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Abstract. In this paper, we introduce and study a two-stage distributionally robust mixed bi-
nary problem (TSDR-MBP) where the random parameters follow the worst-case distribution belong-
ing to an uncertainty set of probability distributions. We present a decomposition algorithm, which
utilizes distribution separation procedure and parametric cuts within Benders’ algorithm or L-shaped
method, to solve TSDR-MBPs with binary variables in the first stage and mixed binary programs
in the second stage. We refer to this algorithm as distributionally robust integer (DRI) L-shaped
algorithm. Using similar decomposition framework, we provide another algorithm to solve TSDR
linear problem where both stages have only continuous variables. We investigate conditions and the
families of ambiguity set for which our algorithms are finitely convergent. We present two examples
of ambiguity set, defined using moment matching or Kantorovich-Rubinstein distance (Wasserstein
metric), which satisfy the foregoing conditions. We also present a cutting surface algorithm to solve
TSDR-MBPs. We computationally evaluate the performance of the DRI L-shaped algorithm and
the cutting surface algorithm in solving distributionally robust versions of a few instances from the
Stochastic Integer Programming Library, in particular stochastic server location and stochastic mul-
tiple binary knapsack problem instances. We also discuss the usefulness of incorporating partial
distribution information in two-stage stochastic optimization problems.
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1. Introduction. Stochastic programming and robust optimization are well es-
tablished optimization models used for making decisions under parametric uncer-
tainty. In stochastic programs, it is assumed that the uncertain parameters follow
a specified probability distribution and an objective function is specified by taking
expectation over these parameters. On the other hand, robust optimization handles
the uncertainty by solving a minimax problem, where the max is taken over a set
of possible values of uncertain parameters. These two competing ideas in decision
making under uncertainty can be unified in the framework of distributionally robust
optimization (DRO). In DRO we seek a solution that optimizes the expected value of
the objective function for the worst case probability distribution within a prescribed
(ambiguity) set of distributions that may be followed by the uncertain parameters.
Note that in DRO, the exact distribution followed by the uncertain parameters is
unknown.

In this paper, we consider a unification of DRO with two-stage stochastic mixed
binary programs (TSS-MBPs), thereby leading to a two-stage distributionally robust
optimization (TSDRO) framework with binary variables in both stages. More specif-
ically, we study the following two-stage distributionally robust mixed binary program
(TSDR-MBP):

min

{
cTx+ max

P∈P
EξP [Qω(x)]

∣∣∣∣Ax ≥ b, x ∈ {0, 1}p}.(1)
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where ξP is a random vector defined by probability distribution P with support Ω
and for any scenario ω of Ω,

Qω(x) := min gTω yω(2a)

s.t. Wωyω ≥ rω − Tωx(2b)

yω ∈ {0, 1}q1 × Rq−q1 .(2c)

We refer to the set of distributions P as the ambiguity set. In (1), the parameters
c ∈ Qp, A ∈ Qm1×p, b ∈ Qm1 , and for each ω ∈ Ω, gω ∈ Qq, recourse matrix
Wω ∈ Qm2×q, technology matrix Tω ∈ Qm2×p, and rω ∈ Qm2 . The formulation
defined by (2) and the function Qω(x) are referred to as the second-stage subproblem
and recourse function, respectively.

We assume that

1. X := {x : Ax ≥ b, x ∈ {0, 1}p} is non-empty,
2. Kω(x) := {yω : (2b)-(2c) hold} is non-empty for all x ∈ X and ω ∈ Ω

(relatively complete recourse),
3. Each probability distribution P ∈ P has finite support Ω, i.e. |Ω| is finite.

Without loss of generality, we also assume that all elements of the following vectors or
matrices are integer valued (which can be obtained by multiplying these parameters
with appropriate multipliers): c, A, b, and for ω ∈ Ω, gω, Wω, Tω, and rω. Further-
more, we assume that there exists an oracle that provides a probability distribution
P ∈ P, i.e., {pω}ω∈Ω where pω is the probability of occurrence of scenario ω ∈ Ω, by
solving the optimization problem:

Q(x) := max
P∈P

EξP [Qω(x)](3)

for a given x ∈ X. We refer to this optimization problem as distribution separation
problem corresponding to an ambiguity set, and the algorithm to solve this problem
is referred to as the distribution separation algorithm. In Section 1.7, we provide
two examples of ambiguity set and the distribution separation problems associated to
them. To the best of our knowledge, TSDR-MBPs have not been studied before.

1.1. Contributions of this paper. We present a decomposition algorithm,
which utilizes distribution separation procedure and parametric cuts within Benders’
algorithm [10], to solve TSDR-MBPs. We refer to this algorithm as distributionally
robust integer (DRI) L-shaped algorithm because it generalizes the well-known integer
L-shaped algorithm [27] developed for a special case of TSDR-MBP where P is single-
ton. Using similar decomposition framework, we develop a decomposition algorithm
for two-stage distributionally robust linear program, i.e. TSDR-MIP with no binary
restrictions on both first and second stage variables. Moreover, we provide conditions
and the families of ambiguity set P for which our algorithms are finitely convergent.
Furthermore, we present a cutting surface algorithm to solve TSDR-MBPs and com-
putationally evaluate the performance of DRI L-shaped algorithm and the cutting
surface algorithm in solving DR versions of stochastic server location problem and
stochastic multiple binary knapsack problem instances from Stochastic Integer Pro-
gramming Library (SIPLIB) [1], and stochastic server location problem with random
recourse [31]. We observe that our DRI L-shaped algorithm solves all these problem
instances to optimality in less than an hour. It is important to note that the TSDR-
MBP generalizes various classes of optimization problems studied in literature. Below
are few of them:
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– Two-Stage Stochastic Mixed Binary Program (TSS-MBP): TSDR-MBP (1)
with a singleton P = {P0} defines TSS-MBP [21, 27, 40].

– Two-Stage Robust Mixed Binary Program(TSR-MBP): TSDR-MBP (1) with
a set P that consists of all probability distributions supported on Ω is equiv-
alent to TSR-MBP.

– Distributionally Robust Optimization (DRO): In literature, the general DRO
problem [17, 29, 36, 38, 39] is defined as follows:

(4) min
x∈X̄

max
P∈P

EξP [Hω(x)]

where Hω is a random cost or disutility function corresponding to scenario ω.
Assuming that X̄ = X and Hω is defined by a mixed binary program, Prob-
lem (4) is a special case of TSDR-MBP (i.e., Problem (1)) where c is a vector
of zeros.

– Two-Stage Distributionally Robust Linear Program (TSDR-LP): The TSDR-
LP [11, 22, 28] is a relaxation of TSDR-MBP where the both stages have only
continuous variables.

Note that the TSDR-MBP is at least as hard as the TSS-MBP (a special case
of TSDR-MBP) which is an #P-hard problem [19]. The remaining section provides
significance of TSDRO framework (Section 1.2), literature review of TSS-MBP, DRO
framework and TSDR-LP, and ambiguity sets (Section 1.3, 1.4, and 1.5, respectively),
and organization of this paper (Section 1.6).

1.2. Significance of TSDRO framework. The ability to allow incomplete
information on the probability distribution is a major advantage of the TSDRO ap-
proach to model formulation. In a two-stage decision framework where future predic-
tions are generated using a data driven approach, no assumptions on the knowledge
of prediction error distribution is required. The prediction errors can be empirically
generated, and the TSDRO framework can be used to robustify around the empirical
error distribution. Alternatively, when the uncertain parameters in the model are
specified by uncertainty quantification (UQ) techniques, this framework allows one to
model errors in UQ without requiring the errors to follow a specified (e.g., normal)
distribution. In addition, TSDRO framework provides decision sensitivity analysis
with respect to the reference probability distribution.

One can also view the TSDR-MBP not only as a common generalization of TSR-
MBP and TSS-MBP, but also as an optimization model with an adjustable level of
risk-aversion. To see this, consider a nested sequence of sets of probability distribu-
tions P0 ⊇ P1 ⊇ · · · , where P0 is the set of all probability distributions supported on

Ω, and P∞
def
= ∩∞i=0Pi is a singleton set. In the corresponding sequence of problems

(1), the first one (P = P0) is the TSR-MBP, which is the most conservative (risk-
averse) of all, and the last one is the TSS-MBP, where the optimization is against
a fixed distribution. At the intermediate levels the models correspond to decreasing
levels of risk-aversion.

Remark 1. For the sake of reader’s convenience, below we list the abbreviations
used in this paper:

– TSS: Two-stage stochastic
– TSR: Two-stage robust
– TSDR: Two-stage distributionally robust
– MBP: Mixed binary program
– LP: Linear program
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– MIP: Mixed integer program
– DRO: Distributionally robust optimization
– DRI: Distributionally robust integer
– SSLP: Stochastic server location problem
– SMKP: Stochastic multiple binary knapsack problem
– SSLPR: SSLP with random recourse
– SIPLIB: Stochastic Integer Programming Library

1.3. Literature review of TSS-MBPs. Laporte and Louveaux [27] provide
the integer L-shaped algorithm for TSS-MBP by assuming that the second stage
problems are solved to optimality at each iteration. Sherali and Fraticelli [40] consider
single scenario TSS-MBPs, i.e. Ω := {ω1}. They develop globally valid cuts in (x, yω1

)
space using the reformulation-linearization technique. These cuts are then used while
solving the second stage mixed binary programs for a given x ∈ X and hence the cuts
in yω space are referred to as the “parametric” cuts. Likewise, Gade et. al. [21] utilize
the parametric Gomory fractional cuts within Benders’ decomposition algorithm for
solving TSS-MIPs with only binary variables in the first stage and non-negative integer
variables in the second stage. To solve TSS-MBPs, different forms of parametric cuts
have been used in literature; for instance see [15, 21, 31, 37]. Readers can refer
to [26] for a comprehensive survey on algorithms for TSS-MBPs and to [13, 42] for
algorithms for TSS-LPs which utilize bounds on expectation of the recourse function
[8, 24]. Note that in the aforementioned papers, the parametric cuts are added in
succession. In contrast, Bansal et al. [4] provide conditions under which the second
stage mixed integer programs of two-stage stochastic mixed integer program (TSS-
MIP) can be convexified by adding parametric inequalities a priori. They provide
examples of TSS-MIPs which satisfy these conditions by considering parametrized
versions of some structured mixed integer set such as special cases of continuous
multi-mixing set [5, 6], and convex objective integer programs in the second stage.

