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Abstract: We construct metamaterials from sub-wavelength nonmagnetic resonators and consider
the refraction of incoming signals traveling from free space into the metamaterial. We show
that the direction of the transmitted signal is a function of its center frequency and bandwidth.
The directionality of the transmitted signal and its frequency dependence is shown to be explicitly
controlled by sub-wavelength resonances that can be calculated from the geometry of the
sub-wavelength scatters. We outline how to construct a medium with both positive and negative
index properties across different frequency bands in the near infrared and optical regime.
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1. Introduction

Metamaterials are patterned materials whose dispersive properties are controlled by their internal
structure. The distinctive feature is that signal propagation within the metamaterial is governed by
micro or nano resonators smaller than the smallest wavelength of the propagating signal. Familiar
examples include stained glass and colloidal suspensions which derive their coloration from the
plasmonic resonances of gold nanoparticles at optical frequencies, see [1]. Experimental validation
of negative index metamaterials created using the negative effective magnetic permeability of split
ring resonators [2] togeather with the negative effective dielectric constant from metal posts [3]
proposed in [4] is given in the article of [5]. Refraction of Gaussian pulses by negative index slabs are
theoretically investigated in [6]. Subsequent work has delivered several new designs using different
configurations of metallic resonators and corrugated wave guides for double negative and effective
magnetic behavior [7-20] in the microwave regime.

For higher frequencies in the infrared and optical range, new strategies for generating materials
with double negative bulk properties rely on Mie resonances. One scheme employs coated rods made
from a high dielectric core coated with a frequency dependent dielectric plasmonic or Drude type
behavior at optical frequencies [21-23]. A second scheme employs small rods or particles made from
dielectric materials with large permittivity, [24-26]. Alternate strategies for generating negative bulk
dielectric permeability at infrared and optical frequencies use special configurations of plasmonic
nanoparticles [27,28]. The list of metamaterial systems is growing and reviews of the subject can be
found in [29,30]. Studies on random configuration of dielectric materials has been pursued recently
in [31-33].

In the present work we are interested in the refraction of signals of a given center frequency
and bandwidth traveling from free space into a metamaterial. We construct our metamaterial from
non-magnetic sub-wavelength arrays of scatterers that exhibit both local Mie resonances as well as
local plasmon resonances associated with a Drude dielectric. These resonances interlace and generate
the passbands and stop bands of the metamaterial [34-37]. The resonances are shown to control the
signs of the effective magnetic permeability and dielectric constant. For frequency bands where the
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effective properties are simultaneously positive one has a positive dispersion while one has a negative
dispersion for signals over frequency bands where effective properties are simultaneously negative,
see [34-37]. The Mie resonances are generated by high dielectric fibers coated with a frequency
dependent dielectric. This patterned sub-wavelength heterogeneous media delivers an effective index
of refraction that can either be positive or negative across different frequency bands in the near infrared
and optical regime. In this paper we outline the explicit connection linking these frequency bands
to the sub-wavelength geometry and associated resonances. We illustrate the resulting positive to
negative index metamaterial and the associated positive to negative angle of refraction for signals
transmitted into the metamaterial over different frequency bands.

2. Metamaterials and Frequency Dependent Effective Index of Refraction

The metamaterial treated here is constructed from a two-dimensional photonic crystal made of
parallel coated rods, see Figure 1. There can be one or more parallel coated rods inside the crystal
period. All materials used here are nonmagnetic and have relative magnetic permeability equal
to 1. We will obtain an effective magnetic response using resonant sub-wavelength geometries.
The time harmonic field is TE-polarized and the magnetic field inside the crystal is parallel to the rods
H = H(x) exp (—iwt)Z where x = (x, ) in the xy-plane transverse to the rods.

Figure 1. Photonic crystal made from coated rods.

The period for the crystal is d and the dielectric coefficient €,;(x) takes the values

€r intherod,
€4(x) = { € in the coating, 1

€, in the host material.

