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Abstract

In this paper, we present a Renyi Differ-
entially Private stochastic gradient descent
(SGD) algorithm for convex empirical risk
minimization. The algorithm uses output
perturbation and leverages randomness in-
side SGD, which creates a “randomized sen-
sitivity”, in order to reduce the amount of
noise that is added.

One of the benefits of output perturbation is
that we can incorporate a periodic averaging
step that serves to further reduce sensitivity
while improving accuracy (reducing the well-
known oscillating behavior of SGD near the
optimum).

Renyi Differential Privacy can be used to
provide (ε, δ)-differential privacy guarantees
and hence provide a comparison with prior
work. An empirical evaluation demonstrates
that the proposed method outperforms prior
methods on differentially private ERM.

1 INTRODUCTION

Research on machine learning with differential privacy
is nearing the point of making it practical to build ac-
curate models that strongly protect the privacy of in-
dividuals in the training set [1, 9, 20, 14, 23, 3, 31, 32,
30, 15]. The introduction of Rényi Differential Privacy
(RDP) [18] offers the promise of additional significant
improvements in accuracy in exchange for a very mod-
est relaxation in privacy guarantees.1

In this paper we propose a novel Rényi differentially
private stochastic gradient descent algorithm for con-
vex empirical risk minimization that outperforms prior

1RDP is weaker than ε-differential privacy but stronger
than (ε, δ)-differential privacy.
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work. This method uses output perturbation (with
numerical computation of sensitivity) along with the
randomness of batches inside stochastic gradient de-
scent to protect privacy.

Let D = {d1, . . . , dn} be a dataset of n i.i.d. samples
drawn from an underlying distribution P. The train-
ing of many models, including logistic regression and
support vector machines, can be reduced to solving an
equation such as:

w∗ = argmin
w∈Θ

F (w, D) :=
1

n

n
∑

i=1

f(w, di) ,

where f measures the “loss” of the model with pa-
rameter vector w on a data point. This procedure
is known as Empirical Risk Minimization (ERM). In
many cases, f is convex and twice differentiable with
respect to w [9, 32].

With privacy, the goal is to return a noisy version
of the optimal parameter vector w∗, where the noise
distribution must satisfy (Rényi) differential privacy
constraints [18] that ensure the confidentiality of any
record in the training data.

Our solution has the following key features. First,
it uses a variation of mini-batch stochastic gradient
descent (SGD). This choice provides a computational
speedup over full-batch methods [32, 15] and also has
implications for privacy – for a large enough dataset,
SGD can train a model with many fewer passes over
the data than full-batch gradient descent and so each
data point has a smaller influence on the optimal pa-
rameter vector.

Second, we use output perturbation (noise is added to
the optimal parameter vector [31, 32]) instead of in-
put perturbation (e.g., where additional noise is added
to each mini-batch gradient [1, 27, 15, 3]). This choice
allows us to perform periodic averaging of the interme-
diate parameter vectors encountered in SGD. In con-
vex ERM problems, averaging helps improve conver-
gence (intuitively by reducing the oscillations around
the optimum) [2]. Crucially, we show that averaging
also helps us use less noise to protect privacy. Further-
more, when the input data are initially permuted, the
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SGD updates are a random combination of contrac-
tion mappings and an expansion mapping. This ran-
dom behavior allows us to further reduce the amount
of noise that is necessary to protect privacy.

By working in the framework of Rényi differential pri-
vacy, we are providing a stronger privacy guarantee
than (ε, δ)-differential privacy yet can still compare
against algorithms for (ε, δ)-differential privacy using
RDP to DP conversion theorems [18]. Our contribu-
tions are summarized as follows:

• We propose an algorithm, based on SGD and output
perturbation, for solving convex empirical risk min-
imization problems under Rényi differential privacy.

• The inherent randomness in SGD means that the in-
fluence of one point on a parameter update is a ran-
dom variable. We take advantage of this randomness
to reduce the amount of noise that is necessary for
protecting privacy with output perturbation.