1.4. Literature review of DRO framework and TSDR-LPs. Scarf [36]
introduced the concept of DRO by considering a news vendor problem. Thereafter,
this framework has been used to model varieties of problems [9, 18, 20, 33]. On
algorithmic front for solving DRO problems, Shapiro and Kleywegt [39] and Shapiro
and Ahmed [38] provide approaches to derive an equivalent stochastic program with
a certain distribution. Delage and Ye [17] give general conditions for polynomial time
solvability of DRO where the ambiguity set is defined by setting constraints on first
and second moments. Using ellipsoidal method, they [17] also show that under certain
conditions on the disutility functions Hω and the ambiguity set P, Problem (4) is
solvable in polynomial time. Mehrotra and Zhang [30] extend this result by providing
polynomial time methods for distributionally robust least squares problems, using
semidefinite programming. Mehrotra and Papp [29] develop a central cutting surface
algorithm for Problem (4) where the ambiguity set is defined using constraints on
first to fourth moments. Recently, Postek et al. [34] study the DRO problem where
the ambiguity set is defined using mean-dispersion measures and utilize the results
of Ben-Tal and Hochman [8], i.e. bounds on expectation of a convex function of a
random variable, to derive algorithms for variants of the DRO problem.

Lately researchers have been considering two-stage stochastic linear programs
with ambiguity sets, in particular TSDR-LP [11, 28, 22]. More specifically, Bertsimas
et al. [11] consider TSDR-LP where the ambiguity set is defined using multivariate
distributions with known first and second moments and risk is incorporated in the
model using a convex nondecreasing piecewise linear function on the second stage
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costs. They show that the corresponding problem has semidefinite programming
reformulations. Jiang and Guan [25] present sample average approximation algorithm
to solve a special case of TSDR-MBP with binary variables only in the first stage where
the ambiguity set is defined using l1-norm on the space of all (continuous and discrete)
probability distributions. Recently, Love and Bayraksan [28] develop a decomposition
algorithm for solving TSDR-LP where the ambiguity set is defined using φ-divergence.
Whereas Hanasusanto and Kuhn [22] provide a conic programming reformulations for
TSDR-LP where the ambiguity set comprises of a 2-Wasserstein ball centered at a
discrete distribution. As per our knowledge, no work has been done to solve TSDR-
LP with binary variables in both stages, i.e. TSDR-MBP. In this paper, we develop
new decomposition algorithms for TSDR-LP and TSDR-MBP with a general family
of ambiguity sets, and provide conditions and families of ambiguity sets for which
these algorithms are finitely convergent.

1.5. Literature review of ambiguity sets. Though in this paper we consider
a general family of ambiguity sets, in literature there exists different ways to construct
the ambiguity set of distributions; refer to [23] and references therein for more details.
To begin with, Scarf [36] define the ambiguity set using linear constraints on the
first two moments of the distribution. Similar ambiguity set is also considered in
[12, 18, 35]; whereas Bertsimas et al. [11] and Delage and Ye [17] use conic constraints
to describe the set of distributions with moments, and a more general model allowing
bounds on higher order moments has been recently studied in [29]. Other definitions
of the ambiguity sets considered in the literature include the usage of the measure
bounds and general moment constraints [30, 38], Kantorovich distance or Wasserstein
metric [30, 32, 33, 45], ζ-structure metrics [48], φ-divergences such as χ2 distance
and Kullback-Leibler divergence [7, 14, 25, 28, 43, 46], and Prokhorov metrics [20].
We give two examples of families of ambiguity set in Section 1.7 and also provide
distribution separation problem associated to each of the ambiguity sets.

1.6. Organization of this paper. In Section 2, we present a decomposition
algorithm to solve TSDR-LP by embedding distribution separation algorithm (asso-
ciated to the ambiguity set) within L-shaped method. We refer to our algorithm
as the distributionally robust L-shaped algorithm and provide families of ambiguity
set for which it is finitely convergent. In Section 3, we further extend our algo-
rithm to solve TSDR-MBPs using parametric cuts, thereby generalizing the integer
L-shaped method. We refer to this generalized algorithm as the distributionally ro-
bust integer (DRI) L-shaped algorithm. In Section 3.3, we provide conditions and
the families of ambiguity set for which the DRI L-shaped algorithm is finitely con-
vergent. Interestingly, the two examples of ambiguity set discussed in Section 1.7
satisfy the aforementioned conditions. In Section 3.4, we present a cutting surface
algorithm where we solve the subproblems to optimality using branch-and-cut ap-
proach. Thereafter, in Section 4 we computationally evaluate the performance of the
DRI L-shaped algorithm and the cutting surface algorithm in solving distributionally
robust versions of problem instances taken from the Stochastic Integer Programming
Library (SIPLIB) [1] and the paper [31]. In particular, we consider instances of the
stochastic server location problem (with random recourse) and stochastic multiple
binary knapsack problem. Finally, we give concluding remarks in Section 5.

1.7. Examples of ambiguity set and associated distribution separation
procedures. In this section, we provide two examples of ambiguity sets and the
distribution separation algorithm associated to these sets. These sets, referred to as
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the moment matching set (5) and Kantorovich set (7), are defined by polytopes with
finite number of extreme points.

Moment matching set. We define the set P via bounds on some (not neces-
sarily polynomial) moments. For a finite sample space Ω := {ω1, . . . , ω|Ω|}, let
v := (v1, . . . , v|Ω|) be the corresponding probability measure. Given continuous basis
functions f1, . . . , fN defined for (Ω, X) 7→ R, the moment matching set is given by:

(5) PM :=

v ∈ R|Ω|+ : u ≤
|Ω|∑
l=1

vlf(ωl) ≤ u

 ,

where u and u are lower and upper bound vectors, respectively, on the correspond-
ing moments. In addition, the optimization (or distribution separation) problem (3)
associated with PM is a linear program:

(6) max
v∈R|Ω|


|Ω|∑
l=1

vlQωl(x)

∣∣∣∣∣∣ u ≤
|Ω|∑
l=1

vlf(ωl) ≤ u, v ≥ 0

 ,

where decision variables are the weights vl that the distribution P assigns to each
point ωl ∈ Ω for l = 1, . . . , |Ω|.
Kantorovich set. The use of Kantorovich-Rubinstein (KR) distance (or Wasserstein
metric) is another important choice in specifying ambiguity in a distribution. Assume
that P∗ is a known reference probability measure and ε > 0 is given. Again, if
Ω := {ω1, . . . , ω|Ω|} is a finite set, v := (v1, . . . , v|Ω|) is the corresponding probability
measure, and v∗j , j = 1, . . . , |Ω|, are given probabilities corresponding to a reference
distribution defined on the sample space, then the Kantorovich set is given by:

PK :=

{
v ∈ R|Ω| :

|Ω|∑
i=1

|Ω|∑
j=1

‖ωi − ωj‖1ki,j ≤ ε,

|Ω|∑
j=1

ki,j = vi, i = 1, . . . , |Ω|

|Ω|∑
i=1

ki,j = v∗j , j = 1, . . . , |Ω|

|Ω|∑
i=1

vi = 1

vi ≥ 0, i = 1, . . . , |Ω|

ki,j ≥ 0, i = 1, . . . , |Ω|, j = 1, . . . , |Ω|
}
,

(7)

and the associated distribution separation problem is given by the following linear
program:

max

{ |Ω|∑
l=1

vlQωl(x) : v ∈ PK

}
.(8)



ALGORITHMS FOR TWO-STAGE DISTRIBUTIONALLY ROBUST PROGRAMS 7

In (8), the decision variables are ki,j and vi for i, j ∈ {1, . . . , |Ω|}, and the constraints
are similar to those in a standard transportation problem with an additional inequality
constraint.

2. Distributionally robust L-shaped algorithm for TSDR-LP. In this
section, we develop a decomposition algorithm which utilizes distribution separation
algorithm within Benders’ method for solving TSDR-LP where the ambiguity set P
is defined by a polytope with a finite number of extreme points (for example, moment
matching set PM and Kantorovich set PK). Recall that TSDR-LP is a relaxation of
TSDR-MBP, i.e. (1), where the both stages have only continuous variables. We refer
to our algorithm as the distributionally robust L-shaped algorithm. The pseudocode
of this algorithm is given by Algorithm 1. Now, let LB and UB be the lower bound
and upper bound, respectively, on the optimal solution value of a given TSDR-LP.
We define subproblem Sω(x), for x ∈ XLP := {x ∈ Rp : Ax ≥ b} and ω ∈ Ω, as
follows:

Qs
ω(x) := min gTω yω(9a)

s.t. Wωyω ≥ rω − Tωx(9b)

yω ∈ Rq.(9c)

Let π∗ω,0(x) ∈ Rm2 be the optimal dual multipliers corresponding to constraints
(9b) which are obtained by solving Sω(x) for a given x ∈ XLP and ω ∈ Ω. We derive a
lower bounding approximation of the linear programming relaxation of the first stage
problem (1) using the following optimality cut, OCS(π∗ω,0(x), {pω}ω∈Ω):

(10)
∑
ω∈Ω

pω

{
π∗ω,0(x)T (rω − Tωx)

}
≤ θ,

where {pω}ω∈Ω is obtained by solving the distribution separation problem associated
to the ambiguity set P. We refer to the lower bound approximation of the first stage
problem (1) as the master problem which is defined by

min{cTx+ θ : x ∈ XLP and OCS(π∗ω,0(xk), {pkω}ω∈Ω) holds, for k = 1, . . . , l}(11)

where xk ∈ XLP for k = 1 . . . , l, π∗ω,0(xk) is the set of optimal dual multiplier obtained

by solving Sω(xk), ω ∈ Ω, and {pkω}ω∈Ω is the set of probabilities for scenarios in
sample space Ω obtained by solving distribution separation problem for xk ∈ XLP ,
k ∈ {1, . . . , l}. We denote this problem by Ml for l ∈ Z+. Note that M0 is the
master problem without any optimality cut.

