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Abstract. In this paper, we consider the well-known constant-batch lot-sizing problem, which we
refer to as the single module capacitated lot-sizing (SMLS) problem, and multi-module capacitated
lot-sizing (MMLS) problem. We provide sufficient conditions under which the (k, l, S, I) inequalities
of Pochet and Wolsey (Math of OR 18: 767-785, 1993), the mixed (k, l, S, I) inequalities, derived
using mixing procedure, and the paired (k, l, S, I) inequalities, derived using sequential pairing pro-
cedure, are facet-defining for the SMLS problem without backlogging. We also provide conditions
under which the inequalities derived using the sequential pairing and the n-mixing procedures are
facet-defining for the MMLS problem without backlogging. All aforementioned inequalities are
special cases of n-step (k, l, S, C) cycle inequalities of Bansal and Kianfar (Math. Prog. 154(1):
113-144, 2015).

Keywords. lot-sizing; multi-module capacities; mixing; sequential pairing; mixed integer pro-
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1. Introduction

Capacitated lot-sizing problem (CLSP) is one of the most widely studied problems in the domain
of operations management, mainly because of its numerous applications ranging from production
planning to biomass logistics (see [11, 22, 24] and references therein for few examples). In addition,
many variants of the CLSP have been considered in the literature which includes two-level multi-
item CLSP [26], CLSP with setup times [10], big-bucket CLSP [1], multi-echelon uncapacitated
LSP [28], two-stage stochastic CSLP [4, 13], and many more. Over past three decades, several
researchers have been studying the polyhedral structure of the feasible region associated with these
problems, thereby deriving valid inequalities or extended formulations for them [19, 20, 26]. A
promising approach to develop valid inequalities for mixed integer programming problems is using
facets (or valid inequalities) of simple mixed integer sets [5, 6, 7, 15, 16, 23, 27]. Using this approach,
various families of valid inequalities have been developed for the CLSP and its generalizations
[2, 5, 6, 15, 23, 27]. However, not much is known about the facet-defining properties of these
inequalities [22]. In this paper, we investigate the facet-defining properties of some of the well-
known families of valid inequalities, derived using the aforementioned cut-generation approach, for
the constant-batch lot-sizing problem which we refer to as the single module capacitated lot-sizing
(SMLS) problem, and one of its generalizations, called multi-module capacitated lot-sizing (MMLS)
problem.

In addition to exploring the facet-defining properties (or theoretical strength) of various classes
of valid inequalities for the SMLS and MMLS problems, another motivation behind this paper is to
build a stepping stone towards gaining insights which will create pathways to new cut-generation
procedures for general mixed integer programs. It is important to note that some well-known cut-
generation procedures in the mixed integer programming literature have emanated from the poly-
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hedral studies of lot-sizing or network-design problems. For example, the ideas behind the mixing
inequalities [15] and cycle inequalities for continuous mixing set [25] germinated from the seminal
paper of Pochet and Wolsey [20] on polyhedral study of lot-sizing problems with Wagner-Whitin
costs. Similarly, the traces of the origin of the 2-step mixed integer rounding (MIR) inequalities [9]
can be found in Magnanti and Mirchandani [17] which study polyhedral structure of network-design
problem.

1.1 Literature review and contributions of this paper

The MMLS without backlogging (MMLS-WB) is defined as follows: Let {α1, . . . , αn} be the set of
sizes of the n available capacity modules and the setup cost per module of size αt, t = 1, . . . , n in
period p is denoted by f tp. Then the MMLS-WB is formulated as:

min
∑
p∈P

(
cpxp + hpsp +

n∑
t=1

f tpz
t
p

)
s.t. sp−1 + xp = dp + sp, p ∈ P

xp ≤
n∑
t=1

αtz
t
p, p ∈ P

z ∈ Z|P |×n+ , x ∈ R|P |+ , s ∈ R|P |+1
+

where xp is the production in period p, sp is the inventory at the end of period p, s0 is the inventory
in the beginning of period 1, and ztp is the number of capacity modules of size αt, t = 1, . . . , n, used
in period p. In addition, the parameters dp, cp, and hp denote the demand, per unit production
cost, and per unit inventory cost in period p, respectively. Note that in the MMLS-WB, both s0

and sn are decision variables. Also, for n = 1, MMLS-WB reduces to SMLS without backlogging
(SMLS-WB). Pochet and Wolsey [19] consider the SMLS-WB problem where the capacity in each
period can be some integer multiple of a single capacity module with a given size. They introduce
the so-called (k, l, S, I) inequalities and show that these inequalities subsume facets of a certain
form (described implicitly in [19]) for SMLS-WB. In this paper, we explicitly define a subclass of
the (k, l, S, I) inequalities and show that under certain conditions, only the (k, l, S, I) inequalities
belonging to this subclass can be facet-defining. More specifically, we show that for each (k, l, S, I)
inequality which does not belong to this subclass, there exists a stronger valid inequality belonging
to this subclass. Later, Günlük and Pochet [15] generalized the mixed integer rounding (MIR)
inequalities [18, 27] by introducing mixed MIR inequalities for a multi-constraint mixed integer set.
They demonstrate how these inequalities can be utilized to develop valid inequalities for general
mixed integer programs (MIPs) including SMLS-WB and referred to this cut-generation procedure
as “mixing” (see Section 2.2 for details). We refer to a class of valid inequalities for SMLS-WB
which can be derived using the mixing procedure as mixed (k, l, S, I) inequalities. In this paper,
we provide sufficient conditions under which the mixed (k, l, S, I) inequalities are facet-defining for
SMLS-WB.

In another direction, Guan et al. [14] develop facet-defining inequalities for multi-stage stochas-
tic uncapacitated lot-sizing problem, referred to as the (Q, SQ) inequalities. Thereafter, Guan et
al. [12] introduce a cut-generation procedure, referred to as “pairing”, for MIPs; see Section 2.4 for
details. They use (sequential) pairing to derive valid inequalities for multi-stage stochastic mixed
integer programs including multi-stage stochastic capacitated lot-sizing problem with variable ca-
pacities [13]. It is important to note that the (Q, SQ) inequalities can be derived using the pairing
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procedure for multi-stage stochastic uncapacitated lot-sizing problem. Recently in [4], Bansal et
al. present globally valid parametric inequalities and tight second stage formulations for four vari-
ants of the two-stage stochastic capacitated lot-sizing problems with uncertain demands and costs.
In this paper, we present a class of valid inequalities for SMLS-WB derived using pairing proce-
dure, investigate their facet-defining properties, and their relationship with the mixed (k, l, S, I)
inequalities. We refer to this class of inequalities as the paired (k, l, S, I) inequalities.

Sanjeevi and Kianfar [23] generalize the SMLS-WB to MMLS-WB problem, in which the total
production capacity in each period can be the summation of some integer multiples of several
capacity modules of different sizes. They show that the mixed n-step MIR inequalities (which
generalize the mixed MIR inequalities [15] and n-step MIR inequalities [16]) can be used to generate
valid inequalities for MMLS-WB. These inequalities are referred to as the multi-module mixed
(k, l, S, I) inequalities as they also generalize the (k, l, S, I) inequalities [19]. Recently, Bansal and
Kianfar [5, 6] further generalize the mixed n-step MIR inequalities [23] to n-step cycle inequalities
and develop the so-called n-step (k, l, S, C) cycle inequalities for both MMLS-WB and MMLS with
backlogging problems. The class of n-step (k, l, S, C) cycle inequalities subsumes the multi-module
mixed (k, l, S, I) inequalities for MMLS-WB problem. Note that in [2], the n-step cycle inequalities
are also used to generate new classes of valid inequalities for multi-module capacitated facility
location (MMFL) and multi-module capacitated network design (MMND) problems. In this paper,
we investigate the facet-defining properties of the multi-module mixed (k, l, S, I) inequalities for
the MMLS-WB problem. In addition, we present a new class of valid inequalities for MMLS-WB
using pairing procedure [12], investigate their facet-defining properties, and their relationship with
the multi-module mixed (k, l, S, I) inequalities.

1.2 Organization of this paper

In Section 2, we briefly review the cut-generation procedures: mixed integer rounding (MIR) [18,
27], mixing [15], n-mixing [23], and sequential pairing [12]. In Section 3, we provide sufficient
conditions under which the (k, l, S, I) inequalities of Pochet and Wolsey [19], the mixed (k, l, S, I)
inequalities, derived using mixing procedure of Günlük and Pochet [15], and paired (k, l, S, I)
inequalities, derived using pairing procedure of Guan et al. [12], are facet-defining for SMLS-WB.
In Section 4, we present conditions under which the inequalities derived using the pairing procedure
[12] and the n-mixing cut-generation procedure of Sanjeevi and Kianfar [23] are facet-defining for
the MMLS-WB. Finally in Section 5, we provide concluding remarks and discuss about potential
extension of the results presented in this paper. Note that all aforementioned inequalities are special
cases of n-step (k, l, S, C) cycle inequalities [6].

2. Necessary Background

In this section, we briefly review the cut-generation procedures: MIR [18, 27], mixing [15], n-
mixing [23], and sequential pairing [12] which we will use to develop valid inequalities for SMLS-WB
and MMLS-WB problems in the subsequent sections.
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2.1 Mixed Integer Rounding (MIR)

One fundamental procedure to develop cuts for general mixed integer programs is the MIR proce-
dure [18, 27] which utilizes the facet of a single-constraint mixed integer set,

Q := {(y, v) ∈ Z× R+ : α1y + v ≥ β},

where α1 > 0 and β ∈ R (page 127 of [27]). This facet is referred to as the MIR facet and is given
by

v +

(
β − α1

⌊
β

α1

⌋)
y ≥

(
β − α1

⌊
β

α1

⌋)⌈
β

α1

⌉
. (1)

In order to avoid trivial case, it is assumed that β/α1 /∈ Z because then Inequality (1) will reduce
to v ≥ 0.

2.2 Mixing

Günlük and Pochet [15] studied a mixed integer set, defined by

Q0 := {(y, v) ∈ Zm × R+ : α1y
i + v ≥ βi, i = 1, . . . ,m},

where α1 ∈ R+, β ∈ Rm, and βi/α1 /∈ Z, i = 1, . . . ,m. This set is referred to as the mixing set
which is a multi-constraint generalization of the set Q that leads to the well-known MIR inequality
(1). Günlük and Pochet [15] derive the mixed MIR inequalities for the mixing set Q0 as follows:

Define β0 := 0, β
(1)
i := βi − bβi/α1c, i ∈ {0, . . . ,m}, and without loss of generality assume that

β
(1)
0 = 0 < β

(1)
i−1 ≤ β

(1)
i , i = 2, . . . ,m. Let K := {i1, . . . , i|K|}, where i1 < i2 < · · · < i|K|, be a

non-empty subset of {1, . . . ,m}. Then the inequalities,

v ≥
|K|∑
p=1

(
β

(1)
ip
− β(1)

ip−1

)(⌈βip
α1

⌉
− yip

)
(2)

v ≥
|K|∑
p=1

(
β

(1)
ip
− β(1)

ip−1

)(⌈βip
α1

⌉
− yip

)
+
(
α1 − β(1)

i|K|

)(⌊βip
α1

⌋
− yi1

)
, (3)

are valid for Q0 and sufficient to describe the convex hull of Q0. Inequalities (2) and (3) are
referred to as the type I and type II mixed MIR inequalities, respectively. As mentioned in Section
1, Günlük and Pochet used these inequalities to generate cuts for linear mixed integer programs and
referred to this cut-generation procedure as mixing. In Section 3.1, we will show how to generate
valid inequalities for SMLS-WB using mixing. In addition, Günlük and Pochet mentioned that in
a variant of the mixing set Q0 where y ∈ Zm+ , inequality (3) is redundant unless yi1 < bβi1/α1c for
some feasible y.

