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Abstract: We construct metamaterials from sub-wavelength nonmagnetic resonators and consider

the refraction of incoming signals traveling from free space into the metamaterial. We show

that the direction of the transmitted signal is a function of its center frequency and bandwidth.

The directionality of the transmitted signal and its frequency dependence is shown to be explicitly

controlled by sub-wavelength resonances that can be calculated from the geometry of the

sub-wavelength scatters. We outline how to construct a medium with both positive and negative

index properties across different frequency bands in the near infrared and optical regime.
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1. Introduction

Metamaterials are patterned materials whose dispersive properties are controlled by their internal

structure. The distinctive feature is that signal propagation within the metamaterial is governed by

micro or nano resonators smaller than the smallest wavelength of the propagating signal. Familiar

examples include stained glass and colloidal suspensions which derive their coloration from the

plasmonic resonances of gold nanoparticles at optical frequencies, see [1]. Experimental validation

of negative index metamaterials created using the negative effective magnetic permeability of split

ring resonators [2] togeather with the negative effective dielectric constant from metal posts [3]

proposed in [4] is given in the article of [5]. Refraction of Gaussian pulses by negative index slabs are

theoretically investigated in [6]. Subsequent work has delivered several new designs using different

configurations of metallic resonators and corrugated wave guides for double negative and effective

magnetic behavior [7–20] in the microwave regime.

For higher frequencies in the infrared and optical range, new strategies for generating materials

with double negative bulk properties rely on Mie resonances. One scheme employs coated rods made

from a high dielectric core coated with a frequency dependent dielectric plasmonic or Drude type

behavior at optical frequencies [21–23]. A second scheme employs small rods or particles made from

dielectric materials with large permittivity, [24–26]. Alternate strategies for generating negative bulk

dielectric permeability at infrared and optical frequencies use special configurations of plasmonic

nanoparticles [27,28]. The list of metamaterial systems is growing and reviews of the subject can be

found in [29,30]. Studies on random configuration of dielectric materials has been pursued recently

in [31–33].

In the present work we are interested in the refraction of signals of a given center frequency

and bandwidth traveling from free space into a metamaterial. We construct our metamaterial from

non-magnetic sub-wavelength arrays of scatterers that exhibit both local Mie resonances as well as

local plasmon resonances associated with a Drude dielectric. These resonances interlace and generate

the passbands and stop bands of the metamaterial [34–37]. The resonances are shown to control the

signs of the effective magnetic permeability and dielectric constant. For frequency bands where the
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effective properties are simultaneously positive one has a positive dispersion while one has a negative

dispersion for signals over frequency bands where effective properties are simultaneously negative,

see [34–37]. The Mie resonances are generated by high dielectric fibers coated with a frequency

dependent dielectric. This patterned sub-wavelength heterogeneous media delivers an effective index

of refraction that can either be positive or negative across different frequency bands in the near infrared

and optical regime. In this paper we outline the explicit connection linking these frequency bands

to the sub-wavelength geometry and associated resonances. We illustrate the resulting positive to

negative index metamaterial and the associated positive to negative angle of refraction for signals

transmitted into the metamaterial over different frequency bands.

2. Metamaterials and Frequency Dependent Effective Index of Refraction

The metamaterial treated here is constructed from a two-dimensional photonic crystal made of

parallel coated rods, see Figure 1. There can be one or more parallel coated rods inside the crystal

period. All materials used here are nonmagnetic and have relative magnetic permeability equal

to 1. We will obtain an effective magnetic response using resonant sub-wavelength geometries.

The time harmonic field is TE-polarized and the magnetic field inside the crystal is parallel to the rods

H = Hz(x) exp (�iwt)ẑ where x = (x, y) in the xy-plane transverse to the rods.

d

d

Figure 1. Photonic crystal made from coated rods.

The period for the crystal is d and the dielectric coefficient ed(x) takes the values

ed(x) =

8

>

>

<

>

>

:

eR in the rod,

ep in the coating,

eh in the host material.