Now, we initialize Algorithm 1 by setting lower bound LB to negative infinity,
upper bound UB to positive infinity, iteration counter l to 1, and by solving M0 to
get a first stage feasible solution x1 ∈ XLP (Line 1). At each iteration l ≥ 1, we solve
linear programs Sω(xl) for all ω ∈ Ω and store the corresponding optimal solution
y∗ω(xl) and the optimal solution value Qs

ω(xl) := gTω y
∗
ω(xl) for each ω ∈ Ω (Lines 3-5).

Next, we solve the distribution separation problem associated to the ambiguity set P
and obtain the optimal solution, i.e. {plω}ω∈Ω (Line 7). Since y∗ω(xl) ∈ Kω(xl) for all
ω ∈ Ω, we have a feasible solution (xl, y∗ω1

(xl), . . . , y∗ω|Ω|(x
l)) for the original problem.

Therefore, using {plω}ω∈Ω, we update UB if the solution value corresponding to thus
obtained feasible solution is smaller than the existing upper bound (Lines 8-9). We
also utilize the stored information and optimal dual multipliers (Line 14) to derive
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Algorithm 1 Distributionally Robust L-shaped Method for TSDR-LP

1: Initialization: l← 1, LB ← −∞, UB ←∞. Solve M0 to get x1 ∈ XLP .
2: while UB > LB do . ε is a pre-specified tolerance
3: for ω ∈ Ω do
4: Solve linear program Sω(xl);
5: y∗ω(xl)← optimal solution; Qs

ω(xl)← optimal solution value;
6: end for
7: Solve distribution separation problem using Qs

ω(xl), ω ∈ Ω, to get {plω}ω∈Ω;
8: if UB > cTxl +

∑
ω∈Ω p

l
ωQs

ω(xl) then

9: UB ← cTxl +
∑

ω∈Ω p
l
ωQs

ω(xl);
10: if UB ≤ LB then
11: Go to Line 21;
12: end if
13: end if
14: π∗ω,0(xl)← optimal dual multipliers obtained by solving Sω(xl) for all ω ∈ Ω;

15: Derive optimality cut OCS(π∗ω,0(xl), {plω}ω∈Ω) using (10);

16: Add OCS(π∗ω,0(xl), {plω}ω∈Ω) to Ml−1 to get Ml;
17: Solve master problem Ml (a linear program);
18: (xl+1, θl+1)← optimal solution of Ml; LB ← optimal solution value of Ml;
19: Set l← l + 1;
20: end while
21: return (xl, {y∗ω(xl)}ω∈Ω),UB

optimality cut OCS(π∗ω,0(xl), {plω}ω∈Ω) using (10) and add this cut to the master
problem Ml−1 to get an augmented master problem Ml (Lines 15-16). We solve
the master problem Ml (a linear program) and use thus obtained optimal solution
value to update lower bound LB (Lines 17-18). Let (xl, θl) be the optimal solution
of Ml. It is important to note that the lower bound LB is a non-decreasing with
respect to the iterations. This is because Ml−1 is a relaxation of Ml for each l ≥ 1.
Therefore, after every iteration the difference between the bounds, UB − LB , either
decreases or remains same as in the previous iteration. We terminate our algorithm
when this difference becomes zero, i.e., UB = LB , (Line 2 or Lines 17-19), and return
the optimal solution (xl, {y(ω, xl)}ω∈Ω) and the optimal solution value UB (Line 21).

2.1. Finite convergence. We present conditions under which Algorithm 1 (DR
L-shaped algorithm) solves TSDR-LP in finitely many iterations.

Theorem 1 (DR L-shaped Algorithm). Algorithm 1 solves the TSDR-LP to op-
timality in finitely many iterations if assumptions (1)-(3) defined in Section 1 are
satisfied and the ambiguity set P is defined by a polytope with a finite number of
extreme points.

Proof. In Algorithm 1, for a given xl ∈ XLP , we solve |Ω| number of linear pro-
grams, i.e. Sω(xl) for all ω ∈ Ω, distribution separation problem associated with the
ambiguity set P, and a master problemMl which is also a linear program. Assuming
that the ambiguity set P is defined with a polytope with a finite number of extreme
points which means that the associated distribution separation algorithm is finitely
convergent, it is clear that Lines 3-19 in Algorithm 1 are performed in finite itera-
tions. Now we have to ensure that the “while” loop in Line 2 terminates after finite
iterations and provide the optimal solution.

Assuming that for each x ∈ XLP and ω ∈ Ω there exist finite solutions to the
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second stage programs (Assumptions 1-3 defined in Section 1), we first prove that the
optimality cuts (10) are supporting hyperplanes of Qs(x) := maxP∈P EξP [Qsω(x)] for
all x ∈ XLP . Notice that the original problem TSDR-LP is equivalent to

min (cTx+ θ)(12)

s.t. x ∈ XLP(13)

max
P∈P

{∑
ω∈Ω

pωQsω(x)

}
≤ θ.(14)

Furthermore, for each xl ∈ XLP ,

Qsω(xl) = π∗ω,0(xl)T
(
rω − Tωxl

)
,

and after solving the distribution separation problem for xl, we get

Qs(xl) = max
P∈P

{∑
ω∈Ω

pωQsω(xl)

}
=
∑
ω∈Ω

plωQsω(xl)(15)

=
∑
ω∈Ω

plω

{
π∗ω,0(xl)T

(
rω − Tωxl

)}
.(16)

Since Qsω(x) is convex in x, EξP [Qω(x)] =
∑
ω∈Ω pωQsω(x) is convex for a given

probability distribution P ∈ P or {pω}ω∈Ω. This implies Qs(x) is also a convex
function of x because maximum over an arbitrary collection of convex functions is
convex. Therefore from the subgradient inequality,

Qs(x) = max
P∈P

{∑
ω∈Ω

pωQsω(x)

}
≥
∑
ω∈Ω

plω

{
π∗ω,0(xl)T (rω − Tωx)

}
,

and hence from (14), it is clear that∑
ω∈Ω

plω

{
π∗ω,0(xl)T (rω − Tωx)

}
≤ θ.(17)

Inequalities (17) are same as the optimality cuts OCS(π∗ω,0(xl), {plω}ω∈Ω) and are the
supporting hyperplanes for Qs(x). Also, in (12)-(14), θ is unrestricted except for
θ ≥ Qs(x).

Let (xl+1, θl+1) be the optimal solution obtained after solving the master problem
Ml (11) in Step 17 of Algorithm 1. Then, either of the following two cases will occur:

Case I [θl+1 ≥ Qs(xl+1)]: Observe that (xl+1, θl+1) is a feasible solution to the
problem defined by (12)-(14) because xl+1 ∈ XLP and θl+1 ≥ Qs(xl+1). Interest-
ingly, it is also the optimal solution of the problem because if there exists a solution
(x∗, θ∗) 6= (xl+1, θl+1) such that cTx∗ + θ∗ < cTxl+1 + θl+1 then (x∗, θ∗) must be the
optimal solution to the master problem Ml. Also,

LB = cTxl+1 + θl+1 ≥ cTxl+1 +
∑
ω∈Ω

pl+1
ω Qsω(xl+1) = UB.

The last inequality satisfies the termination condition in Line 10 and hence, Algorithm
1 terminates whenever this case occurs and returns the optimal solution.
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Case II [θl+1 < Qs(xl+1)]: Clearly (xl+1, θl+1) is not a feasible solution to the
problem (12)-(14) because constraint (14) is violated by it. Also,

LB = cTxl+1 + θl+1 < cTxl+1 +
∑
ω∈Ω

pl+1
ω Qsω(xl+1) = UB.

Since the termination condition in Line 10 is not satisfied, we derive optimality cut
in Line 15 to cut-off the point (xl+1, θl+1).

Next we show that Case II will occur finite number of times in Algorithm 1, which
implies that the ”while” loop will terminate after finite iterations and will return the
optimal solution. In Case II, θl+1 < Qs(xl+1); it means that none of the previ-
ously derived optimality cuts adequately impose Qs(x) ≤ θ at (xl+1, θl+1). Therefore
probability distribution {pl+1

ω }ω∈Ω and a new set of dual multipliers {π∗ω,0(xl+1)}ω∈Ω

are obtained in Lines 7 and 14, respectively, to derive an appropriate optimality cut
OCS(π∗ω,0(xl+1), {pl+1

ω }ω∈Ω) which cut-off the point (xl+1, θl+1). It is important to

note that adding the optimality cut toMl forces θ ≥ Qs(xl+1). Since each dual multi-
plier π∗ω,0(x) corresponds to one of the finitely many different basis, there are finitely
number of the set of dual multiplier. In addition, because of the assumption that
the ambiguity set P is defined by a polytope with finite number of extreme points,
there are finite number of possible solutions {pl+1

ω }ω∈Ω to the distribution separation
algorithm for xl+1. Hence, there are finite number of optimality cuts. Therefore,
after finite iterations with Case II, Case I occurs and Algorithm 1 terminates. This
completes the proof.

