15.7 An 8.3MHz GaN Power Converter Using Markov Continuous RSSM for $35dB\mu V$ Conducted EMI Attenuation and One-Cycle T_{ON} Rebalancing for 27.6dB V_0 Jittering Suppression

Yingping Chen, D. Brian Ma

University of Texas at Dallas, Richardson, TX

GaN power switches have gained fast-growing popularity in power electronics. With a similar R_{DS ON} resistance, they boast 2-to-3-order lower gate capacitance than silicon counterparts, making them highly desirable in high-frequency (f_{sw}) , high-performance power converters. However, at high f_{sw}, switching transitions have to be completed in much shorter times, creating much larger di/dt and dv/dt changes in power stage, which directly link to electromagnetic-interference (EMI) emissions [1]. To suppress EMI, spread-spectrum-modulation (SSM) techniques [2-5] have been proposed. As depicted in Fig. 15.7.1, a periodic SSM (PSSM) is straightforward and easy to implement. However, its EMI suppression is not effective [2]. A randomized SSM (RSSM) can outperform the PSSM, with lower peak EMI and near-uniform noise spreading, but its performance highly relies on the random clock design. In [3], an N-bit digital random clock was reported to achieve a discrete RSSM (D-RSSM). However, the bit number N has to be large in order to achieve satisfying EMI attenuation, significantly increasing circuit complexity, chip area, and power consumption. To overcome this, a thermalnoise-based random clock was proposed [4]. Unfortunately, thermal noise is very sensitive to temperature and is hard to predict. To apply this approach to a practical implementation requires additional signal processing with periodic signals to confine its range of randomization, which, in turn, reduces the benefits of the RSSM. To achieve a near ideal RSSM, a continuous RSSM (C-RSSM) with a cost-effective implementation is highly preferable. Meanwhile, another challenge of applying SSM schemes lies in the fact that the schemes deteriorate V₀ voltage regulation. As shown in Fig. 15.7.1, as an SSM scheme continuously or periodically modulates f_{sw}, a converter switching period fluctuates cycle by cycle, causing random errors on the duty ratio and thus jittering effect on V₀. This is difficult to correct by a feedback control loop, as the duty-ratio error changes randomly between switching cycles. Due to a limited loop-gain bandwidth, the loop response usually lags far behind. Although a ramp compensation scheme was reported to resolve this [5], the improvement is very limited, and the scheme only works for voltage-mode converters.

To mitigate the above challenges, this paper presents a continuous RSSM (C-RSSM) scheme for EMI attenuation and a one-cycle T_{on}-rebalancing (1TR) technique for V_o jittering suppression, which are implemented in the converter of Fig. 15.7.2. The Markov-chain-based random clock implements analog f_{SW} modulation within a sideband of Δf_c centered at f_{swo} . Hence, it conducts SSM continuously and spreads spurious noise at $\boldsymbol{f}_{\text{SWO}}$ and its harmonics uniformly, achieving desirable C-RSSM. As illustrated in the spectrum plot, although conventional D-RSSM could achieve similar peak EMI reduction (Δ EMI) with a wider modulation range ($\Delta f_{D} > \Delta f_{C}$), it elevates noise floor significantly due to spectral overlap. In the proposed Markov C-RSSM, the peak EMI and noise floor are both effectively attenuated with minimal die-area overhead. On the other hand, the proposed 1TR technique performs a two-step operation in each charge phase. As shown in Fig. 15.7.2, during t_1 , the 1TR module detects the instant duty ratio D, determined by the converter PWM controller. By analyzing the sensed information of D and the instant $\boldsymbol{f}_{\text{SW}}$ from the output of Markov-chain-based random clock, the 1TR adaptively adjusts the length of t2. Hence, D and the ONduty T_{ON} of the converter are thus dynamically rebalanced to instantly modulated f_{sw} within one cycle, preventing V₀ from jittering.

Figure 15.7.3 depicts the implementation of the Markov C-RSSM. From simulated f_{sw} modulation, f_{sw} traverses arbitrarily within the sideband Δf_c , creating a continuously and randomly distributed modulation pattern. Thus, noise spectrum at center frequency (f_{swo}) and its harmonics can be uniformly spread. The random clock is designed using a Markov chain described by the chaotic criteria below [6]:

$$V_{ran}[n+1] = \begin{cases} kV_{ran}[n] + [(1-k)V_{M} + \Delta V], & V_{ran}[n] < V_{M} \\ kV_{ran}[n] + [(1-k)V_{M} - \Delta V], & V_{ran}[n] \ge V_{M}. \end{cases}$$

