 and ET-
DRK2 schemes. Combining (1.4) with the uniform estimates (2.3) of the consistency
of \scrL δ,h, we obtain

(4.11) max
xi\in Ωh

| \scrL δ,hu(xi) - \scrL 0u(xi)| \leq C(δ2 + h2)\| u\| C4 ,
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where C > 0 is a constant independent of δ and h. Denote by ϕ(x, t) the solution of
the LAC equation (1.5). For given ϕ(x, tn), the solution ϕ(x, tn+1) is determined by
ϕ(x, tn+1) = v(x, τ), with the function v(x, t) satisfying

(4.12)

\left\{ 
    
    

∂v

∂t
=  - κv + ε2\scrL 0v + f(v), x \in Ω, t \in (0, τ),

v(\cdot , t) is Ω-periodic, t \in [0, τ ],

v(x, 0) = ϕ(x, tn), x \in Ω.

Let \widehat e(t) = W1(t)  - Ihv(t), where W1(t) is defined by (4.2). Then the difference
between (4.2) and (4.12) yields

\left\{ 
 
 

d\widehat e(t)
dt

=  - Lh\widehat e(t) + f(Un) - f(Ihϕ(tn)) + \widehat Rδ
hτ (t), t \in (0, τ),

\widehat e(0) = Un  - Ihϕ(tn) =: \widehat en,

where the remainder \widehat Rδ
hτ (t) is given by

\widehat Rδ
hτ (t) = ε2(DhI

hϕ(tn + t) - Ih\scrL 0ϕ(tn + t)) + f(Ihϕ(tn)) - f(Ihϕ(tn + t)),

and, according to the estimates (4.11) and the Lipschitz continuity of f under the
condition κ \geq 2, is bounded by

\| \widehat Rδ
hτ (t)\| \infty \leq C(δ2 + h2 + τ) \forall t \in (0, τ),

where C > 0 depends on ε, κ, and the C1([0, T ];C4
per(Ω))-norm of ϕ, but independent

of δ, h, and τ . By conducting analysis similar to what was done for error estimates, we
can obtain the asymptotic compatibility of the numerical solution of ETD1 scheme
(2.7). Such is also the case for ETDRK2 scheme (2.9). Therefore, we have the
following results.

Theorem 4.3 (asymptotic compatibility). Assume that the solution ϕ of LAC
equation (1.5) belongs to C1([0, T ];C4

per(Ω)) (resp., C
2([0, T ];C4

per(Ω))) and \{ Un\} Kt

n=0

is generated by ETD1 scheme (2.7) (resp., ETDRK2 scheme (2.9)) with U0 = Ihϕ0.
If \| ϕ0\| L∞ \leq 1, then we have

\| Un  - Ihϕ(tn)\| \infty \leq Cetn(δ2 + h2 + τ), tn \leq T

(resp., \| Un  - Ihϕ(tn)\| \infty \leq Cetn(δ2 + h2 + τ2), tn \leq T ),

for any δ > 0, h > 0, and τ > 0 (resp., τ \in (0, 1]), where the constant C depends on
the C1([0, T ];C4

per(Ω))-norm (resp., C2([0, T ];C4
per(Ω))-norm) of ϕ, but independent

of δ, h, and τ .

5. Discrete energy stability. We first show that ETD1 scheme (2.7) inherits
the energy decay law (1.7) in the discrete sense, with respect to the discretized energy
Eh defined by

Eh(U) =
1

4

dN\sum 

i=1

(U2
i  - 1)2  - ε2

2
UTDhU \forall U \in R

dN .

Theorem 5.1. The approximating solution \{ Un\} Kt

n=0 generated by ETD1 scheme
(2.7) satisfies the energy inequality

Eh(U
n+1) \leq Eh(U

n), 0 \leq n \leq Kt  - 1,

for any τ > 0; i.e., the ETD1 scheme is unconditionally energy stable.
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Proof. The difference between the discrete energies at two consecutive time levels
yields

Eh(U
n+1) - Eh(U

n) =
1

4

dN\sum 

i=1

[((Un+1
i )2  - 1)2  - ((Un

i )
2  - 1)2]

 - ε2

2
[(Un+1)TDhU

n+1  - (Un)TDhU
n].(5.1)

It is easy to verify that

1

4
[(a2  - 1)2  - (b2  - 1)2] \leq (b3  - b)(a - b) + 2(a - b)2 \forall a, b \in [ - 1, 1].