3. Distributionally robust integer L-shaped algorithm for TSDR-MBP.
In this section, we further generalize the distributionally robust L-shaped algorithm
(Algorithm 1) for solving TSDR-MBP using parametric cuts. We refer to this gen-
eralized algorithm as the distributionally robust integer L-shaped algorithm. The
pseudocode of our algorithm is given by Algorithm 2. Because of the presence of the
binary variables in both stages, we re-define subproblem Sω(xl), master problemMl,
and optimality cuts for Algorithm 2.

First, we define subproblem Sω(x), for x ∈ X and ω ∈ Ω, as follows:

Qs
ω(x) := min gTω yω(18a)

s.t. Wωyω ≥ rω − Tωx(18b)

αtωyω ≥ βtω − ψtωx, t = 1, . . . , τω(18c)

yω ∈ Rq+,(18d)

where αtω ∈ Qq, ψtω ∈ Qp, and βtω ∈ Q are the coefficients of yω, coefficients of x,
and the constant term in the right hand side, respectively, of a parametric inequality.
We will discuss how these parametric inequalities (more specifically, parametric lift-
and-project cuts) are developed in succession for mixed binary second stage problems
in Section 3.1. Also, for a given x ∈ X and ω ∈ Ω, the optimal dual multipliers
obtained by solving Sω(x) are defined by π∗ω(x) = (π∗ω,0(x), π∗ω,1(x), . . . , π∗ω,τω (x))T

where π∗ω,0(x) ∈ Rm2 corresponds to constraints (18b) and π∗ω,t(x) ∈ R corresponds
to constraint (18c) for t = 1, . . . , τ(ω). In contrast to the previous section, we derive
a lower bounding approximation of the first stage problem (1), referred as the master
problem Ml:

min{cTx+ θ : x ∈ X and OCS(π∗ω(xk), {pkω}ω∈Ω) holds, for k = 1, . . . , l},(19)
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using the following optimality cut, OCS(π∗ω(x), {pω}ω∈Ω):

(20)
∑
ω∈Ω

pω

{
π∗ω,0(x)T (rω − Tωx) +

τω∑
t=1

π∗ω,t(x)
(
βtω − ψtωx

)}
≤ θ.

Algorithm 2 Distributionally Robust Integer L-shaped Method for TSDR-MBP

1: Initialization: l← 1, LB ← −∞, UB ←∞, τω ← 0 for all ω ∈ Ω. Assume x1 ∈ X.
2: while UB − LB > ε do . ε is a pre-specified tolerance
3: for ω ∈ Ω do
4: Solve linear program Sω(xl);
5: y∗ω(xl)← optimal solution; Qs∗

ω (xl)← optimal solution value;
6: end for
7: if y∗ω(xl) /∈ Kω(xl) for some ω ∈ Ω then
8: for ω ∈ Ω where y∗ω(xl) /∈ Kω(xl) do . Add parametric inequalities
9: Add the parametric cut to Sω(x) as explained in Section 3.1;

10: Set τω ← τω + 1 and solve linear program Sω(xl);
11: y∗ω(xl)← optimal solution; Qs∗

ω (xl)← optimal solution value;
12: end for
13: end if
14: Solve distribution separation problem using Qs∗

ω (xl), ω ∈ Ω, to get {plω}ω∈Ω;
15: if y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω and UB > cTxl +

∑
ω∈Ω p

l
ωQs∗

ω (xl) then

16: UB ← cTxl +
∑

ω∈Ω p
l
ωQs∗

ω (xl);
17: if UB ≤ LB + ε then
18: Go to Line 21;
19: end if
20: end if
21: π∗ω(xl)← optimal dual multipliers obtained by solving Sω(xl) for all ω ∈ Ω;
22: Derive optimality cut OCS(π∗ω(xl), {plω}ω∈Ω) using (10);
23: Add OCS(π∗ω(xl), {plω}ω∈Ω) to Ml−1 to get Ml;
24: Solve master problem Ml as explained in Section 3.1;
25: (xl+1, θl+1)← optimal solution of Ml; LB ← optimal solution value of Ml;
26: Set l← l + 1;
27: end while
28: return (xl, {y∗ω(xl)}ω∈Ω),UB

Notice that in Algorithm 2, some steps are similar to the steps of Algorithm 1,
except Lines 1, 7-13, 15, and 24. However for the sake of readers’ convenience and
the completeness of this section, we explain all the steps of Algorithm 2 which works
as follows: First, we initialize Algorithm 2 by setting lower bound LB to negative
infinity, upper bound UB to positive infinity, iteration counter l to 1, number of
parametric inequalities τω for all ω ∈ Ω to zero, and by selecting a first stage fea-
sible solution x1 ∈ X (Line 1). At each iteration l ≥ 1, we solve linear programs
Sω(xl) for all ω ∈ Ω and store the corresponding optimal solution y∗ω(xl) and the
optimal solution value Qs

ω(xl) := gTω y
∗
ω(xl) for each ω ∈ Ω (Lines 3-5). Now, for each

ω ∈ Ω with y∗ω(xl) /∈ Kω(xl), we develop parametric lift-and-project cut for mixed
binary second stage programs (explained in Section 3.2), add it to Sω(x), resolve the
updated subproblem Sω(x) by fixing x = xl, and obtain its optimal solution y∗ω(xl)
along with optimal solution value (Lines 8-12). Next, we solve the distribution sep-
aration problem associated to the ambiguity set P and obtain the optimal solution,
i.e. {plω}ω∈Ω (Line 14). Interestingly, in case y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω, we have a
feasible solution (xl, y∗ω1

(xl), . . . , y∗ω|Ω|(x
l)) for the original problem. Therefore, using

{plω}ω∈Ω, we update UB if the solution value corresponding to thus obtained feasible
solution is smaller than the existing upper bound (Lines 15-16). We also utilize the
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stored information and optimal dual multipliers (Line 21) to derive optimality cut
OCS(π∗ω(xl), {plω}ω∈Ω) using (10) and add this cut to the master problem Ml−1 to
get an augmented master problem Ml (Lines 22-23). We solve the master problem
Ml as explained in Section 3.1 and use thus obtained optimal solution value to up-
date lower bound LB (Lines 24-25) as it is lower bounding approximation of (1). Let
(xl, θl) be the optimal solution of Ml. It is important to note that the lower bound
LB is a non-decreasing with respect to the iterations. This is because Ml−1 is a re-
laxation of Ml for each l ≥ 1. Therefore, after every iteration the difference between
the bounds, UB − LB , either decreases or remains same as in the previous iteration.
We terminate our algorithm when this difference becomes zero, i.e., UB = LB , or
reaches a pre-specified tolerance ε (Line 2 or Lines 17-19), and return the optimal
solution (xl, {y(ω, xl)}ω∈Ω) and the optimal solution value UB (Line 28).

In the following sections, we customize well-known cutting plane algorithms to
solve master problem at iteration l ≥ 1, i.e. Ml, and subproblems for a given x ∈ X,
i.e. Sω(x) for all ω ∈ Ω. Also in Section 3.3, we investigate the conditions under
which Algorithm 2 solves TSDR-MBP in finitely many iterations.

3.1. Solving master problem using cutting planes. Notice that Ml is a
mixed binary program for TSDR-MBP where θ ∈ R is the continuous variable. Balas
et al. [3] develop a specialized lift-and-project algorithm to solve mixed binary pro-
grams which terminates after a finite number of iterations (see Page 227 of [16]).
Therefore, we use their algorithm to solve master problem associated of TSDR-MBP.

3.2. Solving subproblems using parametric cuts. Next, we showcase how
to develop “parametric cuts” using simplex tableau for solving the subproblems. More
specifically, we develop parametric lift-and-project cuts for TSDR-MBP by developing
valid inequalities for the following extensive formulation of TSDR-MBP:

min cTx+ max
P∈P

{
EξP

[
gTω yω

]}
(21a)

s.t. Ax ≥ b(21b)

Wωyω ≥ rω − Tωx ω ∈ Ω(21c)

x ∈ {0, 1}p(21d)

yω ∈ {0, 1}q1 × Rq−q1 ω ∈ Ω.(21e)

Let E := {(x, {yω}ω∈Ω) : (21b) − (21e) hold}. It is important to note that given
(x̄, ω̄) ∈ (X,Ω), a parametric cut for Sω̄(x̄) is developed by first deriving a valid
inequality for E which has the form

∑p
i=1 ψ̄ixi +

∑q
j=1 ᾱω̄,jyω̄,j ≥ β̄ω̄ where ψ̄ ∈ Qp,

ᾱω ∈ Qq, and β̄ω ∈ Q, and then projecting this inequality on to yω̄ space by setting
x = x̄. As a result, the same valid inequality for E can be used to derive cuts
for Sω̄(x) for all values of parameter x ∈ X. To do so, we utilize lift-and-project
cuts of Balas et al. [3]. Assume that the slack variables of both stages are also
incorporated in the matrices A, Wω, and Tω. Now let the basis matrix associated
to the optimal solution of the linear programming relaxation of first stage program
be denoted by AB := (aB1 , . . . , aBm) where aj is the jth column of A. Likewise, we
define Tω,B := (tω,B1

, . . . , tω,Bm
) where tω,j is the jth column of Tω. Also, for given

xl ∈ X and ω ∈ Ω, let Wω,B̄ be the basis matrix associated to the optimal solution of

the linear programming relaxation of the second stage programs with x = xl. Then
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the lift-and-project cuts generated from any row of

(22) G


A
Tω1

Tω2

...
Tω|Ω|

x+G


0 0 . . . 0

Wω1
0 . . . 0

0 Wω2 . . . 0
...

...
. . .