Here, V_{ran} is the random output, V_M and ΔV represent the center reference and the variation range, respectively, and k is the slope that should be well designed to avoid divergence issues. In the circuit of Fig. 15.7.3, to compute the next random state $V_{ran}[n+1]$, the present state $V_{ran}[n]$ is fed into a G_m cell, which also drives the converted current I_{am} into a summation node Σ . Meanwhile, $V_{ran}[n]$ is compared

to V_{M} . The comparison result multiplies the current I_1 in binary to implement the Markov partition. Finally, a fixed current I_2 is subtracted from the node Σ to generate the random current I_{ran} , leading to $V_{ran}[n+1]=I_{ran} \times R_1$. Hence, the ratio of R_1/R_2 determines the slope k. By layout matching these two resistors, k could be well defined, ensuring the convergence of the Markov transitions. Triggered by the trailing edge of V_{CMP} from the feedback loop, $V_{ran}[n+1]$ is sampled and added to V_{DC} , adjusting the VCO input V_{ctrl} and hence the clock frequency. Thanks to Markov state transitions, V_{ctrl} varies randomly within $\pm \Delta V$ centered at $(V_{DC}+V_M)$ and f_{SW} is modulated accordingly.

The proposed 1TR scheme and circuit are detailed in Fig. 15.7.4. T_{ON} in a conventional PWM generator is initiated by the clock and reset by trailing edge of V_{CMP} . As f_{SW} is varied by the RSSM, T_{ON} cannot be corrected immediately due to a slow feedback path, resulting in Vo jittering. To avoid this, the proposed 1TR module creates a fast f_{sw} tracking path to modulate T_{oN} synchronously with f_{sw} dithering. As the trailing edge of V_{CMP} triggers f_{SW} transition, instant switching cycle of the converter is defined between two adjacent trailing edges of V_{CMP}. Two cycles, T[n] and T[n+1] (= $\alpha \times T[n]$), are shown in the waveforms. T_{on} in each cycle is split equally into t_{on1} and t_{on2} $(t_{\text{on1}}\text{=}t_{\text{on2}})$ in steady state. The operation could be explained by focusing on $t_{\text{on2}}[n]$ and $t_{\text{on1}}[n+1]$. The leading edge of the clock initiates V_{PWM} and $t_{on2}[n]$. I₁ then ramps up. Meanwhile, the phase detector sets V_{UP} to high, starting to charge C_{cp} with I_{UP} . Controlled by the VCO input $V_{ctrl}[n]$, I_{UP} is inversely proportional to T[n]. The $t_{on2}[n]$ is terminated until V_{CMP} triggers low by the feedback loop and then V_{UP} is reset to stop charging C_{cp} . Thus, $t_{on2}[n]/T[n]$ (=0.5×D[n]) is converted into V_{cp} , completing D sensing. T[n+1] begins after V_{CMP} flips to low. I_L continues to rise as V_{PWM} remains high. I_{DN} is enabled by the trailing edge V_{CMP} to discharge C_{cp} . As the trailing edge V_{CMP} updates $V_{ctrl}[n]$ to $V_{ctrl}[n+1]$, I_{DN} is inversely proportional to T[n+1]. When V_{cp} hits V_{RST}, the comparator CMP1 triggers to terminate $t_{on1}[n+1]$ by resetting V_{PWM} . The charge conservation of C_{cp} makes $t_{on1}[n+1] = \alpha \times t_{on2}[n]$. Hence, D is stabilized (D[n+1]=D[n]) cycle by cycle, eliminating V₀ iittering.

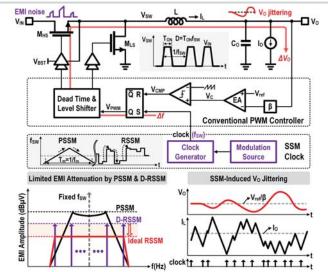
The prototype chip was fabricated in a 0.18µm HV CMOS process. Two enhancement mode GaN FETs are used as power switches. The converter delivers a maximum I_0 of 1.5A over wide input and output ranges of 3 to 40V and 1.2 to 5V, respectively. The C-RSSM modulates f_{sw} at the center frequency of 8.3MHz with $\pm 10\%$ modulation range. The measured switching node V_{sw} and EMI noise spectra are shown in Fig. 15.7.5. The Markov C-RSSM reduces the peak EMI noise by 31dBµV at the fundamental frequency and 35dBµV at the $3^{\mbox{\tiny rd}}\mbox{-}order$ harmonic with the 27dBµV noise floor at the mid-frequency range. To validate the effectiveness of the 1TR scheme, Fig. 15.7.6 shows the measured V_0 waveforms. With conventional PWM design, the peak-to-peak magnitude of V_o jittering is up to 240mV. With the proposed 1TR scheme, it drops below 10mV. In comparison to prior arts, this work achieves the lowest noise floor of 27dBµV. Implemented on a much higher technology node, the Markov-chain-based random source consumes 53% less silicon area than its digital counterpart [3]. With both using the C-RSSM, this work achieves 119% higher peak-EMI attenuation, and 3 times higher V_0 -jittering suppression than [5]. The die micrograph is shown in Fig. 15.7.7, with the active area of 1.54mm².