(1)

The coating is a cylindrical shell of plasmonic material with dielectric constant ep(w2/c2) =

1 � w2
p/c2

w2/c2 . Here wp is the plasma frequency associated with the coating material and c is the speed of

light in vacuum. The dielectric constant of the rod is chosen according to eR = er
d2 where er has units of

area. The idea is to choose the dielectric permittivity of the rod to be large relative to the period size so

that the corresponding Mie resonances are excited in the sub-wavelength limit. The dielectric constant

of the host material is given by eh = 1.

The time harmonic magnetic field Hz for the d-periodic crystal is a Bloch wave

Hz = h(x) exp (ikmk̂ · x), (2)
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where h is d-periodic in x, the wave number in the metamaterial is given by km = 2p/l, where l is

the wavelength in metamaterial. The direction of propagation in the xy-plane is described by the unit

vector k̂ = (k̂x, k̂y). The magnetic field satisfies the Helmholtz equation

r · e�1
d rHz = �w2

c2
Hz, (3)

with propagation bands described by dispersion relations relating w/c to kmk̂. We examine the

sub-wavelength case when d < 2pc/w = l f , where l f is the wavelength in free space. The power

series approach [34,36,37] is used to find the explicit Bloch wave solution of Maxwell’s equation as a

convergent multiscale power series in h = 2pd/l f . The h = 0 term in the expansions for dispersion

relation and field deliver the“homogenized sub-wavelength” dispersion relation for plane waves

inside an effectively magnetic double negative medium, see [34,36,37].

In the effective medium, the dispersion relation relating frequency w to wave number km is

km =
w

c
ne f f

✓

w2

c2

◆

, (4)

where ne f f is the effective index of refraction, and this is derived rigorously in [34].

The homogenized wave is a plane B field wave:

BHom
z = B0ei(km k̂·x�wt),

where B0 is a constant in space and time. The homogenized B field is related to the homogenized

H field by BHom
z = µe f f (

w2

c2 )HHom
z where µe f f is the effective magnetic permeability [36]. Here

HHom
z = u0ei(km k̂·x�wt) and the effective constitutive relation

HHom
z (w) = u0ei(km k̂·x�wt) (5)

=
BHom

z (w)

µe f f (w)
=

B0

µe f f (w)
ei(km k̂·x�wt).

The effective dielectric permittivity is ee f f (
w2

c2 ) and

n2
e f f = ee f f

✓

w2

c2

◆

µe f f

✓

w2

c2

◆

. (6)

The explicit formulas for the frequency dependent effective magnetic permeability depend on

the Dirichlet spectrum of the high contrast inclusion and the frequency dependence of the effective

dielectric constant depend on the generalized electrostatic resonances (plasmon) resonances of the

dielectric coating [34,36]. These formulas are presented in the next section.

3. Controlling Frequency Dependent Effective Properties and Positive and Negtive Dispersion

The frequency dependent effective magnetic permeability µe f f and effective dielectric permittivity

ee f f are determined explicitly in terms of local resonances. We first rescale to a unit period cell to

define effective properties. The unit cell is Y = {0 < x < 1; 0 < y < 1}. The subset of Y containing

the high contrast dielectric is R, the coating containing the Drude dielectric is P and the host material

occupies H. These three regions make up the unit cell Y, see Figure 2.
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Figure 2. Unit cell containing a single rod cross section. R represents the rod cross section , P the

plasmonic coating and H the host.

The Dirichlet eigenfunctions f, µ

�∆f(x) = µf(x), x in R (7)

f(x) = 0, x on the boundary of R

with nonzero mean and associated eigenvalues of the Laplacian defined on R. The set of eigen

functions and eigenvalues are denoted by fn and µn respectively for n = 1, 2, · · · . The effective

magnetic permeability is given by

µe f f

✓

w2

c2

◆

= qH + qP +
∞

∑
n=1

µn < fn >
2
R

µn � w2

c2

, (8)

where h·i denotes the average over R, qH and qP are the areas occupied by regions H and P, respectively.