Since κ \geq 2, it follows from Theorem 3.4 that \| Un\| \infty \leq 1 and \| Un+1\| \infty \leq 1. Then
we have

1

4

dN\sum 

i=1

[((Un+1
i )2  - 1)2  - ((Un

i )
2  - 1)2]

\leq (Un+1  - Un)T ((Un).3  - Un) + κ(Un+1  - Un)T (Un+1  - Un)

= κ(Un+1  - Un)TUn+1  - (Un+1  - Un)T f(Un).

On the other hand, direct calculations lead to

 - ε2

2
[(Un+1)TDhU

n+1  - (Un)TDhU
n]

=  - ε2(Un+1  - Un)TDhU
n+1 +

ε2

2
(Un+1  - Un)TDh(U

n+1  - Un)

\leq  - ε2(Un+1  - Un)TDhU
n+1

due to the negative semidefiniteness of the matrix Dh. Thus, we obtain from (5.1)
that

Eh(U
n+1) - Eh(U

n) \leq κ(Un+1  - Un)TUn+1  - (Un+1  - Un)T f(Un)

 - ε2(Un+1  - Un)TDhU
n+1

= (Un+1  - Un)T (LhU
n+1  - f(Un)).

We solve f(Un) from (2.8), together with Lemma 2.2 (1), to get

f(Un) = (I  - e - Lhτ ) - 1Lh(U
n+1  - e - LhτUn)

= (I  - e - Lhτ ) - 1Lh(U
n+1  - Un + (I  - e - Lhτ )Un)

= (I  - e - Lhτ ) - 1Lh(U
n+1  - Un) + LhU

n,

and then

LhU
n+1 - f(Un) = Lh(U

n+1 - Un) - (I - e - Lhτ ) - 1Lh(U
n+1 - Un) = B1(U

n+1 - Un),

where B1 := Lh  - (I  - e - Lhτ ) - 1Lh. Define a function

g1(a) := a - a

1 - e - a
, a \not = 0.
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Then g1(a) < 0 for any a > 0 and B1 = τ - 1g1(Lhτ). Since Lh is symmetric and
positive definite, by using Lemma 2.2 (2) and (3), we know that B1 is symmetric and
negative definite. Therefore, we obtain

Eh(U
n+1) - Eh(U

n) \leq (Un+1  - Un)TB1(U
n+1  - Un) \leq 0,

which completes the proof.

For ETDRK2 scheme (2.9), we can prove the uniform boundedness of the dis-
cretized energy Eh.

Theorem 5.2. Under the assumptions of Theorem 4.2, the approximate solution
\{ Un\} Kt

n=0 generated by ETDRK2 scheme (2.9) satisfies

Eh(U
n+1) \leq Eh(U

n) + \widetilde Ch - 1
2 (h2 + τ)2, 0 \leq n \leq Kt  - 1,

for any h > 0 and 0 < τ \leq 1, where the constant \widetilde C is independent of h and τ .
Furthermore, if h \leq 1 and τ = λ

\surd 
h for some constant λ > 0, we have

Eh(U
n) \leq Eh(U

0) + \widehat C, 0 \leq n \leq Kt,

where the constant \widehat C is independent of h and τ ; i.e., the discrete energy is uniformly
bounded.

Proof. The first step is to calculate the increment Eh(U
n+1)  - Eh(U

n) directly,
which is completely identical to the proof for the ETD1 scheme, and we obtain

Eh(U
n+1) - Eh(U

n) \leq (Un+1  - Un)T (LhU
n+1  - f(Un)).

Using (2.10a) and (2.10b), we then get

(5.2) Un+1 = φ0(Lhτ)U
n + τφ1(Lhτ)f(U

n) + τφ2(Lhτ)(f(\widetilde Un+1) - f(Un)).