2.3 n-mixing

Sanjeevi and Kianfar [23] generalize the mixing procedure [15] to n-mixing cut-generation procedure
by considering the n-mixing set,

Qm,n0 :=
{

(y1, . . . , ym, v) ∈ (Z× Zn−1
+ )m × R+ :

n∑
t=1

αty
i
t + v ≥ βi, i = 1, . . . ,m

}
,
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where αt > 0, t = 1, . . . , n, and β ∈ Rm. Note that Qm,10 = Q0. They develop the mixed n-

step MIR inequalities for Qm,n0 as follows: Without loss of generality, we assume β
(n)
i−1 ≤ β

(n)
i , i =

2, . . . ,m, where β
(t)
i := β

(t−1)
i − αt

⌊
β

(t−1)
i /αt

⌋
, t = 1, . . . , n, and β

(0)
i := βi. It is also assumed

that β
(t−1)
i /αt /∈ Z, i = 1, . . . ,m. Note that 0 < β

(t)
i < αt for t = 1, . . . , n. By definition, we set∑b

a(.) = 0 and
∏b
a(.) = 1 if a > b. If the n-step MIR conditions,

αt

⌈
β

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n, (4)

hold for each constraint i ∈ K ⊆ {1, . . . ,m}, then the inequalities

v ≥
|K|∑
p=1

(
β

(n)
ip
− β(n)

ip−1

)
φnip(y

ip), (5)

v ≥
|K|∑
p=1

(
β

(n)
ip
− β(n)

ip−1

)
φnip(y

ip) +
(
αn − β(n)

i|K|

) (
φni1(yi1)− 1

)
, (6)

are valid for Qm,n0 , where β
(n)
i0

= 0 and

φni (yi) :=
n∏
l=1

⌈
β

(l−1)
i

αl

⌉
−

n∑
t=1

n∏
l=t+1

⌈
β

(l−1)
i

αl

⌉
yit (7)

for i ∈ K. Inequalities (5) and (6) are referred to as type I and type II mixed n-step MIR inequali-
ties, respectively. Inequality (5) is shown to be facet-defining for Qm,n0 . Inequality (6) also defines a
facet for Qm,n0 if some additional conditions are satisfied; see [23] for details. Sanjeevi and Kianfar
[23] used mixed n-step MIR inequalities to generate valid inequalities for MMLS-WB problem (see
Section 4.1 for details) and referred to this cut-generation procedure as n-mixing. Note that the
n-step MIR inequalities [16] are special cases of the type I mixed n-step MIR inequalities (5), and
both type I and type II mixed n-step MIR inequalities, (5) and (6), are special cases of the n-step
cycle inequalities of Bansal and Kianfar [5, 6, 7].

Remark 1. The n-step MIR conditions (4) are automatically satisfied when the coefficients,
α1, . . . , αn, are divisible, i.e. αt/αt−1 ∈ Z+, t = 2, . . . , n.

Remark 2. In the rest of the paper, the notation δ(t) will denote (recursive) reminder of δ with

respect to α1, α2, . . . , αt. More precisely, δ(t) := δ(t−1) − αt
⌊
δ(t−1)/αt

⌋
, t = 1, . . . , n, and δ

(0)
i := δi.

2.4 Pairing of mixed integer inequalities

Given a mixed integer set Z := {(x, z) ∈ Znx+ × Rnz+ : Exx + Ezz ≥ eR} and two valid inequalities
for Z:

nx∑
j=1

a1
jxj +

nz∑
j=1

b1jzj ≥ c1
R (8)

nx∑
j=1

a2
jxj +

nz∑
j=1

b2jzj ≥ c2
R. (9)
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Guan et al. [12] introduce a cut-generation procedure, referred to as pairing, to develop a new valid
inequality (10) for Z.

Theorem 1 ([12]). Assuming c2
R ≥ c1

R, the inequality,

nx∑
j=1

min {a1
j + c2

R − c1
R,max {a1

j , a
2
j}}xj +

nz∑
j=1

max {b1j , b2j}zj ≥ c2
R, (10)

is valid for Z.

For the sake of convenience, let Inequality (10) be written as

nx∑
j=1

(a1
j ◦ a2

j )xj +

nz∑
j=1

(b1j ◦ b2j )zj ≥ c2
R,

and referred to as (1 ◦ 2) paired inequality. Assume that the inequalities

nx∑
j=1

akjxj +

nz∑
j=1

bkj zj ≥ ckR, for k = 3, . . . , m̄, (11)

are also valid for Z where c2
R ≤ c3

R ≤ . . . ≤ cm̄R . Then pairing the (1 ◦ 2) paired inequality and
inequality (11), for any k ∈ {3, . . . , m̄}, gives another valid inequality for Z, i.e.

nx∑
j=1

min {(a1
j ◦ a2

j ) + ckR − c2
R,max {(a1

j ◦ a2
j ), a

k
j }}xj

+

nz∑
j=1

max {(b1j ◦ b2j ), bkj }zj ≥ ckR,
(12)

which is referred to as the ((1◦2)◦k) sequentially paired inequality. This cut-generation procedure
is called sequential pairing. Guan et al. [12] provide the following result for these inequalities.

Theorem 2 ([12]). Let K := {i1, . . . , i|K|} be a subset of {1, . . . , m̄} such that i1 ≤ i2 ≤ . . . ≤ i|K|.
For each of the following cases, there exists a subset K such that the ((. . . ((i1 ◦ i2) ◦ i3) ◦ . . .) ◦ i|K|)
sequentially paired inequality is at least as strong as any other sequentially paired inequality obtained
by arbitrary sequence of pairing of the inequalities (11) for k = 1, . . . , m̄:

1. Nested case, i.e. akj ≤ a
k+1
j , for j = 1, . . . , nx and k = 1, . . . , m̄− 1,

2. Disjoint case, i.e. akja
k
l = 0 for j 6= l, j, l ∈ {1, . . . , nx}, and k ∈ {1, . . . , m̄}.

3. Single Module Lot-Sizing Problem without Backlogging

In this section, we first re-define the single module capacitated lot-sizing (SMLS) problem (referred
to as the constant batch lot-sizing problem in [19]). Then we present valid inequalities for this
problem and investigate their facet-defining properties. The SMLS without backlogging (SMLS-
WB) is defined as follows: Let P := {1, . . . ,m} be the set of time periods and α1 be the size of the
available capacity module (or batch). Given the setup cost per module, the demand, the production
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per unit cost, and the inventory per unit cost in period p, denoted by f1
p , dp, cp, and hp, respectively,

SMLS-WB can be formulated as: min
{∑

p∈P
(
cpxp + hpsp + f1

p z
1
p

)
: (z, x, s) ∈ XSML

}
where

XSML :=
{

(z, x, s) ∈ Zm+ × Rm+ × Rm+1
+ (13)

sp−1 + xp = dp + sp, p ∈ P (14)

xp ≤ α1z
1
p , p ∈ P

}
, (15)

xp is the production in period p, sp is the inventory at the end of period p, and z1
p is the number

of capacity modules of size α1 used in period p.

3.1 Valid Inequalities for SMLS-WB Problem

Similar to Pochet and Wolsey [19], we consider a subnetwork consisting of periods k, . . . , l, for any
k, l ∈ P where k < l. Let S ⊆ {k, . . . , l} such that k ∈ S. For i ∈ S, let Si := S ∩ {k, . . . , i},
mi = min{p : p ∈ S\Si} with mi = l + 1 if S\Si = ∅, and bi =

∑mi−1
p=k dp. We define

I := {i1, i2, . . . , i|I|} ⊆ S such that b
(1)
i0

= 0 < b
(1)
i1
≤ b(1)

i2
≤ . . . ≤ b(1)

i|I|
< α1.

Theorem 3 ([21]). The inequality,

sk−1 +
∑

p∈{k,...,l}\S

xp ≥
|I|∑
q=1

(
b
(1)
iq
− b(1)

iq−1

)⌈biq
α1

⌉
−
∑
p∈Siq

z1
p

 , (16)

referred to as the (k, l, S, I) inequality, is valid for XSML where s0 = sm = 0. These inequalities
generate all facets for the convex hull of XSML ∩ {(s0, sm) : s0 = sm = 0} which are of the form

sk−1 +
∑

p∈{k,...,l}\S

xp +
∑
p∈S

π1
pz

1
p ≥ π0

for all 2 ≤ k ≤ l ≤ m and S ⊆ {k, . . . , l}.

Example 1. Consider a SMLS-WB problem instance defined over six time periods, i.e. m = 6
and P = {1, . . . , 6}, where α1 = 5 and demand in each time period are as follows: d1 = 13, d2 = 2,
d3 = 2, d4 = 23, d5 = 1, and d6 = 8. Figure 1 represents a flow diagram for this instance. Let the
set of feasible solutions, (13)-(15), for this instance be defined by

XE := {(z, x, s) ∈ Z6
+ × R6

+ × R7
+ :

s0 + x1 = s1 + 13

s1 + x2 = s2 + 2

s2 + x3 = s3 + 2

s3 + x4 = s4 + 23

s4 + x5 = s5 + 1

s5 + x6 = s6 + 8

xp ≤ 5z1
p , p = 1, . . . , 6}.
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Figure 1: Example of SMLS-WB

Using the above defined notations, we derive valid inequalities for XE as follows. Let k = 2,
l = 6, and S = {2, 4, 5}. Therefore, S2 = {2}, S4 = {2, 4}, S5 = {2, 4, 5}, and m2 = 4, m4 = 5,

m5 = 7. Also, b2 = d2 + d3 = 4 and b
(1)
2 = 4 − 5 b4/5c = 4. Likewise, b4 = d2 + d3 + d4 = 27,

b
(1)
4 = 27 − 5 b27/5c = 2, and b5 =

∑m5−1
p=2 dp = 36, b

(1)
5 = 36 − 5 b36/5c = 1. Notice that

b
(1)
0 = 0 < b

(1)
5 < b

(1)
4 < b

(1)
2 . Because of Theorem 3, the following (k, l, S, I) = (2, 6, {2, 4, 5}, {4, 2})

inequality is valid for XE where s0 = s6 = 0:

s1 + x3 + x6 ≥ b(1)
4

(⌈
b4
α1

⌉
− z1

2 − z1
4

)
+
(
b
(1)
2 − b

(1)
4

)(⌈ b2
α1

⌉
− z1

2

)
= 2(6− z1

2 − z1
4) + 2(1− z1

2) = 14− 4z1
2 − 2z1

4 .

Similarly, the (k, l, S, I) = (2, 6, {2, 4, 5}, {5, 4}) inequality,

s1 + x3 + x6 ≥ b(1)
5

(⌈
b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
4 − b

(1)
5

)(⌈ b4
α1

⌉
− z1

2 − z1
4

)
= (8− z1

2 − z1
4 − z1

5) + (6− z1
2 − z1

4) = 14− 2z1
2 − 2z1

4 − z1
5 ,

the (k, l, S, I) = (2, 6, {2, 4, 5}, {5, 2}) inequality,

s1 + x3 + x6 ≥ b(1)
5

(⌈
b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
2 − b

(1)
5

)(⌈ b2
α1

⌉
− z1

2

)
= (8− z1

2 − z1
4 − z1

5) + 3(1− z1
2) = 11− 4z1

2 − z1
4 − z1

5 ,

and the (k, l, S, I) = (2, 6, {2, 4, 5}, {5, 4, 2}) inequality,

s1 + x3 + x6 ≥ b(1)
5

(⌈
b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
4 − b

(1)
5

)(⌈ b4
α1

⌉
− z1

2 − z1
4

)
+
(
b
(1)
2 − b

(1)
4

)(⌈ b2
α1

⌉
− z1

2

)
=(8− z1

2 − z1
4 − z1

5) + (6− z1
2 − z1

4) + 2(1− z1
2)

= 16− 4z1
2 − 2z1

4 − z1
5 ,

are also valid for XE where s0 = s6 = 0.

In order to generate valid inequalities for XSML using the mixing procedure [15] and the pairing
procedure [12], we aggregate equalities (14) from period k to period mi − 1, i ∈ I ⊆ S, and obtain
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sk−1 +

mi−1∑
p=k

xp = bi + smi−1. (17)

By definition Si ⊆ {k, . . . ,mi− 1}. Therefore, relaxing xp, p ∈ Si, in (17) to its upper bound based
on (15) and smi−1 in (17) to its lower bound based on (13) gives

sk−1 +
∑

p∈{k,...,mi−1}\Si

xp + α1

∑
p∈Si

z1
p ≥ bi, (18)

Inequalities derived using the mixing procedure. Let iu = max {i : i ∈ I}. Then we get the
following valid inequality for XSML:

sk−1 +
∑

p∈{k,...,miu−1}\Si

xp + α1

∑
p∈Si

z1
p ≥ bi, (19)

for i ∈ I. Setting v := sk−1 +
∑

p∈{k,...,miu−1}\S xp and yi :=
∑

p∈Si z
1
p , inequality (19) becomes

v+α1y
i ≥ bi, i ∈ I, which is of the same form as the defining inequalities of mixing set Q0. Notice

that v ∈ R+, y
i ∈ Z+. Therefore, the type I mixed MIR inequality (2) written for XSML with

K = I,

sk−1 +
∑

p∈{k,...,miu−1}\S

xp ≥
|I|∑
q=1

(
b
(1)
iq
− b(1)

iq−1

)⌈biq
α1

⌉
−
∑
p∈Siq

z1
p

 , (20)

is valid for XSML. We refer to inequality (20) as mixed (k, l, S, I) inequality.