• Typically, SGD makes slow progress as it approaches
the optimum. To counter this effect, we add periodic
averaging steps to reduce the oscillations of SGD
and to further reduce the amount of noise that is
necessary for output perturbation.

• We perform extensive experiments on real datasets
against other recently proposed algorithms. We em-
pirically show the effectiveness of the proposed algo-
rithm for a wide range of privacy parameter values.

The rest of this paper is organized as follows. In
Section 2, we review related work. In Section 3, we
provide background on differential privacy and convex
ERM. We present our algorithm in Section 4 and ex-
periments in Section 5.

2 RELATED WORK

The problem of differentially private optimization
has received a great deal of attention from the ma-
chine learning community, especially in the context of
ERM [9, 27, 14, 23, 3, 29, 1, 31, 32, 30, 20, 15]. There
has been significant advances in both theory and algo-
rithm development.

Bassily et al. [3] derived the minimax lower bound for
excess empirical risk and proved that their private vari-
ant of SGD matches the lower bound. They used a gra-
dient perturbation approach in which the algorithm op-
timizes the objective function only using gradients per-
turbed by random noise. However, their private SGD
algorithm requires prohibitively large, O(n2), number
of iterations. In [30], Wang et al. also take the gradi-
ent perturbation approach to privatize an accelerated
version of SGD, called SVRG [13]. They showed that

their algorithm also matches the lower bound with im-
proved gradient complexity. Talwar et al. [28] further
refined the bound for a specific task by adding more
restrictive constraints. Abadi et al. [1] showed that
private SGD can be successfully used for deep learning
using techniques that would later be known as Rényi
differential privacy [18]. Feldman et al. [12] analyzed
the privacy amplification effect of noisy contractive
mappings in Stochastic Gradient Langevin Dynamics
(SGLD), which perform SGD updates using Gaussian
noise perturbed gradients. A technique called PATE
[20] dramatically improved the private training of deep
networks but requires a large public dataset. Using
concentrated differential privacy [6], Lee and Kifer
showed that private SGD algorithms based on gradient
perturbation can be improved in practice with adap-
tive step sizes and careful allocation of privacy budgets
between iterations [15].

The work most similar to ours is that of Wu et al. [31].
They proposed an output perturbation [11, 9, 32] based
SGD algorithm in which noise is calibrated according
to the stability analysis of gradient descent. The use of
randomly permuted mini-batches in their algorithm is
for utility only, whereas we analyze how permutations
affect privacy cost (i.e., how they compose with output
perturbation and require less additive noise). Zhang et
al. [32] also used the output perturbation to privatize
full batch gradient descent. Output perturbation ap-
proaches must derive bounds on the sensitivity of the
underlying non-private algorithm and the added noise
scales with this bound. The calculation of sensitivity
in these prior works often uses loose inequalities, re-
sulting in higher noise levels than are necessary. We
use numerical computation of sensitivity to substan-
tially decrease the amount of noise added to protect
privacy.

Chaudhuri et al. [9] proposed a general framework
called objective perturbation as an alternative to gra-
dient and output perturbation – they produce a ran-
dom objective function by adding a linear noise term
to the original objective. To ensure privacy, the re-
sulting problem must be fully solved to optimality us-
ing an off-the-shelf optimizer. Kifer et al. [14] fur-
ther improved the utility of the objective perturbation
method by using (ε, δ)-differential privacy. Again, the
optimization must be solved to optimality (whereas in
practice, the optimizers stop with an approximation
whose error is larger than machine precision).

3 PRELIMINARIES

A record di ∈ Z = X × Y is a tuple (xi, yi), where
xi ∈ X is a feature vector and yi ∈ Y is a target. A
dataset D ∈ Zn is a set of n records {d1, . . . , dn}.
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Two datasets D and D′ are neighbors, denoted D ∼
D′, if D′ can be obtained from D by replacing one
record with another one from Z.

3.1 Differential Privacy

Differential privacy is the current gold-standard in pro-
tecting the privacy of an input dataset. It is formally
defined as follows.