Premultiplying (τφ1(Lhτ))
 - 1 to both sides of (5.2) gives us

f(Un) = (I  - e - Lhτ ) - 1Lh(U
n+1  - Un) + LhU

n

 - (Lhτ)
 - 1(I  - e - Lhτ ) - 1(e - Lhτ  - I + Lhτ)(f(\widetilde Un+1) - f(Un)),

and then, using the notation B1 defined in the proof for the ETD1 scheme, we obtain

LhU
n+1  - f(Un) = B1(U

n+1  - Un) +B2(f(\widetilde Un+1) - f(Un)),

where B2 = g2(Lhτ) with

g2(a) :=
e - a  - 1 + a

a(1 - e - a)
, a \not = 0.

Since 0 < g2(a) < 1 for any a > 0, we know that B2 is symmetric and positive definite
and \| B2\| 2 < 1. Using the mean-value theorem, we have

f(\widetilde Un+1) - f(Un) = Gn(\widetilde Un+1  - Un),

where Gn is a diagonal matrix with, according to (3.2), diagonal entries between 0
and κ+ 1, which implies that \| Gn\| \infty \leq κ+ 1. Then, by the negative definiteness of
B1, we obtain

Eh(U
n+1) - Eh(U

n) \leq (Un+1  - Un)TB2G
n(\widetilde Un+1  - Un).
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According to Theorem 4.2, we can derive

\| Un+1 - Un\| \infty \leq \| Un+1 - Ihu(tn+1)\| \infty + \| Ih(u(tn+1) - u(tn))\| \infty +\| Ihu(tn) - Un\| \infty 
\leq C6e

tn+1(h2 + τ2) + C7τ + C6e
tn(h2 + τ2)

\leq C8(h
2 + τ)

for any h > 0 and τ \in (0, 1], where C6 and C7 depend on the C2([0, T ];C4
per(Ω))-norm

of u and C8 = 2C6e
T + C7. Similarly, using Theorem 4.1, we can obtain

\| \widetilde Un+1  - Un\| \infty \leq C9(h
2 + τ),

with the constant C9 > 0 depending on T and the C1([0, T ];C4
per(Ω))-norm of u. In

addition, we have

\| B2G
n\| \infty \leq 

\surd 
dN\| B2\| 2\| Gn\| \infty \leq 

\surd 
dN(κ+ 1) = h - 

1
2

\surd 
dX(κ+ 1).

Therefore, we obtain

Eh(U
n+1) - Eh(U

n) \leq \widetilde Ch - 1
2 (h2 + τ)2,

where the constant \widetilde C = C8C9

\surd 
dX(κ + 1) is independent of h and τ . By induction,

we further obtain

Eh(U
n) \leq Eh(U

0) + \widetilde CTh - 1
2 τ - 1(h2 + τ)2, 0 \leq n \leq Kt.

When h \leq 1 and τ = λ
\surd 
h, it holds that h - 

1
2 τ - 1(h2 + τ)2 \leq (λ + 1)2/λ. The proof

is then completed by setting \widehat C = \widetilde CT (λ+ 1)2/λ.

6. Numerical experiments. In this section, we will carry out some numerical
experiments in the 2D space to demonstrate the effectiveness and efficiency of the
ETD schemes (2.7) and (2.9) for solving NAC equation (1.1). The fractional power
kernel

(6.1) ρδ(r) =
2(4 - α)

πδ4 - αrα
χ(0,δ](r), α \in [0, 4),

is chosen and satisfies the finite second order moment condition (1.3). When α \in 
[0, 2), the kernel satisfies ρδ(| s| ) \in L1(R2), which means that the nonlocal diffusion
operator \scrL δ is a bounded linear operator in this case. The kernel is nonintegrable
when α \in [2, 4). We first verify the temporal and spatial convergence rates of the
fully discrete schemes with a smooth initial data, and then we check the discrete
maximum principle and energy stability of the evolutions beginning with a random
initial state. Next, we present a further numerical investigation on the steady state
solutions of the model with integrable kernels. ETDRK2 scheme (2.9) is adopted
in all the simulations, while ETD1 scheme (2.7) is only considered for the temporal
convergence tests due to the lack of high accuracy. The domain Ω = (0, 2π)\times (0, 2π)
is used in all examples. We also take the stabilizing parameter κ = 2 for the numerical
schemes in all experiments.

