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Abstract. In this paper, we consider the well-known constant-batch lot-sizing problem, which we
refer to as the single module capacitated lot-sizing (SMLS) problem, and multi-module capacitated
lot-sizing (MMLS) problem. We provide sufficient conditions under which the (k, 1, S, I') inequalities
of Pochet and Wolsey (Math of OR 18: 767-785, 1993), the mixed (k,[, S, I) inequalities, derived
using mixing procedure, and the paired (k,[, S, I') inequalities, derived using sequential pairing pro-
cedure, are facet-defining for the SMLS problem without backlogging. We also provide conditions
under which the inequalities derived using the sequential pairing and the n-mixing procedures are
facet-defining for the MMLS problem without backlogging. All aforementioned inequalities are
special cases of n-step (k,[,S,C) cycle inequalities of Bansal and Kianfar (Math. Prog. 154(1):
113-144, 2015).
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1. Introduction

Capacitated lot-sizing problem (CLSP) is one of the most widely studied problems in the domain
of operations management, mainly because of its numerous applications ranging from production
planning to biomass logistics (see [11, 22, 24] and references therein for few examples). In addition,
many variants of the CLSP have been considered in the literature which includes two-level multi-
item CLSP [26], CLSP with setup times [10], big-bucket CLSP [1], multi-echelon uncapacitated
LSP [28], two-stage stochastic CSLP [4, 13|, and many more. Over past three decades, several
researchers have been studying the polyhedral structure of the feasible region associated with these
problems, thereby deriving valid inequalities or extended formulations for them [19, 20, 26]. A
promising approach to develop valid inequalities for mixed integer programming problems is using
facets (or valid inequalities) of simple mixed integer sets [5, 6, 7, 15, 16, 23, 27]. Using this approach,
various families of valid inequalities have been developed for the CLSP and its generalizations
[2, 5, 6, 15, 23, 27]. However, not much is known about the facet-defining properties of these
inequalities [22]. In this paper, we investigate the facet-defining properties of some of the well-
known families of valid inequalities, derived using the aforementioned cut-generation approach, for
the constant-batch lot-sizing problem which we refer to as the single module capacitated lot-sizing
(SMLS) problem, and one of its generalizations, called multi-module capacitated lot-sizing (MMLS)
problem.

In addition to exploring the facet-defining properties (or theoretical strength) of various classes
of valid inequalities for the SMLS and MMLS problems, another motivation behind this paper is to
build a stepping stone towards gaining insights which will create pathways to new cut-generation
procedures for general mixed integer programs. It is important to note that some well-known cut-
generation procedures in the mixed integer programming literature have emanated from the poly-



hedral studies of lot-sizing or network-design problems. For example, the ideas behind the mixing
inequalities [15] and cycle inequalities for continuous mixing set [25] germinated from the seminal
paper of Pochet and Wolsey [20] on polyhedral study of lot-sizing problems with Wagner-Whitin
costs. Similarly, the traces of the origin of the 2-step mixed integer rounding (MIR) inequalities [9]
can be found in Magnanti and Mirchandani [17] which study polyhedral structure of network-design
problem.

1.1 Literature review and contributions of this paper

The MMLS without backlogging (MMLS-WB) is defined as follows: Let {a1,...,a,} be the set of
sizes of the n available capacity modules and the setup cost per module of size o, t = 1,...,n in
period p is denoted by f;. Then the MMLS-WB is formulated as:
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min Z <cpxp + hpsp + Z f;;zf,>
t=1

peP
st. sp1+xp=dy+s,, peEP

n
xPSZatz;, peP
t=1
P P Pl+1
ZGZL‘Xn,xGRD,sGRLH

where z,, is the production in period p, s, is the inventory at the end of period p, s¢ is the inventory
in the beginning of period 1, and z; is the number of capacity modules of size o, t = 1,...,n, used
in period p. In addition, the parameters d,,c,, and h;, denote the demand, per unit production
cost, and per unit inventory cost in period p, respectively. Note that in the MMLS-WB, both sg
and s, are decision variables. Also, for n = 1, MMLS-WB reduces to SMLS without backlogging
(SMLS-WB). Pochet and Wolsey [19] consider the SMLS-WB problem where the capacity in each
period can be some integer multiple of a single capacity module with a given size. They introduce
the so-called (k,l,S,I) inequalities and show that these inequalities subsume facets of a certain
form (described implicitly in [19]) for SMLS-WB. In this paper, we explicitly define a subclass of
the (k,1,S,I) inequalities and show that under certain conditions, only the (k,[, S, I) inequalities
belonging to this subclass can be facet-defining. More specifically, we show that for each (k,[,S,I)
inequality which does not belong to this subclass, there exists a stronger valid inequality belonging
to this subclass. Later, Gunliik and Pochet [15] generalized the mixed integer rounding (MIR)
inequalities [18, 27] by introducing mixed MIR inequalities for a multi-constraint mixed integer set.
They demonstrate how these inequalities can be utilized to develop valid inequalities for general
mixed integer programs (MIPs) including SMLS-WB and referred to this cut-generation procedure
as “mixing” (see Section 2.2 for details). We refer to a class of valid inequalities for SMLS-WB
which can be derived using the mixing procedure as mixed (k,1,S,I) inequalities. In this paper,
we provide sufficient conditions under which the mixed (k,[, S, I) inequalities are facet-defining for
SMLS-WB.

In another direction, Guan et al. [14] develop facet-defining inequalities for multi-stage stochas-
tic uncapacitated lot-sizing problem, referred to as the (Q,Sg) inequalities. Thereafter, Guan et
al. [12] introduce a cut-generation procedure, referred to as “pairing”, for MIPs; see Section 2.4 for
details. They use (sequential) pairing to derive valid inequalities for multi-stage stochastic mixed
integer programs including multi-stage stochastic capacitated lot-sizing problem with variable ca-
pacities [13]. It is important to note that the (Q, Sg) inequalities can be derived using the pairing



procedure for multi-stage stochastic uncapacitated lot-sizing problem. Recently in [4], Bansal et
al. present globally valid parametric inequalities and tight second stage formulations for four vari-
ants of the two-stage stochastic capacitated lot-sizing problems with uncertain demands and costs.
In this paper, we present a class of valid inequalities for SMLS-WB derived using pairing proce-
dure, investigate their facet-defining properties, and their relationship with the mixed (k,I,S,T)
inequalities. We refer to this class of inequalities as the paired (k,[, S, I) inequalities.

Sanjeevi and Kianfar [23] generalize the SMLS-WB to MMLS-WB problem, in which the total
production capacity in each period can be the summation of some integer multiples of several
capacity modules of different sizes. They show that the mixed n-step MIR inequalities (which
generalize the mixed MIR inequalities [15] and n-step MIR inequalities [16]) can be used to generate
valid inequalities for MMLS-WB. These inequalities are referred to as the multi-module mixed
(k,1,S,I) inequalities as they also generalize the (k,[, S, I) inequalities [19]. Recently, Bansal and
Kianfar [5, 6] further generalize the mixed n-step MIR inequalities [23] to n-step cycle inequalities
and develop the so-called n-step (k, [, S, C) cycle inequalities for both MMLS-WB and MMLS with
backlogging problems. The class of n-step (k, 1, S, C) cycle inequalities subsumes the multi-module
mixed (k, 1, S, I) inequalities for MMLS-WB problem. Note that in [2], the n-step cycle inequalities
are also used to generate new classes of valid inequalities for multi-module capacitated facility
location (MMFL) and multi-module capacitated network design (MMND) problems. In this paper,
we investigate the facet-defining properties of the multi-module mixed (k,[,.S,I) inequalities for
the MMLS-WB problem. In addition, we present a new class of valid inequalities for MMLS-WB
using pairing procedure [12], investigate their facet-defining properties, and their relationship with
the multi-module mixed (k,[, S, I) inequalities.

1.2 Organization of this paper

In Section 2, we briefly review the cut-generation procedures: mixed integer rounding (MIR) [18,
27], mixing [15], n-mixing [23], and sequential pairing [12]. In Section 3, we provide sufficient
conditions under which the (k,[, S, I) inequalities of Pochet and Wolsey [19], the mixed (k,[, S, )
inequalities, derived using mixing procedure of Giinlik and Pochet [15], and paired (k,[,S,I)
inequalities, derived using pairing procedure of Guan et al. [12], are facet-defining for SMLS-WB.
In Section 4, we present conditions under which the inequalities derived using the pairing procedure
[12] and the n-mixing cut-generation procedure of Sanjeevi and Kianfar [23] are facet-defining for
the MMLS-WB. Finally in Section 5, we provide concluding remarks and discuss about potential
extension of the results presented in this paper. Note that all aforementioned inequalities are special
cases of n-step (k,[, S, C) cycle inequalities [6].

2. Necessary Background

In this section, we briefly review the cut-generation procedures: MIR [18, 27|, mixing [15], n-
mixing [23], and sequential pairing [12] which we will use to develop valid inequalities for SMLS-WB
and MMLS-WB problems in the subsequent sections.



2.1 Mixed Integer Rounding (MIR)

One fundamental procedure to develop cuts for general mixed integer programs is the MIR proce-
dure [18, 27] which utilizes the facet of a single-constraint mixed integer set,

Q:={(y,v) €Z xRy : a1y +v > p},
where a; > 0 and 8 € R (page 127 of [27]). This facet is referred to as the MIR facet and is given

’ oo (oo 2])o= (=[] [3]

In order to avoid trivial case, it is assumed that 8/a; ¢ Z because then Inequality (1) will reduce
tov > 0.