The generalized electrostatic resonance of the coating is the eigenfunction y eigenvalue g

pair solving
(

∆y=0 in H,

∆y = 0 in P,
(9)

with the boundary and transmission conditions

8

>

>

>

<

>

>

>

:

y|� = y|+ on the boundary of P,

∂~ny = 0 on the boundry of R,

g[∂~ny]�+ = � 1
2 (∂~ny|� + ∂~ny|+) on the boundary of P,

y is Y-periodic.

(10)

Here ∂~n is the outward directed normal derivative. The generalized electrostatic eigenvalues

{gh}
∞
h=0 lie in the open interval (� 1

2 , 1
2 ) with zero being the only accumulation point, see [34].

The eigenfunctions {ygh
}∞

h=0 form a complete orthonormal set of functions in the space of mean

zero square integrable periodic functions on the set Y \ R. Similar types of electrostatic resonances are

well known in the context of effective coefficients of DC two phase media [38,39].

We form the integrals

a1
gh

=
Z

H
rygh

dx and a2
gh

=
Z

P
rygh

dx. (11)
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and the frequency dependent effective dielectric constant is

e�1
e f f

✓

w2

c2

◆

= qH +
x0

w2

c2 � erw2
p

c2

qP (12)

�1

2 ∑
� 1

2<gh<
1
2

0

B

B

B

B

B

B

B

@

✓

w2

c2 � erw2
p

c2

◆

|a
(1)
gh

|2 + 2
erw2

p

c2 a
(1)
gh

· a
(2)
gh

+

✓

erw2
p

c2

◆2

w2

c2 � erw2
p

c2

|a
(2)
gh

|2

w2

c2 � (gh +
1
2 )

erw2
p

c2

1

C

C

C

C

C

C

C

A

.

The index of refraction for the metamaterial is given by (6), and the dispersion relation (4).

Here the the link between dispersion relation and the subwavelength geometry is explicitly given

in terms of the local resonances defining the effective properties through the Formulas (8) and (12).

These formulas are derived in [36,37]. It is clear that we can control the frequency dependence of

µe f f and ee f f by controlling the poles and zeroes of these functions which depend on the Dirichlet

resonances (7) and generalized electrostatic resonances (10) respectively. The graphs of µe f f and e�1
e f f

as functions of w2/c2 are displayed in Figures 3 and 4. Here the intervals a0 < w2/c2
< b0 and

a00 < w2/c2
< b00 are the same in all graphs.

Figure 3. The relation between µe f f and w2/c2.

Figure 4. The relation between e�1
e f f and w2/c2.
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It follows that dispersion relation is also controlled by the poles and zeros of µe f f and e�1
e f f

as explicitly determined through the Dirichlet spectra and generalized electrostatic resonances.

The Formulas (4) and (6) show that the frequency intervals associated with pass bands and stop

bands are governed by the poles and zeros of the effective magnetic permittivity and dielectric

permittivity tensors. Pass bands of fixed center frequency and band width occur when the effective

magnetic permittivity and dielectric permeability have the same sign. This includes frequency intervals

where effective tensors are either simultaneously positive or negative. When both are positive one has

positive dispersion and negative dispersion when both are negative. Bands of positive and negative

dispersion are separated by stop bands, see Figure 5.

Figure 5. The leading order dispersion relation over two selected intervals In0 and In00 .

In the following sections we will choose the the high contrast core phase to be a disk centered in

the period cell surrounded by an annular coating of Drude dielectric. The ratios of the disk radius

and the outer diameter of the coating to the period length are fixed. We then calculate the Dirichlet

and electrostatic eigenvalues to calculate a frequency dependent effective index of refraction. For the

concentric Drude dielectric coating-high dielectric core geometries we can control the spectra by

changing the ratio of core to coating material used, see Figure 6. Here we denote the core radius by a

and the outer radius of the coating by b where these numbers are in dimensionless units relative to

period length. In this context we can change the outer radius of the coating and radius of the core

relative to the period size. The band width and center frequency of the negative index band and its

dependence on a and b listed in Table 1. This demonstrates that we can control the frequency bands

where the effective index of refraction is negative (or positive) by changing the inner and outer radii of

the coating material.