Example 1 (continued). For i ∈ S, inequalities (18) for XE are written as:

For i = 2: s1 + x3 + 5z1
2 ≥ 4

For i = 4: s1 + x3 + 5(z1
2 + z1

4) ≥ 27

For i = 5: s1 + x3 + x6 + 5(z1
2 + z1

4 + z1
5) ≥ 38.

As discussed above, we apply the mixing procedure on these inequalities. For I = {4, 2}, we get the
following valid mixed (k, l, S, I) = (2, 6, {2, 4, 5}, {4, 2}) inequality for XE where iu = 4:

s1 + x3 ≥ b(1)
4

(⌈
b4
α1

⌉
− z1

2 − z1
4

)
+
(
b
(1)
2 − b

(1)
4

)(⌈ b2
α1

⌉
− z1

2

)
= 2(6− z1

2 − z1
4) + 2(1− z1

2) = 14− 4z1
2 − 2z1

4 .

Likewise, the mixed (k, l, S, I) = (2, 6, {2, 4, 5}, {5, 4}) inequality where iu = 5,

s1 + x3 + x6 ≥ b(1)
5

(⌈
b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
4 − b

(1)
5

)(⌈ b5
α1

⌉
− z1

2 − z1
4

)
= (8− z1

2 − z1
4 − z1

5) + (6− z1
2 − z1

4) = 14− 2z1
2 − 2z1

4 − z1
5 ,

the mixed (k, l, S, I) = (2, 6, {2, 4, 5}, {5, 2}) inequality where iu = 5,

s1 + x3 + x6 ≥ b(1)
5

(⌈
b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
2 − b

(1)
5

)(⌈ b2
α1

⌉
− z1

2

)
= (8− z1

2 − z1
4 − z1

5) + 3(1− z1
2) = 11− 4z1

2 − z1
4 − z1

5 ,
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and the mixed (k, l, S, I) = (2, 6, {2, 4, 5}, {5, 4, 2}) inequality where iu = 5,

s1 + x3 + x6 ≥ b(1)
5

(⌈
b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
4 − b

(1)
5

)(⌈ b4
α1

⌉
− z1

2 − z1
4

)
+
(
b
(1)
2 − b

(1)
4

)(⌈ b2
α1

⌉
− z1

2

)
= 16− 4z1

2 − 2z1
4 − z1

5 ,

are also valid for XE.

Inequalities derived using the pairing procedure. First, for each i ∈ S, we apply the MIR
procedure on inequalities (18) as follows. By setting v := sk−1+

∑
p∈{k,...,mi−1}\Si xp, y :=

∑
p∈Si z

1
p ,

and β = bi, Inequality (18) becomes v+α1y ≥ β which is of the same form as the defining inequalities
of set Q. Notice that v ∈ R+ and y ∈ Z+. Therefore, the MIR inequality (1) written for inequality
(18),

sk−1 +
∑

p∈{k,...,mi−1}\Si

xi + b
(1)
i

∑
p∈Si

z1
p −

⌊
bi
α1

⌋ ≥ b(1)
i , (21)

is valid for XSML. Next, we apply sequential pairing procedure (discussed in Section 2.4) on
inequalities (21). However, to do so, we have to assume that

∑
p∈Si z

1
p ≥ bbi/α1c for each i ∈ S.

The sequentially paired inequalities obtained by arbitrary sequence of pairing of the inequalities (21)

for i ∈ I, in increasing order of b
(1)
i , are valid for XSML and we refer to thus obtained inequalities

as the paired (k, l, S, I) inequality for SMLS-WB.

3.2 Facets for SMLS-WB Problem

We provide sufficient conditions under which the (k, l, S, I) inequalities (16), the mixed (k, l, S, I)
inequalities (20), and the paired (k, l, S, I) inequalities are facet-defining for XSML.

Observation 1. The (k, l, S, I) inequality (16) is either same as the mixed (k, l, S, I) inequality
(20) or is dominated by the mixed (k, l, S, I) inequality (20).

Proof. Observe that the mixed (k, l, S, I) inequality (20) is actually the (k,miu − 1, S, I) inequality
(16). This means that if l = miu−1, then the (k, l, S, I) inequality is the mixed (k, l, S, I) inequality.
However, in case l 6= miu − 1, the left hand side of inequality (16) is greater than the left hand side
of inequality (20), which implies that the (k, l, S, I) inequality is dominated by the mixed (k, l, S, I)
inequality.

Corollary 1. The (k, l, S, I) inequality (16) is valid for XSML for all 1 ≤ k ≤ l ≤ m and S ⊆
{k, . . . , l}.

Corollary 2. The (k, l, S, I) inequality defines a facet for conv(XSML) if and only if it is a facet-
defining mixed (k, l, S, I) inequality.

Example 1 (continued). Notice that the mixed {2, 6, {2, 4, 5}, {4, 2}} inequality dominates the
{2, 6, {2, 4, 5}, {4, 2}} inequality because l = 6 6= miu − 1 = m4 − 1 = 4; whereas for (k, l, S) =
(2, 6, {2, 4, 5}) and I ∈ {{5, 4}, {5, 2}, {5, 4, 2}}, the mixed (k, l, S, I) inequalities are same as the
(k, l, S, I) inequalities as l = miu − 1 = m5 − 1 = 6.
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Lemma 1. Given a mixed (k, l, S, I) inequality (20), any feasible point (ẑ, x̂, ŝ) ∈ XSML lies on the
corresponding face if there exists an r ∈ {0, 1, ..., |I|} such that conditions (i)-(iii) hold:

(i)

⌈
biq
α1

⌉
−
∑
p∈Siq

ẑ1
p = 1, for q = 1, . . . , r

(ii)

⌈
biq
α1

⌉
−
∑
p∈Siq

ẑ1
p = 0, for q = r + 1, . . . , |I|

(iii) ŝk−1 +
∑

p∈{k,...,miu−1}\S x̂p = b
(1)
ir

.

Proof. Given (k, l, S, I), the hyperplane corresponding to (20) can be rewritten as

sk−1 +
∑

p∈{k,...,miu−1}\S

xp =

|I|∑
q=1

(
b
(1)
iq
− b(1)

iq−1

)⌈biq
α1

⌉
−
∑
p∈Siq

z1
p

 (22)

Let Γ = {(z, x, s) ∈ XSML : (22) holds} be the face of XSML defined by hyperplane (22) and
(ẑ, x̂, ŝ) ∈ XSML be a point which satisfies conditions (i) − (iii) for an r ∈ {0, 1, ..., |I|}. Now, by
substituting (ẑ, x̂, ŝ) in the right-hand side of (22) and using conditions (i)− (ii), we get

r∑
q=1

(
b
(1)
iq
− b(1)

iq−1

)⌈biq
α1

⌉
−
∑
p∈Siq

ẑ1
p

+

|I|∑
q=r+1

(
b
(1)
iq
− b(1)

iq−1

)⌈biq
α1

⌉
−
∑
p∈Siq

ẑ1
p


=

r∑
q=1

(
b
(1)
iq
− b(1)

iq−1

)
= b

(1)
ir
.

Notice that by substituting (ẑ, x̂, ŝ) in the left-hand side of equation (22), we also get b
(1)
ir

because
of condition (iii). This shows that (ẑ, x̂, ŝ) ∈ Γ as it satisfies (22).

Theorem 4. The mixed (k, l, S, I) inequality (20) defines a facet for conv(XSML) if the following
condition holds for each i ∈ I:

{j : j ∈ S, j < i, dbj/α1e = dbi/α1e} ⊂ I. (23)

Remark 3. Notice that Condition (23) in the above results are not very restrictive. However, The-
orem 4 shows that not all selections of (k, l, S, I) provide facet-defining mixed (k, l, S, I) inequalities
for the SMLS-WB (see an example in Section 5).

Proof. Let Γ = {(z, x, s) ∈ XSML : (22) holds} be the face of XSML defined by hyperplane (22)
corresponding to the mixed (k, l, S, I) inequality (20). Assuming that for each i ∈ I, {j : j ∈ S, j <
i, dbj/α1e = dbi/α1e} ⊂ I, we prove that a generic hyperplane passing through Γ,

ν0s0 +
m∑
p=1

(νpsp + µpxp + λzpz
1
p) = η (24)

where (λz1, . . . , λ
z
m, µ1, . . . , µm, ν0, ν1, . . . , νm, η) ∈ R3m+2, must be a scalar multiple of (22).
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First, we separately add equalities (14) from period i ∈ {1, . . . , k− 1} to period k− 1, and from
period k to period i ∈ {k, . . . ,m} to get

si−1 +

k−1∑
p=i

xp =

k−1∑
p=i

dp + sk−1, for i = 1, . . . , k − 1 (25)

sk−1 +

i∑
p=k

xp =

i∑
p=k

dp + si, for i = k, . . . ,m (26)

respectively. Since each point belonging to Γ satisfies (25) and (26), we eliminate variables si,
i = 0, . . . , k−2, k, . . . ,m, from (24) by subtracting νi−1 times equality (25) for each i ∈ {1, . . . , k−1}
from (24), and adding νi times equality (26) for each i ∈ {k, . . . ,m} to (24). This gives

λ0sk−1 +
m∑
p=1

λxpxp +
m∑
p=1

λzpz
1
p = θ (27)

where

θ = η +
k−1∑
i=1

νi−1

k−1∑
p=i

dp

− m∑
i=k

νi i∑
p=k

dp

 ,

λ0 = νk−1 +

k−1∑
i=1

νi−1 −
m∑
i=k

νi,

λxp = µp −
k−1∑
i=1

νi−1 for p = 1, . . . , k − 1,

λxp = µp +
m∑
i=k

νi for p = k, . . . ,m.

It is important to note that to have a point (ẑ, x̂, ŝ) = (ẑ1
1 , . . . , ẑ

1
m, x̂1, . . . , x̂m, ŝ0, . . . , ŝm) ∈ Zm+ ×

Rm+×Rm+1
+ ∈ XSML, it is sufficient to know the value of ẑ1

1 , . . . , ẑ
1
m, x̂1, . . . , x̂m, and ŝk−1 coordinates

because the remaining ones can be obtained using equalities (25) and (26). Therefore, in the rest of
the proof, we will define a point belonging to XSML by (ẑ, x̂, ŝk−1) = (ẑ1

1 , . . . , ẑ
1
m, x̂1, . . . , x̂m, ŝk−1) ∈

Zm+ × Rm+ × R+ (for the sake of convenience).

Next, assuming S := {w1, . . . , w|S|} where w1 = k, consider the point A = (ẑ, x̂, ŝk−1) =
(ẑ1

1 , . . . , ẑ
1
m, x̂1, . . . , x̂m, ŝk−1) ∈ Zm+ × Rm+ × R+ such that ŝk−1 = 0,

(ẑ1
p , x̂p) :=

{
(ddp/α1e , dp) if p ∈ {1, . . . ,m}\{k, . . . , l},
(0, 0) if p ∈ {k, . . . , l}\S,

for p ∈ {1, . . . ,m}\S and for i ∈ {1, . . . , |S|},

(ẑ1
wi , x̂wi) :=

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, α1

⌈
bwi
α1

⌉
− α1

⌈
bwi−1

α1

⌉)
,

where bw0 = 0. As mentioned before, coordinates ŝp, p ∈ {0, . . . ,m}\{k− 1} can be obtained using
(25)-(26), i.e. for p ∈ {0, . . . ,m}\{k − 1},
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ŝp :=



0 if p ∈ {0, . . . , k − 2}

α1

⌈
bwi
α1

⌉
−

p∑
j=k

dj if p ∈ {mwi−1 , . . . ,mwi − 1} and i = 1, . . . , |S|,

α1

⌈
bw|S|
α1

⌉
− bw|S| if p ≥ mw|S| ,

where mw0 = k. Recall that bwi =
∑mwi−1

j=k dj for wi ∈ S (by definition). It is easy to verify that

A ∈ XSML and satisfies conditions (i)− (iii) of Lemma 1. Therefore A ∈ Γ and hence must satisfy
(27). Substituting A into (27) gives∑

p∈{1,...,m}\{k,...,l}

λxpdp +
∑

p∈{1,...,m}\{k,...,l}

λzp ddp/α1e

+

|S|∑
i=1

(
λxwiα1 + λzwi

) (
dbwi/α1e −

⌈
bwi−1/α1

⌉)
= θ.