2.2 Mixing

Giinliik and Pochet [15] studied a mixed integer set, defined by
Qo:={(y,v) €Z™ xR oy’ +v>Bs,i=1,...,m},

where ap € Ry, 8 € R™, and B;/aq ¢ Z, i = 1,...,m. This set is referred to as the mixing set
which is a multi-constraint generalization of the set ) that leads to the well-known MIR, inequality
(1). Giinliik and Pochet [15] derive the mixed MIR inequalities for the mixing set Qo as follows:
Define 5y := 0, ,BZ-(l) = 6 — |Bi/a1], 1 € {0,...,m}, and without loss of generality assume that
B =0 < M < M i =2,...,m. Let K := {i1,... ik}, where iy < iy < --- < ix, be a
non-empty subset of {1,...,m}. Then the inequalities,
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are valid for @y and sufficient to describe the convex hull of Qy. Inequalities (2) and (3) are
referred to as the type I and type II mixed MIR inequalities, respectively. As mentioned in Section
1, Giinliik and Pochet used these inequalities to generate cuts for linear mixed integer programs and
referred to this cut-generation procedure as mizring. In Section 3.1, we will show how to generate
valid inequalities for SMLS-WB using mixing. In addition, Giinliik and Pochet mentioned that in
a variant of the mixing set Qg where y € Z™, inequality (3) is redundant unless y** < |f;, /a1 ] for
some feasible y.

2.3 n-mixing

Sanjeevi and Kianfar [23] generalize the mixing procedure [15] to n-mixing cut-generation procedure
by considering the n-mixing set,

n
0" ={W Y 0) €@ X T X Ry Y gy v = Bii=1,...,m},
t=1



where oy > 0, t = 1,...,n, and 8 € R™. Note that an’l = @Qo. They develop the mixed n-

step MIR inequalities for Qp"" as follows: Without loss of generality, we assume ﬁz(f)l < Bl-(n),i =
2,...,m, where ﬁi(t) = ﬁi(t_l) — oy Lﬁi(t_l)/atJ ,t =1,...,n, and 51-(0) = ;. It is also assumed
that ,Bi(t_l)/at ¢ Z,i=1,...,m. Note that 0 < B,L»(t) < ay for t = 1,...,n. By definition, we set
S() =0and [[%(.) = 1if a > b. If the n-step MIR conditions,

(673 lrﬁi(t_l)/at—‘ § g1, t = 2, ey (4)

hold for each constraint ¢ € K C {1,...,m}, then the inequalities
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are valid for Q("", where ﬁi(on) =0 and
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for i € K. Inequalities (5) and (6) are referred to as type I and type II mixed n-step MIR inequali-
ties, respectively. Inequality (5) is shown to be facet-defining for Q;"". Inequality (6) also defines a
facet for Q" if some additional conditions are satisfied; see [23] for details. Sanjeevi and Kianfar
[23] used mixed n-step MIR inequalities to generate valid inequalities for MMLS-WB problem (see
Section 4.1 for details) and referred to this cut-generation procedure as n-mixing. Note that the
n-step MIR inequalities [16] are special cases of the type I mixed n-step MIR inequalities (5), and
both type I and type II mixed n-step MIR inequalities, (5) and (6), are special cases of the n-step
cycle inequalities of Bansal and Kianfar [5, 6, 7).

Remark 1. The n-step MIR conditions (4) are automatically satisfied when the coefficients,
a1, ...,0p, are divisible, i.e. o/ € Ly, t=2,...,n.

Remark 2. In the rest of the paper, the notation 5% will denote (recursive) reminder of § with
respect to o, o, . .., ap. More precisely, §®) := §t—1) — ¢ Lé(tfl)/atJ ,t=1,...,n, and 51(0) = 0.
2.4 Pairing of mixed integer inequalities

Given a mixed integer set Z := {(x,2) € Z" x R'? : E,x + E.z > er} and two valid inequalities
for Z:

N Ny
Z ajlmj + Z b}Zj > ch (8)
j=1 j=1
Na N,
Z a?a?j + Z b?zj > ch 9)
j=1 j=1



Guan et al. [12] introduce a cut-generation procedure, referred to as pairing, to develop a new valid
inequality (10) for Z.

Theorem 1 ([12]). Assuming c% > ck, the inequality,

Zmln{a +c% — cR,max{aJ, J}}x]+2max{bjl,b§}zj20%, (10)
j=1

is valid for Z.

For the sake of convenience, let Inequality (10) be written as

Za o aj a:]—l—z bj 0 b3)z; > ch,
7j=1

and referred to as (1 o 2) paired inequality. Assume that the inequalities

Na Nz
Za?;}jy—f—Zb?ijC%, fOI‘k‘ZB,...,m, (11)
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are also valid for Z where C%-?, < c?]’% < ... < . Then pairing the (1 o 2) paired inequality and

inequality (11), for any k € {3,...,m}, gives another valid inequality for Z, i.e.

Nax

Zmin{(a; o a?) + k- C%,max{(a} o a?), a?}}xj

= (12)

+Zmax{ S o b2) b;?}zj >l

which is referred to as the ((102)ok) sequentially paired inequality. This cut-generation procedure
is called sequential pairing. Guan et al. [12] provide the following result for these inequalities.

Theorem 2 ([12]). Let K := {i1,...,%x|} be a subset of {1,...,m} such thati; <iz < ... <.
For each of the following cases, there exists a subset K such that the ((...((i10i2)0id3)o...)0i k)
sequentially paired inequality is at least as strong as any other sequentially paired inequality obtained

by arbitrary sequence of pairing of the inequalities (11) for k=1,...,m:
1. Nested case, i.e. af < af“, forj=1,...,ngandk=1,... m—1,

2. Disjoint case, i.e. a?af =0 forj#I1,j,le{l,...,n.}, and k € {1,...,m}.

3. Single Module Lot-Sizing Problem without Backlogging

In this section, we first re-define the single module capacitated lot-sizing (SMLS) problem (referred
to as the constant batch lot-sizing problem in [19]). Then we present valid inequalities for this
problem and investigate their facet-defining properties. The SMLS without backlogging (SMLS-
WB) is defined as follows: Let P :={1,...,m} be the set of time periods and «; be the size of the
available capacity module (or batch). Given the setup cost per module, the demand, the production



per unit cost, and the inventory per unit cost in period p, denoted by f;, dy, cp, and h,,, respectively,
SMLS-WB can be formulated as: min { > opep (cpmp + hpsp + fz}z;) (2,2, 8) € XML} where

XML = [(z,2,5) € Z7 x RT x R (13)
Sp-1 +Tp =dp+sp, peP (14)
zp < alzzl,, p € P}, (15)

xp is the production in period p, s, is the inventory at the end of period p, and ,211, is the number
of capacity modules of size a; used in period p.

3.1 Valid Inequalities for SMLS-WB Problem

Similar to Pochet and Wolsey [19], we consider a subnetwork consisting of periods k, ..., [, for any
k,l € P where k < l. Let S C {k,...,l} such that k € S. Fori € S, let S; :== Sn{k,...,i},
m; = min{p : p € S\S;} with m; = [ + 1 if S\S; = 0, and b; = >" . 'd,. We define

p=k
I:={i1,iz,...,ij} C S such that b =0 < bl < b <. < bV <a.

10 i1 21|

Theorem 3 ([21]). The inequality,

1] A
Sk—1+ Z Tp > Z (bl(-ql) — bl(;L) F;:—‘ — Z z; , (16)
q=1

pelk,...,l}\S PESi,

referred to as the (k,1,S,1) inequality, is valid for XML where sg = s, = 0. These inequalities

generate all facets for the convex hull of XML {(s0, 5mm) : 50 = sm = 0} which are of the form

Sk—1 + Z Tp + Zwll)z; > T

pe{k,...,I1}\S peS

forall2<k<l<mand S C{k,...,l}.

Example 1. Consider a SMLS-WB problem instance defined over six time periods, i.e. m = 6
and P ={1,...,6}, where a1 =5 and demand in each time period are as follows: di = 13, dy = 2,
ds=2,dy =23, ds =1, and dg = 8. Figure 1 represents a flow diagram for this instance. Let the
set of feasible solutions, (13)-(15), for this instance be defined by

X = {(z,2,5) € Z§ xR} xRY :
so+x1 =51 +13
$1+ X0 =59+ 2
So+x3 =53+ 2
83+ x4 = 84 + 23
S4+ x5 =55+ 1
S5+ xg = s + 8
xp§5z;,p:1,...,6}.
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Figure 1: Example of SMLS-WB

Using the above defined notations, we derive valid inequalities for X¥ as follows. Let k = 2,
Il =6, and S = {2,4,5}. Therefore, So = {2}, Sy = {2,4}, S5 = {2,4,5}, and my = 4, my = 5,
ms = 7. Also, by = do +d3 = 4 and b(l) =4—-5[4/5] = 4. Likewise, by = do + d3 + dq = 27,
b =27 - 5(27/5] = 2, and b5 = 7% d, = 36, b\ = 36 — 5|36/5] = 1. Notice that
b(()l) =0< bél) < bfll) < bgl). Because of Theorem 3, the following (k,1,S,1) = (2,6,{2,4,5},{4,2})
inequality is valid for X¥ where s = sg = 0:

b b
81+ x3 + g > bfll) <{aﬂ — z% — zi) + (bgl) — bfﬁ) <[0421-‘ — z%)

=206 — 20 — 21) +2(1 — 23) = 14 — 423 — 22},

Similarly, the (k,1,5,1) = (2,6,{2,4,5},{5,4}) inequality,

b b
emeraz ) (|0 ) () (|3 )