Table 1. The changes of the negative index band when inner radius and outer radius vary. In each cell,

the upper and lower numbers denote the band width and center frequency, respectively.

a = 0.5b a = 0.55b a = 0.6b a = 0.65b

b = 0.3
0 0 0 0.0332

(0.8919)

b = 0.35
0 0.02733 0.03824 0.04425

(0.9003) (0.8315) (0.7716)

b = 0.4
0.03541 0.04204 0.04893 0.05579
(0.8707) (0.7960) (0.7345) (0.6830)

b = 0.45
0.04366 0.05143 0.05944 0.06801
(0.7795) (0.7141) (0.6605) (0.6161)
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Figure 6. The crosssection of the coated fiber with core radius a and coating radius b.

These calculations highlight the frequency dependent refraction of signals composed of waves

with frequencies inside different frequency bands by a free space - metamaterial system. In the

following sections we demonstrate how to calculate the explicit refraction of signals passing between a

free space - metamaterial interface in the time domain. We show that the same metamaterial can refract

signals both positively or negatively depending only on the frequency band of the incoming signal.

In the following sections we will choose the the high contrast core phase to be a disk centered

in the period cell and an annular coating. The ratios of the disk radius and the outer diameter of the

coating to the period length are fixed. We then calculate Dirichlet and electrostatic eigenvalues to

calculate a frequency dependent effective index of refraction. These calculations are used to highlight

the frequency dependent refraction of signals composed of waves with frequencies inside different

frequency bands by a free space - metamaterial system.

4. Normal Incidence on a Half Space of Metamaterial

We consider the left half space to be free space and the right half space filled with metamaterial.

The interface between half spaces is parallel to the ẑ axis and the normal to the interface is taken to be

the x̂ axis and the interface between half spaces is given by the x = 0 plane. We first suppose a group

of waves of different frequencies propagate along the x̂-axis, and so the H field is along the ẑ-axis and

the problem reduces to one dimension.

First we consider waves inside the metamaterial. Since we have normal incidence we replace kmk̂

by km and x by x. We let k = w
c and write

HHom(k) =
BHom(k)

µe f f (ck)
=

B0

µe f f (ck)
ei(km(k)x�kct),

Energy propagation is in the direction of increasing x so if µe f f > 0, ee f f > 0 then ne f f > 0

while if µe f f < 0, ee f f < 0 then ne f f < 0, see [36,37]. On the other hand the vacuum is nonmagnetic,

i.e., µ = 1 so the B and H fields are the same and

Hvac(k) = B0ei(kx�kct), (13)

where k is the wave number in vacuum and the free space dispersion relation is k = w
c .
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The wave forms inside both media are a superposition of plane waves. For each k the plane

waves are of the form B0[e
i(kx�kct) �R(ck)ei(�kx�kct)] for x < 0 and T (ck) B0

µe f f (ck)
ei(km(k)x�kct) for x > 0.

For each k the coefficients R(ck) and T (ck) are determined by the two transmission conditions

[H3] = 0 at x = 0 (14)

and

[E2] = 0 at x = 0. (15)

From Maxwell’s equations we have the identity inside vacuum and metamaterial

E2 = e�1(x)∂x H3 (16)

where

e(x) =

(

1 for x < 0,

ee f f (ck) for x > 0.

Then the last jump condition (15) is equivalent to

[e�1(x)∂x H3] = 0 at x = 0. (17)

Collecting the results we give the waveforms incident reflected and transmitted across the interface

x = 0 between vacuum x < 0 and effective material x > 0.