The coating is a cylindrical shell of plasmonic material with dielectric constant ¢, (w?/c?) =
w? / 2
_ e
1- e
light in vacuum. The dielectric constant of the rod is chosen according to eg = 7t where €, has units of

Here w) is the plasma frequency associated with the coating material and c is the speed of

area. The idea is to choose the dielectric permittivity of the rod to be large relative to the period size so
that the corresponding Mie resonances are excited in the sub-wavelength limit. The dielectric constant
of the host material is given by €, = 1.

The time harmonic magnetic field H, for the d-periodic crystal is a Bloch wave

H; = h(x) exp (ikmk - x), )
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where & is d-periodic in x, the wave number in the metamaterial is given by k;, = 27r/A, where A is
the wavelength in metamaterial. The direction of propagation in the xy-plane is described by the unit
vector & = (Ky, k). The magnetic field satisfies the Helmholtz equation
-1 (,02

V-e; VH; = —C—ZHZ, 3)
with propagation bands described by dispersion relations relating w/c to k. We examine the
sub-wavelength case when d < 27tc/w = A, where Ay is the wavelength in free space. The power
series approach [34,36,37] is used to find the explicit Bloch wave solution of Maxwell’s equation as a
convergent multiscale power series in 77 = 27td/A¢. The 17 = 0 term in the expansions for dispersion
relation and field deliver the”homogenized sub-wavelength” dispersion relation for plane waves
inside an effectively magnetic double negative medium, see [34,36,37].

In the effective medium, the dispersion relation relating frequency w to wave number k;, is

w w?
ky = ?neff <CT) ’ (4)

where 7, is the effective index of refraction, and this is derived rigorously in [34].
The homogenized wave is a plane B field wave:

B?om _ Boei(kmk-xfwt)

7

where By is a constant in space and time. The homogenized B field is related to the homogenized
H field by BHom = ygff(‘;’—;)Hfom where p,¢f is the effective magnetic permeability [36]. Here
HHom — y ¢t (knfx—wt) and the effective constitutive relation

HZHom(w) _ EOei(k,,,;%-xfaut) (5)
Blm(w) By
Herf(w)  pepr(w)

ei(kmfc-xfwt) )

The effective dielectric permittivity is €.f f(‘g—zz) and

w2 azz
iy = s (% ) s (%) ©)

The explicit formulas for the frequency dependent effective magnetic permeability depend on
the Dirichlet spectrum of the high contrast inclusion and the frequency dependence of the effective
dielectric constant depend on the generalized electrostatic resonances (plasmon) resonances of the
dielectric coating [34,36]. These formulas are presented in the next section.

3. Controlling Frequency Dependent Effective Properties and Positive and Negtive Dispersion

The frequency dependent effective magnetic permeability p.¢r and effective dielectric permittivity
€.ff are determined explicitly in terms of local resonances. We first rescale to a unit period cell to
define effective properties. The unit cellis Y = {0 < x < 1; 0 < y < 1}. The subset of Y containing
the high contrast dielectric is R, the coating containing the Drude dielectric is P and the host material
occupies H. These three regions make up the unit cell Y, see Figure 2.
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Figure 2. Unit cell containing a single rod cross section. R represents the rod cross section , P the
plasmonic coating and H the host.

The Dirichlet eigenfunctions ¢, u

~A9(x) = #g(x), xin R %
$(x) = 0, x on the boundary of R

with nonzero mean and associated eigenvalues of the Laplacian defined on R. The set of eigen
functions and eigenvalues are denoted by ¢, and y, respectively for n = 1,2,---. The effective
magnetic permeability is given by

wz 0 ’un < ¢n >2
Heff <CT) =0n +0p + Z ﬁiR, (8
n=1 Hn 2

where (-) denotes the average over R, 0 and 6p are the areas occupied by regions H and P, respectively.
The generalized electrostatic resonance of the coating is the eigenfunction ¢ eigenvalue 7y
pair solving

AY_0 in H,
9
{ Apy=0 inP, ©)
with the boundary and transmission conditions
Y| =yt on the boundary of P,
9 =0 on the boundry of R, 0
v[0:¢]; = —2(3:¢|” +95¢|T) on the boundary of P,
1 is Y-periodic.