= (8— 24 — 2 —23)+ (6 — 20 — 2}) = 14 — 220 — 22} — 2},

the (k,1,S,I) =(2,6,{2,4,5},{5,2}) inequality,

1 bs 1 1 b
31+:U3+x6>b( ) ([041-‘ —z%—zi—zé) —i—(bg)—bg)) daj —z%)

= (8—zd —2b —2)+3(1 —23) =11 —42d — 2} — 22,

and the (k,1,S,1) = (2,6,{2,4,5},{5,4,2}) inequality,

1 b 1 1 by
31+x3+x62bg)({a51—‘—z1—2i > (b() b“)([al—‘—z%—zi)
M _ W\ ([b2]_ .
+(b2 b )([OJ z2>

=(8 =z — 2 — )+ (62 — ) +2(1 - 2)

=16 — 423 f2zifzé,

are also valid for X where sg = sg = 0. O

In order to generate valid inequalities for XM’ using the mixing procedure [15] and the pairing

procedure [12], we aggregate equalities (14) from period k to period m; — 1, ¢ € I C S, and obtain



mi—l

Sgp—1 + Z Ty = b; + Sm;—1- (17)
p=k

By definition S; C {k,...,m; — 1}. Therefore, relaxing z,,p € S;, in (17) to its upper bound based
on (15) and $y,;—1 in (17) to its lower bound based on (13) gives

Sgp—1 + Z xp + o Z z> > by, (18)

pe{k,....m;—1}\S; PES;

Inequalities derived using the mixing procedure. Let i, = max{i :i € I'}. Then we get the
following valid inequality for X MZL:

Sg—1+ Z Tp + o Z z, > by, (19)

pef{k,....,mi, —11\S; PES;

for i € I. Setting v := sp_1 + Zpe{k,...,mi _1p\s Tp and Yl = > pes; zll), inequality (19) becomes
v+aqy’ > b;, i € I, which is of the same form as the defining inequalities of mixing set Q. Notice
that v € Ry,y* € Z,. Therefore, the type I mixed MIR inequality (2) written for X Ml with
K=1I,

sheit Y >Z( qu) [ w A (20)

PES;,

is valid for XML We refer to inequality (20) as mixed (k,I, S, I) inequality.

Example 1 (continued). For i € S, inequalities (18) for X¥ are written as:
Fori=2: 81+ZE3+5Z% >4
Fori=4: 51+ a3+ 5(23 + 24) > 27
Fori="5: s1+ a3 + 16+ 5(23 + 2f + 21) > 38.

As discussed above, we apply the mixing procedure on these inequalities. For I = {4,2}, we get the
following valid mized (k,1,S,1) = (2,6,{2,4,5},{4,2}) inequality for X where i, = 4:

b b
$1+x3 > bfll) <L)i—‘ — z% - zi) + (bél) — bi1)> (le—‘ — z%)

=2(6— 23 —21) +2(1 — 23) = 14 — 42) — 22;.
Likewise, the mized (k,1,S,1) = (2,6,{2,4,5},{5,4}) inequality where i,, = 5,

b b
oremvesnz i ([T e (0 ([3] 4 -2)

= (8—z8 —2b —2)+ (6 — 20 —2}) = 14 — 223 — 22} — 2},

the mized (k,1,5,1) = (2,6,{2,4,5},{5,2}) inequality where i,, = 5,

b b
e 2 ([ 2o a) (0 (5] -4)

= (8— 24 —2b —2)+3(1 —23) = 11 — 423 — 2} — 23,



and the mized (k,1,5,1) = (2,6,{2,4,5},{5,4,2}) inequality where i,, =5,

b b
wemenz ) ([3] o) 00 ([G]-44)

+ (bgl) - bil)> ({62-‘ — z%) =16 — 4,2% — in — zé,

aq
are also valid for XF. O

Inequalities derived using the pairing procedure. First, for each ¢ € S, we apply the MIR
procedure on inequalities (18) as follows. By setting v := sk,l—l—zpe{kw,mﬁl}\& Tp, Y = ZpESZ' z;,
and 8 = b;, Inequality (18) becomes v+a1y > 5 which is of the same form as the defining inequalities
of set Q. Notice that v € Ry and y € Z,. Therefore, the MIR inequality (1) written for inequality
(18)7

Sgp—1+ Z x; + bgl) Z z; - {ZJ > bz(l), (21)

pe{k,....,m;—1}\S; PES;

is valid for XML Next, we apply sequential pairing procedure (discussed in Section 2.4) on
inequalities (21). However, to do so, we have to assume that >_ g zp > |bifon] for each i € S.
The sequentially paired inequalities obtained by arbitrary sequence of pairing of the inequalities (21)
for ¢ € I, in increasing order of bgl), are valid for XML
as the paired (k,[, S, I) inequality for SMLS-WB.

and we refer to thus obtained inequalities

3.2 Facets for SMLS-WB Problem

We provide sufficient conditions under which the (k,[,S,I) inequalities (16), the mixed (k,I,S,T)
inequalities (20), and the paired (k,1, S, I) inequalities are facet-defining for XML,

Observation 1. The (k,l1,S,1) inequality (16) is either same as the mixed (k,l,S,I) inequality
(20) or is dominated by the mized (k,l,S,I) inequality (20).

Proof. Observe that the mixed (k,[, S, I) inequality (20) is actually the (k, m;, —1,.5,I) inequality
(16). This means that if { = m;, —1, then the (k, [, S, I) inequality is the mixed (k, [, S, I) inequality.
However, in case | # m;, — 1, the left hand side of inequality (16) is greater than the left hand side
of inequality (20), which implies that the (k,[, S, I) inequality is dominated by the mixed (k,[, S, I)
inequality. O

Corollary 1. The (k,1,S,I) inequality (16) is valid for XM for all 1 < k <1 <m and S C

{k,....1}.

Corollary 2. The (k,1, S, 1) inequality defines a facet for conv(X ML) if and only if it is a facet-
defining mized (k,l, S, I) inequality.

Example 1 (continued). Notice that the mized {2,6,{2,4,5},{4,2}} inequality dominates the
{2,6,{2,4,5},{4,2}} inequality because | = 6 # m;, — 1 = my — 1 = 4; whereas for (k,1,5) =
(2,6,{2,4,5}) and I € {{5,4},{5,2},{5,4,2}}, the mized (k,l,S,I) inequalities are same as the
(k,1,S,I) inequalities as | = m;, — 1 =msz — 1 =6. O

10



Lemma 1. Given a mized (k,1,S, ) inequality (20), any feasible point (3,1, 5) € XML lies on the
corresponding face if there exists an r € {0,1,...,|I|} such that conditions (i)-(iii) hold:

(Z)[—‘ > 4=1,forqg=1,...,r

pES

[ i 51
(ii) [041-‘_ Z », =0, forg=r+1,... |1

PES;,
i) St + 3 . D
(Z”) Sk—1 pef{k,...mi, —1}\S Tp ir
Proof. Given (k,l,S,I), the hyperplane corresponding to (20) can be rewritten as

]

Sk—1 + Z Tp = Z <bz(;) - b521> [bzq-‘ - Z Z:tlJ (22)

a1
pE{k,ymiyy, —1}\S g=1 PESiy

Let T' = {(z,z,5) € XML . (22) holds} be the face of XML defined by hyperplane (22) and
(2,2,5) € XML be a point which satisfies conditions (i) — (i44) for an r € {0,1, ..., |I|}. Now, by
substituting (2, Z, §) in the right-hand side of (22) and using conditions (i) — (ii), we get

| U |
S0 ([ -2 e 2 ) ([a]- =4
o PESiq g=r+1 M pES;

iq
Zr: ( — o) ) S

g=1

Notice that by substituting (2, Z, §) in the left-hand side of equation (22), we also get bgrl) because

of condition (iii). This shows that (2,2, 5) € I as it satisfies (22). O

Theorem 4. The mized (k,1,S,1) inequality (20) defines a facet for conv(XSML) if the following
condition holds for each i € I:

{7:5€8,7<i,[bj/aa] = [bi/ar]} C 1. (23)

Remark 3. Notice that Condition (23) in the above results are not very restrictive. However, The-
orem 4 shows that not all selections of (k,l, S, I) provide facet-defining mized (k,l, S, I) inequalities
for the SMLS-WB (see an example in Section 5).

Proof. Let T' = {(z,x,s) € XML . (22) holds} be the face of XML defined by hyperplane (22)
corresponding to the mixed (k, [, S, I) inequality (20). Assuming that for eachi € I, {j:j € S,j <
i,[bj/a1] = [bi/aq]} C I, we prove that a generic hyperplane passing through I',

voso + Y (Upsp + fipTp + Nizp) =11 (24)
p=1
where (A7, ... A2, 1y« - oy flany Y0, V1 - - -, Vm,y 1) € R3™ T2 must be a scalar multiple of (22).
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First, we separately add equalities (14) from period i € {1,...,k — 1} to period k — 1, and from
period k to period i € {k,...,m} to get

k—1 k—1
57;,1—1—pr:de+$/€_1, fori=1,...,k—1 (25)
p=i p=i
i i
8k-1+zxp22dp+si, fori=k,...,m (26)
p=k p=k

respectively. Since each point belonging to I' satisfies (25) and (26), we eliminate variables s;,
i=0,...,k=2,k,...,m, from (24) by subtracting ;1 times equality (25) for eachi € {1,...,k—1}
from (24), and adding v; times equality (26) for each i € {k,...,m} to (24). This gives

m m
1
Nosk—1+ > Aixp+ > Nozh =0 (27)
p=1 p=1
where
k—1 k—1 m i
=03 (na ) -3 (w304
i=1 p=i i=k p=k
k—1 m
Ao =Vp_1+ ZVi—l - ZVZ',
i=1 i=k
k—1
)\;”:,up—ZI/i,l forp=1,...,k—1,
i=1
m
)\;f:,up—i—ZVi forp==k,...,m.
i=k
It is important to note that to have a point (2,2,8) = (21,..., 25, &1, -+ @m, 80, - - -, Sm) € ZT" X
R’ x RTH € XSML it is sufficient to know the value of 2}, oy AL &1, ..., &m, and §;_1 coordinates
because the remaining ones can be obtained using equalities (25) and (26). Therefore, in the rest of
the proof, we will define a point belonging to XML by (2,2, 8,_1) = (3%,..., 2L, &1, .+, &m, 8k_1) €
Z1 x R x Ry (for the sake of convenience).
Next, assuming S := {w1,...,w|g} where wy = k, consider the point A = (2,%,8;-1) =
(31,81 &1,.. . i, Sp_1) € Z x R™ x Ry such that §,_; = 0,