Proposition 1. Waveforms in vacuum and effective material. The ẑ component of the H field is the only

non zero component of the H field wave form in vacuum (x < 0) and is

Hvac(k0, x, t) =
Z ∞

�∞
A(k)B0[e

i(kx�kct) �R(ck)ei(�kx�kct)] dk, (18)

where the amplitude A(k) decribes the properties of the linear superpostion of the different waves. The ẑ

component of the H field is the only nonzero component of the H field wave form in the metamaterial (x > 0)

and is

He f f (k0, x, t) =
Z ∞

�∞
A(k)T (ck)

B0

µe f f (ck)
ei(km(k)x�kct) dk. (19)

• Here Hvac(k0, x, t) = He f f (k0, x, t) at the interface x = 0

The ŷ component of the E field is the only nonzero component of the E field in vacuum (x < 0) and is

Evac(k0, x, t) =
Z ∞

�∞
A(k)B0

d

dx
[ei(kx�kct) �R(ck)ei(�kx�kct)] dk. (20)

The ŷ component of the E field is the only nonzero component of the E field in the metamaterial (x > 0)

and is

Ee f f (k0, x, t) =
Z ∞

�∞
A(k)ee f f (ck)T (ck)

B0

µe f f (ck)

d

dx
[ei(km(k)x�kct)] dk.

• Here Evac(k0, x, t) = Ee f f (k0, x, t) at the interface x = 0



Appl. Sci. 2018, 8, 1942 9 of 18

where

R(ck) =
1 � ee f f (ck) k

km(ck)

1 + ee f f (ck) k
km(ck)

(21)

and

T (ck) =
2µe f f (ck)ee f f (ck)
km(ck)

k + ee f f (ck)

Now we introduce n2
e f f (ck) = ee f f (ck)µe f f (ck) and km/k = ne f f (ck) and we can write

R(ck) =
1 � ee f f (ck)

ne f f (ck)

1 +
ee f f (ck)

ne f f (ck)

(22)

and

T (ck) =
2n2

e f f (ck)

1 +
ee f f (ck)

ne f f (ck)

Note that R(ck) < 1 if ne f f < 0 and ee f f < 0.

In our paper, we consider a signal made of a group of waves with frequencies lying inside a

prescribed band of frequencies for which

A(k) =
ap
2p

e�
(k�k0)

2a2

2 ĉ(w) (23)

where

ĉ(w) =

(

1 for wL  w  wU ,

0 otherwise .

In order to make the H-field dimensionless, we can use wpt to denote the time change, and
wpx

c

the position change. Let w̄ = k0c be the center frequency. Then the transmitted wave packet (19) can

be written as

He f f =
wpa

c
1p
2p

R ∞

�∞
e�

( kc
wp � k0c

wp )2(
wp a

c )2

2 ĉ(w/wp)T (w/wp)
B0

µe f f (w/wp)
e

i( kmc
wp

wp x
c � kc

wp
(wpt))

d( kc
wp

)

=
wpa

c
1p
2p

R ∞

�∞
e�

( w
wp � w̄

wp )2(
wp a

c )2

2 ĉ(w/wp)T (w/wp)
B0

µe f f (w/wp)
e

i[(ne f f
w

wp
)(

wp x
c )�( w

wp
)(wpt)]

d( w
wp

)

(24)

Similarly the reflected wave packet is

Hvac =
wpa

c
1p
2p

R ∞

�∞
e�

( w
wp � w̄

wp )2(
wpa

c )2

2 ĉ(w/wp)⇥

B0[e
i[( w

wp
)(

wp x
c )�( w

wp
)(wpt)] �R(w/wp)e

i[�( w
wp

)(
wp x

c )�( w
wp

)(wpt)]
] d( w

wp
).

(25)

The incident wave packet without reflection is
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Hinc =
ap
2p

Z ∞

�∞
e�

(k�k0)
2a2

2 ĉ(w)B0ei(kx�kct) dk (26)

=
wpa

c

1p
2p

Z ∞

�∞
e�

( w
wp � w̄

wp )2(
wpa

c )2

2 ĉ(w/wp)B0e
i[( w

wp
)(

wp x
c )�( w

wp
)(wpt)]

In our example, we take
wpa

c = 300, wL/wp = 0.735 and wU/wp = 0.74. Let the dimensionless

center frequency w̄
wp

= 0.7375. We use Riemann sum to approximate the integral by the sum of two

rectangles.