Here 05 is the outward directed normal derivative. The generalized electrostatic eigenvalues
{'Wt}(;zo:O lie in the open interval (—%, %) with zero being the only accumulation point, see [34].
The eigenfunctions {¢,, };° , form a complete orthonormal set of functions in the space of mean
zero square integrable periodic functions on the set Y \ R. Similar types of electrostatic resonances are
well known in the context of effective coefficients of DC two phase media [38,39].

We form the integrals

alyh = /HV1/J% dx and zx%m = /I;VIIJ% dax. (11)
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and the frequency dependent effective dielectric constant is

2
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The index of refraction for the metamaterial is given by (6), and the dispersion relation (4).

Here the the link between dispersion relation and the subwavelength geometry is explicitly given

in terms of the local resonances defining the effective properties through the Formulas (8) and (12).

These formulas are derived in [36,37]. It is clear that we can control the frequency dependence of
Hefr and €.¢f by controlling the poles and zeroes of these functions which depend on the Dirichlet

resonances (7) and generalized electrostatic resonances (10) respectively. The graphs of j.¢r and ee_f;

as functions of w?/c? are displayed in Figures 3 and 4. Here the intervals 4/ < w?/c? < b’ and

a" < w?/c? < " are the same in all graphs.

Heff

€eft

Figure 4. The relation between e;f} and w?/c2.

= W

9
2 Je?
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It follows that dispersion relation is also controlled by the poles and zeros of p,sr and ee_f}
as explicitly determined through the Dirichlet spectra and generalized electrostatic resonances.
The Formulas (4) and (6) show that the frequency intervals associated with pass bands and stop
bands are governed by the poles and zeros of the effective magnetic permittivity and dielectric
permittivity tensors. Pass bands of fixed center frequency and band width occur when the effective
magnetic permittivity and dielectric permeability have the same sign. This includes frequency intervals
where effective tensors are either simultaneously positive or negative. When both are positive one has
positive dispersion and negative dispersion when both are negative. Bands of positive and negative
dispersion are separated by stop bands, see Figure 5.

2
‘m

oy Syt Cila

! et
Figure 5. The leading order dispersion relation over two selected intervals I, and ;.

In the following sections we will choose the the high contrast core phase to be a disk centered in
the period cell surrounded by an annular coating of Drude dielectric. The ratios of the disk radius
and the outer diameter of the coating to the period length are fixed. We then calculate the Dirichlet
and electrostatic eigenvalues to calculate a frequency dependent effective index of refraction. For the
concentric Drude dielectric coating-high dielectric core geometries we can control the spectra by
changing the ratio of core to coating material used, see Figure 6. Here we denote the core radius by a
and the outer radius of the coating by b where these numbers are in dimensionless units relative to
period length. In this context we can change the outer radius of the coating and radius of the core
relative to the period size. The band width and center frequency of the negative index band and its
dependence on a2 and b listed in Table 1. This demonstrates that we can control the frequency bands
where the effective index of refraction is negative (or positive) by changing the inner and outer radii of
the coating material.

Table 1. The changes of the negative index band when inner radius and outer radius vary. In each cell,
the upper and lower numbers denote the band width and center frequency, respectively.

a=05b a=0.55b a=0.6b a=0.65b

0 0 0 0.0332

b=03 (0.8919)
b=0235 0 0.02733 0.03824 0.04425
=0 (09003)  (0.8315)  (0.7716)
b=04 0.03541 0.04204 0.04893 0.05579
=04 (08707)  (0.7960)  (0.7345)  (0.6830)

b =045 0.04366 0.05143 0.05944 0.06801

(0.7795)  (0.7141)  (0.6605)  (0.6161)
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Figure 6. The crosssection of the coated fiber with core radius a and coating radius b.

These calculations highlight the frequency dependent refraction of signals composed of waves
with frequencies inside different frequency bands by a free space - metamaterial system. In the
following sections we demonstrate how to calculate the explicit refraction of signals passing between a
free space - metamaterial interface in the time domain. We show that the same metamaterial can refract
signals both positively or negatively depending only on the frequency band of the incoming signal.

