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Accurate genome assembly is hampered by repetitive genomic regions. Assemblies produced with long
single molecule sequencing reads improved over the standard short read assemblies because of their
greater ability to disambiguate genomic repeats. However, most algorithms for assembling long reads
construct contiguous genomic segments (contigs) but do not provide the repeat characterization (repeat
graph) necessary for producing optimal assemblies. Here, we present Flye—an algorithm for assembling
long reads that generates arbitrary paths in an unknown repeat graph called disjointigs and constructs an
accurate repeat graph from these error-riddled disjointigs. We benchmark Flye against five other popular
assemblers and show that it generates better or comparable assemblies while being an order of magnitude
faster. Flye improved the contiguity of the human genome assembly by nearly doubling the NGAS50
compared to other state-of-the-art assemblers.



INTRODUCTION

Genome assembly is the problem of reconstructing genomes from short DNA fragments known as reads.
Previous studies' have demonstrated that genome assembly accuracy is confounded by repetitive genomic
regions and can be improved by representing all repeat families in a genome as a repeat graph. Single
molecule sequencing (SMS) long read technologies (such as those produced by Pacific Biosciences or
Oxford Nanopore Technologies) shifted the focus from resolving short repeats to resolving longer repeats,
comparable to the median SMS read length. Since nearly all genomes have long repeats’, SMS

assemblers PBCR3’4’5, Falcon6, Miniasm’, ABruijnS, HINGEz, Canug, and Marvel" currently face the same
repeat-resolution challenge that short read assemblers faced a decade ago, albeit at a different scale of
repeat lengths. To improve the contiguity of assemblies, long read technologies are often complemented
by Hi-C'" and optical'> mapping data.

Resolving repetitive genomic regions is one of the biggest challenges for any genome assembler. The de
Bruijn (DB) graph has been utilized by short read assembly approaches as a way of representing repeats
in a genome as a repeat graph, thereby improving the accuracy of genome assembly. Recently, long read
assemblers such as ABruijn® and HINGE?, that capitalize on a similar DB graph-based approach, have
also been developed. Most short read assemblers construct the DB graph based on all k-mers in reads and
further transform it into a simpler DB assembly graph". This approach collapses multiple instances of the
same repeat into a single path in the assembly graph and represents the genome as a genome tour that
visits each edge in the assembly graph. However, in the case of SMS reads, the key assumption of the DB
graph approach—that most k-mers from the genome are preserved in multiple reads—does not hold even
for short k-mers, let alone for long k-mers. As a result, various challenges that have been addressed in
short read assembly, such as how to deal with the fragmented DB graph and how to transform it into an
assembly graph, remain largely unaddressed in long read assemblers.

Here, we describe the Flye algorithm for accurately assembling long reads. We benchmark Flye against
five state-of-the-art SMS assemblers, and demonstrate that it generates more accurate and contiguous
assemblies and provides valuable information to aid in assembly finishing. Flye also reconstructs the

mosaic structure of segmental duplications—a difficult problem even for finished genomes'*"”.

RESULTS

Flye algorithm. Unlike existing assemblers that attempt to generate contigs, Flye initially generates
disjointigs that represent concatenations of multiple disjoint genomic segments, concatenates all error-
prone disjointigs into a single string (in an arbitrary order), constructs an accurate repeat assembly graph
from the resulting concatenate, uses reads to untangle this graph, and resolves bridged repeats (that are
bridged by some reads in the repeat graph). Afterwards, it uses the repeat graph to resolve unbridged
repeats (that are not bridged by any reads) using small differences between repeat copies and then outputs
accurate contigs formed by paths in this graph (Online Methods). Figure 1 outlines the various steps of
the Flye assembler.

Repeat graph construction. Repeats in a genome are often represented as pairwise local alignments and
visualized as alignment-paths in a two-dimensional dof plot of a genome. This pairwise representation is
limited since it does not contribute to solving the repeat characterization problem'®. In contrast, the repeat
graph compactly represents all repeats in a genome and reveals their mosaic structure'?. Assembly graph
construction represents a special case of the repeat graph construction problem.

Figure 2 outlines the algorithm for constructing the repeat graph of a finished (complete) genome. Flye
applies this algorithm to construct the repeat graph of a pseudo-genome formed by concatenating all
disjointigs (formed at the previous stage of the pipeline) in an arbitrary order. The Online Methods



section explains why the resulting graph provides the correct representation of the assembled genome (as
if it had been constructed from a complete genome) and describes additional algorithmic details.

Resolving unbridged repeats. Flye utilizes the constructed repeat graph for the resolution of unbridged
repeats. Resolving unbridged and nearly identical repeats using SMS reads is a difficult problem since
error-prone SMS reads make it difficult to distinguish repeat copies with divergence below 10%. As a
result, SMS assemblers often fail to resolve unbridged repeats, which are common even in bacterial
genomes™'”. This challenge is related to the challenge of constructing phased diploid genome assemblies®
and overlap-filtering for repeat resolution”'®. The repeat graph constructed by Flye offers a new approach

for resolving unbridged repeats based on analyzing the topology of the repeat graph.