Let J(w/wp) = e�
( w

wp � w̄
wp )2(

wpa
c )2

2 e
i[( w

wp
)(

wp x
c )�( w

wp
)(wpt)]

. The incident wave packet without any

reflections is

Hinc =
wpa

c

1p
2p

Z ∞

�∞
ĉ(w/wp)B0 J(w/wp) d(

w

wp
) (27)

=
wpa

c

1p
2p

Z 0.74

0.735
B0 J(w/wp) d(

w

wp
)

⇡ wpa

c

1p
2p

∆(
w

wp
)B0[J(0.735) + J(0.74)],

where
wpa

c
1p
2p

∆( w
wp

)B0 is a constant. Figure 7 is the graph for J(0.735) + J(0.74) for wpt = 5.

Figure 7. Incident wave without any reflection for wpt = 5.

Let G(w/wp) = e�
( w

wp � w̄
wp )2(

wpa
c )2

2 [e
i[( w

wp
)(

wp x
c )�( w

wp
)(wpt)] � R(w/wp)e

i[�( w
wp

)(
wp x

c )�( w
wp

)(wpt)]
].

The incident wave packet with the interaction of reflection is

Hvac =
wpa

c

1p
2p

Z ∞

�∞
ĉ(w/wp)B0G(w/wp) d(

w

wp
) (28)

=
wpa

c

1p
2p

Z 0.74

0.735
B0G(w/wp) d(

w

wp
)

⇡ wpa

c

1p
2p

∆(
w

wp
)B0[G(0.735) + G(0.74)].

Figure 8 is the graph for G(0.735) + G(0.74) for wpt = 5 which is H field in vacuum with

interaction between incident and reflective waves.
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Figure 8. H field in vacuum with interaction between incident and reflective waves for wpt = 5.

Let F(w/wp) = e�
( w

wp � w̄
wp )2(

wpa
c )2

2
T (w/wp)

µe f f (w/wp)
e

i[(ne f f
w

wp
)(

wp x
c )�( w

wp
)(wpt)]

. Then we have

He f f =
wpa

c

1p
2p

Z ∞

�∞
ĉ(w/wp)B0F(w/wp) d(

w

wp
) (29)

=
wpa

c

1p
2p

Z 0.74

0.735
B0F(w/wp) d(

w

wp
)

⇡ wpa

c

1p
2p

∆(
w

wp
)B0[F(0.735) + F(0.74)],

where
wpa

c
1p
2p

∆( w
wp

)B0 is a constant. Figures 9 and 10 are the graphs for F(0.735)+ F(0.74) for different

wpt, i.e., the transmitted wave motion in metamaterial (x > 0). Figure 9 shows transmitted wave

motion from the bottom to the top for wpt ranging from 5 to 9 in the steps of 2. It can be observed that

the group velocity of the transmitted wave in metamaterial has the forward direction (the envelope

moves forward). Figure 10 shows the transmitted wave motion from the bottom to the top for wpt

ranging from 5 to 7 in the steps of 1. We can see that the phase of the transmitted wave in metamaterial

moves backward.

Figure 9. Transmitted wave motion from the bottom to the top for wpt ranging from 5 to 9 in the steps

of 2. The group velocity has the forward direction.
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Figure 10. Transmitted wave motion from the bottom to the top for wpt ranging from 5 to 7 in the steps

of 1. The phase velocity has the backward direction.

The H field at the interface between the vacuum (x < 0) and effective double negative material

(x > 0) is shown in Figure 11. The graph shows the continuity of the magnetic field at the interface.

But it is not differentiable at the interface.

Figure 11. H field at the interface between the vacuum (x < 0) and the metamaterial with negative

index of refraction (x > 0) from the bottom to the top for wpt ranging from 5 to 9 in the steps of 2.

5. Oblique Incidence on a Metamaterial: A Positive to Negative Index Refraction

Consider the 2D motion of the H-polarized field given by H = [0, 0, Hz]T and E = [Ex, Ey, 0]T .