Definition 1 ((ε, δ)-DP [11, 10]). Given privacy pa-
rameters ε ≥ 0, δ ≥ 0, a randomized mechanism (al-
gorithm) M satisfies (ε, δ)-differential privacy if for
every event S ⊆ range(M) and for all pairs of neigh-
boring databases D∼D′,

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ .

The case where δ = 0 is referred to as pure differential
privacy and the case where δ > 0 is referred to as
approximate differential privacy.

Pure differential privacy limits the ability of an at-
tacker to make inferences about the specific record of
any individual. Approximate differential privacy pro-
vides the same guarantees with probability 1− δ, and
allows failure of privacy (e.g. release of the entire raw
data) to occur with probability δ. This event is known
informally as the “all-bets-are-off” scenario.

A recent relaxation of differential privacy, known as
Rényi differential privacy [18] provides weaker protec-
tions than pure differential privacy and stronger pro-
tections than approximate differential privacy (notably
avoiding the “all-bets-are-off” scenario).

3.2 Rényi Differential Privacy

While pure differential privacy requires that constraint

e−ε ≤ Pr[M(D)∈S]
Pr[M(D′)∈S] ≤ eε always holds, Rényi differen-

tial privacy (RDP) allows this ratio to be a random
variable and constrains it using the Rényi divergence:

Definition 2 (Rényi Divergence). Let P1 and P2

be probability distributions over a set Ω and let
α ∈ (1,∞). Rényi α-divergence Dα is defined as:
Dα(P1 ‖ P2) =

1
α−1 log(Ex∼P2 [P1(x)

αP2(x)
−α]) .

Rényi differential privacy requires two parameters: a
moment α and a parameter ε that bounds the moment.

Definition 3 ((α, ε)-RDP [18]). Given a privacy pa-
rameter ε ≥ 0 and an α ∈ (1,∞), a randomized
mechanism M satisfies (α, ε)-Rényi differential pri-
vacy (RDP) if for all D1 and D2 that differ on the
value of one record, Dα(M(D1) ‖ M(D2)) ≤ ε .

Note that when α = ∞, Rényi divergence becomes
max divergence and (α, ε)-RDP becomes pure (ε, 0)-

differential privacy. While the semantics of RDP are
still an area of research, it is currently being used in
practice as follows [18].

First, one chooses an ε′ and a very small δ′ > 0 with
the intention of providing strictly stronger privacy pro-
tections than (ε′, δ′)-differential privacy. Then one
uses the following conversion result to find correspond-
ing α and ε parameters for (α, ε)-RDP.

Proposition 1 (Conversion to (ε, δ)-DP [18]). If M
satisfies (α, ε)-RDP, it satisfies (ε′, δ′)-differential pri-

vacy when ε′ ≥ ε+ log 1/δ
α−1 and δ′ ≥ δ.

The workhorse method for achieving RDP is the Gaus-
sian mechanism, which relies on the L2 sensitivity.

Definition 4 (L2 sensitivity). Let q : Zn → R
k be a

vector-valued function over datasets. The L2 sensitiv-
ity of q, denoted by ∆2(q) is defined as

∆2(q) = max
D∼D′

‖q(D)− q(D′)‖2 ,

where the max is over all pairs neighboring datasets.

The Gaussian mechanism for RDP takes a vector-
valued function q (i.e. a query) over datasets and adds
appropriately scaled Gaussian noise.

Lemma 1 (Gaussian Mechanism [18]). Let q : Zn →
R

k be a vector-valued function over datasets. Let M
be a mechanism that releases N (q(D), σ2Ik). Then for
any pair of neighboring datasets D and D′ and any
α ∈ (1,∞): Dα(M(D) ‖ M(D′)) ≤ α∆2

2(q)/(2σ
2) .

In particular, if σ2 = α∆2
2(q)/(2ε), then M satisfies

(α, ε)-RDP.