In the following sections we will choose the the high contrast core phase to be a disk centered
in the period cell and an annular coating. The ratios of the disk radius and the outer diameter of the
coating to the period length are fixed. We then calculate Dirichlet and electrostatic eigenvalues to
calculate a frequency dependent effective index of refraction. These calculations are used to highlight
the frequency dependent refraction of signals composed of waves with frequencies inside different
frequency bands by a free space - metamaterial system.

4. Normal Incidence on a Half Space of Metamaterial

We consider the left half space to be free space and the right half space filled with metamaterial.
The interface between half spaces is parallel to the Z axis and the normal to the interface is taken to be
the £ axis and the interface between half spaces is given by the x = 0 plane. We first suppose a group
of waves of different frequencies propagate along the £-axis, and so the H field is along the Z-axis and
the problem reduces to one dimension.

First we consider waves inside the metamaterial. Since we have normal incidence we replace k;, &
by ki, and x by x. We let k = ¢ and write

HHom(k) _ BHom(k) _ By ol (km (k) x—ket)
pepr(ck) — pepr(ck)

7

Energy propagation is in the direction of increasing x so if p,rr > 0, €7 > 0 then nggr > 0
while if p.rr <0, €57 < 0thenn,sr <0, see [36,37]. On the other hand the vacuum is nonmagnetic,
i.e.,, p = 1so the B and H fields are the same and

HvaC(k) _ Boei(kxfkct)l (13)

where k is the wave number in vacuum and the free space dispersion relation is k = ¢.
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The wave forms inside both media are a superposition of plane waves. For each k the plane

waves are of the form By[e!(*—kct) — R (ck)e!(=k*—keh)] for x < 0 and T (ck) %ei(km(k)x’k“) for x > 0.
For each k the coefficients R (ck) and T (ck) are determined by the two transmission conditions

[H3] =0atx =0 (14)
and
[Ep] =0atx = 0. (15)
From Maxwell’s equations we have the identity inside vacuum and metamaterial
E; = e }(x)d,H3 (16)
where
e(x){l forx <0,
€cff(ck) forx > 0.

Then the last jump condition (15) is equivalent to
[e }(x)9yH3] = 0atx = 0. (17)

Collecting the results we give the waveforms incident reflected and transmitted across the interface
x = 0 between vacuum x < 0 and effective material x > 0.

Proposition 1. Waveforms in vacuum and effective material. The Z component of the H field is the only
non zero component of the H field wave form in vacuum (x < 0) and is

Hoae (ko, x,t) = / A(k)Bo[e! k) — R (ck)e! (TR kel)) gk, (18)
where the amplitude A(k) decribes the properties of the linear superpostion of the different waves. The 2
component of the H field is the only nonzero component of the H field wave form in the metamaterial (x > 0)
and is

Hgp(ko,x,t) = /7 ooA(k)T(ck)yeff(()ck)el(k"’(k”‘ ket) g (19)

e Here Hyac(ko, x,t) = Hgff(ko,x, t) at the interface x = 0

The 1 component of the E field is the only nonzero component of the E field in vacuum (x < 0) and is

Evac(ko, x,t) = [ O:OA(k)BO%[ei(k"’k“)—R(ck)ei(’k’“k“t)]dk. (20)

The § component of the E field is the only nonzero component of the E field in the metamaterial (x > 0)
and is
By d

[ei(km(k)xfkct)] dk.
Hefr(ck) dx

Eur(ko x,t) = '/;o;A(k)eeff(ck)’T(ck)

e Here Epgc(ko, x,t) = Eeff(ko,x, t) at the interface x = 0
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where

k
_ 1 —eoff(ck) T (CK)
1+ eef (ck) oty

R(ck) 21)

and

2uerr(ck)eqrr(ck)
T(ek) = G o———
% + eeff(Ck)

Now we introduce ngff(ck) = €cfr(ck)pess(ck) and ky /k = n,5¢(ck) and we can write

E(,ff(ck)
nef(ck)
eeff(Ck)
1 + Vlgff (Ck)

R(ck) = (22)

and
ZnEff (ck)

eeff(Ck)
neff (Ck)

T (ck) =

Note that R(ck) < 1ifn,rr < 0and €,¢f < 0.
In our paper, we consider a signal made of a group of waves with frequencies lying inside a

prescribed band of frequencies for which

a (k—kg)2a?
— (kg)a”

X(w) (23)

where

. 1 forwp <w < wy,
Xw) = ,
0 otherwise.