6.1. Convergence tests.

Example 6.1. We consider NAC equation (1.1) with smooth initial data u0(x, y)
= 0.5 sinx sin y. We set the interfacial parameter ε = 0.1 and the terminal time
T = 0.5. For the kernel (6.1), α = 1 (integrable) and α = 3 (nonintegrable) are
adopted, respectively.
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First, by setting N = 256, we tested the convergence in time for the cases δ = 0.2
and δ = 2. We calculated the numerical solutions of the NAC equation using ETD1
scheme (2.7) and ETDRK2 scheme (2.9) with various time step sizes τ = 0.05\times 2 - k

with k = 0, 1, . . . , 7. To compute the errors, we treated the solution obtained by the
ETDRK2 scheme with τ = 10 - 6 as the benchmark. The maximum norms of the
numerical errors and corresponding convergence rates are given in Table 1, where the
expected temporal convergence rates (1 for ETD1 and 2 for ETDRK2) are obviously
observed in both cases of integrable and nonintegrable kernels. It is also easy to see
that the numerical errors are almost independent of the choices of δ and α.

Table 1

Temporal convergence rates in the maximum-norm sense in Example 6.1.

τ = 0.05
α = 1 (integrable kernel) α = 3 (nonintegrable kernel)
δ = 0.2 δ = 2 δ = 0.2 δ = 2

Error Rate Error Rate Error Rate Error Rate

ETD1
τ 1.082e-2 − 1.090e-2 − 1.084e-2 − 1.087e-2 −

τ/2 5.535e-3 0.967 5.580e-3 0.967 5.545e-3 0.967 5.561e-3 0.967
τ/4 2.800e-3 0.983 2.823e-3 0.983 2.805e-3 0.983 2.813e-3 0.983
τ/8 1.408e-3 0.992 1.420e-3 0.992 1.410e-3 0.992 1.415e-3 0.992
τ/16 7.060e-4 0.996 7.121e-4 0.996 7.074e-4 0.996 7.095e-4 0.996
τ/32 3.536e-4 0.998 3.566e-4 0.998 3.542e-4 0.998 3.553e-4 0.998
τ/64 1.769e-4 0.999 1.784e-4 0.999 1.772e-4 0.999 1.778e-4 0.999
τ/128 8.849e-5 1.000 8.924e-5 1.000 8.865e-5 1.000 8.892e-5 1.000

ETDRK2
τ 6.410e-4 − 6.464e-4 − 6.422e-4 − 6.441e-4 −

τ/2 1.676e-4 1.935 1.690e-4 1.935 1.679e-4 1.935 1.684e-4 1.935
τ/4 4.287e-5 1.967 4.323e-5 1.967 4.294e-5 1.967 4.308e-5 1.967
τ/8 1.084e-5 1.984 1.093e-5 1.984 1.086e-5 1.984 1.089e-5 1.984
τ/16 2.726e-6 1.993 2.749e-6 1.992 2.730e-6 1.992 2.739e-6 1.992
τ/32 6.834e-7 1.996 6.892e-7 1.996 6.846e-7 1.996 6.867e-7 1.996
τ/64 1.711e-7 1.998 1.725e-7 1.998 1.714e-7 1.998 1.719e-7 1.998
τ/128 4.278e-8 2.000 4.314e-8 2.000 4.285e-8 2.000 4.299e-8 2.000

Next, we tested the convergence with respect to the spatial size h by fixing δ = 2
and τ = T . The numerical solution of the NAC equation obtained by the ETDRK2
scheme with N = 4096 is treated as the benchmark for computing the errors of the
numerical solutions obtained with N = 2k with k = 4, 5, . . . , 10. The numerical
errors in the maximum-norm sense are presented in Table 2. It is observed that
the convergence rates with respect to h are almost of second order in both cases of
integrable and nonintegrable kernels, which is again consistent with the theoretical
results.