...
0 0 . . . Wω|Ω|




yω1

yω2

yω3

...
yω|Ω|

 = G


b
rω1

rω2

...
rω|Ω|


where

G :=



A−1
B 0 0 . . . 0

−W−1
ω1,B̄

Tω1,BA
−1
B Wω1

0 . . . 0

−W−1
ω2,B̄

Tω2,BA
−1
B 0 Wω2

. . . 0
...

...
...

. . .
...

−W−1
ω|Ω|,B̄

TωΩ,BA
−1
B 0 0 . . . Wω|Ω|

 ,

is valid for E (refer to [47] for details). Because of the block-angular structure of the
constraint matrix of (22), the lift-and-project cuts developed for rows corresponding
to ω̄ ∈ Ω are of the form πxx+ πω̄yω̄ ≥ π0. We suggest readers to refer to Chapter 5
(Section 4.2) of [16] for the specialized lift-and-project procedure to generate the
aforementioned cut.

3.3. Finite convergence. We present conditions under which Algorithm 2 (DRI
L-shaped algorithm) solves TSDR-MBP in finitely many iterations.

Theorem 2 (DRI L-shaped Algorithm). Algorithm 2 solves the TSDR-MBP to
optimality in finitely many iterations if assumptions (1)-(3) defined in Section 1 are
satisfied and the distribution separation algorithm associated to the ambiguity set P
is finitely convergent.

Proof. Since all the variables in the first stage of TSDR-MBP are binary, the
number of first stage feasible solutions |X| is finite. In Algorithm 2, for a given
xl ∈ X, we solve |Ω| number of linear programs, i.e. Sω(xl) for all ω ∈ Ω, distribution
separation problem associated with the ambiguity set P, and a master problem Ml

(after adding an optimality cut which requires a linear program to be solved). Notice
that the master problem is a mixed binary program for TSDR-MBP and can be solved
using finite number of cutting planes by specialized lift-and-project algorithm of Balas
et al. [3]. Therefore, Lines 3-26 in Algorithm 2 are performed in finite iterations
because we assume that the distribution separation algorithm is finitely convergent.

Now we have to ensure that the “while” loop in Line 2 terminates after finite
iterations and provide the optimal solution. Notice that at the end of iteration l,
either of the following two cases can happen: (i) xl+1 6= xl, or (ii) xl+1 = xl. The
first case can happen only finite number of times because |X| is finite. Whereas
the second case can further be divided into two subcases: In the first subcase, let
y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω. From the extensive formulation of TSDR-MBP, i.e.
(21a)-(21e), it is clear that (xl, {y∗ω(xl)}w∈Ω) ∈ E and for any probability distribution
P# ∈ P,

cTxl + EξP#

[
gTω y

∗
ω(xl)

]
≤ cTxl + max

P∈P

{
EξP

[
gTω y

∗
ω(xl)

]}
≤ cTxl + EξP∗

[
gTω y

∗
ω(xl)

]
where P ∗ := {plω}ω∈Ω is the optimal solution of the distribution separation problem
associated with P and first stage feasible solution xl. Therefore, for P# = P ∗, the
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lower bound LB = cTxl+
∑
ω∈Ω p

l
ωg

T
ω y
∗
ω(xl), which is equal to UB . This implies that

(xl, {y∗ω(xl)}ω∈Ω) is the optimal solution and we get (xl+1, θl+1) = (xl, θl). Hence, in
this subcase the algorithm terminates after returning the optimal solution and optimal
objective value UB .

In the second subcase, let y∗ω̄(xl) /∈ Kω̄(xl) for some ω̄ ∈ Ω or more specifically,
y∗ω̄(xl) /∈ {0, 1}q1 × Rq−q1 . For this subcase, we derive a lift-and-project cut (Line 9)
in (x, yω̄) subspace to cut-off the point (xl, y∗ω̄(xl)), project this cutting plane to
yω̄ space, add this (globally valid) parametric cut to Sω(x), and resolve the linear
program for x = xl. Since we assume relatively complete recourse, for each ω ∈ Ω,
Kω(xl) and its relaxations are nonempty. Notice that xl ∈ ver(X) where ver(X) is
the set of vertices of conv(X) because X is defined by binary variables only. Hence,
x = xl defines a face of conv(E) and since we assume relatively complete recourse,
each extreme point of conv(E) ∩ {x = xl} has yω ∈ {0, 1}q1 × Rq−q1 for all ω ∈ Ω.
Therefore, using the arguments in the proof of Theorem 3.1 of Balas et al. [3],
we can obtain y∗ω̄(xl) ∈ {0, 1}q1 × Rq−q1 , i.e. y∗ω̄(xl) ∈ Kω̄(xl), by adding a finite
number of parametric lift-and-projects cuts to Sω(x). This step can be repeated
until y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω. As explained above, under such situation, our
algorithm terminates and returns the optimal solution after finite number of iterations
as |Ω| is finite and in cases where (xl+1, θl+1) 6= (xl, θl), (xl, θl) will not be visited
again in future iterations because the optimality cut generated in Line 15 cuts-off the
point (xl, θl). This completes the proof.

Remark 2. Instead of solving the master problem (11) to optimality at each iter-
ation, a branch-and-cut approach can also be adopted for a practical implementation.
In this approach, similar to the integer L-shaped method [27], a linear programming
relaxation of the master problem is solved. The solution thus obtained is used to
either generate a feasibility cut (if this current solution violates any of the relaxed
constraints), or create new branches/nodes following the usual branch-and-cut pro-
cedure. The (globally valid) optimality cut, OCS(π∗ω(x), {pω}ω∈Ω), is derived at a
node whenever the current solution is also feasible for the original master problem.
Interestingly, because of the finiteness of the branch-and-bound approach, it is easy
to prove the finite convergence of this algorithm under the conditions mentioned in
Theorem 1.

Remark 3. The distribution separation algorithm associated with the moment
matching set PM and Kantorovich set PK are finitely convergent.

3.4. A cutting surface algorithm for TSDR-MBPs. In this section, we
present a cutting surface algorithm to solve TSDR-MBP where the ambiguity set is a
set of finite number distributions (denoted by PF ) which are not known beforehand.
This algorithm utilizes branch-and-cut approach to solve master problems, similar to
the integer L-shaped algorithm [27]. Unlike Algorithm 2, we solve the subproblems
to optimality using branch-and-cut method instead of sequentially adding parametric
lift-and-project cuts. Furthermore, instead of considering the whole set of distribu-
tions PF at once, we solve multiple TSDR-MBPs for an increasing sequence of known
ambiguity sets, P0

F , P1
F , . . ., such that P0

F ⊂ P1
F ⊂ . . . ⊂ PF , until we reach a

subset of PF which contains the optimal probability distribution. Assume that the
distributions in the set Pi

F are known at step i of our implementation. Then, since
each probability distribution is equivalent to a set of probabilities of occurrence of
finite number of scenarios, i.e. {pω}ω∈Ω, the distribution separation problem (3) as-
sociated to the set Pi

F can be solved in finite iterations by explicitly enumerating the
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distributions in the set.
The cutting surface algorithm works as follows. We start with a known distribu-

tion P0 belonging to PF and set P0
F := {P0} or obtain it by solving the distribution

separation algorithm corresponding to P for a first stage feasible solution. Then at
step i ≥ 0, given a known ambiguity set Pi

F ⊆ PF , similar to the integer L-shaped
method, we solve a linear programming relaxation of the master problem. The solu-
tion thus obtained is used to either generate a feasibility cut (if this current solution
violates any of the relaxed constraints), or create new branches/nodes following the
usual branch-and-cut procedure. Whenever the current solution is also feasible for the
original master problem, we solve the distribution separation problem associated to
the set Pi

F (as mentioned above) to get optimal {pω}ω∈Ω corresponding to the current
first stage feasible solution. Thereafter, we derive the globally valid optimality cut,
OCS(., {pω}ω∈Ω) and add it to the master problem. We continue the exploration of
the nodes until we solve the TSDR-MBP for the ambiguity set Pi

F . Then we uti-
lize thus obtained optimal solution to solve the distribution separation problem (3)
associated to PF and obtain the optimal probability distribution. In case this distri-
bution already belongs to Pi

F , we terminate our implementation; otherwise we add it
to Pi

F to get Pi+1
F and resolve the TSDR-MBP for the ambiguity set Pi+1

F using the
aforementioned procedure.

4. Computational experiments. In this section, we evaluate the performance
of the DRI L-shaped algorithm (Algorithm 2) and the cutting surface algorithm (dis-
cussed in the previous section) by solving DR versions of stochastic server location
problem (SSLP), stochastic multiple binary knapsack problem (SMKP), and SSLP
with random recourse (SSLPR). The SSLP and SMKP instances are part of the
Stochastic Integer Programming Library (SIPLIB) [1], and the SSLPR instances are
taken from [31]. These instances have only binary variables in the first stage and
mixed binary programs in the second stage. Also, the probability of occurrence of
each scenario is same in these instances, i.e. pω = 1/|Ω| for all ω ∈ Ω. On the
other hand, in our DR version of SSLP, SMKP, and SSLPR, referred to as the distri-
butionally robust server location problem (DRSLP), distributionally robust multiple
binary knapsack problem (DRMKP), DRSLP with random recourse (DRSLPR), re-
spectively, the probability distribution belongs to the moment matching set PM (5) or
Kantorovich set PK (7). Recall that the distribution separation problem associated
to PM and PK are linear programs and both PM and PK are polytopes with finite
number of extreme points. This implies that in these two cases, the ambiguity set
is a set of finite number of distributions corresponding to the extreme points which
are not known beforehand and the associated distribution separation algorithms are
finitely convergent.