3.3 Convex Empirical Risk Minimization

Recall that a record di consists of a feature vector
xi and a target yi. In the empirical risk minimiza-
tion framework, fitting many convex models can be
rephrased as optimizing the following equation.

w∗ = argmin
w∈Θ

F (w, D) :=
1

n

n
∑

i=1

f(w,xi, yi) , (1)

where Θ is a convex parameter space. F is called
the objective function and f is known as the loss
function. For example a regularized of logistic re-
gression model can be fit to data by solving w∗ =
argmin

w

1
n

∑n
i=1(log(1 + e−yi(w·xi)) + λ||w||22), in

which case the function f equals log(1 + e−yi(w·xi)) +
λ||w||22. Following prior work on private convex ERM
(e.g., [9, 32, 15]), we impose the following conditions
on f .

1. Differentiability. Loss function f is continuously
differentiable with respect tow and has a continuous
Hessian except on a set of Lebesgue measure 0.
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2. L-smooth. There exists an L > 0 such that for
any w,w′ ∈ Θ and for all di = (xi, yi) ∈ X × Y,
‖∇f(w, di)−∇f(w′, di)‖2 ≤ L‖w −w′‖2 .

3. Strong convexity. There exists a µ > 0 such that
f(w, di) is µ-strongly convex in the first argument,
i.e., for any w,w′ ∈ Θ and any di,

f(w′, di) ≥ f(w, di)+∇f(w, di)
ᵀ(w′−w)+

µ

2
‖w−w′‖22 .

4. Bounded Gradient. There exists an R > 0 that
satisfies ‖∇f(w, d)‖2 ≤ R for ∀w ∈ Θ , d ∈ Z .

Conditions 1, 2, and 3 imply bounds on the eigenvalues
of the Hessian [5], i.e., for ∀w ∈ Θ and di ∈ Z,

µI � ∇2f(w, di) � LI . (2)

except on a set of Lebesgue measure 0. Typically the
bounded gradient condition is satisfied by ensuring
that the feature vectors xi lie inside a ball of some
radius R′.

3.4 Gradient Descent Operator

Empirical risk minimization, especially in large-scale
problems, is often solved with stochastic gradient de-
scent (SGD). At each iteration, SGD chooses a ran-
dom subset of training data B, called a mini-batch.
It uses the gradient on the mini-batch to approximate
the full-data gradient of F (Equation (1)) then updates
the parameter vector w as follows:

wk+1 = wk − ηk
|B|

∑

i∈B

∇f(wk, di) , (3)

where ηk > 0 is the step size (which slowly decreases
with iteration k). We use the notation ∇fB to de-
note the mini-batch gradient for B, i.e., ∇fB(·) =
1

|B|

∑

i∈B ∇f(·, di). The SGD update in Equation (3)

can be viewed as an operator on the parameter space
Θ defined as

TB(·) = Id(·)− η∇fB(·) , (4)

where Id is the identity operator. When fB is smooth
and strongly convex, TB forms a contraction mapping
[26], which means that applying TB to any two param-
eter vectors w,w′ ∈ Θ (using the same mini-batch B)
shrinks the distance between w and w′ by a constant
factor. Mathematically, for any w,w′ ∈ Θ, we have
‖TB(w) − TB(w′)‖ ≤ ρ‖w − w′‖ , where ρ < 1 is a
contraction coefficient. Note that in (Rényi) differen-
tial privacy, a pair of neighboring databases D and D′

might produce slightly different minibatches B and B′,
which will require us to compare TB(w) with TB′(w′).

Algorithm 1: Vanilla Algorithm (NSGD)

Input: data D, number of epochs T , initial
step size η0, noise scale parameter σ2

1 Split D into mini-batches B0, . . . , Bm−1

2 Initialize w0, t = 0
3 for s = 1 to T do

4 η = η0/s
5 for j = 0 to m− 1 do

6 t = t+ 1

7 gt =
1

|Bj |

∑

i∈Bj
∇f(wt−1, di)

8 wt = wt−1 − ηgt

9 sample Y ∼ N (0, σ2)
10 return wpriv = wt + Y

4 ALGORITHM

4.1 Vanilla Mini-batch SGD

We begin the description of our private SGD algorithm
starting with a plain version shown in Algorithm 1
which, modulo a few small details, is equivalent to the
bolt-on method of [31]. We will then add in optimiza-
tions that improve accuracy, resulting in our proposed
method, shown in Algorithm 3.