Table 2

Spatial convergence rates in the maximum-norm sense in Example 6.1.

h =
π

8

α = 1 α = 3
Error Rate Error Rate

h 1.554e-4 − 1.258e-4 −

h/2 2.430e-5 2.677 3.328e-5 1.918
h/4 4.491e-6 2.436 7.441e-6 2.161
h/8 8.679e-7 2.371 2.017e-6 1.883
h/16 2.068e-7 2.069 4.701e-7 2.101
h/32 4.944e-8 2.064 1.344e-7 1.807
h/64 6.590e-9 2.908 3.483e-8 1.948
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We also investigated the limit behaviors of the numerical solutions of (1.1) as
δ \rightarrow 0. By fixing N = 4096 and τ = T , we calculated the numerical solutions of
the NAC equation obtained by ETDRK2 scheme (2.9) with various δ’s and compared
them with the numerical solution of the LAC equation. Table 3 collects the errors
between the nonlocal and local numerical solutions in the maximum-norm sense, and
the second order convergence with respect to δ is obviously observed.

Table 3

Rates of convergence to the local limits in the maximum-norm sense in Example 6.1.

δ = 0.2
α = 1 α = 3

Error Rate Error Rate

δ 1.076e-5 − 5.371e-6 −

δ/2 2.703e-6 1.993 1.344e-6 1.999
δ/4 6.250e-7 2.112 3.153e-7 2.091
δ/8 1.580e-7 1.984 6.373e-8 2.307

6.2. Stability tests. For the case ρδ(| s| ) \in L1(R2), i.e., α \in [0, 2), it has been
proved in [15] that the steady state solution u\ast of NAC equation (1.1) is continuous
if ε2Cδ \geq 1, where

Cδ =

\int 

Bδ(0)

ρδ(| s| ) ds =
4(4 - α)

(2 - α)δ2
.

Under certain assumptions, if ε2Cδ < 1, the locally increasing u\ast has a discontinuity
at x\ast with the jump

(6.2) Ju\ast K(x\ast ) = 2
\sqrt{} 

1 - ε2Cδ.

Example 6.2. We simulate NAC equation (1.1) with a random initial data rang-
ing from  - 0.9 to 0.9 uniformly generated on the 512\times 512 mesh. We set the interfacial
parameter ε = 0.1 and adopt the kernel (6.1) with α = 1 and various δ’s. For com-
parison, we also simulate LAC equation (1.5) with the same settings. The time step
is set to be τ = 0.01 for all cases.

Under these settings, the critical value of δ satisfying ε2Cδ = 1 is δ0 = 2
\surd 
3ε. The

three rows in Figure 1 correspond to the evolutions of phase structures governed by the
LAC equation and the NAC equations with δ = 3ε and δ = 4ε at times t = 6, 14, 50,
and 180, respectively. Figure 2 presents the evolutions of the corresponding maximum
norms and the energies of the numerical solutions, respectively. It is observed in all
cases that the discrete maximum principle is preserved perfectly and the discrete
energy decays monotonically. It is easy to see that the dynamics of the NAC equation
with δ = 3ε is quite similar to that of the LAC equation. The evolution processes of
these two cases reach the steady states at about t = 190 and t = 370, respectively,
while the evolution of the NAC equation with δ = 4ε lasts much longer time. In
addition, the NAC equation with δ = 3ε has a thinner and sharper interface than the
LAC equation but a wider interface than the NAC equation equation with δ = 4ε.
Actually, the interface in the case δ = 4ε is discontinuous since the condition ε2Cδ < 1
holds. The discontinuities in the solutions will be investigated further in the next
example.

6.3. Discontinuity in the steady state solution.

Example 6.3. We simulate the evolution of a bubble governed by NAC equation
(1.1) starting with a smooth initial configuration (see Figure 3). Again, we set the
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Fig. 1. Evolutions of phase structures governed by the LAC equation (top row) and the NAC
equations with δ = 3ε (middle row) and δ = 4ε (bottom row) in Example 6.2. From left to right:
t = 6, 14, 50, 180.
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Fig. 2. Evolutions of the maximum norms (top row) and the energies (bottom row) of the
numerical solutions in Example 6.2. From left to right: governed by the LAC equation and the NAC
equations with δ = 3ε and δ = 4ε.

interfacial parameter ε = 0.1 and adopt the kernel (6.1) with α = 1 and various δ’s.
The parameters of the space-time mesh are set to τ = 0.01 and N = 2048 for all
cases.
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Fig. 3. Initial configuration of Example 6.3. Left: surface-project view; right: cross-section
view at y = π.