4.1. Instance generation. In Table 1, we provide details of the DRSLP, DRMKP,
and DRSLPR instances used for our experiments. In particular, #Cons, #BinVar,
and #ContVar denote the number of constraints, binary variables, and continuous
variables, respectively, in Stage I and Stage II of the problems. The number of sce-
narios is given by the column labeled as |Ω|. Also, only the right hand side, i.e. rω,
are uncertain in DRSLP instances, only the coefficients in the objective function, i.e.
gω, are uncertain in DRMKP instances, and both recourse matrix, i.e. Wω, and gω
are uncertain in DRSLPR instances. For the sake of uniformity, we are using simi-
lar nomenclature for DRSLP and DRSLPR as used for SSLP in SIPLIB [1]. Notice
that instance DRSLP(R).α.β.c has α number of binary variables in the first stage,
α × β binary variables and α non-zero continuous variables in the second stage, and
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Table 1
Details of DRSLP and DRMKP Instances

Instance Stage I Stage II

#Cons #BinVar #ContVar #Cons #BinVar #ContVar |Ω| RandParam

DRSLP.5.25.50 1 5 0 30 125 5 50 RHS

DRSLP.5.25.100 1 5 0 30 125 5 100 RHS

DRSLP.10.50.50 1 10 0 60 500 10 50 RHS

DRSLP.10.50.100 1 10 0 60 500 10 100 RHS

DRSLP.10.50.500 1 10 0 60 500 10 500 RHS

DRSLP.15.45.5 1 15 0 60 675 15 5 RHS

DRSLP.15.45.10 1 15 0 60 675 15 10 RHS

DRSLP.15.45.15 1 15 0 60 675 15 15 RHS

DRMKP.1 50 240 0 5 120 0 20 OBJ

DRMKP.2 50 240 0 5 120 0 20 OBJ

DRMKP.3 50 240 0 5 120 0 20 OBJ

DRMKP.4 50 240 0 5 120 0 20 OBJ

DRMKP.5 50 240 0 5 120 0 20 OBJ

DRMKP.6 50 240 0 5 120 0 20 OBJ

DRMKP.7 50 240 0 5 120 0 20 OBJ

DRMKP.8 50 240 0 5 120 0 20 OBJ

DRMKP.9 50 240 0 5 120 0 20 OBJ

DRMKP.10 50 240 0 5 120 0 20 OBJ

DRSLPR.5.25.5 1 5 0 30 125 5 5 OBJ & REC

DRSLPR.5.25.10 1 5 0 30 125 5 10 OBJ & REC

DRSLPR.5.50.5 1 5 0 55 250 5 5 OBJ & REC

DRSLPR.5.50.10 1 5 0 55 250 5 10 OBJ & REC

c number of scenarios.
The results of our computational experiments for DRSLP, DRMKP, DRSLPR

instances where the ambiguity set is defined using Kantorovich-Rubinstein distance
(or Wasserstein metric), first two moments, and first three moments are given in
Tables 2, 4, and 6 for DRI L-shaped algorithm (or Tables 3, 5, and 7 for the cutting
surface algorithm), respectively. In all these tables, we report the optimal solution
value zopt, the total number of times the associated distribution separation problem is
solved until the termination of our implementation (denoted by #DCs), and the total
time taken in seconds (denoted by T (s)) to solve the problem instance to optimality,
denoted by T . Note that #DCs also provides the number of distribution cuts added
until the termination of the cutting surface algorithm.

4.2. Implementation of DRI L-shaped Algorithm. For our computational
experiments, we implement DRI L-shaped method for solving TSDR-MBPs, i.e. Prob-
lem (1), by embedding the optimality cuts (10) within a branch-and-bound algo-
rithm. In this implementation, a branch-and-bound tree is developed over the binary
variables in the master problem, and it incorporates different strategies to generate,
strengthen, and add the optimality cuts (10). It is important to note that in order
to generate optimality cuts for solving TSDR-MBP, which has binary variables in
the second stage, the linear programming relaxation of the second stage problem, i.e.
Sω(x), is used. Furthermore, for each scenario and first stage feasible solution, we
solve the mixed binary program in the second stage to optimality using CPLEX’s
branch-and-cut algorithm. We also use the integer-optimality (binary-cover) cut [2]
to prevent the revisit of the same solution. Below we briefly discuss about other key
features of our implementation of the DRI L-shaped method:

1. Initialization: At the early stage of the DRI L-shaped method, approx-
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Table 2
Computational results for the DRI L-shaped algorithm: Ambiguity set is defined using KR distance

Instance ε = 5.0 ε = 10.0

zopt #DCs T (s) zopt #DCs T (s)

DRSLP.5.25.50 14.0 7 2.6 14.0 7 2.5

DRSLP.5.25.100 -40.0 10 7.3 -40.0 10 7.1

DRSLP.10.50.50 -200.0 5 240.0 -200.0 5 236.6

DRSLP.10.50.100 -237.0 16 656.1 -237.0 16 657.2

DRSLP.10.50.500 -159.0 7 1151.6 -159.0 7 1148.9

DRSLP.15.45.5 -252.0 5 288.5 -252.0 5 287.8

DRSLP.15.45.10 -220.0 7 518.4 -220.0 7 515.2

DRSLP.15.45.15 -208.0 11 1203.2 -208.0 11 1202.3

DRMKP.1 9686.0 10 285.4 9686.0 6 101.7

DRMKP.2 9388.0 9 906.0 9388.0 5 591.2

DRMKP.3 8844.0 10 1462.2 8844.0 6 900.5

DRMKP.4 9237.0 23 2695.1 9237.0 14 2485.2

DRMKP.5 10024.0 9 1656.9 10024.0 5 1199.0

DRMKP.6 9515.0 9 257.3 9515.0 5 185.9

DRMKP.7 10003.0 9 434.4 10003.0 5 316.2

DRMKP.8 9427.0 28 4554.3 9427.0 18 3503.7

DRMKP.9 10038.0 10 1090.0 10038.0 6 697.3

DRMKP.10 9082.2 13 4870.0 9082.0 7 3072.8

DRSLPR.5.25.5 -129105.5 55 291.7 -129025.2 56 283.1

DRSLPR.5.25.10 -72721.4 75 1222.4 -72702.2 75 1450.2

DRSLPR.5.50.5 99178.4 200 10800.0 99227.0 128 8560.8

DRSLPR.5.50.10 99734.1 51 10800.0 99929.6 49 10800.0

Table 3
Computational results for the cutting surface algorithm: Kantorovich set as the ambiguity set

Instance ε = 5.0 ε = 10.0

zopt #DCs T (s) zopt #DCs T (s)

DRSLP.5.25.50 14.0 5 4.1 14.0 5 4.6

DRSLP.5.25.100 -40.0 7 21.2 -40.0 7 23.4

DRSLP.10.50.50 -200.0 3 136.2 -200.0 3 134.3

DRSLP.10.50.100 -237.0 7 712.9 -237.0 7 710.7

DRSLP.10.50.500 -159.0 3 611.9 -159.0 3 614.0

DRSLP.15.45.5 -252.0 5 182.2 -252.0 5 181.0

DRSLP.15.45.10 -220.0 5 772.5 -220.0 5 773.7

DRSLP.15.45.15 -208.0 4 584.0 -208.0 4 584.7

DRMKP.1 9686.0 10 243.2 9686.0 9 780.0

DRMKP.2 9388.0 10 878.4 9388.0 6 589.6

DRMKP.3 8844.0 11 1345.1 8844.0 11 5685.0

DRMKP.4 9237.0 14 10800.0 9237.0 10 10800.0

DRMKP.5 10024.0 11 3732.5 10024.0 6 1053.8

DRMKP.6 9515.0 10 225.0 9515.0 6 162.6

DRMKP.7 10003.0 10 386.7 10003.0 6 261.9

DRMKP.8 9426.8 18 2910.4 9426.9 11 2301.2

DRMKP.9 10038.0 18 10800.0 10038.0 10 3739.4

DRMKP.10 9084.0 10 10800.0 9084.0 10 10800.0

DRSLPR.5.25.5 -128934.5 130 10800.0 -128660.1 134 10800.0

DRSLPR.5.25.10 -72735.4 34 10800.0 -72701.3 34 10800.0

DRSLPR.5.50.5 99114.9 83 10800.0 99204.2 81 10800.0

DRSLPR.5.50.10 99693.7 26 10800.0 99721.9 26 10800.0

imation of the recourse function tends to be worse because the optimality
cuts (10) are based on a linear programming relaxation of the second stage
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problems. As a result, these cuts generated at the early stage may become
unpromising eventually. To handle this issue, TSDR-LP is solved using the
DR L-shaped method and the generated optimality cuts are used to get an
initial approximation for the recourse function. This provides a stronger lower
bound for the branch-and-cut procedure.

2. Hybrid cut method. Each optimality cut corresponds to a scenario, and
therefore, these cuts can be added to the master problem in two different
ways: (1) Multi-cut approach, i.e. all optimality cuts are added to the mas-
ter problem, and (2) Single-cut approach, i.e. a single cut (10) obtained by
aggregating all optimality cut is added to the master problem. A tradeoff
solution between single-cut and multi-cut approaches is called a hybrid-cut
approach, which attempts to find a balance between information loss (due to
aggregation) and computing time gains (due to less number of cuts gener-
ated) [41, 44]. This method has been incorporated in our implementation.

3. Cut consolidation technique. In order to reduce the size of the mas-
ter problem, it may be useful to remove inactive optimality cuts generated
in previous iterations. To do so, a cut consolidation technique of Wolf and
Koberstein [44] has been incorporated in our implementation which not only
removes the inactive cuts but also generates a new cut by aggregating all
inactive cuts generated in the same iteration. This technique preserves infor-
mation of the recourse function, and thus potentially avoids recomputing the
same cuts after being removed.