(13 ([dp/cn],dy) ifpe{l,...,mN{k,... 1},
PTEPTT) (0,0) if pe{k,....I3\S,

for pe {1,...,m}\S and for i € {1,...,|S|},

21 4 <’VbUJi-‘ ’Vb’wil-‘ ’wai-‘ ’wail-‘>
(Zw,-a xwi) = DY N e P ’
aq (0%} aq aq

where by, = 0. As mentioned before, coordinates $,, p € {0,...,m}\{k —1} can be obtained using
(25)-(26), i.e. for p € {0,...,m}\{k — 1},

12



0 if pe{0,...,k—2}

bu, P
. al[IW—Zdj if pe{mu, |, ..M, —1}andi=1,...,[S|,

bu '
1 ’V ls-‘ _bw|5‘ 1fp2mw‘5|a
where m,,, = k. Recall that b,,, = Z?”:’éil d; for w; € S (by definition). It is easy to verify that
A € XML and satisfies conditions (i) — (4ii) of Lemma 1. Therefore A € T' and hence must satisfy
(27). Substituting A into (27) gives

oo Nd+ Y Afdy/on]
pe{l,...mM\{k,....l} pe{l,...mM\{k,...,l}
1] (28)

+Z w; 1+ Ay, ((bwi/aﬂ — |wai—1/a1~|) — 0.

Using (28), hyperplane (27) reduces to

Aosk—1 + Z Ap(zp —dp) + Z A5 (2p = [dp/aa])
pe{l,...m\{k,...,l} pe{l,...m\{k,...,l}
S|
+ Z ()\pr + Az 1 )+ Z)\x T, — a1 ([bu, /1] = [buw,_, /a1])) (29)
pe{k, JN\S
S|

= >N, (Tbufon] = [buy fan] = =3,)
=1

Now, let S be a set of all disjoint subsets of S such that for each element (or time period) p of
a subset, [b,/aq] is same and the elements of each subset are arranged in the increasing order of
the associated time period or index p. We denote a set containing only first element of the disjoint
subsets of S (arranged in increasing order) by Q := {wi,ws,...,wyq}. Note that [by,/a1] =0 <

[bw, /1] < [buy /1] < ... < {bwlﬂl/al-‘ and Q2 C S. For each w, € 2, we consider the points

BYr = (2,2,85—1) = (31,..., 25, &1, ..., &m, 85—1) € ZT x R" x Ry such that each coordinate of

T mo
B“r is same as the coordinates of the point A, except that

bu, bu, b b,
o= (G| Pl [ - ] )
] a1 a1 oy

where b,, = 0 and bg}) = maxi:m,m{bb(uli)}. It is easy to verify that B“r € XML and satisfies
conditions (i) — (¢9¢) of Lemma 1. Therefore B7 € I' and hence must satisfy (27). Substituting
Br into (29) gives

X
AL

=0 forw, € Q. (30)

Next, consider the points C] for r € {1,....,k—1}U{l+1,...,m},Ci forr € {1,...,k =2} U{l +
1,...,m — 1}, and C3 such that each coordinate of C], Cj, and C3 are same as the coordinates of

13



the point A, except that in C], 2} = [d,/c1] + 1, in C3,

,

Zk 1d k—1
w, d; itpe{l,...,k—1}n{r},

(2111;7‘%10) = _Z_ d; m
1) d; ifpe{l+1,....,m}yn{r},

i=p

(0,0) itpe{l,...;k—1,1+1,...,m},p>r,

and in C3, 1 = 0 and 5, = dj_1 for p = 0,...,k — 2. It is easy to verify that C{ for r €
{1, k—=1}u{l+1,...,m},C forr € {1,...,k—2}U{l+1,...,m— 1}, and C3 belong to XM~
and satisfy conditions (i) — (4i7) of Lemma 1. Therefore C7,C%,Cs € T" and hence must satisfy (27).
Substituting C] into (29) gives

Ao=0 forallre{l,...,k—1}U{l+1,...,m}. (31)
Likewise, one by one substituting the points C3, ... ,C§_2,C§+1, . ,C;"_l, and Cs into (29) gives
Af=0 forallre{l,....k—1}U{l+1,...,m—1}. (32)
By definition we know that I := {iy,... im} C S such that 0 < bl(-ll) < bg) < ... < bl(|11)| <
a1, i, = max {z iel}, and S; = SN{k,...,i}. We consider the points D" = (2,2, 5k_1) =
(B, 2l @1,y By Sk—1) € ZT x R x ]R+ for re€{k,...,l}\S;, such that §,_1 =0,

([dp/ai1],dp) ifpe{l,....k—1yU{l+1,...,m},
(22, 4p) := < (0,0) ifpedk,....,I[}\S and p #r,
(1,0) ifpedk,....[}\Sand p=r,

for p e {1,...,m}\S and
bwi bwi —1 bwi bwi— 1 . )
Bl Pl Gl Fae]) e

(21107;7‘%wi) = b, b,
(5] 5T o] o e
ay o1 a1 o N{mi,,...,1},

fori=1,...,|S|. It is easy to verify that D" € XML and satisfies conditions () — (44i) of Lemma 1.
Therefore D" € T" and hence must satisfy (27). Substituting D" into (29) gives

A.=0 forallre{k,...,I[}\S,,. (33)

Using (30), (31), (33), and (32), (29) reduces to

bw- bwi,
T S > S )

pe{k,....L,m}\S w;€S\Q
. b,
a1 (05}

wiESiu
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Now, consider the points €™ = (2,2, 8k-1) = (&1,..., 25,81, ..., &m, 8k—1) € ZT x R x Ry for
r€{m;,,...,l,m} where m;, <1< m such that §;_1 =0,

([dp/a1],dp) ifpe{l,...;k=1}U{l+1,...,m}\{r},
([dp/an] +1,dp+0cq) ifpe{r}n{m}and m#1I,

(0,0) ifpedk,....0}\(Su{r}),

(1,1) if pe{r}n{mi,,....1}\9),

for p e {1,...,m}\S and

diﬂ _ P;J 70&1211‘%) . ifw e S\{r)

(25}1’531111) = b b
<[wl-‘ - { wil-‘ —l—l,alz}w) , ifw; e {r}n{mi,,...,1}NS.
(65} aq
for i € {1,...,|S|}. It is easy to verify that & € XML and satisfies conditions (i) — (i) of

Lemma 1. Therefore £" € T" and hence must satisfy (27). Substituting £" into (29) gives
Ay =0 forall re{m,...,I[} U{m}. (35)
Using (35), (34) reduces to

AoSk—1 + > Nprp+ DA <$wi—a1<[bﬂ_[%1)>

pe{kymi, —1}\S wi €55, \Q ™ “
b, b
= Z X2, ([“ﬂ _ {wﬂ _levi> ) (36)
’LUiGSiu a1 a1
Let I, := {igy,--- ,iam} be a set which has same elements as in the set I, except that i,, <
lgy < ...< i“lll‘ In other words, set I, is same as the set I, the only difference is that the elements

of I, are arranged in the increasing order of time periods. Now, for each i, € I where ¢ €
{1,...,|I]} and r € Siag\(Siag,l U {iq}) where S;, =0, consider the points "% = (2,2, 81) =
(B, 2 81, ooy Bm, 8k—1) € ZT x R x Ry such that §x_1 =0,

(21;;:«):{((61;9/0[11,%) ifpe{l,....k—1U{l+1,....,m},
prtD) - (0’0) ifpe{k:,...,l}\s,

for p e {1,...,m}\S and

¢ (Tho 1 The .1
w; w;_1 1 . ) .
( poul Bl ,alzwi) if w; € S\{r,4q.},
by, | [ by ]
21 4 - Yw; || Ywi—g 1 o
(Zwy» Tw;) = < - o + 1,012y, if w; =,
2 . ,
i — L - 1,a12110. if w; = iq,,
aq aq ’

fori=1,...,|S|. Note that }_ g 2y = {biag/oq—‘ for all 4, € I, and also in case [by,/a1] =
lag

{bwifl/aﬂ for w; =i, € I and w;—1 € S then w;—1 = i4,_, where io._, € I (because of Condition
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(23)), and hence S;, \(S;,  U{iq.}) = 0. It is easy to verify that F™% € X ML under assumptions
ac ac_1 ¢

(23) and satisfies conditions (i) — (i7i) of Lemma 1. Therefore ™% € I' and hence must satisfy (27).