This example is devoted to the relationship between the discontinuities in the
steady state solutions and the horizon parameter δ. Under the settings of the pa-
rameters given above, it is known from (6.2) that the theoretical values of the jumps
occurring at the discontinuity points can be formulated as

Theoretical jump = 2

\sqrt{} 
1 - 0.12

δ2
, δ > δ0 =

\surd 
0.12 \approx 0.3464.

We chose several δ’s (δ = 0.8, 1.6, 3.2) larger than δ0 to observe the discontinuities
and the jumps in the numerical results, and for the comparison we also considered one
case (δ = 0.2) with δ smaller than the critical value. Table 4 collects the theoretical
and numerically computed jumps occurring at the discontinuity points in the steady
state solutions with various δ’s. It is observed that the numerical jumps match the
theoretical values very well.

Table 4

Theoretical and numerical jumps in steady state solutions in Example 6.3.

δ = 0.2 δ = 0.8 δ = 1.6 δ = 3.2

Theoretical jumps 0 1.802776 1.952562 1.988247
Numerical jumps 0 1.804496 1.952713 1.988242

Figure 4 presents the evolutions of the bubble governed by the NAC equations
with δ = 0.2 (< δ0), δ = 0.8, and δ = 3.2 (both > δ0), respectively. In each row,
the first three graphs give the surface-projection views of the numerical solutions at
several times and the last graph cross-section views with y = π by zooming in around
the interface. For the case δ = 0.2, the bubble shrinks quickly and finally disappears,
which is similar to the process of the shrinkage occurring in the case of the LAC
equation (see [8]). The evolutions for cases δ = 0.8 and δ = 3.2 are similar: the
bubble does not shrink and the interface turns sharper and sharper so that the solution
preforms discontinuity on the interface after some times and reaches the steady state
with the expected jump. It is seen from this example that the NAC equation with
small δ has more similar dynamics to the local model, which is consistent with the
observations in Example 6.2, while the NAC equation with large δ, especially larger
than δ0, leads to the steady state solution within the discontinuity even though the
initial state is smooth.
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(a) δ = 0.2: at t = 1, 40, and 55, and their cross-sections with y = π and x ∈ [π
2
, π]
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(b) δ = 0.8: at t = 1, 3, and 20, and their cross-sections with y = π and x ∈ [2.05, 2.35]
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(c) δ = 3.2: at t = 1, 3, and 20, and their cross-sections with y = π and x ∈ [2.05, 2.35]

Fig. 4. Evolutions of the bubble governed by the NAC equations with δ = 0.2, 0.8, 3.2 in Exam-
ple 6.3.

7. Conclusion. We designed and analyzed maximum principle preserving nu-
merical schemes for solving the nonlocal Allen–Cahn equation by using the quadrature-
based finite difference method for spatial discretizations and the exponential time dif-
ferencing method for temporal integrations. Especially, we developed the first order
ETD and second order ETD Runge–Kutta schemes, derived the error estimates for
both schemes, and proved their energy stability along with the asymptotic compati-
bility, a special convergence considered for the numerical approximations of nonlocal
models. Numerical experiments were carried out to verify the theoretical results and
to study some more interesting properties of the solutions caused by the nonlocality.
The maximum principle preserving schemes studied here are up to the second order in
time. Whether higher order numerical schemes can preserve the maximum principle
still remains open and is the subject of one of our future works. In addition, for some
other models, for instance, the nonlocal Cahn–Hilliard equation [13, 22], the solution
does not possess the maximum principle but is L\infty stable instead. Numerical schemes
naturally inheriting the L\infty stability, weaker than the maximum principle, are also
worthy of study.
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