In the vacuum, the third component of the incident H field is given by

Hin
z = B0ei(kk̂i ·x�kct), (30)

where k is the wave number in vacuum (x < 0), x = (x, y), the incident wave propagation direction

k̂i = (cos qi, sin qi) and qi is the angle of incidence between the incident wave and the normal vector

n̂ = (1, 0, 0) of the interface (x = 0). After the incident wave hits the interface (x = 0), the reflected

wave has the form of

Hre
z = �R(ck)B0ei(kk̂r ·x�kct), (31)
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where R(ck) is the reflection coefficient, the reflected wave propagation direction

k̂r = (� cos qr, sin qr) and qr = qi is the reflective angle between the reflective wave and the

interface normal.

In the negative index metamaterial (x > 0), the transmitted wave has the form of

Htr
z = T (ck)

B0

µe f f (ck)
ei(km k̂t ·x�kct), (32)

where T (ck) is the transmission coefficient, km is the wave number in the media, the propagation

direction in the effective media k̂t = (cos qt, sin qt), qt is the refractive angle between the refractive

wave and the interface normal and by the Snell’s Law sin qi = ne f f sin qt.

From the Maxwell equation, at the interface (x = 0), we have the transmission conditions

[n̂ ⇥ H] = 0 at x = 0 (33)

and

[n̂ ⇥ E] = 0 at x = 0. (34)

The transmission condition (33) shows

Hin
z + Hre

z = Htr
3 at x = 0 (35)

which implies that

B0ei(kk̂i ·x�kct) �R(ck)B0ei(kk̂r ·x�kct) = T (ck)
B0

µe f f (ck)
ei(km k̂t ·x�kct) at x = 0. (36)

Since k sin qi = km sin qt by Snell’s Law, (36) becomes

1 �R(ck) =
T (ck)

µe f f (ck)
. (37)

We also have

E =
1

iwe(x)
r⇥ H. (38)

So the transmission condition (34) shows

[e�1(x)∂x Hz]

�

�

�

�

x=0

= 0. (39)

Here

e(x) =

(

1 x < 0,

ee f f (ck) x > 0.

Then we have

∂x(Hin
z + Hre

z )

�

�

�

�

x=0

= e�1
e f f ∂x Htr

z

�

�

�

�

x1=0

(40)
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which implies

(1 +R(ck)) k cos qi =
T (ck)e�1

e f f (ck)

µe f f (ck)
km cos qt. (41)

The linear system (37) and (41) has the solution

R(ck) =
km
k cos qt � ee f f cos qi

km
k cos qt + ee f f cos qi

(42)

and

T (ck) =
2µe f f (ck)ee f f cos qi

km
k cos qt + ee f f cos qi

(43)

Collecting results we have

Proposition 2. Waveforms in vacuum and effective material in 2D. The ẑ component of the H field is

the only non zero component of the H field wave form in vacuum (x < 0) and is

Hvac(k0, x, t) =
Z ∞

�∞
A(k)B0[e

i(kk̂i ·x�kct) �R(ck)ei(kk̂r ·x�kct)] dk. (44)

The ẑ component of the H field is the only non zero component of the H field wave form in the metamaterial

(x > 0) and is

He f f (k0, x, t) =
Z ∞

�∞
A(k)T (ck)

B0

µe f f (ck)
ei(km k̂t ·x�kct) dk. (45)

Here Hvac(k0, x, t) = He f f (k0, x, t) at the interface x1 = 0, and

R(ck) =
km
k cos qt � ee f f cos qi

km
k cos qt + ee f f cos qi

(46)

and

T (ck) =
2µe f f (ck)ee f f cos qi

km
k cos qt + ee f f cos qi

.

We consider the signal composed of waves inside a frequency band for which A(k) is defined

by (23). The transmitted signal (45) can be written as

He f f =
wpa

c
1p
2p

R ∞

�∞
e�

( w
wp � w̄

wp )2(
wpa

c )2

2 ĉ(w/wp)⇥
B0T (w/wp)

µe f f (w/wp)
e

i[(ne f f
w

wp
)(

wp x1
c cos qt+

wp x2
c sin qt)�( w

wp
)(wpt)]

d( w
wp

)
(47)

Similarly the signal in the vacuum can be rewritten as

Hvac =
wpa

c
1p
2p

R ∞

�∞
e�

( w
wp � w̄

wp )2(
wpa

c )2

2 ĉ(w/wp)B0⇥

[e
i[( w

wp
)(

wp x1
c cos qi+

wp x1
c sin qi)�( w

wp
)(wpt)]

�R(w/wp)e
i[( w

wp
)(� wp x1

c cos qi+
wp x2

c sin qi)�( w
wp

)(wpt)]
] d( w

wp
).