4. Cut reactivation technique. The idea behind the cut reactivation tech-
nique is to store the removed cuts (which have been consolidated) in a separate
cut pool, and conditionally “reactivate” some of these cuts by adding them
back to the master problem, in case they are useful. More precisely, at an
iteration, the violation of each cut in the cut pool is evaluated and then cuts
with a significant violation are added back to master problem. The master
problem is reoptimized and this cut reactivation procedure is repeated for a
predetermined number of times.

4.3. Computational results for instances with Kantorovich set as the
ambiguity set. We solve DRSLP, DRMKP, and DRSLPR instances with Kan-
torovich set (7) as the ambiguity set and present our computational results in Ta-
bles 2 and 3. We consider two different values of ε, i.e. 5.0 and 10.0, and observe that
for each problem instance, zopt remains same for both values of ε. It is important
to note that the average number of times the distribution separation problem (8) is
solved in DRI L-shaped method and cutting surface algorithm are 23 and 20, respec-
tively. Interestingly, the DRI L-shaped algorithm solves all DRSLP and DRMKP in-
stances to optimality, whereas the cutting surface algorithm failed to solve DRMKP.4,
DRMKP.9, and DRMKP.10 to optimality within a time limit of 3 hours. Out of 8
DRSLPR instances, DRI L-shaped solved 5 instances in 40 minutes (on average), but
the cutting surface algorithm failed to solve any instance within 3 hours. Moreover,
the DRI L-shaped algorithm is on average two times faster than the cutting surface
algorithm. Also, notice that for DRSLPR instances in Tables 2 and 3, zopt increases
with increase in ε as the size of the ambiguity set increases with increase in ε. In
other words, the decision maker becomes conservative as the size of the ambiguity set
increases.

4.4. Computational results for instances with moment matching set as
the ambiguity set. In this section, we discuss about our computational results for
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solving DRSLP, DRMKP, and DRSLPR instances with moment matching set (5) as
the ambiguity set. We consider bounds on the first and second moments in Tables
4 and 5, and bounds on the first, second, and third moments in Tables 6 and 7.
Furthermore, in each of these tables we consider three different values of confidence
interval (CI), i.e. 80%, 90%, and 95%. Observe that for each problem instance in each
table, zopt increases with increase in CI as the size of the ambiguity set increases with
increase in CI. In other words, the decision maker becomes conservative as the size of
the ambiguity set increases. Because of the similar argument, it is evident that the
zopt decreases when additional bound constraints are added in the moment matching
set. Comparing zopt for each problem instance with same CI in Tables 4 and 6 (or
Tables 5 and 7), we notice that zopt decreases because of the presence of bounds on
the third moment.

Next we evaluate the performance of DRI L-shaped algorithm and the cutting
surface algorithm in solving DRSLP, DRMKP, and DRSLPR instances with moment
matching set. The DRI L-shaped algorithm solves DRSLP and DRMKP instances
to optimality, whereas for instance DRSLP.10.50.500 in Table 7, the cutting surface
algorithm failed to terminate within the time limit of 3 hours. With regard to the
DRSLPR instances, both algorithms solved the instances where ambiguity set is de-
fined using bounds on first and second moments (Tables 4 and 5), but both of them
failed to even perform initialization step (discussed in Section 4.2) within 3 hours for
the instances where ambiguity set is defined using bounds on first, second, and third
moments. On average DRI L-shaped algorithm is 1.4 times faster than the cutting
surface algorithm. However, for some instances the latter is faster than the former.
In addition, these two algorithms differ in the number of the times distribution sepa-
ration problems is solved. As expected #DCs is more for DRI L-shaped algorithm in
comparison to the cutting surface algorithm.

4.5. Computational results for stochastic and robust optimization ver-
sions of the test instances. In Table 8, we report the results of computational
experiments performed on stochastic and robust optimization versions of the DRSLP,
DRMKP, and DRSLPR instances. It is important to note that when |P| = 1, the cut-
ting surface algorithm and DRI L-shaped algorithm are same as the integer L-shaped
algorithm with the additional features discussed in Section 4.2. For the stochastic
versions, we use the same nomenclature as used in the SIPLIB library and [31], i.e.
SSLP, SMKP, and SSLPR. We denote the robust optimization versions of the DRSLP,
DRMKP, and DRSLPR instances by RSLP, RMKP, and RSLPR, respectively, which
are generated by setting plω∗ = 1 for the scenario ω∗ that has maximum recourse
value Qω(xl), and use zero probability for the remaining scenarios, i.e. plω = 0 for
ω ∈ Ω\{ω∗}.

By observing the optimal objective value zopt of all instances in Tables 2-8, it is
clear that the RSLP, RMKP, and RSLPR instances are the most conservative (risk-
averse) of all, and the SSLP, SMKP, and SSLPR instances are the risk-neutral in-
stances where the probability distribution is known. Whereas, the DRSLP, DRMKP,
and DRSLPR instances are the intermediate level models with an adjustable level
of risk-aversion (depending on how ambiguity set is defined). With regard to the
computational time taken to solve these instances, (on average) the stochastic op-
timization instances are solved faster than the robust optimization instances which
took lesser time in comparison to solving the DRO instances. Even among the DRO
instances, because of different levels of complexity of the distributional separation al-
gorithm associated with the ambiguity sets, the instances with ambiguity set defined
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Table 4
Computational results for the DRI L-shaped algorithm: Ambiguity set is defined using bounds on
first and second moments

Instance CI = 80% CI = 90% CI = 95%

zopt #DCs T (s) zopt #DCs T (s) zopt #DCs T (s)

DRSLP.5.25.50 -91.06 109 3.8 -84.92 89 3.3 -78.28 89 3.2

DRSLP.5.25.100 -107.17 97 5.9 -103.07 96 6.4 -98.53 104 8.2

DRSLP.10.50.50 -322.93 388 144.2 -314.41 381 130.9 -304.98 394 138.4

DRSLP.10.50.100 -323.75 465 278.9 -317.70 500 352.6 -310.98 425 302.3

DRSLP.10.50.500 -318.33 500 1603.1 -313.91 484 1482.3 -309.12 489 1395.6

DRSLP.15.45.5 -255.03 32 282.8 -253.88 21 76.7 -253.63 24 144.4

DRSLP.15.45.10 -242.70 99 245.8 -239.47 106 283.2 -236.31 101 272.3

DRSLP.15.45.15 -236.72 569 569.8 -233.54 361 562.8 -230.09 605 1079.7

DRMKP.1 9428.27 13 66.8 9444.49 15 60.4 9462.15 11 45.1

DRMKP.2 9105.96 13 89.0 9125.44 11 94.2 9146.55 9 107.0

DRMKP.3 8631.19 14 73.5 8644.78 16 72.3 8659.79 15 79.6

DRMKP.4 9003.54 27 476.1 9020.71 27 472.3 9039.02 17 564.6

DRMKP.5 9518.85 14 432.0 9538.01 17 247.1 9559.43 11 261.5

DRMKP.6 9214.35 23 440.4 9228.87 18 390.4 9244.70 15 415.1

DRMKP.7 9719.42 17 317.4 9734.60 16 321.0 9750.01 12 312.2

DRMKP.8 9207.61 39 901.1 9224.81 33 1228.9 9242.88 24 662.8

DRMKP.9 9841.14 47 1166.9 9857.03 48 1026.1 9874.73 48 1179.6

DRMKP.10 8871.75 40 3242.8 8886.56 29 2549.9 8901.99 30 2894.4

DRSLPR.5.25.5 -121275.4 48 56.6 -120462.8 40 43.0 -120086.8 40 40.0

DRSLPR.5.25.10 -66865.5 56 303.0 -65654.4 65 269.6 -64483.1 58 298.0

DRSLPR.5.50.5 104401.8 112 757.6 105505.9 112 649.6 106747.9 92 408.8

DRSLPR.5.50.10 105751.7 59 3020.6 107000.2 55 2910.3 108395.2 52 2837.9

Table 5
Computational results for the cutting surface algorithm: Ambiguity set is defined using bounds on
first and second moments

Instance CI = 80% CI = 90% CI = 95%

zopt #DCs T (s) zopt #DCs T (s) zopt #DCs T (s)

DRSLP.5.25.50 -91.06 11 21.6 -84.92 12 27.2 -78.28 10 16.5

DRSLP.5.25.100 -107.16 11 29.5 -103.07 13 45.4 -98.53 12 35.6

DRSLP.10.50.50 -322.93 7 305.9 -314.41 8 338.6 -304.98 9 363.0

DRSLP.10.50.100 -323.75 9 559.1 -317.70 12 907.7 -310.98 13 974.5

DRSLP.10.50.500 -318.32 19 5808.5 -313.90 13 3719.5 -309.11 14 4074.8

DRSLP.15.45.5 -255.02 6 120.5 -253.88 6 106.2 -253.63 6 110.5

DRSLP.15.45.10 -242.69 6 257.9 -239.47 6 183.8 -236.30 6 225.9

DRSLP.15.45.15 -236.72 8 351.7 -233.53 6 408.9 -230.08 7 1000.9

DRMKP.1 9428.26 7 188.3 9444.48 7 117.1 9462.14 7 130.0

DRMKP.2 9105.96 6 255.5 9125.44 7 267.2 9146.55 6 261.3

DRMKP.3 8631.18 6 221.6 8644.77 6 277.0 8659.79 5 75.9

DRMKP.4 9003.53 5 232.8 9020.70 5 242.6 9039.01 6 712.8

DRMKP.5 9518.84 8 1036.4 9538.00 7 840.1 9559.43 6 508.8

DRMKP.6 9214.34 6 410.2 9228.87 5 541.4 9244.70 7 516.1

DRMKP.7 9719.41 5 849.1 9734.59 5 813.2 9750.00 6 805.2

DRMKP.8 9207.61 7 1253.8 9224.81 6 1383.5 9242.87 7 1166.7

DRMKP.9 9841.14 6 1144.6 9857.03 6 1197.1 9874.73 6 1243.9

DRMKP.10 8871.74 6 1212.1 8886.55 7 2773.5 8901.99 7 2516.1

DRSLPR.5.25.5 -121275.4 7 71.4 -120462.8 7 40.2 -120086.8 7 9.6

DRSLPR.5.25.10 -66865.5 10 414.3 -65654.4 8 398.3 -64483.1 14 725.7

DRSLPR.5.50.5 104401.8 9 447.5 105505.9 9 278.6 106747.9 11 326.7

DRSLPR.5.50.10 105751.7 8 4082.1 107000.2 9 4674.6 108395.2 8 680.1
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Table 6
Computational results for the DRI L-shaped algorithm: Ambiguity set is defined using bounds on
first, second, and third moments