Figure 3 shows an unbridged repeat with a consensus sequence REP as an edge in the assembly graph. It
would be impossible to resolve this repeat (i.e., to pair each incoming edge into the initial vertex of REP
with the corresponding outgoing edge from the terminal vertex of REP) if its two copies were identical.
However, since there exist variations between these copies, it becomes possible to transform the single
sequence REP into two different repeat instances REP; and REP; as shown in Figure 3. The Online
Methods section describes how Flye resolves unbridged repeats by (i) identifying variations between
repeat copies, (ii) matching each read with a specific repeat copy using these variations, and (iii) using
these reads to derive a distinct consensus sequence for each repeat copy.

Benchmarking Flye, Canu, Falcon, HINGE, Miniasm and MaSuRCA. We benchmarked Flye against
various SMS assemblers using six datasets. We used QUAST 5.0" to evaluate all assemblers
(Supplementary Note 1). Since Miniasm returns assemblies with a much larger number of mismatches
and indels than other assemblers, it is not well suited for a reference-based quality evaluation with
QUAST. To make a fair comparison, we ran the ABruijn contig polishing module® on the Miniasm output
to improve the accuracy of its contigs (referred to as Miniasm+ABruijn).

Benchmarking using the BACTERIA dataset. The dataset consists of 21 sets of Pacific Biosciences
(PB) reads from the National Collection of Type Cultures (NCTC). These NCTC sets were studied in
detail in ref. 2 and used to benchmark various assemblers. We only benchmarked Flye against HINGE on
these datasets, since HINGE outperformed the other assemblers on bacterial genomes.

We ignored small connected components in the bacterial assembly graphs (that represent plasmids that do
not share repeats with chromosomes) and classified an assembly as (i) complete if the assembly graph
consists of a single loop-edge representing a circular chromosome, (ii) semi-complete if the assembly
graph contains multiple edges but there exists a single Chinese postman tour in this graphzo, and (iii)
tangled if the assembly graph is neither complete nor semi-complete.

While HINGE does not distinguish between complete and semi-complete assemblies, we argue that
ignoring this separation may lead to assembly errors. Indeed, a single Chinese postman tour in a semi-
complete assembly graph results in a unique assembly only in the case of unichromosomal genomes
without any plasmids that share repeats with the chromosome (repeat-sharing plasmids). In the case of
multichromosomal genomes or in the case of repeat-sharing plasmids, there exist multiple possible
assemblies from a semi-complete assembly graph. Since ~10% of known bacterial genomes are
multichromosomal and since a large fraction of unichromosomal genomes have repeat-sharing plasmids®’,
the assumption that a semi-complete assembly graph results in a complete genome reconstruction may
lead to errors.

Before resolving unbridged repeats, Flye assembled genomes from the BACTERIA dataset into four
complete, one semi-complete, and 16 tangled assembly graphs. After resolving unbridged repeats, Flye
assemblies resulted in eight complete, five semi-complete, and eight tangled assembly graphs with the
number of edges varying from 3 to 25. Supplementary Figure 1 shows examples of assembly graphs



generated by Flye and HINGE; and Supplementary Table 1 illustrates that Flye and HINGE generated
very similar assemblies.

Benchmarking with the METAGENOME dataset. The dataset consists of PB reads from a synthetic
community of 20 bacteria. Since 3 out of 20 bacterial genomes in the metagenomic sample had coverage
below 1x (M. smithii, C. albicans, and S. pneumoniae), they were excluded from the benchmarking
analysis. We limited benchmarking on the METAGENOME dataset to Flye and Canu that assembled the
METAGENOME dataset with NA50 = 1,064 kb (84 misassemblies) and NAS50 = 969 kb (99
misassemblies), respectively. Supplementary Note 2 illustrates that most misassemblies in the
METAGENOME dataset likely represent differences between the genomes in the METAGENOME
sample and the reference genomes rather than real misassemblies.

Flye improved on Canu for five genomes and Canu improved on Flye for four genomes. In particular,
Flye produced a better assembly of R. sphaeroides, which has the lowest coverage (24x) among the 17
analyzed genomes (NGAS50 =2 Mb for Flye as compared to 54 kb for Canu). Comparison between the
metagenome assemblies and the inferred isolate assemblies (from reads matched to the reference
genomes) suggests that the metagenomics assemblies could be further improved by better handling
datasets with uneven coverage.

Benchmarking with the YEAST dataset. The dataset contains PB and Oxford Nanopore Technology
(ONT) reads from the S. cerevisiae S288c genome of length 12.1 Mb at 30x coverage™. Similarly to the
original study, we used the full set of ONT reads in the YEAST-ONT dataset (30x coverage) but down-
sampled the PB reads from the original 120x coverage to 30x in the YEAST-PB dataset to have their
coverage distribution be similar to the ONT data. Assembling this dataset with the original 120x coverage
results in better assemblies; e.g., the NGAS50 increased from 560 kb to 732 kb for the Flye assembly (Flye
fully assembled 14 out of 16 yeast chromosomes). Table 1 illustrates that all tools but HINGE produced
YEAST-PB assemblies with similar NGAS50 values ranging from 560 kb for Flye to 603 kb for Canu.
(HINGE resulted in a lower NGAS50 of 361 kb). Flye generated the most accurate assembly with 5 errors
(vs 13 errors for Canu). Although Miniasm generated an assembly with only ~90% sequence identity,
Miniasm+ABruijn contigs had 99.93% accuracy. Canu and Flye resulted in assemblies with the highest
sequence identity (above 99.95%).