Next, for i, € I where ¢ € {1,...,|I|} and r € (b’iag\(&-%_1 U {Zac})> N (83, \2) where u = ajy,

we define another point ]-"I’% = (2,%,86-1) = (81, 25, &1, ..., &, 8p—1) € ZT X R xRy whose

coordinates are all exactly same as F"% except that for w; = r,

JA"wi = Qg (H)wi/aﬂ - ’wai—l/al—‘) + bg)v

where bg ) = maxwieg{b&)}. Again, it is easy to verify that .7-"; “C e XML and satisfies conditions

(i) — (iii) of Lemma 1. Therefore F;'* € T' and hence must satisfy (27). For each iq, € I and
€ ( Z“c\( i, U {zag})) N (S:,\Q), we substitute F"% and F,"* into (36), and subtract one
equality from the other. This gives

Ar =0 forre S, \(IUQ). (37)

Again, by substituting the points ™%, for i,. € I where ¢ € {1,...,|I|} andr € ( lag\( o, U {zag})),
into (36) and using (37), we get

= )\faC for iq. € I, 7 € Si%\(Si,lgil U {ia, })- (38)

Substituting (37) and (38) into (36) gives

AoSk_1 + Z Apapt DN, (ﬂ”wl - (Rﬂ B ’Vbzll-‘))

pe{k,....mi, —11\S weI\Q
1] : ;
_ z S ! 1
_Z)\’“c |Va1-‘ Zz { a1 —‘+ Z “p ) (39)
¢=1 pGSz pGSia§71
where b;, =0 and S;, = (. By rearranging the right-hand side of (39), we get
\ )\ac )\z bwi bwi—l
0Sk—1 + Z pzp + Z w; | Tw; — Q1 a1 — Tl
pe{k ..... miu—l}\S wiEI\Q

- bi bi
@ 1 11 1
-x o) || 2o ] 2 4
pESz‘aC pESi‘ZIII

Furthermore, the last equation can also be simplified to

bw. bwi,
)\Osk—l + Z )\;:Cp + Z Afuz (llwl — g (’70[11—‘ B ’70611—‘>>

pE{k,,miu—l}\S w1€I\Q
1]
2%, al- ). (10)
PESiy
where for q= 1.... , ’I|’ %Zq = ()\fq — )\fag+1> such that ac =4q for C € {]., ’I|} and ACLUH-l = 0.
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Next, for iq € I, consider the points G4 = (2,2, 5,_1) € ZT x RT" x Ry, such that 5;_; = bgi),

s ).::{((dp/al]adp) ifpe{l,....k—1}U{l+1,...,m},
prtp) (0,0) if pe{k,....1}\S,

for p € {1,...,m}\S, and for i € {1,...,[S]}, (2L, %w;) == (Xw; — Xw;_1> Q124,) where xu, = 0 and

b, /1] if w; € S\I,
Xw; = wai/alj if w; € {il,...,iq},
[bwi/aﬂ if w; € {iq+1,...,i|1‘}.

This implies that

bu,

7

bu,

7

, (1
aq aq

if w; € S\I,

21 . _
2 2 | =

Qi Qi
PESw;  PESw;

[ b, | [ b,
2 7a1 2
(05} a1

if w; € {iq+1,. . ,Zm}

7~ N 7 N 7N

b, b, , ‘ .
— |, | — > 1fwie{21,...,zq},

Since we assume that {j : j € S,j <'ig, [bj/a1] = [b;,/a1]} C I for each iy € I (Condition (23)),
Xw; = Xw;_, fori=1,...,|5].

Now, it is easy to verify that G € XML and satisfies conditions (i) — (i44) of Lemma 1. Therefore
G? € I" and hence must satisfy (27). Furthermore, because of our assumption (23), for w, € I\,

a1 a1

bu
[b“ﬂ = { ’“‘ﬂ ,we—y € 1, and b < b1, (41)

Let E:= {&,... 7€|E\} =1\Q:= {ijl, e ,ile‘} such that §; =45, <& =145, < ... < §|E| = ile‘.
In other words, j, provides the positioning of &, in the set I. For i;, € I\, we define another point

S . 1 . NPT .
g1 = (2,2,8,-1) € 27 x R x R, such that §,_; = bz(jv)_l where i, = mm{zjlg‘,zjla‘il, R

(1 4)) = ([dp/oa],dp) pe{l,...;k—=1}U{l+1,...,m},
prp (0,0) if pe{k,...,.13\S,
for pe {1,...,m}\S, and for i € {1,...,]S|},
(X?ul — X?ui,lﬁalztlui) if w; # ijw
('élluz"%wz) = (1)

where 5(2;0 =0 and

[bwi/aﬂ if w; € S\I,

)Z?Uz = wai/alj if w; € {il, R ,Z.jvfl},
[bwi/ozﬂ if w; € {ijuv R ,im}.
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Notice that for i =1,...,]5],

(Do, | (Do, |
( i , Q] Wi ) ifwiES\I,
aq aq
bu, buw.
< i , ] i > if’wi€{’i1,...,ijv_1},
1 . . L 01 | aq |
pESw;  PESw; <061 , o - > if w; € {4, 7\ {4, },
(bl | bu, . .

It is easy to verify that G] € XML under conditions (23) and satisfies conditions (i) — (44i) of

Lemma 1. Therefore Gf € I'" and hence must satisfy (27). For each i;, € I\, we substitute
G7v=1 G into (40) and subtract one equality from the other. This gives

AL, =0 fori; €I\ (42)

Using (42), we one by one substitute G', G2,...,G!!l into (40) and get

7, = haby, (43)

7, = Mably = = o (8 — b)) (44)
2 _y @) z z _ (1) (1)

Vi = Aobyyy — (7“ e +%m71> =0 (bim B biuH) ' (45)

This implies that for ¢ € {1,...,|I|},
(1) _ 4
77,51 - )\ (b bzq,1> (46)

where b(l) = 0. For r € {k,. . —1}\S, consider the points H" whose coordinates are same as

the coordinates of G" except that 5.-1 =0and (2},2,) = (1, b( )) By substituting the points H"
into the (40) and subtracting from equality corresponding to Q“ we get

Ay =Xo forre {k,...,m;, —1}\S. (47)
Substituting (42), (46), and (47) into the (40) gives

]

)\Osk,1 + Z )\ofL'p = Z /\0 ( - bz;) 1) FZZ—‘ - Z Z; (48)

pe{k,...,m;, —1}\S PES;,
The identity (48) is Ao = pr—1 + Y ;jop_1 7 times (22). Hence I' defines a facet for conv(X ML) if
conditions (23) hold. This completes the proof. O

Example 1 (continued). According to Theorem 4, for (k,1,S5) = (2,6,{2,4,5}) and I € {{5,4},
{5,2},{4,2},{5,4,2}}, the mived (k,1,S,I) inequalities are facet-defining for X because in these
inequalities for each i € I, {j:j € S,j <i,[bj/ai] = [bi/a1]} = 0.
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Theorem 5. Assuming that ZpGS- z; > Lbiq/alj for each iy € I, the paired (k,1, S, I) inequality is
tq
either dominated by the mized (k,l, S, I) inequality (20) or is same as the mized (k,1, S, I) inequality

(20).

Proof. First we repeatedly apply sequential pairing procedure on inequalities (21) for i € I, in

increasing order of bgl), to get ((...((71 0142) 043) o...) o i) sequentially paired inequality. The

inequality thus obtained, referred to as the ((...((i1042)oi3)o...)oi|;) sequentially paired (k,l, S, I)
inequality, is same as the mixed (k,, S, I) inequality (20). Moreover, the set of valid inequalities
(21) for i € I belong to the nested case. Therefore, according to Theorem 2, the mixed (k,[, S, I)
inequality or the ((...((i1 042) 0d3) o...) 0dk) sequentially paired (k,[, S, I) inequality is at least
as strong as any other sequentially paired inequality obtained by arbitrary sequence of pairing of
the inequalities (21) for i € I. O

Corollary 3. Assuming that ZpGS- z}) > Lbiq/alj for each iq € I, the paired (k,1,S,I) inequality
tq

XSML)

defines a facet for conv( if and only if it is a facet-defining mized (k,1,S,I) inequality.

4. Multi-Module Capacitated Lot-Sizing Problem without Back-
logging

In this section, we redefine the multi-module capacitated lot-sizing (MMLS) problem (introduced
in [23]). Then we present valid inequalities for this problem and investigate their facet-defining
properties. The MMLS without backlogging (MMLS-WB) is defined as follows: Let {a1,...,a,}
be the set of sizes of the n available capacity modules and the setup cost per module of size
ag,t =1,...,n in period p is denoted by f;. We formulate MMLS-WB as:

min { Z (cp:vp + hpsp + Zf;%) ((z,x,8) € XMML}
t=1

peP
where

XMME = {(2,2,8) € Z7"" x R x R (49)
Sp—1+xp=d,+5,, DEP (50)

n
xp§Zoztz;, peP={1,...,m}}. (51)

t=1
Here, z; is the number of capacity modules of size ay,t = 1,...,n, used in period p and parameters

(dp, cp, hp) and variables (z,, s,) are same as defined for SMLS-WB. Notice that for n = 1,
MMLS-WB reduces to SMLS-WB.