Algorithm 1 is a non-randomized SGD method. We
will later add randomness into the mini-batch con-
struction by permutating record order. Please note
that the randomness we use is different from com-
peting approaches for RDP. For instance Abadi et
al. [1] base their privacy analysis on the assump-
tion that each mini-batch is an independent random
sample of the data. Such random sampling is a slow
operation. Hence practical implementations do not
use this approach. Instead they permute the data
and form disjoint mini-batches by taking consecutive
records from the permuted data (the resulting mini-
batches are therefore not independent since they can-
not overlap). Thus we base our privacy analysis on
the assumption that the data have been permuted in
order to create disjoint mini-batches.

Contraction Mapping. Let us first analyze Algo-
rithm 1. It is similar to standard (mini-batched) SGD
in that it updates parameters by iteratively apply-
ing the SGD operator TBi

to the current iterate, i.e.,
wt+1 = TBi

(wt). One important difference is that,
while standard SGD constructs the ith batch Bi by
randomly selecting the records in the batch, NSGD
builds the Bi by splitting D into m mini-batches, de-
noted by B0, . . . , Bm−1, and then accesses them se-
quentially in a cyclic order. This type of algorithm is
known as the incremental gradient method [4] and has
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been widely used to solve large-scale problems.

This sequential access has important implications for
our sensitivity analysis. Let D and D′ be neighbor-
ing datasets. If D is the input to the algorithm, the
algorithm will split it into batches B0, . . . , Bm−1 and
will iteratively produce a sequence of parameter esti-
mates w0, w1,w2, . . . , where w0 is some initial start-
ing value and the updates are performed using the rule
wi = TBi−1 mod m

(wi−1). On the other hand, if D′

is the input, the algorithm will split it into batches
B′

0, . . . , B
′
m−1 and produce a sequence of parameter

estimates w′
0, w′

1,w
′
2, . . . , where w′

0 = w0 is the
default starting value and the updates use the rule
w′

i = TB′

i−1 mod m
(w′

i−1).

Following [31], note that since D and D′ differ on the
value of one record, there will be a j such that mini-
batches Bj and B′

j differ on the value of one record.
For all i 6= j, we have Bi = B′

i. This means that as
long as (i mod m) 6= j, wi+1 and w′

i+1 are obtained
using the same operator TBi

(i.e., wi+1 = TBi
(wi)

and w′
i+1 = TBi

(w′
i)). Now, when the loss function f

satisfies condition 1, 2, and 3 in Section 3.3, operator
TBi

is a contraction, so that the parameter estimates
move closer to each other. That is, let ∆i+1 = ||wi+1−
w′

i+1|| and ∆i = ||wi−w′
i||. The contraction property

means that ∆i+1 < ∆i.

However, when (i mod m) = j, the parameter up-
dates use different operators: TBj

and TB′

j
so wi+1 =

TBj
(wi) and w′

i+1 = TB′

j
(w′

i). In this situation, the
operators force the parameter estimates further apart.
This discussion is summarized in the following lemma,
whose proof appears in the supplementary materials.

Lemma 2. Let B and B′ be mini-batches that differ
on the value of one record. Define the operator TB(·) =
Id(·)−η∇fB(·) (and similarly for B′). Let w and w′ be
any two vectors in Θ. Let ρ = max{|1− ηµ|, |1− ηL|}
(where µ is the strong convexity parameter and L is
the smoothness parameter). Then:

||TB(w)− TB(w′)|| ≤ ρ||w −w′|| (same batch B)

||TB(w)− TB′(w′)|| ≤ ρ||w −w′||+ 2ηR

|B|
where the first equation shows the effect of using the
same operator TB and the second equation shows the
effect of using TB to update w and a different operator
TB′ to update w′.