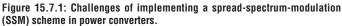
Acknowledgement:

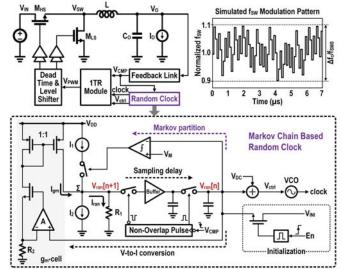
This work is in part sponsored by Semiconductor Research Corporation (SRC) under the research contract GRC 2810.006 and National Science Foundation (NSF) under the research contract NSF CCF 1702496.

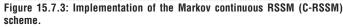
References:

[1] Y. Chen et al., "A 10MHz 5-to-40V EMI-Regulated GaN Power Driver with Closed-Loop Adaptive Miller Plateau Sensing," *IEEE Symp. VLSI Circuits*, pp. C120-C121, June 2017.


[2] K. Tse et al., "A Comparative Study of Carrier-Frequency Modulation Techniques for Conducted EMI Suppression in PWM Converters," *IEEE Trans. Industrial Electron.*, vol. 49, no. 3, pp. 618-627, Jun. 2002.


[3] W. Yang et al., "An Enhanced-Security Buck DC-DC Converter with True-Random-Number-Based Pseudo Hysteresis Controller for Internet-of-Everything (IoE) Devices," *ISSCC*, pp. 126-128, Feb. 2018.
[4] X. Ke et al., "A 10MHz 3-to-4V V_{IN} Tri-Slope Gate Driving GaN DC-DC Converter


[4] X. Ke et al., "A 10MHz 3-to-4V V_{IN} Tri-Slope Gate Driving GaN DC-DC Converter with 40.5dBµV Spurious Noise Compression and 79.3% Ringing Suppression for Automotive Applications," *ISSCC*, pp. 430-431, Feb. 2017.


[5] E. Ho et al., "Ramp Signal Generation in Voltage Mode CCM Random Switching Frequency Buck Converter for Conductive EMI Reduction," *IEEE CICC*, pp. 1-4, Sept. 2010.

[6] T. Stojanovski et al., "Chaos-Based Random Number Generators-Part I: Analysis," *IEEE TCAS-I*, vol. 48, no. 3, pp. 281-288, Mar. 2001.

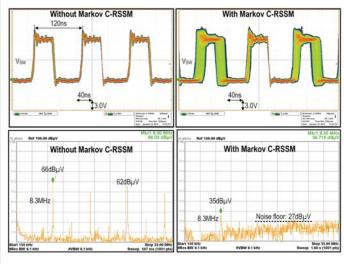


Figure 15.7.5: Measured switching-node transient waveforms and conducted-EMI noise attenuation with the C-RSSM.

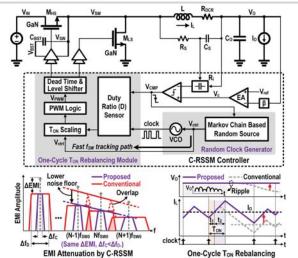


Figure 15.7.2: Proposed GaN power system with Markov continuous RSSM (C-RSSM) for EMI attenuation and one-cycle $T_{\rm oN}$ rebalancing to eliminate $V_{\rm o}$ jittering.

Figure 15.7.4: Scheme and circuit implementation of the proposed one-cycle T_{ON} rebalancing.

C-RSS Vo (AC)		nventional PWM Gener ering amplitude: 240mV	ator	C-RS V ₀ (AC)	SM with One-Cycle T Vojitteri	Ing amplitude: <10mV
	W I i0mVT	20µs	DomV		8mVT	100mV 20µs
Design		ISSCC2018 [3]	ISSCC 2017 [4]		CICC 2010 [5]	This Work
Process		55nm CMOS	0.35µm HV BCD		0.35µm CMOS	0.18µm HV CMOS
Power Switch		MOSFET	GaN FET		MOSFET	GaN FET
Control Mode		Hysteresis current mode	PWM voltage mode		PWM voltage mode	PWM current mode
Central fsw		1MHz	10MHz		1MHz	8.3MHz
Centra	ation Way	Discrete RSSM	Triangular modulation		Continuous RSSM	Continuous RSSM
Centra fsw Modula	abon may		Not reported		Not reported	0.08mm ²
		0.17mm ²	Not rep	ported	Not reported	0.001111
fsw Modula	ource Area	0.17mm ² -21%/+22%	Not rep ±9		±20%	±10%
fsw Modula Random So	ource Area ion Range			%		
fsw Modula Random So fsw Modula	ion Range	-21%/+22%	±9	% ВµV	±20%	±10%
fsw Modula Random So fsw Modula Peak EMI A	ion Range	-21%/+22% 35dBµV	±9 33dE	% 3µV 3µV	±20% 16dBµV	±10% 35dBµV

Figure 15.7.6: Measured $V_{\rm 0}\mbox{-jittering}$ suppression by the one-cycle $T_{\rm ON}$ rebalancing and a comparison table.

ISSCC 2019 PAPER CONTINUATIONS

Figure 15.7.7: Die micrograph.	