(28)

Using (28), hyperplane (27) reduces to

λ0sk−1 +
∑

p∈{1,...,m}\{k,...,l}

λxp(xp − dp) +
∑

p∈{1,...,m}\{k,...,l}

λzp
(
z1
p − ddp/α1e

)

+
∑

p∈{k,...,l}\S

(
λxpxp + λzpz

1
p

)
+

|S|∑
i=1

λxwi(xwi − α1

(
dbwi/α1e −

⌈
bwi−1/α1

⌉)
)

=

|S|∑
i=1

λzwi
(
dbwi/α1e −

⌈
bwi−1/α1

⌉
− z1

wi

)
.

(29)

Now, let S be a set of all disjoint subsets of S such that for each element (or time period) p of
a subset, dbp/α1e is same and the elements of each subset are arranged in the increasing order of
the associated time period or index p. We denote a set containing only first element of the disjoint
subsets of S (arranged in increasing order) by Ω := {ω1, ω2, . . . , ω|Ω|}. Note that dbω0/α1e = 0 <

dbω1/α1e < dbω2/α1e < . . . <
⌈
bω|Ω|/α1

⌉
and Ω ⊆ S. For each ωr ∈ Ω, we consider the points

Bωr = (ẑ, x̂, ŝk−1) = (ẑ1
1 , . . . , ẑ

1
m, x̂1, . . . , x̂m, ŝk−1) ∈ Zm+ × Rm+ × R+ such that each coordinate of

Bωr is same as the coordinates of the point A, except that

(ẑ1
ωr , x̂ωr) =

(⌈
bωr
α1

⌉
−
⌈
bωr−1

α1

⌉
, α1

⌊
bωr
α1

⌋
− α1

⌈
bωr−1

α1

⌉
+ b(1)

ω

)
,

where bω0 = 0 and b
(1)
ω = maxi=1,2,...{b(1)

ωi }. It is easy to verify that Bωr ∈ XSML and satisfies
conditions (i) − (iii) of Lemma 1. Therefore Bωr ∈ Γ and hence must satisfy (27). Substituting
Bωr into (29) gives

λxωr = 0 for ωr ∈ Ω. (30)

Next, consider the points Cr1 for r ∈ {1, . . . , k− 1} ∪ {l+ 1, . . . ,m}, Cr2 for r ∈ {1, . . . , k− 2} ∪ {l+
1, . . . ,m − 1}, and C3 such that each coordinate of Cr1 , Cr2 , and C3 are same as the coordinates of
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the point A, except that in Cr1 , ẑ1
r = ddp/α1e+ 1, in Cr2 ,

(ẑ1
p , x̂p) :=



⌈∑k−1
i=p di

α1

⌉
,

k−1∑
i=p

di

 if p ∈ {1, . . . , k − 1} ∩ {r},

⌈∑m
i=p di

α1

⌉
,
m∑
i=p

di

 if p ∈ {l + 1, . . . ,m} ∩ {r},

(0, 0) if p ∈ {1, . . . , k − 1, l + 1, . . . ,m}, p > r,

and in C3, x̂k−1 = 0 and ŝp = dk−1 for p = 0, . . . , k − 2. It is easy to verify that Cr1 for r ∈
{1, . . . , k−1}∪{l+ 1, . . . ,m}, Cr2 for r ∈ {1, . . . , k−2}∪{l+ 1, . . . ,m−1}, and C3 belong to XSML

and satisfy conditions (i)− (iii) of Lemma 1. Therefore Cr1 , Cr2 , C3 ∈ Γ and hence must satisfy (27).
Substituting Cr1 into (29) gives

λzr = 0 for all r ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m}. (31)

Likewise, one by one substituting the points C1
2 , . . . , C

k−2
2 , Cl+1

2 , . . . , Cm−1
2 , and C3 into (29) gives

λxr = 0 for all r ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m− 1}. (32)

By definition we know that I := {i1, . . . , i|I|} ⊆ S such that 0 < b
(1)
i1
≤ b

(1)
i2
≤ . . . ≤ b

(1)
i|I|
≤

α1, iu = max {i : i ∈ I}, and Si = S ∩ {k, . . . , i}. We consider the points Dr = (ẑ, x̂, ŝk−1) =
(ẑ1

1 , . . . , ẑ
1
m, x̂1, . . . , x̂m, ŝk−1) ∈ Zm+ × Rm+ × R+ for r ∈ {k, . . . , l}\Siu such that ŝk−1 = 0,

(ẑ1
p , x̂p) :=


(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m},
(0, 0) if p ∈ {k, . . . , l}\S and p 6= r,

(1, 0) if p ∈ {k, . . . , l}\S and p = r,

for p ∈ {1, . . . ,m}\S and

(ẑ1
wi , x̂wi) :=



(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, α1

⌈
bwi
α1

⌉
− α1

⌈
bwi−1

α1

⌉)
if wi ∈ S\{r},(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
+ 1, α1

⌈
bwi
α1

⌉
− α1

⌈
bwi−1

α1

⌉)
if wi ∈ S ∩ {r}
∩{miu , . . . , l},

for i = 1, . . . , |S|. It is easy to verify that Dr ∈ XSML and satisfies conditions (i)−(iii) of Lemma 1.
Therefore Dr ∈ Γ and hence must satisfy (27). Substituting Dr into (29) gives

λzr = 0 for all r ∈ {k, . . . , l}\Siu . (33)

Using (30), (31), (33), and (32), (29) reduces to

λ0sk−1 +
∑

p∈{k,...,l,m}\S

λxpxp +
∑

wi∈S\Ω

λxwi

(
xwi − α1

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉))

=
∑

wi∈Siu

λzwi

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
− z1

wi

)
. (34)
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Now, consider the points Er = (ẑ, x̂, ŝk−1) = (ẑ1
1 , . . . , ẑ

1
m, x̂1, . . . , x̂m, ŝk−1) ∈ Zm+ × Rm+ × R+ for

r ∈ {miu , . . . , l,m} where miu ≤ l ≤ m such that ŝk−1 = 0,

(ẑ1
p , x̂p) :=


(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m}\{r},
(ddp/α1e+ 1, dp + α1) if p ∈ {r} ∩ {m} and m 6= l,

(0, 0) if p ∈ {k, . . . , l}\(S ∪ {r}),
(1, 1) if p ∈ {r} ∩ ({miu , . . . , l}\S),

for p ∈ {1, . . . ,m}\S and

(ẑ1
wi , x̂wi) :=


(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, α1z

1
wi

)
, if wi ∈ S\{r}(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
+ 1, α1z

1
wi

)
, if wi ∈ {r} ∩ {miu , . . . , l} ∩ S.

for i ∈ {1, . . . , |S|}. It is easy to verify that Er ∈ XSML and satisfies conditions (i) − (iii) of
Lemma 1. Therefore Er ∈ Γ and hence must satisfy (27). Substituting Er into (29) gives

λxr = 0 for all r ∈ {miu , . . . , l} ∪ {m}. (35)

Using (35), (34) reduces to

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp +
∑

wi∈Siu\Ω

λxwi

(
xwi − α1

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉))

=
∑

wi∈Siu

λzwi

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
− z1

wi

)
. (36)

Let Ia := {ia1 , . . . , ia|I|} be a set which has same elements as in the set I, except that ia1 <
ia2 < . . . < ia|I| . In other words, set Ia is same as the set I, the only difference is that the elements
of Ia are arranged in the increasing order of time periods. Now, for each iaζ ∈ I where ζ ∈
{1, . . . , |I|} and r ∈ Siaζ \(Siaζ−1

∪ {iaζ}) where Sia0
= ∅, consider the points Fr,aζ = (ẑ, x̂, ŝk−1) =

(ẑ1
1 , . . . , ẑ

1
m, x̂1, . . . , x̂m, ŝk−1) ∈ Zm+ × Rm+ × R+ such that ŝk−1 = 0,

(ẑ1
p , x̂p) :=

{
(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m},
(0, 0) if p ∈ {k, . . . , l}\S,

for p ∈ {1, . . . ,m}\S and

(ẑ1
wi , x̂wi) :=



(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, α1z

1
wi

)
if wi ∈ S\{r, iaζ},(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
+ 1, α1z

1
wi

)
if wi = r,(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
− 1, α1z

1
wi

)
if wi = iaζ ,

for i = 1, . . . , |S|. Note that
∑

p∈Siaζ
ẑ1
p =

⌈
biaζ /α1

⌉
for all iaζ ∈ I, and also in case dbwi/α1e =⌈

bwi−1/α1

⌉
for wi = iaζ ∈ I and wi−1 ∈ S then wi−1 = iaζ−1

where iaζ−1
∈ I (because of Condition
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(23)), and hence Siaζ \(Siaζ−1
∪{iaζ}) = ∅. It is easy to verify that Fr,aζ ∈ XSML under assumptions

(23) and satisfies conditions (i)−(iii) of Lemma 1. Therefore Fr,aζ ∈ Γ and hence must satisfy (27).

Next, for iaζ ∈ I where ζ ∈ {1, . . . , |I|} and r ∈
(
Siaζ \(Siaζ−1

∪ {iaζ})
)
∩ (Siu\Ω) where u = a|I|,

we define another point Fr,aζ1 = (ẑ, x̂, ŝk−1) = (ẑ1
1 , . . . , ẑ

1
m, x̂1, . . . , x̂m, ŝk−1) ∈ Zm+ ×Rm+ ×R+ whose

coordinates are all exactly same as Fr,aζ except that for wi = r,

x̂wi = α1

(
dbwi/α1e −

⌈
bwi−1/α1

⌉)
+ b(1)

w ,

where b
(1)
w = maxwi∈S{b

(1)
wi }. Again, it is easy to verify that Fr,aζ1 ∈ XSML and satisfies conditions

(i) − (iii) of Lemma 1. Therefore Fr,aζ1 ∈ Γ and hence must satisfy (27). For each iaζ ∈ I and

r ∈
(
Siaζ \(Siaζ−1

∪ {iaζ})
)
∩ (Siu\Ω), we substitute Fr,aζ and Fr,aζ1 into (36), and subtract one

equality from the other. This gives

λxr = 0 for r ∈ Siu\(I ∪ Ω). (37)

Again, by substituting the points Fr,aζ , for iaζ ∈ I where ζ ∈ {1, . . . , |I|} and r ∈
(
Siaζ \(Siaζ−1

∪ {iaζ})
)

,

into (36) and using (37), we get

λzr = λziaζ
for iaζ ∈ I, r ∈ Siaζ \(Siaζ−1

∪ {iaq}). (38)

Substituting (37) and (38) into (36) gives

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp +
∑

wi∈I\Ω

λxwi

(
xwi − α1

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉))

=

|I|∑
ζ=1

λziaζ

⌈biaζ
α1

⌉
−
∑

p∈Siaζ

z1
p −

⌈
biaζ−1

α1

⌉
+

∑
p∈Siaζ−1

z1
p

 , (39)

where bia0
= 0 and Sia0

= ∅. By rearranging the right-hand side of (39), we get

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp +
∑

wi∈I\Ω

λxwi

(
xwi − α1

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉))

=

|I|−1∑
ζ=1

(
λziaζ
− λziaζ+1

)⌈biaζ
α1

⌉
−
∑

p∈Siaζ

z1
p

+ λzia|I|

⌈bia|I|
α1

⌉
−

∑
p∈Sia|I|

z1
p

 .