If we use a fixed step size η, instead of diminishing
step size, in Algorithm 1 (i.e., removing Line 4) and
set m = 1, then the naive algorithm coincides with pri-
vate full-batch gradient descent (GD) proposed in [32].
The following Proposition shows how the sensitivity of
the resulting algorithm can be computed using the re-
currence relations from Lemma 2.

Proposition 2. If we run Algorithm 1 for arbitrary
number of epochs with a fixed step size η, its sensitivity
∆ satisfies

∆ ≤ 2ηR

|B|(1− ρm)
,

where ρ = max{|1−ηµ|, |1−ηL|}. In particular, when
m = 1 and η = 2

L+µ , ∆ ≤ 2R
nµ .

Note that the above sensitivity is tighter than the one

computed in [32], which is 5R(L+µ)
nµL .

With a fixed number of epochs and a step size ηt that
depends on the epoch number t, we can use Lemma 2
as follows. If D and D′ only differ in the last batch,
then their initial parameters are the same. After the
first epoch, they differ by at most 2η1R

|B| , after the sec-

ond epoch, they differ by at most ρm 2η1R
|B| + 2η2R

|B| and

so on. It is easy to see that this is the worst case (i.e.
the upper bound is maximized when D and D′ differ
on the last of the m mini-batches) and hence the re-
sulting upper bound (which can be easily computed
numerically) is the sensitivity. After the last epoch,
noise with variance α∆2/(2ε) can be added to the fi-
nal parameter vector to achieve (α, ε)-RDP.

4.2 Randomized Permuted Batches.

If we permute the data once before starting the SGD
updates, then the mini-batches become randomized
and are subsequently processed in cyclic order. This
allows us to add less noise because, with randomized
batches, it is no longer possible to create “bad” neigh-
bors that always differ in the last batch – now the
batch they differ in will be 0, 1, . . . ,m − 1 with equal
probability.

Let D and D′ be any two databases that differ on one
record. Consider what happens when the algorithm is
run with input D (world 1) and with input D′ (world
2). Given the same input randomness, when the data
are split into batches, for any j, with probability 1/m
world 1 and world 2 will differ in the jth batch only.
So, starting with the same weight initial vector w0,
the first j − 1 weight updates in an epoch will be con-
tractions, the jth update will be an expansion, and
the remaining m − j will be contractions. Hence, af-
ter the first epoch, the difference in weights between
the two worlds is at most ∆(1) = ρm−j2η1R/|B| and
after the second epoch, the difference is bounded by
∆(2) = ρm−j(ρj∆(1) + 2η2R/|B|), etc. At the end the
algorithm adds Gaussian noise to the vector.

This scenario can be abstracted as follows. There ex-
ists a set of mechanisms2 M1,M2, . . . ,Mm with as-

2For example, Mi can apply a function fi on the input
data and then add N (0, σ2I) noise to the answer.
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Algorithm 2: Sensitivity calculation

Input: total number of epochs T , initial step
size η0, averaging interval τ , number of
mini-batches m, mini-batch size ν

1 Function ComputeSensitivity(T , m, η0, τ)
2 for j = 1 to m do

3 ∆[j] = 0 // initialization

4 for s = 1 to T do

5 η = η0/s
6 ρ = max{|1− ηµ|, |1− ηL|}
7 for j = 1 to m do

8 ∆[:] = ρ∆[:] // contraction

9 ∆[j] = ∆[j] + 2ηR
ν // expansion

10 return ∆

11 Function ComputeH(α, ∆, q)
12 Hα = 0
13 for j = 1 to m do

14 Hα = Hα+q[j]·exp(α(α−1)∆[j]2/(2σ2))

15 return Hα

sociated L2 sensitivities ∆1, . . . ,∆m and an associated
probability vector q = [q1, . . . , qm] (that adds up to 1).
An algorithm M, on input D, randomly samples an i
from q and returns Mi(D). An upper bound on the
privacy cost of M is given by Lemma 3.