4.1 Valid Inequalities for MMLS-WB Problem

In order to generate valid inequalities for MMLS-WB problem using n-mixing procedure [23] and the
pairing procedure [12], we use notations defined in Section 3.1 except that I := {i1,i2,...,i7} €S

19



such that bz(:) =0 < b™ < p™ <...< " < . Also, we assume that the n-step MIR conditions

i1 — “i2 17

hold, i.e. for each i € I,
(t-1) _
o [bi /at1 <aiq, fort=2,...,n, (52)

which are automatically satisfied when the sizes of the capacity modules are divisible, i.e. a;/az—1 €
Zy,t =2,...,n. First, we aggregate equalities (50) from period k to period m; — 1, i € S, and
then relax zp, p € S;, to its upper bound based on (51) and s,,, — 1 to its lower bound based on

(49). This gives
n
Sk—1 + Z x; + Z oy Z 2y, > by. (53)
ped{k,....m;—1}\S; t=1 pES;

Inequalities derived using the n-mixing procedure. Assuming that i, = max{i: i € [}, we
get the following valid inequality for XML

Sp—1+ Z i + Zat Z z;) > by. (54)

pe{k,...,miufl}\si t=1 pES;

Setting v := sp_1 + Zpe{k,...,miu—l}\s z, and y! = ZpESi z;, t=1,...,n, inequality (54) becomes
v+ >0 owyl > b, i € I, which is of the same form as the defining inequalities of n-mixing set
Qo"". Notice that v € R4,y € Zy, t = 1,...,n. Therefore, the type I mixed n-step MIR inequality
(5) written for XMML with K = I,

11|
sty ap=y (o b ) en(z) (55)
pef{k,...mi, —1}\S q=1
where
bga_l) n n b(U—l)

ve=IT 0| - X 2| T 1) 5 (56)

pES;, t=1 \o=t+1

is valid for XML if the n-step MIR conditions (52) hold. In the rest of the paper, we will refer to
the inequality (55) as the n-mixed (k,[, S, I) inequality.

Inequalities derived using the pairing procedure. Similar to SMLS-WB, first, we apply
the n-step MIR procedure [16] on inequality (53) for all ¢ € S, which gives the following valid
inequalities if the n-step MIR conditions hold:

seit Y >0z (57)
pef{k,...mi—1}\S

Assuming that ¢'(z) < 1 for all ¢ € K, we repeatedly apply sequential pairing procedure on
inequalities (57) for i € K, in increasing order of i, to get ((...((i10i2)o143)0...)0i k) sequentially
paired inequality, which is same as inequality (55).
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4.2 Facets for MMLS-WB Problem

We provide conditions under which the n-mixed (k,, S, I) inequality (55) is facet-defining for the
conv( X MML),

Lemma 2. Given the n-mized (k,1,S,I) inequality (55), any feasible point (2,%,3) € XMML [jes
on the corresponding face if there exists an r € {0,1,...,|[I|} such that conditions (i)-(iii) hold:

(i) ¢ (2) =1, forq=1,....r

(i) () =0, forq=r+1,....|1]

(1i6) Sk—1+ X pefh,...ms, —11\S Tp = bg?)

Proof. Given (k,l,S,I), the hyperplane corresponding to (55) can be rewritten as

]

sty ay=y (o b ) en(2) (58)

pef{k,...ms, —1}\S g=1

Let I' = {(z,2,5) € XMML . (58) holds} be the face of XMML defined by hyperplane (58), and
(2,2,8) € XMML he a point which satisfies conditions (i) — (i44) hold for an r € {0,1,...,|I|}.
Now, by substituting (2, £, §) in the right-hand side of (58) and using conditions (i)-(ii), we get

r 11| T
> () ) e 3 () <) enie) = 3 () -2, ) <o
q= q=r q=

Notice that by substituting (2, Z, §) in the left-hand side of equation (58), we also get bgf) because
of condition (iii). This shows that (2,2, $) € I as it satisfies (58). O

Theorem 6. Forn > 2, assuming that the n-step MIR conditions (52) hold, the n-mized (k,1,S,T)
inequality (55) defines a facet for the convex hull of XML if the following conditions hold for each

w, €8
(t=1) plt=1)
[b“” W>{W—lw t=1,...,n. (59)
(677 O

Remark 4. Since inequality (55) is same as the mixed (k,l1,S,I) inequality for n = 1, in this
theorem we only investigate the facet-defining properties of the n-mized (k,l,S,I) inequality (55)
forn > 2. Conditions (59) show that not all selections of (k,l,S,I) provide facet-defining n-mized
(k,1,S,1I) inequalities for the MMLS-WB.

Proof. Let T' = {(z,2,5) € XMML . (58) holds} be the face of XML defined by hyperplane (58)
corresponding to the n-mixed (k,[, S, I) inequality (55). Assuming that Conditions (59) hold, we
prove that a generic hyperplane passing through I,

m n
1oso + Z (upsp + ppTp + Z AZZL) =7 (60)
t=1

p=1

where (A, ..., AL oo N AR e fn, V0 VL - -+ Vi, ) € R™PEEME2 st be a scalar mul-

tiple of (58).
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First, we separately add equalities (50) from period i € {1,...,k — 1} to period k — 1, and from

period k to period i € {k,...,m} to get

57;,1—1—pr:de+$/€_1, fori=1,...,k—1 (61)
i i
sk_l—l—pr:de—i—si, fori==k,...,m (62)
p=k p=k
respectively. Since each point belonging to I" satisfies (61) and (62), we eliminate variables s, . . . , Sg_o2,
Sky .-+ Sm—1, and s, from (60) by subtracting v;_; times equality (61) for each i € {1,...,k —1}
from (60), and adding v; times equality (62) for each i € {k,...,m} to (60). This gives
AoSk— 1+Z)\ xp+ZZ)\tzt_0 (63)
p=1t=1
where
k—1 k—1 m i
VRS 51 O o B o1 05 o)
i=1 p=i i=k p=k
k—1 m
Xo=vk1+ Y Vien— Y v,
i=1 i=k
—Zui,l forp=1,....k—1,
m
Ap :,U,p—I—ZI/Z' forp=k,....m
It is important to note that to have a point (2,2, 38) = (21,..., Zm, L1, - s T, 80, - - -, Sm) € Z" X
R x RTH € XMML where 2, = (2;, ooy 2y) forp=1,...,m, it is sufficient to know the value of 2;,
and &, fort =1,...,nand p=1,...,m, and 5;_4 coordlnates because the remaining coordinates
can be obtained using equalities (61) and (62). Therefore, in the rest of the proof, we will define a
point belonging to XMME by (2,2, 8,_1) = (21, .-+, 2m, &1, - - B, 8p—1) € ZT™ x RT x Ry,
Next, assuming S := {wi,...,wg} where w1 = k, consider the point J = (2,2,8;-1) =
(2153 Zms T1s e oo Ty Sj—1) € Z7™ x R x Ry such that §,_ =0,

Gl Gﬂ,o,..‘,o,@ ifpe{L....mN\{k,....0}

Zp,Zp,... P aq

(0,0,...,0,0) if pe {k,...,I[}\S,

for pe {1,...,m}\S and for i € {1,...,|S|},

i bu, w; buw,_
Gaoys By -+ > 2o B, ) 1= ({bwl—‘ - [H—‘ ,0,...,0, PZ—‘ —aq [1 1—‘>7
i i 7 061 Oél 041 al
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mwi—l

where by, = 0. Recall that by, = > f
J € XMML - Also, since for all w; € I C S,

d, for w; € S (by definition). It is easy to verify that

A n _bg_ )7 n n bgg_l) y
@ =111~ 2 2 11 { o W
o=1 pESw, t=1 o=t+1
_ Jwi | _ Jwi 21—,
o=1 d o=2 o PESw; '

the point J satisfies conditions (i) — (ii7) of Lemma 2. Therefore, J € I' and hence must satisfy
(63). Substituting J into (63) gives

> <Aggdp + A {Z’;D

pe{l,..mW\{k,...1}

S| (64)
+ )\1 b’wi bwifl -9
2 e o | e )7
Using (64), hyperplane (63) reduces to
d
Aosk—1 + > X @y — dp) + > AL <z; - MD
pe{1,m P\ {k,..d} pe{Lm P\ {ky..l}
T 1 1 T _ wi | Wi—1
: pe{/;n\s ot 2) + Z & (xwl “ ([al w { ay 1 )) (65)
|S] b
t t wi—1 (1
e son (][] ),

For each w, € S, we consider the points L = (2,2,8,_1) € Z"™ x R* x Ry such that each
coordinate of £ is same as the coordinates of the point 7, except that

buw
a7 a1
(1)

where by’ = maxi:m,m{b&)}. Under assumptions (59) for ¢ = 1, it is easy to verify that L% €
XMML and satisfies conditions (i) — (4i) of Lemma 2. Therefore £*r € T' and hence must satisfy
(63). Substituting L£*" into (65) gives

Ay, =0 for w, € 8S. (66)
Next, consider the points M7 for r € {1,... . k—1}U{l+1,...,m}, M5 forr e {1,...,k—2}U{i+

1,...,m—1}, and M3 such that each coordinate of MJ, M5, and M3 are same as the coordinates
of the point 7, except that in MY, 2} = [d,/aq] + 1, in M5,
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D> di| ifpedl,.. k—1}n{r},

(e73] i=p
(21%7:%1@) = S d; G
ZZP szczi ifpe{l+1,....mpn{r},
1 .
1=p
(070) lfp€{17,k;_17l+177m}7p>r’

and in M3, &1 = 0 and 3, = dp—1 for p = 0,...,k — 2. It is easy to verify that M7 for
re{l,....,k=1}U{l+1,...,m}, M forr € {1,...,k—2}U{l+1,...,m—1}, and M3 belong to
XMML and satisfy conditions (i) — (i) of Lemma 2. Therefore M7, M5, M3 € T and hence must
satisfy (63). Substituting M7 into (65) gives

M =0 forall7€{1,....,k—1}U{l+1,...,m}. (67)

Likewise, one by one substituting the points M3, ... ,MIQ“_Q,MIQH, o ,./\/lgb_l, and M3 into (65)
gives

Ar=0 forallre{l,....k—1}U{l+1,...,m —1}. (68)