Furthermore, the last equation can also be simplified to

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp +
∑

wi∈I\Ω

λxwi

(
xwi − α1

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉))

=

|I|∑
q=1

γziq

⌈biq
α1

⌉
−
∑
p∈Siq

z1
p

 , (40)

where for q = 1. . . . , |I|, γziq =
(
λziq − λ

z
iaζ+1

)
such that aζ = q for ζ ∈ {1, . . . , |I|} and λza|I|+1

= 0.
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Next, for iq ∈ I, consider the points Gq = (ẑ, x̂, ŝk−1) ∈ Zm+ × Rm+ × R+, such that ŝk−1 = b
(1)
iq

,

(ẑ1
p , x̂p) :=

{
(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m},
(0, 0) if p ∈ {k, . . . , l}\S,

for p ∈ {1, . . . ,m}\S, and for i ∈ {1, . . . , |S|}, (ẑ1
wi , x̂wi) := (χwi −χwi−1 , α1ẑ

1
wi) where χw0 = 0 and

χwi =


dbwi/α1e if wi ∈ S\I,
bbwi/α1c if wi ∈ {i1, . . . , iq},
dbwi/α1e if wi ∈ {iq+1, . . . , i|I|}.

This implies that

 ∑
p∈Swi

ẑ1
p ,
∑
p∈Swi

x̂p

 =



(⌈
bwi
α1

⌉
, α1

⌈
bwi
α1

⌉)
if wi ∈ S\I,(⌊

bwi
α1

⌋
, α1

⌊
bwi
α1

⌋)
if wi ∈ {i1, . . . , iq},(⌈

bwi
α1

⌉
, α1

⌈
bwi
α1

⌉)
if wi ∈ {iq+1, . . . , i|I|}.

Since we assume that {j : j ∈ S, j < iq, dbj/α1e =
⌈
biq/α1

⌉
} ⊂ I for each iq ∈ I (Condition (23)),

χwi ≥ χwi−1 for i = 1, . . . , |S|.

Now, it is easy to verify that Gq ∈ XSML and satisfies conditions (i)− (iii) of Lemma 1. Therefore
Gq ∈ Γ and hence must satisfy (27). Furthermore, because of our assumption (23), for wr ∈ I\Ω,⌈

bwr
α1

⌉
=

⌈
bwr−1

α1

⌉
, wr−1 ∈ I, and b(1)

wr−1
< b(1)

wr . (41)

Let Ξ := {ξ1, . . . , ξ|Ξ|} = I\Ω := {ij1 , . . . , ij|Ξ|} such that ξ1 = ij1 < ξ2 = ij2 < . . . < ξ|Ξ| = ij|Ξ| .
In other words, jr provides the positioning of ξr in the set I. For ijr ∈ I\Ω, we define another point

Gr1 = (ẑ, x̂, ŝk−1) ∈ Zm+ × Rm+ × R+, such that ŝk−1 = b
(1)
ijv−1

where ijv = min{ij|Ξ| , ij|Ξ|−1
, . . . , ijr},

(ẑ1
p , x̂p) :=

{
(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m},
(0, 0) if p ∈ {k, . . . , l}\S,

for p ∈ {1, . . . ,m}\S, and for i ∈ {1, . . . , |S|},

(ẑ1
wi , x̂wi) :=


(
χ̄0
wi − χ̄

0
wi−1

, α1z
1
wi

)
if wi 6= ijr ,(

χ̄0
wi − χ̄

0
wi−1

,maxw∈S {b(1)
w }
)

if wi = ijr ,

where χ̄0
w0

= 0 and

χ̄0
wi =


dbwi/α1e if wi ∈ S\I,
bbwi/α1c if wi ∈ {i1, . . . , ijv−1},
dbwi/α1e if wi ∈ {ijv , . . . , i|I|}.
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Notice that for i = 1, . . . , |S|,

 ∑
p∈Swi

ẑ1
p ,
∑
p∈Swi

x̂p

 =



(⌈
bwi
α1

⌉
, α1

⌈
bwi
α1

⌉)
if wi ∈ S\I,(⌊

bwi
α1

⌋
, α1

⌊
bwi
α1

⌋)
if wi ∈ {i1, . . . , ijv−1},(⌈

bwi
α1

⌉
, α1

⌈
bwi
α1

⌉)
if wi ∈ {ijv , . . . , i|I|}\{ijr},(⌈

bwi
α1

⌉
, α1

⌊
bwi
α1

⌋
+ max

w∈S
{b(1)
w }
)

if wi = ijr .

It is easy to verify that Gr1 ∈ XSML under conditions (23) and satisfies conditions (i) − (iii) of
Lemma 1. Therefore Gr1 ∈ Γ and hence must satisfy (27). For each ijr ∈ I\Ω, we substitute
Gjv−1,Gr1 into (40) and subtract one equality from the other. This gives

λxijr = 0 for ijr ∈ I\Ω. (42)

Using (42), we one by one substitute G1, G2, . . . ,G|I| into (40) and get

γzi1 = λ0b
(1)
i1
, (43)

γzi2 = λ0b
(1)
i2
− γzi1 = λ0

(
b
(1)
i2
− b(1)

i1

)
, (44)

...

γzi|I| = λ0b
(1)
i|I|
−
(
γzi1 + . . .+ γzi|I|−1

)
= λ0

(
b
(1)
i|I|
− b(1)

i|I|−1

)
. (45)

This implies that for q ∈ {1, . . . , |I|},

γziq = λ0

(
b
(1)
iq
− b(1)

iq−1

)
(46)

where b
(1)
i0

= 0. For r ∈ {k, . . . ,miu − 1}\S, consider the points Hr whose coordinates are same as

the coordinates of Gu except that ŝk−1 = 0 and (ẑ1
r , x̂r) = (1, b

(1)
iu

). By substituting the points Hr
into the (40) and subtracting from equality corresponding to Gu, we get

λxr = λ0 for r ∈ {k, . . . ,miu − 1}\S. (47)

Substituting (42), (46), and (47) into the (40) gives

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λ0xp =

|I|∑
q=1

λ0

(
b
(1)
iq
− b(1)

iq−1

)⌈biq
α1

⌉
−
∑
p∈Siq

z1
p

 (48)

The identity (48) is λ0 = µk−1 +
∑m

i=k−1 ηi times (22). Hence Γ defines a facet for conv(XSML) if
conditions (23) hold. This completes the proof.

Example 1 (continued). According to Theorem 4, for (k, l, S) = (2, 6, {2, 4, 5}) and I ∈ {{5, 4},
{5, 2}, {4, 2}, {5, 4, 2}}, the mixed (k, l, S, I) inequalities are facet-defining for XE because in these
inequalities for each i ∈ I, {j : j ∈ S, j < i, dbj/α1e = dbi/α1e} = ∅.
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Theorem 5. Assuming that
∑

p∈Siqz
1
p ≥

⌊
biq/α1

⌋
for each iq ∈ I, the paired (k, l, S, I) inequality is

either dominated by the mixed (k, l, S, I) inequality (20) or is same as the mixed (k, l, S, I) inequality
(20).

Proof. First we repeatedly apply sequential pairing procedure on inequalities (21) for i ∈ I, in

increasing order of b
(1)
i , to get ((. . . ((i1 ◦ i2) ◦ i3) ◦ . . .) ◦ i|I|) sequentially paired inequality. The

inequality thus obtained, referred to as the ((. . . ((i1◦i2)◦i3)◦. . .)◦i|I|) sequentially paired (k, l, S, I)
inequality, is same as the mixed (k, l, S, I) inequality (20). Moreover, the set of valid inequalities
(21) for i ∈ I belong to the nested case. Therefore, according to Theorem 2, the mixed (k, l, S, I)
inequality or the ((. . . ((i1 ◦ i2) ◦ i3) ◦ . . .) ◦ i|K|) sequentially paired (k, l, S, I) inequality is at least
as strong as any other sequentially paired inequality obtained by arbitrary sequence of pairing of
the inequalities (21) for i ∈ I.

Corollary 3. Assuming that
∑

p∈Siqz
1
p ≥

⌊
biq/α1

⌋
for each iq ∈ I, the paired (k, l, S, I) inequality

defines a facet for conv(XSML) if and only if it is a facet-defining mixed (k, l, S, I) inequality.

4. Multi-Module Capacitated Lot-Sizing Problem without Back-
logging

In this section, we redefine the multi-module capacitated lot-sizing (MMLS) problem (introduced
in [23]). Then we present valid inequalities for this problem and investigate their facet-defining
properties. The MMLS without backlogging (MMLS-WB) is defined as follows: Let {α1, . . . , αn}
be the set of sizes of the n available capacity modules and the setup cost per module of size
αt, t = 1, . . . , n in period p is denoted by f tp. We formulate MMLS-WB as:

min

{∑
p∈P

(
cpxp + hpsp +

n∑
t=1

f tpz
t
p

)
: (z, x, s) ∈ XMML

}
where

XMML :=
{

(z, x, s) ∈ Zm×n+ × Rm+ × Rm+1
+ (49)

sp−1 + xp = dp + sp, p ∈ P (50)

xp ≤
n∑
t=1

αtz
t
p, p ∈ P = {1, . . . ,m}

}
. (51)

Here, ztp is the number of capacity modules of size αt, t = 1, . . . , n, used in period p and parameters
(dp, cp, hp) and variables (xp, sp) are same as defined for SMLS-WB. Notice that for n = 1,
MMLS-WB reduces to SMLS-WB.

4.1 Valid Inequalities for MMLS-WB Problem

In order to generate valid inequalities for MMLS-WB problem using n-mixing procedure [23] and the
pairing procedure [12], we use notations defined in Section 3.1 except that I := {i1, i2, . . . , i|I|} ⊆ S
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such that b
(n)
i0

= 0 < b
(n)
i1
≤ b(n)

i2
≤ . . . ≤ b(n)

i|I|
< αn. Also, we assume that the n-step MIR conditions

hold, i.e. for each i ∈ I,

αt

⌈
b
(t−1)
i /αt

⌉
≤ αt−1, for t = 2, . . . , n, (52)

which are automatically satisfied when the sizes of the capacity modules are divisible, i.e. αt/αt−1 ∈
Z+, t = 2, . . . , n. First, we aggregate equalities (50) from period k to period mi − 1, i ∈ S, and
then relax xp, p ∈ Si, to its upper bound based on (51) and smi − 1 to its lower bound based on
(49). This gives

sk−1 +
∑

p∈{k,...,mi−1}\Si

xi +

n∑
t=1

αt
∑
p∈Si

ztp ≥ bp. (53)

Inequalities derived using the n-mixing procedure. Assuming that iu = max {i : i ∈ I}, we
get the following valid inequality for XMML:

sk−1 +
∑

p∈{k,...,miu−1}\Si

xi +
n∑
t=1

αt
∑
p∈Si

ztp ≥ bp. (54)

Setting v := sk−1 +
∑

p∈{k,...,miu−1}\S xp and yit :=
∑

p∈Si z
t
p, t = 1, . . . , n, inequality (54) becomes

v +
∑n

t=1 αty
i
t ≥ bi, i ∈ I, which is of the same form as the defining inequalities of n-mixing set

Qm,n0 . Notice that v ∈ R+, y
i
t ∈ Z+, t = 1, . . . , n. Therefore, the type I mixed n-step MIR inequality

(5) written for XMML with K = I,

sk−1 +
∑

p∈{k,...,miu−1}\S

xp ≥
|I|∑
q=1

(
b
(n)
iq
− b(n)

iq−1

)
φniq(z) (55)

where

φniq(z) :=
n∏
σ=1

b
(σ−1)
iq

ασ

−
∑
p∈Siq

n∑
t=1

 n∏
σ=t+1

b
(σ−1)
iq

ασ


 ztp, (56)

is valid for XMML if the n-step MIR conditions (52) hold. In the rest of the paper, we will refer to
the inequality (55) as the n-mixed (k, l, S, I) inequality.

Inequalities derived using the pairing procedure. Similar to SMLS-WB, first, we apply
the n-step MIR procedure [16] on inequality (53) for all i ∈ S, which gives the following valid
inequalities if the n-step MIR conditions hold:

sk−1 +
∑

p∈{k,...,mi−1}\S

xp ≥ b(n)
i φni (z) (57)

Assuming that φni (z) ≤ 1 for all i ∈ K, we repeatedly apply sequential pairing procedure on
inequalities (57) for i ∈ K, in increasing order of i, to get ((. . . ((i1 ◦ i2)◦ i3)◦ . . .)◦ i|K|) sequentially
paired inequality, which is same as inequality (55).
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4.2 Facets for MMLS-WB Problem

We provide conditions under which the n-mixed (k, l, S, I) inequality (55) is facet-defining for the
conv(XMML).