Lemma 3. Define Hα(P1;P2) = e(α−1)Dα(P1 ‖ P2).
Let M1, . . . ,Mm be mechanisms and q = [q1, . . . , qm]
be a probability vector over 1, . . . ,m. Let M, on input
D, sample i ∼ q and return Mi(D). Then

Hα(M(D1);M(D2)) ≤
m
∑

j=1

qjHα(Mj(D1);Mj(D2)).

The final privacy cost of M can be obtained by noting
Dα(P1 ‖ P2) = log(Hα(P1;P2))/(α − 1). Algorithm 2
combines Lemmas 2 and 3 to compute the cost of the
version of Algorithm 1 in which data records are first
randomly permuted.

4.3 SGD with Averaging

One of the drawbacks of SGD is its progress slows as
it approaches the optimum (due to the requirement
for diminishing step size [22], it has sublinear conver-
gence rate even when the objective function is strongly
convex). To alleviate this problem, every τ epochs,
RSGD-AR performs averaging of parameters [25, 21]
(line 13) over the most recent τ epochs. It then resets
the step size (line 14), thus emulating restarts. Instead
of starting from scratch, the algorithm uses the aver-
aged value of last mτ iterates as the starting value
of the restart [17]. It is known that both averaging
and warm restarts help improve convergence proper-

Algorithm 3: RSGD-AR Algorithm

Input: total number of epochs T , initial step
size η0, averaging interval τ , number of
mini-batches m, noise scale parameter
σ2

1 Permute the dataset D
2 Construct mini-batches B0, . . . , Bm−1

3 Initialize w0

4 t = 0, h = 0
5 for s = 1 to T do

6 h = h+ 1 // epoch count of each run

7 η = η0/h
8 for j = 0 to m− 1 do

9 t = t+ 1

10 gt =
1

|Bj |

∑

i∈Bj
∇fi(wt−1, di)

11 wt = wt−1 − ηgt

12 if s mod τ = 0 then

13 wt =
1

mτ

∑mτ−1
k=0 wt−k // averaging

14 h = 0 // step size reset

15 t = t+ 1

16 sample Y ∼ N (0, σ2)
17 return wpriv = wt + Y

ties of stochastic approximation algorithms. The full
algorithm, with these enhancements (RSGD-AR), is
described in Algorithm 3.

Let Tj = jτ denote an epoch at which the jth averag-
ing is performed (so it is update number jmτ + j).

‖wjmτ+j −w′
jmτ+j‖2 =

∥

∥

∥

∥

∥

∥

1

mτ

jmτ+j−1
∑

k=(j−1)mt+j

wk −w′
k

∥

∥

∥

∥

∥

∥

2

≤ 1

mτ

jmτ+j−1
∑

k=(j−1)mτ+j

‖wk −w′
k‖2 (5)

Thus, for a given permutation of the data, we can av-
erage the upper bound on parameter differences before
applying Lemma 3. That is, every τ epochs, we aver-
age the most recent mτ values of ∆ in Algorithm 2.
Putting it all together:

Proposition 3. Algorithm 3 with averaging satisfies
(α, ε)-RDP, where

ε = 1
α−1 log

(

1
m

∑m
j=1 e

α(α−1)(∆[j])2

2σ2

)

.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed algorithm using 5 real datasets: (1) Adult [7,
16] data extracted from the 1994 US Census Data.
(2) BANK [16] data about marketing campaigns of a
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Dataset Size (n) Dimension.

Adult 48,842 124
BANK 45,211 33

IPUMS-US 40,000 58
IPUMS-BR 38,000 53
KDDCup99 4,898,431 120

Table 1: Characteristics of datasets

finance institution. (3) IPUMS-BR and (4) IPUMS-US

data extracted from IPUMS data [24] (5) KDDCup99

data collected from a simulated network. Table 1
shows the number of records and number of attributes
(after pre-processing).