Forre{l,....,k—2}U{l+1,...,m—1} and 7 € {2,...,n}, we consider point N} such that
coordinates of N7 are same as the coordinates of the point 7, except that

d, d7(~T_2) LT—I)
(2L, ... 577 T T ) = QJ{ J{ ,0,...,0] .
aq Qr_1 Qr

n T d(t_l)
Zatiﬁzzat . +ar =dp + oy —d¥) > d,
t=1 t=1 Qt

as ap > dﬁf), it is easy to verify that N for r € {1,...,k—=2}U{l+1,...,m—1}and t € {2,...,n}
belongs to XMML and satisfy conditions (i) — (444) of Lemma 2. Therefore A7 € T' and hence must
satisfy (63). Now, one by one substituting the points N7, ... , N into (65) and using (67) gives

M =0 forallre{1,....,k—1}U{l+1,...,m—1},t€{2,...,n}. (69)

Since

By definition of the n-mixed (k,[,S, ) inequality, we know that I := {i,...,i|} € S such
that b)) =0 < b < b < ... <o < @, iy = max{i:ie I}, and S; = SN {k,...,i}.

io [ ’ig llIl
For r € {k,...,l}\Si,, we consider the points O" = (£, %, 8,-1) = (21, ., Zm, L1y -+, Tm, Sk—1) €
77" x R x Ry such that ;1 =0, S=...=2 =0fort=2,...,n,

([dp/ar],dp) ifpe{l,....k—1}U{l+1,...,m},
(%#ﬁp) =4 (0,0) ifpedk,....l[}\S and p #r,
(1,0) iftpe{k,....I1}\S and p =,

for pe {1,...,m}\S and
bwi bwi -1 bwi bwi —1 . )
(o e e e e e

(2111)1'7@1111‘) = b, b,
<’7bwl—‘ . ’7 ’L,Uzl—‘ —|—1,0[1 lrb’wl—‘ - ’711}11—‘> 1fwl ESQ{T‘}
a o1 o1 o1 N{mi,,...,1},




fori=1,...,|S|. It is easy to verify that O" € X MML and satisfies conditions (i) — (iii) of Lemma 2.
Therefore O" € I" and hence must satisfy (63). Substituting O" into (65) gives

M =0 forallre{k,...,I}\S,,. (70)

Forr € {k,...,l[}\S;, and t € {2,...,n}, we also consider the point O] = (2, %, 8k_1) = (21,..., Zm,
21,00 B, Sp—1) € ZT" X R x Ry whose coordinates are same as the coordinates of the point 7,
except that

(22, 807 gt st M) = (0,...,0,1,0,...,0).

It is easy to verify that O € XMML and satisfies conditions (i) — (iii) of Lemma 2. Therefore

O} € I" and hence must satisfy (63). Substituting O} into (65) and using (70) gives
M=0 forallr € {k,...,I}\S;, and t € {2,...,n}. (71)

Using (66), (67), (68), (69), (70), and (71), (65) reduces to

AoSk—1 + Z )\zmp

pefk,...LymH\S
oy (] Pee]ow) - % S -
w; €Sy, ' a1 x1 ' w; €55, t=2 Y
Now, consider the points P" = (2,2, 5,-1) = (21, -+, Zm, T1, .- -, T, Sk—1) € Z]" x R x Ry for
re{mi,,...,l,m} where m;, <l <msuchthat §,_1=0,2=...=2 =0fort=2,...,n,
(’Vdp/al—‘ 7dp) lfp € {L?k - 1}U {l+ 17--'7m}\{7a}7
1y /o] + Ly an) ifpe ()} {m) andm %1
rer (0,0) if pe{k,....l}\(SU{r}),
(1,1) if pe{rin{mi,,...,l[}\9),

qlzﬂ B F)uojﬂ ’alzzlvi> : if w; € S\{r}

. buw;
(2] - [Pt | ansd ) itwne b0 e s

a1 aq

(éilui?{%wi) =

for i € {1,...,|S|}. It is easy to verify that P" € XMML and satisfies conditions (i) — (i) of
Lemma 2. Therefore P" € I' and hence must satisfy (63). Substituting P" into (65) gives

Ay =0 forallre{m,,....[} U{m}. (73)

Using (73), (72) reduces to

AoSk-1 + Z ApTp
pE{k,...miy, —11\S

() S S

w; ESiu t=2
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Similar to the proof of Theorem 4, let I, := {iq,,...,ia, } be a set which has same elements as
in the set I, except that ig, <ig, < ... < i“m‘ In other words, set I, is same as the set I, the only
difference is that the elements of I, are arranged in the increasing order of time periods. Now, for
each i,, € I where ¢ € {1,...,[I|} and r € Siag\(S,-aC_1 U {ia.}) where S;, = 0, we consider the
points Q"% = (£,2,5,-1) = (21, Zm, T1,- -+, Tm, Sk—1) € ZT™ x R x Ry such that 5,_; =0,
zZ,=0forp=1,...,m,and t =2,...,n,

(13 {([dp/aﬂ,dp) ifpe{l,... . k—1}U{l+1,...,m},
PP (0,0) ifpe{k,... I}\S,

for pe {1,...,m}\S and

by | (b, ;|
— | - = 7()4123%) if w; € S\{r,4q.},

A1 L 1 : .
(Zwy» Twy) = + l,alzwi> if w; =,

>
TN N N
c~‘I
BEE
]
1
o
&
|

1 . .
— 1,a1zwi> if w; = lacs

for i =1,...,]S]. Since [by, /1] > [bw,_, /1] for w; = iq, € I C S (Condition (59)), it is easy to
verify that Q™% € XMML  Also, this point satisfies conditions (i) — (iii) of Lemma 2 because for
all i, € I,

n oo ] noon [pleD
5\ ba¢ ba¢ st
RO=1 - 2 X 1 | |5
o=1 g pESiaC t=1 o=t+1 g
n _bz(f:l)— n ’bl(,;f(—l)‘ B
- H o - H a P
o=1 g o=2 7 pESiaC
-b(O'—l)- 'b('a—l)' .
— ﬂ e | ﬁ e bﬁ -0
-1 Qg =9 o7 aq .
o= o=

Therefore Q"% € I' and hence must satisfy (63). By substituting the points Q"% for i, € I
where ¢ € {1,...,|I|} and r € (Siag\(Siag,l U {iag})>, into (74), we get

A= A}% for iq, € I, € Si, \(Si,_, U{ia,})- (75)

A~

Next, we consider a point Jr = (2,2,5,-1) = (21,1 2m> &1, -, Tm, 8k—1) € Z" x R x Ry
for 7 € {2,...,n}, such that §;_1 =0,

[Zﬂ,o,...,o,@) ifpe{1,...,mN\k,... 0}
(0,0,...,0,0) ifpe{k...,I0\S,
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for pe {1,...,m}\S and for i € {1,...,|S|}, Tw, :=

(1ol [l
(6% Ot

R N N
(67 Ot

0

fort =1,...
assumptions (59), it is easy to verify that J;

,n. Recall that b,, = 0 and b,, =

DEEDIDIREES I

PESw; t=1 pESw,

[

Also, since for all i, € I and 7 € {2, ...,

n},

t

Yo apl,

Wi where

J ifte{l,...,7—1}

“ ift=r

ifte{r+1,...,

Moy, —1
> ek

n}

d; for w; € S (by definition). Under

e XMML Kyecause for each w; € S,

1)
J+%_mww$+%z%,

n -b(U_l)_ T n b(U_l)
oL =114 -2 II | %
o=1 v t=1 o=t+1 7 | pesi,
n _b(a—l) —1 n b(a—l) b(-t_l) n b(a’ 1) b(T—l)
_ ’q _ ’q ‘q _ ’q ‘q
ol_Il (%3 tzlalg-l (6% O 01:14_1 (e %) Qr
n -bgg—l) n b(U 1) n bz('U 1) n bEU_l)
=1 |- Z 11 -1 | ) - ID =
o= o=t+ o=T

the point J; satisfies conditions (7) —
(63).
Again, for each i, € I where ¢ € {1,...

and 7 € {2,...,n}, we consider the point Qy*

MY, roe Sz‘ac\(SiaC_l U {iq.}) where S;

= (é,ii‘,gk_l) = (2’1,...

(7i7) of Lemma 2. Therefore, 7, € T' and hence must satisfy

=0,

y Tmy Sk— 1) S

iag

y Zmy L1y - -

77" x R x Ry whose coordinates are same as the coordinates of point 7, except that

S

Qr

(22—01-7@1111) = _
] ba)z Y

Qr

g

p{T=1)
Wi—1
QT

Since

|

-‘forwi:iage ICcS§

-‘—FlZatz ) for w; = r,
“ -1 Zatz ) for Wi = ig,-

(Condition (59) for t = 1), it is easy to verify

that Q7" e XMML and satisfies conditions (i) — (iii) of Lemma 2. Therefore Q7% € T' and
hence must satisfy (63). By substituting the points Q7. for iae € I where ¢ € {1,...,[I[},

\ ( o, U {zag}) and 7 € {2,...,n}, into (74), we get

X

r e .S;

ZaC

= )\Z-T% for iq. € I, 7 € Siac\(Si%i1 U{ia,}), and 7=2,..., (76)
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Using (75) and (76), Equation (74) reduces to