In order to make the H-field dimensionless, we can use wpt to denote the time change, and WT”X
the position change. Let @ = koc be the center frequency. Then the transmitted wave packet (19) can
be written as

o \wpmwp)TCE) i(hme ©P% ke (¢t
Hyp = %ﬁ [=e 7 X(w/wp)'r(w/wp)me'(wﬁ &y (@ ))d(%) (24)
(%7%)2 wpa.p . w \ [ wWpX w
_wpa 1 poo  _@p @pl 7 B i[(neg ) (F5) = (55 ) (wpt)]
= [Se z X(w/wP)T(w/wp)WU/wp)e ! PG
Similarly the reflected wave packet is
wpa 1 0 _W ”
Hype = T Jan )€ 2 X(a)/wP)X (25)

The incident wave packet without reflection is
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a 0 (k—kg)2a? )
Hiype = e” 2 x(w)Boe' k¥ ket) g 26
inc \/2? B X( ) 0 (26)
w @ \2,Yp%\2
L S P e, i) () ~(85) (wpt)]
- c \/7 2 X(w/wp)BOe P ’

In our example we take <22 = 300, wy / wp = 0.735 and wy /wp = 0.74. Let the dimensionless
center frequency - wp = = 0.7375. We use Riemann sum to approximate the integral by the sum of two
rectangles.

SR ) -(E)@n)) he ined :
Let J(w/wyp) = e z elept ¢ tap . The incident wave packet without any
reflections is
wp w
Hipe = 7\/i (U/(Up B()]((,U/(Up) (Jp) (27)
- 2 " Bolw/y) a2 )

7\/ 0.735

‘”é’“\lﬁA( )BolJ (0735)+](074)]

where w”” rA( )Bo is a constant. Figure 7 is the graph for J(0.735) + ](0.74) for w,t = 5.

01
-24
4
~2000 ~1500 1000 -500
ll)px
Figure 7. Incident wave without any reflection for wyt =5
u‘?’*p*%ﬂ(w)z i[(i)(“)px),(i)(w 1) l[f(i)(%)f(i)(w 1]
Let G(w/wp) = e 2 [e ¢ wp T R(w/wp)e e wp )l

The incident wave packet with the interaction of reflection is

o wpa 1 w

Hype = ¢ vVarl- X((U/CUP)B()G(CU/(Up)d(wp) (28)
w1 0.74
T ¢ V¢ 0735BOG(w/wp)d( p)

wpa 1

o= (7)30[6(0 735) + G(0.74)].

Figure 8 is the graph for G(0.735) + G(0.74) for wyt = 5 which is H field in vacuum with
interaction between incident and reflective waves.

Q
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T T
-2000 -1500 -1000 -500
,x
c

Figure 8. H field in vacuum with interaction between incident and reflective waves for wpt = 5.

(&5 - & PCF P

c i w (P ((w
Let F(w/wp) = e~ — %el[%ﬁ%)( <) =(@)D] Then we have
wpa 1 o w
Hyf = ———= | R(w/wp)BoF(w/wp)d(— 29
off ¢ Vin _OOX( p)BoF(w/wp) (wp) (29)
wpa 1 0.74 w
= —— BoF(w/wy)d(—
¢ V2r Jozss ° (w/wp) (wp)
wpa 1 w
~ ————A(—)By|F(0.735) + F(0.74)],
c \/277_[ (wp) 0[ ( ) ( )}
where pru \/%A(w% )Bp is a constant. Figures 9 and 10 are the graphs for F(0.735) 4 F(0.74) for different

wpt, i.e., the transmitted wave motion in metamaterial (x > 0). Figure 9 shows transmitted wave
motion from the bottom to the top for wyt ranging from 5 to 9 in the steps of 2. It can be observed that
the group velocity of the transmitted wave in metamaterial has the forward direction (the envelope
moves forward). Figure 10 shows the transmitted wave motion from the bottom to the top for wpt
ranging from 5 to 7 in the steps of 1. We can see that the phase of the transmitted wave in metamaterial
moves backward.