(48)
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In this example, we take as before
wpa

c = 300, wL/wp = 0.735 and wU/wp = 0.74. Let the

dimensionless center frequency be w̄
wp

= 0.7375 and the incident angle qi = 16�. We use a Riemann

sum and approximate the integrals by the sum of two rectangles. So

He f f =
wpa

c

1p
2p

Z ∞

�∞
ĉ(w/wp)B0 F̂(w/wp) d(

w

wp
) (49)

=
wpa

c

1p
2p

Z 0.74

0.735
B0 F̂(w/wp) d(

w

wp
)

⇡ wpa

c

1p
2p

∆(
w

wp
)B0[F̂(0.735) + F̂(0.74)],

where F̂ = e�
( w

wp � w̄
wp )2(

wpa
c )2

2
T (w/wp)

µe f f (w/wp)
e

i[(ne f f
w

wp
)(

wp x1
c cos qt+

wp x2
c sin qt)�( w

wp
)(wpt)]

and
wpa

c
1p
2p

∆( w
wp

)B0 is

a constant. Notice that qt = arcsin(ne f f sin qi). Therefore, qt = �24.12� when w
wp

= 0.735 and

qt = �39.20� when w
wp

= 0.74. And

Hvac =
wpa

c

1p
2p

Z ∞

�∞
ĉ(w/wp)B0Ĝ(w/wp) d(

w

wp
) (50)

=
wpa

c

1p
2p

Z 0.74

0.735
B0Ĝ(w/wp) d(

w

wp
)

⇡ wpa

c

1p
2p

∆(
w

wp
)B0[Ĝ(0.735) + Ĝ(0.74)],

where

Ĝ = e�
( w

wp � w̄
wp )2(

wpa
c )2

2 [e
i[( w

wp
)(

wp x1
c cos qi+

wp x1
c sin qi)�( w

wp
)(wpt)]

�R(w/wp)e
i[( w

wp
)(� wp x1

c cos qi+
wp x2

c sin qi)�( w
wp

)(wpt)]
].

Figure 12 shows the contour map of H field at the interface between the vacuum (x < 0) and the

effective double negative material (x > 0).

Figure 12. Contour map of H field with the incident angle qi = 16� at the interface between the vacuum

(x < 0) and effective double negative material (x > 0) when wpt = 0.
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Now consider another signal but with with wL/wp = 0.95 and wU/wp = 0.96 . The paper [36]

shows that when the dimensionless frequency w
wp

lies in the interval [0.95, 0.96], the effective

permittivity and effective permeability of the material are simultaneously positive. Let the

dimensionless center frequency w̄
wp

= 0.955 and the incident angle qi = 16�. Note that the refractive

angle qt = 75.57� when w
wp

= 0.95 and qt = 55.00� when w
wp

= 0.96. Figure 13 gives the contour map of

H field at the interface between the vacuum (x < 0) and the effective double positive material (x > 0).

Figure 13. Contour map of H field with the incident angle qi = 16� at the interface between the vacuum

(x < 0) and effective double positive material (x > 0) when wpt = 0.

6. Conclusions

We have considered the refraction of incoming signals traveling from free space into a

metamaterial. The metamaterial considered in this paper is made up of a periodic sub-wavelength

array of non-magnetic resonators. We show that the resonator geometry influences the direction of the

transmitted signal depending on the signal’s center frequency and bandwidth. Here the directionality

of the refracted signal and its frequency dependence is explicitly controlled by sub-wavelength

resonances that can be controlled by adjusting the geometry of the sub-wavelength scatters. We present

the time domain representation for the refracted signals and use this representation in the numerical

simulation of their behavior. The simulation shows that the medium can be designed to simultaneously

refract signals both positively or negatively depending on the signal’s center frequency and band width.
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