Baselines We compare the proposed algorithm,
RSGD-AR, against seven baseline algorithms,3 namely,
ObjPert [14, 9], OutPert-GD [32], DP-AGD [15], SGD-
MA [1], NSGD (described below), NonPrivate, and Ma-

jority. ObjPert is an objective perturbation method
that optimizes the objective function perturbed with
random noise. OutPert-GD is an output perturbation
method that injects Gaussian noise to the solution ob-
tained by running GD with a fixed step size. DP-

AGD is a gradient perturbation method that uses care-
fully chosen step sizes with adaptive privacy budget.
SGD-MA is also a gradient perturbation based SGD
algorithm that uses an improved composition method,
called moments accountant. NSGD takes the Vanilla
algorithm (essentially equivalent to [31]) but uses nu-
merical sensitivity calculations to reduce added noise.
NonPrivate optimizes the objective with L-BFGS [19]
and does not add privacy noise. Majority predicts the
most frequent label. We repeat 5-fold cross validation
20 times and report average classification accuracy and
final objective value.

Parameter settings Throughout all the experi-
ments the value of privacy parameter δ is fixed to
10−8 for the Adult, BANK, IPUMS-US, and IPUMS-BR

datasets and to 10−12 for the KDDCup99 dataset. The
mini-batch size is fixed to 4,000 for RSGD-AR and

√
n

for SGD-MA, where n is the size of dataset.

Preprocessing We performed the following stan-
dard preprocessing operations. Every categorical at-
tribute is converted into a set of binary variables using
one-hot encoding. For each unique category, a new bi-
nary attribute is created. All numerical attributes are
rescaled into the range [0, 1] to ensure that they have

3We omit a comparison to the noisy SGLD in [12] be-
cause, due to its large per-iteration noise requirement, for
small values of δ and datasets used in our experiments we
observed it diverges unless ε is very large.

the same scale. Additionally, for those methods that
require feature vectors to lie inside a bounded space,
we normalize each observation to a unit norm (i.e.,
‖xi‖2 = 1 for i = 1, 2, . . . , n).

5.1 Logistic Regression & SVM

We compare performance on two different tasks: reg-
ularized logistic regression (LR) and support vector
machine (SVM). For logistic regression, we define

f(w) = log(1 + exp(−yiw
ᵀxi)) +

λ

2
‖w‖22 ,

where xi ∈ R
p+1, yi ∈ {−1,+1}, and λ > 0 is a regu-

larization coefficient. The value of λ is fixed to 0.001
in all experiments. Figure 1 shows the classification
accuracy (top) and final objective values (bottom) of
algorithms on the four datasets. For all the values
of ε tested, the proposed RSGD-AR algorithm con-
sistently outperforms or performs competitively with
other baselines. In all figures, the accuracy of SGD-MA

suddenly surges to almost that of non-private algo-
rithm at a certain value of ε (because, for each privacy
budget it can handle, we ran it with multiple choices
of pre-specified number of iterations, to tune its per-
formance).

For SVM, in order to satisfy the differentiability con-
ditions in Section 3.3, we use the huberized hinge loss
function [8, 9] defined as

`huber(z) =











0 if z > 1 + h
1
4h (1 + h− z)2 if |1− z| ≤ h

1− z if z < 1− h,

where z = ywᵀx and h is a hyperparameter. In our
experiments, we fixed h = 0.5. The performance of the
proposed algorithm on SVM task is shown in Figure 2.
As it is shown, RSGD-AR outperforms or achieves sim-
ilar performance with other baseline algorithms.

5.2 Processing Time

To compare the speed of algorithms, we generated 5
subsamples of size 50k, 100k, 150k, 200k, and 250k
from KDDCup99 dataset 4 tasks are and measured each
algorithm’s processing time on them. As shown in
Figure 3, ObjPert which uses L-BFGS to solve the per-
turbed problem is the fastest. It is observed that L-
BFGS finds an approximate solution with reasonable
accuracy on KDDCup99 dataset in less than 20 itera-
tions. While our method requires more iterations, it
is as fast as the ObjPert algorithm.

4Additional experimental results on this dataset are
provided in the supplementary material.
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