2

LIt T TA RN HRTA L1

A ST R o

-2

c

Figure 9. Transmitted wave motion from the bottom to the top for w,t ranging from 5 to 9 in the steps
of 2. The group velocity has the forward direction.
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Figure 10. Transmitted wave motion from the bottom to the top for wyt ranging from 5 to 7 in the steps
of 1. The phase velocity has the backward direction.

The H field at the interface between the vacuum (x < 0) and effective double negative material
(x > 0) is shown in Figure 11. The graph shows the continuity of the magnetic field at the interface.
But it is not differentiable at the interface.

Figure 11. H field at the interface between the vacuum (x < 0) and the metamaterial with negative
index of refraction (x > 0) from the bottom to the top for wpt ranging from 5 to 9 in the steps of 2.

5. Oblique Incidence on a Metamaterial: A Positive to Negative Index Refraction
Consider the 2D motion of the H-polarized field given by H = [0, 0, HZ]T and E = [E,, Ey, O}T.
In the vacuum, the third component of the incident H field is given by

H;n _ Boei(kf,--xfkct)’ (30)

where k is the wave number in vacuum (x < 0), x = (x,y), the incident wave propagation direction
€; = (cos 8;,sin6;) and 6; is the angle of incidence between the incident wave and the normal vector
1 = (1,0,0) of the interface (x = 0). After the incident wave hits the interface (x = 0), the reflected

wave has the form of

HI* = —R(ck)Boe'Krxket), (31)
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where R(ck) is the reflection coefficient, the reflected wave propagation direction
K, = (—cosb,sinf,) and 6, = 6; is the reflective angle between the reflective wave and the
interface normal.

In the negative index metamaterial (x > 0), the transmitted wave has the form of

tr By i (k- x—ket)
H;" =T (ck) yeff(ck)e , (32)

where T (ck) is the transmission coefficient, k;, is the wave number in the media, the propagation
direction in the effective media ; = (cos 6, sin 6;), 6; is the refractive angle between the refractive
wave and the interface normal and by the Snell’s Law sin6; = n1,¢ sin ;.

From the Maxwell equation, at the interface (x = 0), we have the transmission conditions

[AxH]=0atx=0 (33)
and
[AxE]=0atx=0. (34)

The transmission condition (33) shows

H" + H = Hf atx =0 (35)
which implies that
Boe! (ki x—ket) _ 12 (ck) Boel(Kérx—ket) — T (ck) By pilkmkex—ket) g4 v — 0. (36)
pers(ck)

Since ksin §; = k;, sin 6; by Snell’s Law, (36) becomes

1 - R(ck) = LK) (37)
Hefr(ck)
We also have
E= #V x H (38)
iwe(x) '
So the transmission condition (34) shows
[e 1 (x)0yH] =0. (39)
x=0
Here
1
e(x) = x <0,
eeff(ck) x> 0.
Then we have
0x(HI' +HI)|  =¢,/;0xHY (40)
x=0 x1=0
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which implies

T(ck)e;lf(ck)

ky, cos 6. (41)
Hesr(ck) :

(14+R(ck))kcosb; =

The linear system (37) and (41) has the solution

k
m 6 _ 9
(ck) = kk cos 0y — €,ff cos b; ()
T cos 0 + €55 cosb;
and
2 ck)e 0;
T(Ck) _ V@ff( ) Eff Cos (43)

kT'” cos b + €5 cos 0;
Collecting results we have

Proposition 2. Waveforms in vacuum and effective material in 2D. The Z component of the H field is
the only non zero component of the H field wave form in vacuum (x < 0) and is

Hoae(ko, x, 1) = / A(k) BoleFFixket) — R (cke) i K x—ket)] . (44)
The z component of the H field is the only non zero component of the H field wave form in the metamaterial
(x > 0) and is