Il n
_ t t t
ST S I 5 3 T D S
peik,...,m;, —1}\S (=1 t=2 pesia<_1 pESiaC
(77)
o 1 iag 1| by 1
o (=] sa- ] xa)
(=1 PES;q DPESi,
¢ ¢-1
where b;, =0 and S;, = (. By rearranging the right-hand side of (77), we get
-1 n
v, _ t A\t t
skt > Mm=— 3 S (L =AY A
pefk,....,m;, —1}\S (=1 t=2 pESiaC
[]-1 b;
L )\! NS 1
ISR B o ()
= PESi,
¢
1 bia 1 o t
/\ialﬂ aq B Z “po| T )\ia|1| Z “p
pESi, t=2 PESi,
1] 1]
Furthermore, Equation (78) can also be simplified to
AoSk—1 + Z ApTp
pe{k,...,miu—l}\s
_ 1 i 1 t t
=[] - Ta) X T
q=1 PESi, t=2 PESi,

where for g =1,...,|I|and t =1,...,n, 'yfq :X;q—)\gagﬂ such that a; = ¢ for ¢ € {1,...,|I|} and

Ny, = 0. We substitute the point J, in (79) to get
11| n—1 pt=1) Bt
l i
Z inlq o Z ’qu jT - %7': qai =0. (80)
q=1 t=2 t t

Subtracting (80) from (79) gives

miy —1 i [ n p(t=D)
i
Nosk—1+ D Npap=> | D v, | || - m | ] (81)
pgg g=1 \t=1 t PESiq
P

Next, for 4, € I, we consider the point R" = (2,2, 5;,_1) € Z"" xR} xR, such that §;_; = bg?),

(Al 22 2” T ) = ((dp/al—how'wovdp) 1fp€{177m}\{k7’l}’
P (0,0,,0,0) ifpe{k,. IS,
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for pe {1,...,m}\S, and for i € {1,...,|S|},

n
PO L st
(Zwi’xwi) = Xwi T Xwi—1s Ot 2y,
t=1

where xuw, = (0,...,0) € R” and

( (n—2) [ (n—1)7
( buy .. bu, , bu ) if w; € S\I,
L &1 | Qp—1 (679
(n—2) (n—1)
b, by bw.
1 n wW; w; w; . . .
ey ) = - s f ; € s lpg,
(sz Xw1) ( i o | Q1 Q, ) I w {11 ? }
(n=2) | [p(n-1)7
\ ( Lar |’ An—1 || an ) ifw; € {ire i}

This implies that »° g =2, = Xw,. Because of Conditions (59),

st

t

zwizxwi—xfui_l >0fori=1,...,|S|and t=1,...,n.

c XMML

Now, it is easy to verify that R" and satisfies conditions (i) — (#¢7) of Lemma 1 because

for w; € {i1,..., i},
n _bg_l)_ n n _bgg—l)_ .
o=1 o t=1 o=t+1 7| peSu,
- f[ -b’gli_l)_ _n—l ﬁ _bq(fi_l)_ {bgi—l)J B V&Z—l)J
i i=1o=it1| at Gn
SUESSESE A
o=1| Yo =1 \o=t | “° o=tt1| Yo
(n—1)
— |wai “ +1=1,
On
and for w; € {ip41,...,71},
n _bgg—l)_ n n _bgg—l)_ .
on@ =117 -2 I | %
o=1 o t=1 o=t+1 7| peSu,
o=1| o =1 o—t+1| P s An
- ﬁ _bg,j’fl)_ - nil ﬁ bq(;—l) - ﬁ bq(,ffl) - bngl)
B Ay (e %3 (0% 79
=1 t=1 \o=t o=t+1

R=2]

Therefore R™ € I' and hence must satisfy (63). One by one we substitute R!, R?,..., R into (81)
and get
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721 = )\Ob’E?)7

v = by =i = o (0~ 62,

[7]-1
Vi = )‘Oblm Z Vig = A0 (blm bim—l) :

This implies that for ¢ € {1,..., ||},
n _ (n) _ p(n)
=0 (B =0 ). (82)

where b(n) = 0. For r € {k,. . — 11\, consider the points 8" whose coordinates are same as

the coordinates of R, Where iy = max{zq € I}, except that 8,1 = 0 and (2}, %,) = (1, b(n))
substituting the points 8" into the (81) and subtracting from equality corresponding to R*, we get

Ay =Xo forre{k,...,m;, —1}\S. (83)
For iq, € I where ¢ € {1,...,|I|} and 7 € {1,...,n — 1}, we consider the point 77 such that
sg—1 =0,
d 0,...,0,d if pe{1,... k...l
(Z;,Zp,...,ég,i‘p) — (( P/al-‘7 ) ) p) 1 p { ) 7m}\{ ) ) }7
(0,0,...,0,0) ifpe{k,...,1}\S,

for pe {1,...,m}\S, and for i € {1,...,]S|},

(éwiyiwi) = < w; wL 17Zatz >

where A,,, € R’} such that A, = (0,...,0) and

b |
(1 ,0,...,0) if w; € {w1,... 44, — 1},

ay

Do, b2 [eir—Y
_ — G : f 7 'a )
Awi_ (_Oél_’ ,\‘OCT_lJ’|V a, aOa 70 1w E{Z (}
bu, o | el Y . .
((X; ’”'7\‘0471_1J7|7 o lfwiE{’La€+1,...,QU|S|}.

Z, = Ay, and because of assumptions (59), Z,, = Ay, — Ay, , > 0 for

Observe that ZPESW
all w; € S. Also, since Zpeswi Zp > by,, it is easy to verify that TGT € XMML 504 it satisfies
conditions (i) — (iii) of Lemma 1 because for all w; € I, ¢% (2) = 0. Therefore, 77 € I' and hence
must satisfy (63). One by one we substitute 7071 ... 751 . glln=1THL into (81) and
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get

(n—1)
n—-1__mn lay
,yiag - ’YZGC ay, )
(n—2) (n—1) n b(afl)
n—2 n—1 fag 4 A0 bia1 H tag n
Tiag = Yag |y, iag | T, | T g Yiag?
o=n—1
n b(a_l)
1 _ ta¢ n
Yiae = 1:12 To’ Yiae
for ( =1,...,|I|. This implies for 7 =1,...,n—1,
n bg;’c‘”
- n
’Yia( - H Qy ,Yla<7 (84)
o=7+1
Substituting (82), (83), and (84) into Equation (81) gives
mi,, —1 1]
Nosi—1+ D dozp =Y A (bgj) - bgjjl) r(2) (85)
p=k qg=1
PE¢S
where
n (0_1) n n b(a—l)
7 7,
PYCTE | NS 5D ol | f K
- (6% — = 0%
o=1 pES;y t=1 o=t+1

The identity (85) is Ao times (58). Hence I' defines a facet for conv(XMML) if conditions (59) hold.
This completes the proof. ]

5. Conclusion and Future Work

We provided sufficient conditions under which the (k,[, S, I') inequalities of Pochet and Wolsey [19],
the mixed (k,[, S, I) inequalities, derived using mixing procedure of Giinliikk and Pochet [15], and
the paired (k,l,S,I) inequalities, derived using sequential pairing procedure of Guan et al. [12],
are facet-defining for the single module (or constant batch) capacitated lot-sizing problem without
backlogging (SMLS-WB). We also investigated the facet-defining properties of the inequalities de-
rived using the sequential pairing and the n-mixing procedure of Sanjeevi and Kianfar [23] for the
multi-module capacitated lot-sizing problem without backlogging.

One potential extension would be to provide necessary conditions under which the mixed (k, [, S, I)
inequalities for SMLS-WB problem are facet-defining. In order to proceed in this direction, the
following example can be helpful as it showcases that in case the given k, [, S, and I do not satisfy
the sufficient condition (23) then the associated mixed (k, [, S, I) inequality is dominated by another
facet-defining inequality which satisfies the condition (23).
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Example 1 (continued). Next, we consider k = 2,1 =6, and S = {2,4,5,6}. Therefore, So = {2},
54 = {2,4}, S5 = {2,4,5}, 56 = {2,4,5,6}, mo = 4, my = 5, ms = 5, me = 7, b2 = 4, b4 = 27,
by = 28, bs = 36, b5 = 4, bV =3, b = 4, and b = 1. Notice that b\ = 0 < b <
bfll) < bgl) = bél) and more importantly, [bs/a1] = [bs/a1]| = 6. The mized (2,6,{2,4,5,6},{5,2})
inequality where i, =5,

b b
i (R CRE I )

=24 — 4z — 4z} — 423,

does not satisfy the conditions (23) because for i =5, there exist a j = 4 such that j € S, j < i,
[bj/a1] = [bi/ai], and j ¢ I. In addition, the facet-defining mized (2,6,{2,4,5,6},{4,5,2})

inequality where i,, = 5,

1 by 1 1 bs
s1+x32bi)([al—‘—z%—zi)—i—(bé)—bi))([al—‘—z%—zi—z%)
CORTeY by |
+(b2 55)@@1} 22>

=3(6— 20 —20) + (6 — 23 — 2h — 23) =24 — 42) — 42} — 22,

dominates the the mized (2,6,{2,4,5,6},{5,2}) inequality because 24 — 423 — 4z} — 2} > 24 — 421 —
4z} — 4zt as 2t € Zy. O

Another future direction would be to perform computational study on the performance of the
n-mixed (k,[, S, I) inequalities for n > 1, which are at least as strong as the inequalities derived
using the sequential pairing cut-generation procedure, for solving SMLS-(W)B, MMLS-(W)B, and
their two-stage stochastic or distributionally robust optimization variants [4, 3, 8] by using them
within Benders’ decomposition or distributionally robust L-shaped algorithms [3]. Since there are
exponential number of the foregoing inequalities, it would be useful to utilize efficient separation
algorithms associated with them. Also, for n > 2, these experiments will involve consideration of
various strategies in selecting parameters (o, ..., ay) for separation algorithms for these inequal-
ities; for an example, readers can refer to [2, 6] in which 2-step (k,1, S, C) cycle inequalities have
been utilized for solving two-module capacitated lot-sizing problem with and without backlogging.
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