Lemma 2. Given the n-mixed (k, l, S, I) inequality (55), any feasible point (ẑ, x̂, ŝ) ∈ XMML lies
on the corresponding face if there exists an r ∈ {0, 1, ..., |I|} such that conditions (i)-(iii) hold:

(i) φniq(ẑ) = 1, for q = 1, . . . , r

(ii) φniq(ẑ) = 0, for q = r + 1, . . . , |I|

(iii) ŝk−1 +
∑

p∈{k,...,miu−1}\S x̂p = b
(n)
ir

Proof. Given (k, l, S, I), the hyperplane corresponding to (55) can be rewritten as

sk−1 +
∑

p∈{k,...,miu−1}\S

xp =

|I|∑
q=1

(
b
(n)
iq
− b(n)

iq−1

)
φniq(z) (58)

Let Γ = {(z, x, s) ∈ XMML : (58) holds} be the face of XMML defined by hyperplane (58), and
(ẑ, x̂, ŝ) ∈ XMML be a point which satisfies conditions (i) − (iii) hold for an r ∈ {0, 1, . . . , |I|}.
Now, by substituting (ẑ, x̂, ŝ) in the right-hand side of (58) and using conditions (i)-(ii), we get

r∑
q=1

(
b
(n)
iq
− b(n)

iq−1

)
φniq(ẑ) +

|I|∑
q=r+1

(
b
(n)
iq
− b(n)

iq−1

)
φniq(ẑ) =

r∑
q=1

(
b
(n)
iq
− b(n)

iq−1

)
= b

(n)
ir
.

Notice that by substituting (ẑ, x̂, ŝ) in the left-hand side of equation (58), we also get b
(n)
ir

because
of condition (iii). This shows that (ẑ, x̂, ŝ) ∈ Γ as it satisfies (58).

Theorem 6. For n ≥ 2, assuming that the n-step MIR conditions (52) hold, the n-mixed (k, l, S, I)
inequality (55) defines a facet for the convex hull of XMML if the following conditions hold for each
wr ∈ S: ⌈

b
(t−1)
wr

αt

⌉
>

⌈
b
(t−1)
wr−1

αt

⌉
, t = 1, . . . , n. (59)

Remark 4. Since inequality (55) is same as the mixed (k, l, S, I) inequality for n = 1, in this
theorem we only investigate the facet-defining properties of the n-mixed (k, l, S, I) inequality (55)
for n ≥ 2. Conditions (59) show that not all selections of (k, l, S, I) provide facet-defining n-mixed
(k, l, S, I) inequalities for the MMLS-WB.

Proof. Let Γ = {(z, x, s) ∈ XMML : (58) holds} be the face of XMML defined by hyperplane (58)
corresponding to the n-mixed (k, l, S, I) inequality (55). Assuming that Conditions (59) hold, we
prove that a generic hyperplane passing through Γ,

ν0s0 +

m∑
p=1

(
νpsp + µpxp +

n∑
t=1

λtpz
t
p

)
= η (60)

where (λ1
1, . . . , λ

1
m, . . . , λ

n
1 , . . . , λ

n
m, µ1, . . . , µm, ν0, ν1, . . . , νm, η) ∈ Rmn+2m+2, must be a scalar mul-

tiple of (58).
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First, we separately add equalities (50) from period i ∈ {1, . . . , k− 1} to period k− 1, and from
period k to period i ∈ {k, . . . ,m} to get

si−1 +

k−1∑
p=i

xp =

k−1∑
p=i

dp + sk−1, for i = 1, . . . , k − 1 (61)

sk−1 +

i∑
p=k

xp =

i∑
p=k

dp + si, for i = k, . . . ,m (62)

respectively. Since each point belonging to Γ satisfies (61) and (62), we eliminate variables s0, . . . , sk−2,
sk, . . ., sm−1, and sm from (60) by subtracting νi−1 times equality (61) for each i ∈ {1, . . . , k − 1}
from (60), and adding νi times equality (62) for each i ∈ {k, . . . ,m} to (60). This gives

λ0sk−1 +
m∑
p=1

λxpxp +
m∑
p=1

n∑
t=1

λtpz
t
p = θ (63)

where

θ = η +
k−1∑
i=1

νi−1

k−1∑
p=i

dp

− m∑
i=k

νi i∑
p=k

dp

 ,

λ0 = νk−1 +

k−1∑
i=1

νi−1 −
m∑
i=k

νi,

λxp = µp −
k−1∑
i=1

νi−1 for p = 1, . . . , k − 1,

λxp = µp +
m∑
i=k

νi for p = k, . . . ,m.

It is important to note that to have a point (ẑ, x̂, ŝ) = (ẑ1, . . . , ẑm, x̂1, . . . , x̂m, ŝ0, . . . , ŝm) ∈ Zmn+ ×
Rm+×Rm+1

+ ∈ XMML where ẑp = (ẑ1
p , . . . , ẑ

n
p ) for p = 1, . . . ,m, it is sufficient to know the value of ẑtp

and x̂p for t = 1, . . . , n and p = 1, . . . ,m, and ŝk−1 coordinates because the remaining coordinates
can be obtained using equalities (61) and (62). Therefore, in the rest of the proof, we will define a
point belonging to XMML by (ẑ, x̂, ŝk−1) = (ẑ1, . . . , ẑm, x̂1, . . . , x̂m, ŝk−1) ∈ Zmn+ × Rm+ × R+.

Next, assuming S := {w1, . . . , w|S|} where w1 = k, consider the point J = (ẑ, x̂, ŝk−1) =
(ẑ1, . . . , ẑm, x̂1, . . . , x̂m, ŝk−1) ∈ Zmn+ × Rm+ × R+ such that ŝk−1 = 0,

(ẑ1
p , ẑ

2
p , . . . , ẑ

n
p , x̂p) :=


(⌈

dp
α1

⌉
, 0, . . . , 0, dp

)
if p ∈ {1, . . . ,m}\{k, . . . , l},

(0, 0, . . . , 0, 0) if p ∈ {k, . . . , l}\S,

for p ∈ {1, . . . ,m}\S and for i ∈ {1, . . . , |S|},

(ẑ1
wi , ẑ

2
wi , . . . , ẑ

n
wi , x̂wi) :=

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, 0, . . . , 0, α1

⌈
bwi
α1

⌉
− α1

⌈
bwi−1

α1

⌉)
,
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where bw0 = 0. Recall that bwi =
∑mwi−1

p=k dp for wi ∈ S (by definition). It is easy to verify that

J ∈ XMML. Also, since for all wi ∈ I ⊆ S,

φnwi(ẑ) =
n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−
∑
p∈Swi

n∑
t=1

n∏
σ=t+1

⌈
b
(σ−1)
wi

ασ

⌉
ẑtp

=
n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−

n∏
σ=2

⌈
b
(σ−1)
wi

ασ

⌉ ∑
p∈Swi

ẑ1
p = 0,

the point J satisfies conditions (i) − (iii) of Lemma 2. Therefore, J ∈ Γ and hence must satisfy
(63). Substituting J into (63) gives∑

p∈{1,...,m}\{k,...,l}

(
λxpdp + λ1

p

⌈
dp
α1

⌉)

+

|S|∑
i=1

(
λxwiα1 + λ1

wi

)(⌈bwi
α1

⌉
−
⌈
bwi−1

α1

⌉)
= θ.

(64)

Using (64), hyperplane (63) reduces to

λ0sk−1 +
∑

p∈{1,...,m}\{k,...,l}

λxp(xp − dp) +
∑

p∈{1,...,m}\{k,...,l}

λ1
p

(
z1
p −

⌈
dp
α1

⌉)

+
∑

p∈{k,...,l}\S

(
λxpxp + λ1

pz
1
p

)
+

|S|∑
i=1

λxwi

(
xwi − α1

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉))

+
m∑
p=1

n∑
t=2

λtpz
t
p =

|S|∑
i=1

λ1
wi

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
− z1

wi

)
.

(65)

For each wr ∈ S, we consider the points Lwr = (ẑ, x̂, ŝk−1) ∈ Zmn+ × Rm+ × R+ such that each
coordinate of Lwr is same as the coordinates of the point J , except that

x̂wr = α1

(⌊
bwr
α1

⌋
−
⌈
bwr−1

α1

⌉)
+ b(1)

w ,

where b
(1)
w = maxi=1,2,...{b(1)

wi }. Under assumptions (59) for t = 1, it is easy to verify that Lwr ∈
XMML and satisfies conditions (i) − (iii) of Lemma 2. Therefore Lwr ∈ Γ and hence must satisfy
(63). Substituting Lwr into (65) gives

λxwr = 0 for wr ∈ S. (66)

Next, consider the pointsMr
1 for r ∈ {1, . . . , k−1}∪{l+1, . . . ,m},Mr

2 for r ∈ {1, . . . , k−2}∪{l+
1, . . . ,m− 1}, andM3 such that each coordinate ofMr

1,Mr
2, andM3 are same as the coordinates

of the point J , except that in Mr
1, ẑ1

r = ddp/α1e+ 1, in Mr
2,
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(ẑ1
p , x̂p) :=



⌈∑k−1
i=p di

α1

⌉
,
k−1∑
i=p

di

 if p ∈ {1, . . . , k − 1} ∩ {r},

⌈∑m
i=p di

α1

⌉
,

m∑
i=p

di

 if p ∈ {l + 1, . . . ,m} ∩ {r},

(0, 0) if p ∈ {1, . . . , k − 1, l + 1, . . . ,m}, p > r,

and in M3, x̂k−1 = 0 and ŝp = dk−1 for p = 0, . . . , k − 2. It is easy to verify that Mr
1 for

r ∈ {1, . . . , k−1}∪{l+ 1, . . . ,m},Mr
2 for r ∈ {1, . . . , k−2}∪{l+ 1, . . . ,m−1}, andM3 belong to

XMML and satisfy conditions (i)− (iii) of Lemma 2. Therefore Mr
1,Mr

2,M3 ∈ Γ and hence must
satisfy (63). Substituting Mr

1 into (65) gives

λ1
r = 0 for all r ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m}. (67)

Likewise, one by one substituting the points M1
2, . . . ,M

k−2
2 ,Ml+1

2 , . . . ,Mm−1
2 , and M3 into (65)

gives

λxr = 0 for all r ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m− 1}. (68)

For r ∈ {1, . . . , k − 2} ∪ {l + 1, . . . ,m − 1} and τ ∈ {2, . . . , n}, we consider point N r
t such that

coordinates of N r
τ are same as the coordinates of the point J , except that

(ẑ1
r , . . . , ẑ

τ−1
r , ẑτr , ẑ

τ+1
r , . . . , ẑnr ) :=

(⌊
dr
α1

⌋
, . . . ,

⌊
d

(τ−2)
r

ατ−1

⌋
,

⌈
d

(τ−1)
r

ατ

⌉
, 0, . . . , 0

)
.

Since
n∑
t=1

αtẑ
t
r =

τ∑
t=1

αt

⌊
d

(t−1)
r

αt

⌋
+ ατ = dr + ατ − d(t)

r ≥ dr

as αr > d
(t)
r , it is easy to verify that N r

t for r ∈ {1, . . . , k−2}∪{l+1, . . . ,m−1} and t ∈ {2, . . . , n}
belongs to XMML and satisfy conditions (i)− (iii) of Lemma 2. Therefore N r

t ∈ Γ and hence must
satisfy (63). Now, one by one substituting the points N r

2 , . . . ,N r
n into (65) and using (67) gives

λtr = 0 for all r ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m− 1}, t ∈ {2, . . . , n}. (69)

By definition of the n-mixed (k, l, S, I) inequality, we know that I := {i1, . . . , i|I|} ⊆ S such

that b
(n)
i0

= 0 < b
(n)
i1
≤ b

(n)
i2
≤ . . . ≤ b

(n)
i|I|

< α1, iu = max {i : i ∈ I}, and Si = S ∩ {k, . . . , i}.
For r ∈ {k, . . . , l}\Siu , we consider the points Or = (ẑ, x̂, ŝk−1) = (ẑ1, . . . , ẑm, x̂1, . . . , x̂m, ŝk−1) ∈
Zmn+ × Rm+ × R+ such that ŝk−1 = 0, ẑt1 = . . . = ẑtm = 0 for t = 2, . . . , n,

(ẑ1
p , x̂p) :=


(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m},
(0, 0) if p ∈ {k, . . . , l}\S and p 6= r,

(1, 0) if p ∈ {k, . . . , l}\S and p = r,

for p ∈ {1, . . . ,m}\S and

(ẑ1
wi , x̂wi) :=



(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, α1

⌈
bwi
α1

⌉
− α1

⌈
bwi−1

α1

⌉)
if wi ∈ S\{r},(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
+ 1, α1

⌈
bwi
α1

⌉
− α1

⌈
bwi−1

α1

⌉)
if wi ∈ S ∩ {r}
∩{miu , . . . , l},
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for i = 1, . . . , |S|. It is easy to verify that Or ∈ XMML and satisfies conditions (i)−(iii) of Lemma 2.
Therefore Or ∈ Γ and hence must satisfy (63). Substituting Or into (65) gives

λ1
r = 0 for all r ∈ {k, . . . , l}\Siu . (70)

For r ∈ {k, . . . , l}\Siu and t ∈ {2, . . . , n}, we also consider the point Ort = (ẑ, x̂, ŝk−1) = (ẑ1, . . . , ẑm,
x̂1, . . . , x̂m, ŝk−1) ∈ Zmn+ ×Rm+ ×R+ whose coordinates are same as the coordinates of the point J ,
except that

(ẑ2
r , . . . , ẑ

t−1
r , ẑtr, ẑ

t+1
r , . . . , ẑnr ) := (0, . . . , 0, 1, 0, . . . , 0).