Bo ki
Hopp(ko,x t) = L ooA(k)’T(ck)Heff(()Ck)e“k’”"f ket) g (45)

Here Hyge (ko, x,t) = Heff(ko, x, t) at the interface x; = 0, and

k
 cos 0; — €ef f COS 0;

R(ck) = (46)

kT’” cos 0 + €7 cos 0;
and

2pefr(ck)e,fr cos B;

T (ck) = .
(ck) %cos@t—&—eeffcos()i

We consider the signal composed of waves inside a frequency band for which A(k) is defined
by (23). The transmitted signal (45) can be written as

o o wopa
(&5 - &)X CF P

I N B s
HEff o« 2n f—ooe wpx ’ tu)E(UJ/wp)X (47)
BoT (w/wp) il(ness i )( P71 cos ;4 L 2 sin 0 ) — (£ ) (wpt)] w
R et 24P} P p d(i)
peff(w/wp) wp
Similarly the signal in the vacuum can be rewritten as
Wt 1 oo S EPCE?
Hue =L [ e (/) Box
[ei[((ﬁf”,,)(% cos 0+~ sin ;) — () (wpt)] (48)

)(— 2 cos 0,4+ P22 sin ;) — (2 ) (wpt)]

e (e,

—R(w/wp)ei[(ﬁ
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In this example, we take as before # = 300, wy/wp = 0.735 and wy/wp = 0.74. Let the
dimensionless center frequency be -2 = 0.7375 and the incident angle 6; = 16°. We use a Riemann
sum and approximate the integrals by the sum of two rectangles. So

wpa 1 e N w
oy = U [ R b ) “

0.74
wpa 1 N

w
—_— BoF d(—
¢ van Jors " (w/wp) (a) )

wpa 1 w

P
7 (—)Bo[F(0.735) + £(0.74)],

Wy

w @ \2,Ypa\2 w
Wy by O Tw/awy)  illnegy s (1 cosy+ 22 singy) —( &) (wpb)]

f p— - c c w wpa 1 :
where F = ¢ p Fepy @) P and T”?A(wﬂp)BO is
a constant. Notice that 6; = arcsin(neff sinf;). Therefore, 6; = —24.12° when w% = 0.735 and
0; = —39.20° when w% = 0.74. And
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Figure 12 shows the contour map of H field at the interface between the vacuum (x < 0) and the
effective double negative material (x > 0).

Figure 12. Contour map of H field with the incident angle 6; = 16° at the interface between the vacuum
(x < 0) and effective double negative material (x > 0) when wyt = 0.
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Now consider another signal but with with w; /wp, = 0.95 and wy;/w), = 0.96 . The paper [36]
shows that when the dimensionless frequency w% lies in the interval [0.95,0.96], the effective
permittivity and effective permeability of the material are simultaneously positive. Let the
dimensionless center frequency w% = 0.955 and the incident angle 0; = 16°. Note that the refractive
angle 6; = 75.57° when - = 0.95 and 6; = 55.00° when %~ = 0.96. Figure 13 gives the contour map of
H field at the interface between the vacuum (x < 0) and the effective double positive material (x > 0).

7

(AN

Figure 13. Contour map of H field with the incident angle 8; = 16° at the interface between the vacuum
(x < 0) and effective double positive material (x > 0) when wyt = 0.

6. Conclusions

We have considered the refraction of incoming signals traveling from free space into a
metamaterial. The metamaterial considered in this paper is made up of a periodic sub-wavelength
array of non-magnetic resonators. We show that the resonator geometry influences the direction of the
transmitted signal depending on the signal’s center frequency and bandwidth. Here the directionality
of the refracted signal and its frequency dependence is explicitly controlled by sub-wavelength
resonances that can be controlled by adjusting the geometry of the sub-wavelength scatters. We present
the time domain representation for the refracted signals and use this representation in the numerical
simulation of their behavior. The simulation shows that the medium can be designed to simultaneously
refract signals both positively or negatively depending on the signal’s center frequency and band width.
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