Instance CI = 80% CI = 90% CI = 95%

zopt #DCs T (s) zopt #DCs T (s) zopt #DCs T (s)

DRSLP.5.25.50 -93.39 99 4.2 -87.62 98 3.9 -81.27 93 4.1

DRSLP.5.25.100 -107.73 108 10.1 -103.71 116 11.3 -99.20 104 9.8

DRSLP.10.50.50 -332.79 385 162.3 -326.26 450 187.5 -318.92 438 157.4

DRSLP.10.50.100 -325.03 472 413.6 -319.05 450 377.2 -312.33 437 382.6

DRSLP.10.50.500 -325.03 499 7234.2 -320.25 533 7653.6 -314.98 482 6060.0

DRSLP.15.45.5 -255.03 30 272.6 -253.88 22 190.0 -253.63 22 121.2

DRSLP.15.45.10 -242.70 119 743.7 -239.47 98 241.1 -236.34 86 2818.2

DRSLP.15.45.15 -237.05 347 650.1 -233.93 377 622.9 -230.48 518 1306.3

DRMKP.1 9418.71 13 289.3 9434.83 13 253.6 9451.86 13 333.3

DRMKP.2 9093.42 15 319.1 9111.53 10 339.3 9129.61 15 407.3

DRMKP.3 8619.42 19 389.4 8630.87 18 341.8 8643.47 16 357.3

DRMKP.4 8990.40 31 661.9 9005.47 30 570.7 9022.28 30 656.2

DRMKP.5 9503.67 15 510.1 9519.97 14 581.6 9537.57 13 539.2

DRMKP.6 9204.78 18 486.0 9217.42 24 536.1 9231.59 17 414.2

DRMKP.7 9709.79 13 684.0 9722.50 18 588.2 9734.91 18 717.1

DRMKP.8 9199.72 40 1555.2 9215.69 38 1226.4 9232.25 37 1389.8

DRMKP.9 9830.45 50 1298.0 9844.10 46 1569.0 9859.03 35 1437.0

DRMKP.10 8864.22 49 4547.7 8878.22 28 3107.9 8892.18 33 3588.3

Table 7
Computational results for the cutting surface algorithm: Ambiguity set is defined using bounds on
first, second, and third moments

Instance CI = 80% CI = 90% CI = 95%

zopt #DCs T (s) zopt #DCs T (s) zopt #DCs T (s)

DRSLP.5.25.50 -93.39 12 24.7 -87.62 12 22.9 -81.27 11 20.6

DRSLP.5.25.100 -107.73 11 32.8 -103.71 7 11.6 -99.20 12 42.1

DRSLP.10.50.50 -332.79 7 248.4 -326.26 9 362.7 -318.92 13 537.2

DRSLP.10.50.100 -325.03 8 466.8 -319.05 8 512.1 -312.33 12 920.2

DRSLP.10.50.500 -325.03 23 10800 -320.25 23 8533 -314.98 20 7341

DRSLP.15.45.5 -255.03 6 63.2 -253.88 6 106.8 -253.63 6 110.9

DRSLP.15.45.10 -242.70 6 175.4 -239.47 6 195.9 -236.34 6 482.2

DRSLP.15.45.15 -237.05 8 588.7 -233.93 7 533.7 -230.48 6 600.4

DRMKP.1 9418.71 5 292.5 9434.83 7 294.7 9451.86 7 413.5

DRMKP.2 9093.42 6 622.5 9111.53 5 316.2 9129.61 8 697.2

DRMKP.3 8619.42 6 513.6 8630.87 7 487.3 8643.47 5 476.3

DRMKP.4 8990.40 6 724.0 9005.47 7 872.2 9022.28 5 786.1

DRMKP.5 9503.67 8 1188.1 9519.97 5 1073.0 9537.57 6 1106.6

DRMKP.6 9204.78 7 1129.1 9217.42 7 753.5 9231.59 6 723.6

DRMKP.7 9709.79 6 1397.0 9722.50 7 1059.1 9734.91 7 1125.3

DRMKP.8 9199.72 6 1610.7 9215.69 6 1368.7 9232.25 7 2007.8

DRMKP.9 9830.45 6 1621.4 9844.10 6 2050.7 9859.03 6 2146.0

DRMKP.10 8864.22 6 3165.9 8878.22 6 3345.6 8892.18 6 1640.9

using bounds on first and second moments are solved faster than the instances with
ambiguity defined using Kantorovich set, which took lesser time in comparison to
solving instances with ambiguity set defined using bounds on first, second, and third
moments.

5. Concluding remarks. We developed decomposition algorithms to solve two-
stage distributionally robust mixed binary programs (TSDR-MBPs) and TSDR linear
programs (TSDR-LPs) where the random parameters follow the worst-case distribu-
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Table 8
Computational results for stochastic and robust optimization versions of the instances

Cutting Surface DRI L-shaped

Instance zopt T (s) Instance zopt #DCs T (s) #DCs T (s)

SSLP.5.25.50 -121.6 0.3 RSLP.5.25.50 14 5 4.6 7 2.4

SSLP.5.25.100 -127.4 0.7 RSLP.5.25.100 -40 7 19.7 12 7.5

SSLP.10.50.50 -364.6 3.4 RSLP.10.50.50 -200 5 122.3 6 191.9

SSLP.10.50.100 -354.2 6.1 RSLP.10.50.100 -237 8 566.2 15 713.3

SSLP.10.50.500 -349.1 24.6 RSLP.10.50.500 -159 5 937.0 10 1307.7

SSLP.15.45.5 -262.4 1.8 RSLP.15.45.5 -252 6 181.8 6 301.2

SSLP.15.45.10 -260.5 5.0 RSLP.15.45.10 -220 7 662.4 9 1290.1

SSLP.15.45.15 -253.6 4.7 RSLP.15.45.15 -208 5 573.6 11 930.7

SMKP.1 9339.2 19.1 RMKP.1 9686 3 89.0 3 93.0

SMKP.2 9001.3 33.4 RMKP.2 9388 3 344.2 2 325.1

SMKP.3 8560.7 46.6 RMKP.3 8844 3 389.2 2 385.8

SMKP.4 8916.9 99.1 RMKP.4 9237 3 766.9 3 804.7

SMKP.5 9423.0 196.9 RMKP.5 10024 3 611.9 2 602.6

SMKP.6 9143.2 226.2 RMKP.6 9515 3 113.8 2 109.7

SMKP.7 9635.5 247.7 RMKP.7 10003 3 188.4 2 208.1

SMKP.8 9116.7 327.0 RMKP.8 9427 4 877.1 3 1091.1

SMKP.9 9763.7 338.3 RMKP.9 10038 3 311.8 3 384.2

SMKP.10 8792.7 500.9 RMKP.10 9084 4 3248.3 3 1576.8

SSLPR.5.25.5 -129190.2 3.9 RSLPR.5.25.5 -118980 4 44.0 6 21.7

SSLPR.5.25.10 -72769.5 20.3 RSLPR.5.25.10 -55301 4 389.6 7 506.5

SSLPR.5.50.5 99019.4 33.1 RSLPR.5.50.5 112710 4 289.7 4 615.6

SSLPR.5.50.10 99665.5 5.7 RSLPR.5.50.10 118715 5 3812.4 7 1354.0

tion belonging to a general ambiguity set. As per our knowledge, no work has been
done to solve TSDR-MBPs. More specifically, we utilized distribution separation pro-
cedure within Bender’s algorithm to solve TSDR-LPs and TSDR-MBPs, and referred
to these algorithms as distributionally robust L-shaped algorithm and distributionally
robust integer L-shaped algorithm, respectively. Moreover, we provided conditions
and the families of ambiguity set for which the foregoing algorithms are finitely con-
vergent. We also presented a cutting surface algorithm to solve TSDR-MBPs where
ambiguity set is a set of finite number of distributions which are not known before-
hand. Finally, we computationally evaluated the performance of the DRI L-shaped
algorithm and the cutting surface algorithm to solve distributionally robust server lo-
cation problem (DRSLP), distributionally robust multiple binary knapsack problem
(DRMKP), and DRSLP with random recourse (DRSLPR) where the ambiguity set
is either Kantorovich set or moment matching set (defined by bounds on first two
moments or bounds on first three moments). We observed that DRI L-shaped algo-
rithm solved all DRSLP and DRMKP instances and 17 out of 32 DRSLPR instances
to optimality within less than one hour; whereas for 5 DRMKP and 20 DRSLPR
instances, the cutting surface algorithm did not terminate within a time limit of 3
hours. Also, on average DRI L-shaped algorithm is faster than the cutting surface
algorithm.
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