It is easy to verify that Ort ∈ XMML and satisfies conditions (i) − (iii) of Lemma 2. Therefore
Ort ∈ Γ and hence must satisfy (63). Substituting Ort into (65) and using (70) gives

λtr = 0 for all r ∈ {k, . . . , l}\Siu and t ∈ {2, . . . , n}. (71)

Using (66), (67), (68), (69), (70), and (71), (65) reduces to

λ0sk−1 +
∑

p∈{k,...,l,m}\S

λxpxp

=
∑

wi∈Siu

λ1
wi

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
− z1

wi

)
−
∑

wi∈Siu

n∑
t=2

λtwiz
t
wi . (72)

Now, consider the points Pr = (ẑ, x̂, ŝk−1) = (ẑ1, . . . , ẑm, x̂1, . . . , x̂m, ŝk−1) ∈ Zmn+ ×Rm+ ×R+ for
r ∈ {miu , . . . , l,m} where miu ≤ l ≤ m such that ŝk−1 = 0, ẑt1 = . . . = ẑtm = 0 for t = 2, . . . , n,

(ẑ1
p , x̂p) :=


(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m}\{r},
(ddp/α1e+ 1, dp + α1) if p ∈ {r} ∩ {m} and m 6= l,

(0, 0) if p ∈ {k, . . . , l}\(S ∪ {r}),
(1, 1) if p ∈ {r} ∩ ({miu , . . . , l}\S),

for p ∈ {1, . . . ,m}\S and

(ẑ1
wi , x̂wi) :=


(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, α1z

1
wi

)
, if wi ∈ S\{r}(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
+ 1, α1z

1
wi

)
, if wi ∈ {r} ∩ {miu , . . . , l} ∩ S.

for i ∈ {1, . . . , |S|}. It is easy to verify that Pr ∈ XMML and satisfies conditions (i) − (iii) of
Lemma 2. Therefore Pr ∈ Γ and hence must satisfy (63). Substituting Pr into (65) gives

λxr = 0 for all r ∈ {miu , . . . , l} ∪ {m}. (73)

Using (73), (72) reduces to

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp

=
∑

wi∈Siu

λ1
wi

(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
− z1

wi

)
−
∑

wi∈Siu

n∑
t=2

λtwiz
t
wi . (74)
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Similar to the proof of Theorem 4, let Ia := {ia1 , . . . , ia|I|} be a set which has same elements as
in the set I, except that ia1 < ia2 < . . . < ia|I| . In other words, set Ia is same as the set I, the only
difference is that the elements of Ia are arranged in the increasing order of time periods. Now, for
each iaζ ∈ I where ζ ∈ {1, . . . , |I|} and r ∈ Siaζ \(Siaζ−1

∪ {iaζ}) where Sia0
= ∅, we consider the

points Qr,aζ = (ẑ, x̂, ŝk−1) = (ẑ1, . . . , ẑm, x̂1, . . . , x̂m, ŝk−1) ∈ Zmn+ × Rm+ × R+ such that ŝk−1 = 0,
ẑtp = 0 for p = 1, . . . ,m, and t = 2, . . . , n,

(ẑ1
p , x̂p) :=

{
(ddp/α1e , dp) if p ∈ {1, . . . , k − 1} ∪ {l + 1, . . . ,m},
(0, 0) if p ∈ {k, . . . , l}\S,

for p ∈ {1, . . . ,m}\S and

(ẑ1
wi , x̂wi) :=



(⌈
bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
, α1z

1
wi

)
if wi ∈ S\{r, iaζ},(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
+ 1, α1z

1
wi

)
if wi = r,(⌈

bwi
α1

⌉
−
⌈
bwi−1

α1

⌉
− 1, α1z

1
wi

)
if wi = iaζ ,

for i = 1, . . . , |S|. Since dbwi/α1e >
⌈
bwi−1/α1

⌉
for wi = iaζ ∈ I ⊆ S (Condition (59)), it is easy to

verify that Qr,aζ ∈ XMML. Also, this point satisfies conditions (i) − (iii) of Lemma 2 because for
all iaζ ∈ I,

φniaζ
(ẑ) =

n∏
σ=1


b
(σ−1)
iaζ

ασ

−
∑

p∈Siaζ

n∑
t=1

n∏
σ=t+1


b
(σ−1)
iaζ

ασ

 ẑtp
=

n∏
σ=1


b
(σ−1)
iaζ

ασ

−
n∏
σ=2


b
(σ−1)
iaζ

ασ


∑

p∈Siaζ

ẑ1
p

=
n∏
σ=1


b
(σ−1)
iaζ

ασ

−
n∏
σ=2


b
(σ−1)
iaζ

ασ


⌈
biaζ
α1

⌉
= 0.

Therefore Qr,aζ ∈ Γ and hence must satisfy (63). By substituting the points Qr,aζ , for iaζ ∈ I

where ζ ∈ {1, . . . , |I|} and r ∈
(
Siaζ \(Siaζ−1

∪ {iaζ})
)

, into (74), we get

λ1
r = λ1

iaζ
for iaζ ∈ I, r ∈ Siaζ \(Siaζ−1

∪ {iaq}). (75)

Next, we consider a point Jτ = (ẑ, x̂, ŝk−1) = (ẑ1, . . . , ẑm, x̂1, . . . , x̂m, ŝk−1) ∈ Zmn+ × Rm+ × R+

for τ ∈ {2, . . . , n}, such that ŝk−1 = 0,

(ẑ1
p , ẑ

2
p , . . . , ẑ

n
p , x̂p) :=


(⌈

dp
α1

⌉
, 0, . . . , 0, dp

)
if p ∈ {1, . . . ,m}\{k, . . . , l},

(0, 0, . . . , 0, 0) if p ∈ {k, . . . , l}\S,
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for p ∈ {1, . . . ,m}\S and for i ∈ {1, . . . , |S|}, x̂wi :=
∑τ

t=1 αtẑ
t
wi where

ẑtwi :=



⌊
b
(t−1)
wi

αt

⌋
−

⌊
b
(t−1)
wi−1

αt

⌋
if t ∈ {1, . . . , τ − 1}⌈

b
(t−1)
wi

αt

⌉
−

⌈
b
(t−1)
wi−1

αt

⌉
if t = τ

0 if t ∈ {τ + 1, . . . , n},

for t = 1, . . . , n. Recall that bw0 = 0 and bwi =
∑mwi−1

j=k dj for wi ∈ S (by definition). Under

assumptions (59), it is easy to verify that Jτ ∈ XMML because for each wi ∈ S,

∑
p∈Swi

x̂p =
τ∑
t=1

∑
p∈Swi

αtẑ
t
p =

τ∑
t=1

αt

⌊
b
(t−1)
wi

αt

⌋
+ ατ = bwi − b(τ)

wi + ατ ≥ bwi .

Also, since for all iq ∈ I and τ ∈ {2, . . . , n},

φniq(ẑ) =
n∏
σ=1

b
(σ−1)
iq

ασ

−
τ∑
t=1

n∏
σ=t+1

b
(σ−1)
iq

ασ


∑
p∈Siq

ẑtp

=
n∏
σ=1

b
(σ−1)
iq

ασ

−
τ−1∑
t=1

n∏
σ=t+1

b
(σ−1)
iq

ασ


b(t−1)

iq

αt

− n∏
σ=τ+1

b
(σ−1)
iq

ασ


b

(τ−1)
iq

ατ


=

n∏
σ=1

b
(σ−1)
iq

ασ

−
τ−1∑
t=1

 n∏
σ=t

b
(σ−1)
iq

ασ

−
n∏

σ=t+1

b
(σ−1)
iq

ασ


− n∏

σ=τ

b
(σ−1)
iq

ασ


= 0,

the point Jτ satisfies conditions (i)− (iii) of Lemma 2. Therefore, Jτ ∈ Γ and hence must satisfy
(63).

Again, for each iaζ ∈ I where ζ ∈ {1, . . . , |I|}, r ∈ Siaζ \(Siaζ−1
∪ {iaζ}) where Sia0

= ∅,
and τ ∈ {2, . . . , n}, we consider the point Qr,aζτ = (ẑ, x̂, ŝk−1) = (z1, . . . , zm, x1, . . . , xm, sk−1) ∈
Zmn+ × Rm+ × R+ whose coordinates are same as the coordinates of point Jτ , except that

(ẑτwi , x̂wi) :=



(⌈
b
(τ−1)
wi

ατ

⌉
−

⌈
b
(τ−1)
wi−1

ατ

⌉
+ 1,

τ∑
t=1

αtz
t
wi

)
for wi = r,(⌈

b
(τ−1)
wi

ατ

⌉
−

⌈
b
(τ−1)
wi−1

ατ

⌉
− 1,

τ∑
t=1

αtz
t
wi

)
for wi = iaζ .

Since

⌈
b
(τ−1)
wi
ατ

⌉
>

⌈
b
(τ−1)
wi−1

ατ

⌉
for wi = iaζ ∈ I ⊆ S (Condition (59) for t = τ), it is easy to verify

that Qr,aζτ ∈ XMML and satisfies conditions (i) − (iii) of Lemma 2. Therefore Qr,aζτ ∈ Γ and
hence must satisfy (63). By substituting the points Qr,aζτ , for iaζ ∈ I where ζ ∈ {1, . . . , |I|},
r ∈ Siaζ \

(
Siaζ−1

∪ {iaζ}
)

, and τ ∈ {2, . . . , n}, into (74), we get

λτr = λτiaζ
for iaζ ∈ I, r ∈ Siaζ \(Siaζ−1

∪ {iaq}), and τ = 2, . . . , n. (76)
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Using (75) and (76), Equation (74) reduces to

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp =

|I|∑
ζ=1

n∑
t=2

λtiaζ

 ∑
p∈Siaζ−1

ztp −
∑

p∈Siaζ

ztp


+

|I|∑
ζ=1

λ1
iaζ

⌈biaζ
α1

⌉
−
∑

p∈Siaζ

z1
p −

⌈
biaζ−1

α1

⌉
+

∑
p∈Siaζ−1

z1
p

 ,

(77)

where bia0
= 0 and Sia0

= ∅. By rearranging the right-hand side of (77), we get

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp = −
|I|−1∑
ζ=1

n∑
t=2

(
λtiaζ
− λtiaζ+1

) ∑
p∈Siaζ

ztp


+

|I|−1∑
ζ=1

(
λ1
iaζ
− λ1

iaζ+1

)⌈biaζ
α1

⌉
−
∑

p∈Siaζ

z1
p


+ λ1

ia|I|

⌈bia|I|
α1

⌉
−

∑
p∈Sia|I|

z1
p

− n∑
t=2

λtia|I|

 ∑
p∈Sia|I|

ztp

 .

(78)

Furthermore, Equation (78) can also be simplified to

λ0sk−1 +
∑

p∈{k,...,miu−1}\S

λxpxp

=

|I|∑
q=1

γ1
iq

⌈biq
α1

⌉
−
∑
p∈Siq

z1
p

− n∑
t=2

γtiq

∑
p∈Siq

ztp

 (79)

where for q = 1, . . . , |I| and t = 1, . . . , n, γtiq = λtiq −λ
t
iaζ+1

such that aζ = q for ζ ∈ {1, . . . , |I|} and

λta|I|+1
= 0. We substitute the point Jn in (79) to get

|I|∑
q=1

γ1
iq −

n−1∑
t=2

γtiq

b(t−1)
iq

αt

− γniq
b

(t−1)
iq

αt


 = 0. (80)

Subtracting (80) from (79) gives

λ0sk−1 +

miu−1∑
p=k
p/∈S

λxpxp =

|I|∑
q=1

 n∑
t=1

γtiq

b(t−1)
iq

αt

− ∑
p∈Siq

ztp

+ γniq

 . (81)

Next, for ir ∈ I, we consider the point Rr = (ẑ, x̂, ŝk−1) ∈ Zmn+ ×Rm+×R+, such that ŝk−1 = b
(n)
ir

,

(ẑ1
p , ẑ

2
p , . . . , ẑ

n
p , x̂p) :=

{
(ddp/α1e , 0, . . . , 0, dp) if p ∈ {1, . . . ,m}\{k, . . . , l},
(0, 0, . . . , 0, 0) if p ∈ {k, . . . , l}\S,
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for p ∈ {1, . . . ,m}\S, and for i ∈ {1, . . . , |S|},

(ẑwi , x̂wi) :=

(
χwi − χwi−1 ,

n∑
t=1

αtẑ
t
wi

)

where χw0 = (0, . . . , 0) ∈ Rn and

(χ1
wi , . . . , χ

n
wi) =



(⌊
bwi
α1

⌋
, . . . ,

⌊
b
(n−2)
wi

αn−1

⌋
,

⌈
b
(n−1)
wi

αn

⌉)
if wi ∈ S\I,(⌊

bwi
α1

⌋
, . . . ,

⌊
b
(n−2)
wi

αn−1

⌋
,

⌊
b
(n−1)
wi

αn

⌋)
if wi ∈ {i1, . . . , ir},(⌊

bwi
α1

⌋
, . . . ,

⌊
b
(n−2)
wi

αn−1

⌋
,

⌈
b
(n−1)
wi

αn

⌉)
if wi ∈ {ir+1, . . . , i|I|}.

This implies that
∑

p∈Swi
ẑp = χwi . Because of Conditions (59),

ẑtwi = χtwi − χ
t
wi−1

≥ 0 for i = 1, . . . , |S| and t = 1, . . . , n.

Now, it is easy to verify that Rr ∈ XMML and satisfies conditions (i) − (iii) of Lemma 1 because
for wi ∈ {i1, . . . , ir},

φnwi(ẑ) =
n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−

n∑
t=1

n∏
σ=t+1

⌈
b
(σ−1)
wi

ασ

⌉ ∑
p∈Swi

ẑtp

=
n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−
n−1∑
t=1

n∏
σ=t+1

⌈
b
(σ−1)
wi

ασ

⌉⌊
b
(t−1)
wi

αt

⌋
−

⌊
b
(n−1)
wi

αn

⌋

=
n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−
n−1∑
t=1

(
n∏
σ=t

⌈
b
(σ−1)
wi

ασ

⌉
−

n∏
σ=t+1

⌈
b
(σ−1)
wi

ασ

⌉)

−

⌈
b
(n−1)
wi

αn

⌉
+ 1 = 1,

and for wi ∈ {ir+1, . . . , i|I|},

φnwi(ẑ) =

n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−

n∑
t=1

n∏
σ=t+1

⌈
b
(σ−1)
wi

ασ

⌉ ∑
p∈Swi

ẑtp

=

n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−
n−1∑
t=1

n∏
σ=t+1

⌈
b
(σ−1)
wi

ασ

⌉⌊
b
(t−1)
wi

αt

⌋
−

⌈
b
(n−1)
wi

αn

⌉

=
n∏
σ=1

⌈
b
(σ−1)
wi

ασ

⌉
−
n−1∑
t=1

(
n∏
σ=t

⌈
b
(σ−1)
wi

ασ

⌉
−

n∏
σ=t+1

⌈
b
(σ−1)
wi

ασ

⌉)
−

⌈
b
(n−1)
wi

αn

⌉
= 0,

Therefore Rr ∈ Γ and hence must satisfy (63). One by one we substitute R1, R2, . . . ,R|I| into (81)
and get
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γni1 = λ0b
(n)
i1
,

γni2 = λ0b
(n)
i2
− γni1 = λ0

(
b
(n)
i2
− b(n)

i1

)
,

...

γni|I| = λ0b
(n)
i|I|
−
|I|−1∑
q=1

γniq = λ0

(
b
(n)
i|I|
− b(n)

i|I|−1

)
.

This implies that for q ∈ {1, . . . , |I|},

γniq = λ0

(
b
(n)
iq
− b(n)

iq−1

)
, (82)

where b
(n)
i0

= 0. For r ∈ {k, . . . ,miu − 1}\S, consider the points Sr whose coordinates are same as

the coordinates of Ru, where iu = max{iq ∈ I}, except that ŝk−1 = 0 and (ẑ1
r , x̂r) = (1, b

(n)
iu

). By
substituting the points Sr into the (81) and subtracting from equality corresponding to Ru, we get

λxr = λ0 for r ∈ {k, . . . ,miu − 1}\S. (83)

For iaζ ∈ I where ζ ∈ {1, . . . , |I|} and τ ∈ {1, . . . , n − 1}, we consider the point T ζ,τ such that
sk−1 = 0,

(ẑ1
p , ẑ

2
p , . . . , ẑ

n
p , x̂p) :=

{
(ddp/α1e , 0, . . . , 0, dp) if p ∈ {1, . . . ,m}\{k, . . . , l},
(0, 0, . . . , 0, 0) if p ∈ {k, . . . , l}\S,

for p ∈ {1, . . . ,m}\S, and for i ∈ {1, . . . , |S|},

(ẑwi , x̂wi) :=

(
∆wi −∆wi−1 ,

n∑
t=1

αtẑ
t
wi

)

where ∆wi ∈ Rn+ such that ∆w0 = (0, . . . , 0) and

∆wi =



(⌈
bwi
α1

⌉
, 0, . . . , 0

)
if wi ∈ {w1, . . . , iaζ − 1},(⌊

bwi
α1

⌋
, . . . ,

⌊
b
(τ−2)
wi

ατ−1

⌋
,

⌈
b
(τ−1)
wi

ατ

⌉
, 0, . . . , 0

)
if wi ∈ {iaζ},(⌊

bwi
α1

⌋
, . . . ,

⌊
b
(n−2)
wi

αn−1

⌋
,

⌈
b
(n−1)
wi

αn

⌉)
if wi ∈ {iaζ + 1, . . . , w|S|}.

Observe that
∑

p∈Swi
ẑp = ∆wi and because of assumptions (59), ẑwi = ∆wi − ∆wi−1 ≥ 0 for

all wi ∈ S. Also, since
∑

p∈Swi
x̂p ≥ bwi , it is easy to verify that T ζ,τ ∈ XMML and it satisfies

conditions (i)− (iii) of Lemma 1 because for all wi ∈ I, φnwi(ẑ) = 0. Therefore, T ζ,τ ∈ Γ and hence

must satisfy (63). One by one we substitute T 1,n−1, . . . , T 1,1, . . . , T |I|,n−1, . . . , T |I|,1 into (81) and
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get

γn−1
iaζ

= γniaζ


b
(n−1)
ia1

αn

 ,
γn−2
iaζ

= γn−1
iaζ

b(n−2)
iaζ

αn−1

+ γniaζ


b
(n−1)
ia1

αn

 =

 n∏
σ=n−1


b
(σ−1)
iaζ

ασ


 γniaζ

,

...

γ1
iaζ

=

 n∏
σ=2


b
(σ−1)
iaζ

ασ


 γniaζ

,

for ζ = 1, . . . , |I|. This implies for τ = 1, . . . , n− 1,

γτiaζ
=

 n∏
σ=τ+1


b
(σ−1)
iaζ

ασ


 γniaζ

, (84)

Substituting (82), (83), and (84) into Equation (81) gives

λ0sk−1 +

miu−1∑
p=k
p/∈S

λ0xp =

|I|∑
q=1

λ0

(
b
(n)
iq
− b(n)

iq−1

)
φniq(z) (85)

where

φniq(z) :=
n∏
σ=1

b
(σ−1)
iq

ασ

−
∑
p∈Siq

n∑
t=1

n∏
σ=t+1

b
(σ−1)
iq

ασ

 ztp.
The identity (85) is λ0 times (58). Hence Γ defines a facet for conv(XMML) if conditions (59) hold.
This completes the proof.

5. Conclusion and Future Work

We provided sufficient conditions under which the (k, l, S, I) inequalities of Pochet and Wolsey [19],
the mixed (k, l, S, I) inequalities, derived using mixing procedure of Günlük and Pochet [15], and
the paired (k, l, S, I) inequalities, derived using sequential pairing procedure of Guan et al. [12],
are facet-defining for the single module (or constant batch) capacitated lot-sizing problem without
backlogging (SMLS-WB). We also investigated the facet-defining properties of the inequalities de-
rived using the sequential pairing and the n-mixing procedure of Sanjeevi and Kianfar [23] for the
multi-module capacitated lot-sizing problem without backlogging.

One potential extension would be to provide necessary conditions under which the mixed (k, l, S, I)
inequalities for SMLS-WB problem are facet-defining. In order to proceed in this direction, the
following example can be helpful as it showcases that in case the given k, l, S, and I do not satisfy
the sufficient condition (23) then the associated mixed (k, l, S, I) inequality is dominated by another
facet-defining inequality which satisfies the condition (23).
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Example 1 (continued). Next, we consider k = 2, l = 6, and S = {2, 4, 5, 6}. Therefore, S2 = {2},
S4 = {2, 4}, S5 = {2, 4, 5}, S6 = {2, 4, 5, 6}, m2 = 4, m4 = 5, m5 = 5, m6 = 7, b2 = 4, b4 = 27,

b5 = 28, b6 = 36, b
(1)
2 = 4, b

(1)
4 = 3, b

(1)
5 = 4, and b

(1)
6 = 1. Notice that b

(1)
0 = 0 < b

(1)
6 <

b
(1)
4 < b

(1)
2 = b

(1)
5 and more importantly, db4/α1e = db5/α1e = 6. The mixed (2, 6, {2, 4, 5, 6}, {5, 2})

inequality where iu = 5,

s1 + x3 ≥ b(1)
5

(⌈
b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
2 − b

(1)
5

)(⌈ b2
α1

⌉
− z1

2

)
= 24− 4z1

2 − 4z1
4 − 4z1

5 ,

does not satisfy the conditions (23) because for i = 5, there exist a j = 4 such that j ∈ S, j < i,
dbj/α1e = dbi/α1e, and j /∈ I. In addition, the facet-defining mixed (2, 6, {2, 4, 5, 6}, {4, 5, 2})
inequality where iu = 5,

s1 + x3 ≥ b(1)
4

(⌈
b4
α1

⌉
− z1

2 − z1
4

)
+
(
b
(1)
5 − b

(1)
4

)(⌈ b5
α1

⌉
− z1

2 − z1
4 − z1

5

)
+
(
b
(1)
2 − b

(1)
5

)(⌈ b2
α1

⌉
− z1

2

)
= 3(6− z1

2 − z1
4) + (6− z1

2 − z1
4 − z1

5) = 24− 4z1
2 − 4z1

4 − z1
5 ,

dominates the the mixed (2, 6, {2, 4, 5, 6}, {5, 2}) inequality because 24− 4z1
2 − 4z1

4 − z1
5 > 24− 4z1

2 −
4z1

4 − 4z1
5 as z1

5 ∈ Z+.

Another future direction would be to perform computational study on the performance of the
n-mixed (k, l, S, I) inequalities for n ≥ 1, which are at least as strong as the inequalities derived
using the sequential pairing cut-generation procedure, for solving SMLS-(W)B, MMLS-(W)B, and
their two-stage stochastic or distributionally robust optimization variants [4, 3, 8] by using them
within Benders’ decomposition or distributionally robust L-shaped algorithms [3]. Since there are
exponential number of the foregoing inequalities, it would be useful to utilize efficient separation
algorithms associated with them. Also, for n ≥ 2, these experiments will involve consideration of
various strategies in selecting parameters (α1, . . . , αn) for separation algorithms for these inequal-
ities; for an example, readers can refer to [2, 6] in which 2-step (k, l, S, C) cycle inequalities have
been utilized for solving two-module capacitated lot-sizing problem with and without backlogging.
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