The YEAST-ONT assemblies show a similar trend, with all assemblers except HINGE producing similar
NGAS5O0 values ranging from 637 kb (Falcon) to 723 kb (Miniasm). Flye generated the most accurate
assembly with 9 errors (18 errors for Canu). Supplementary Figure 2 shows the assembly graph generated
by Flye.

Analyzing the WORM dataset. The dataset contains PB reads from the C. elegans genome of length

100 Mb at 40x coverage. Flye and Canu produced the most contiguous assemblies (NGAS50 = 1,893 kb
and 1,974 kb, respectively). However, Canu showed an increased number of misassemblies (190),
compared to Flye (111) and Falcon (118). Flye was faster than Canu and Falcon in assembling the
WORM dataset (128, 780 and 945 minutes of wall clock time, respectively (see Supplementary Note 1 for
more details). With an increase in genome size, Flye achieves close to an order of magnitude speed-up as
compared to Canu: e.g., 140 vs. 1100 hours to assemble the D. melanogaster genome. This speed-up
highlights the advantages of skipping the time-consuming read-correction step and replacing conventional
contig generation with the much more rapid generation of disjointigs. Supplementary Figure 3 shows the
assembly graph generated by Flye.

Since inferring the length of long tandem repeats is a difficult problem in short read assembly, tandem
repeats in many reference genomes might be misassembled. Supplementary Figure 4 demonstrates that
Flye improves on other long read assemblers in reconstructing tandem repeats and reveals that some



differences between the Flye assembly and the reference C. elegans genome likely represent differences
with the reference rather than misassemblies by Flye.

Analyzing the HUMAN and HUMAN+ datasets. The HUMAN dataset contains ONT reads from the
GM12878 human cell line at 30x coverage complemented by a set of short Illumina reads at 50x
coverage. The HUMAN+ dataset combines the HUMAN dataset with a dataset of ultra-long ONT reads
(with reads N50 = 100 kb) at 5x coverage™. Since Canu improved on Falcon and Miniasm in assembling
large genomes’, we only benchmarked Flye against Canu for the human genome datasets. The Canu
HUMAN assembly was generated in ref. 23, and the assembly of the HUM AN+ dataset was later updated
by the authors using the latest Canu 1.7 version. We also analyzed a hybrid MaSuRCA assembly of the
HUMAN and HUMAN+ datasets®*, which are available from the MaSuRCA website.

Currently, the ONT assemblies have rather high base-calling error rates (the Flye and Canu HUMAN
assemblies had 1.2% and 2.8% error, respectively) because of the biased error pattern in ONT reads.
Although the Nanopolish tool contributed to a reduction in the base-calling error rates of the ONT
assemblies™, the resulting error rate is still an order of magnitude higher than the error rates of Illumina or
PB assemblies. Since most errors in the ONT assemblies are frameshift-introducing indels, they are
particularly problematic for downstream applications.

To mitigate the high error rates of these ONT assemblies, we used Pilon”® in the indel correction mode to
polish Flye and Canu assemblies using Illumina reads. Although such polishing reduced the error rates (to
0.30% for Flye+Pilon and to 0.51% for Canu+Pilon), we note that Illumina-based read correction of ONT
assemblies has limitations, especially for repetitive regions with low short-read mappability.

It turns out that Flye assembled a larger fraction of the human genome (96.4%) than Canu (95.4%) and
MaSuRCA (95.1%). Interestingly, Flye and MaSuRCA, in difference from Canu, assembled some
difficult-to-assemble, low-complexity centromeric chromosome regions, which are hard to benchmark
using reference-based methods. To provide a fair comparison between all three assemblers using QUAST,
we thus modified the hg38 reference by masking the centromeric regions using the coordinates from the
UCSC Genome Browser.

For the HUMAN dataset, Flye, MaSuRCA and Canu generated assemblies with NGAS50 values equal to
6.35 Mb (879 assembly errors), 3.81 Mb (1500 assembly errors) and 2.87 Mb (1200 assembly errors),
respectively. The MaSuRCA assembly had slightly higher percent identity with the reference (99.84% as
compared to 99.70% for Flye+Pilon and 99.49% for Canu+Pilon).

For the HUMAN+ dataset, Flye, Canu and MaSuRCA generated assemblies with NGAS50 values equal to
11.8 Mb (1,487 assembly errors), 7 Mb (1,455 assembly errors) and 5.6 Mb (2,101 assembly errors),
respectively. As expected, incorporating ultra-long ONT reads resulted in a more contiguous assembly for
all assemblers.

Segmental duplications in the human genome. The repeat graph constructed by Flye reveals the
complex mosaic structure of segmental duplications (SDs). Flye classifies all edges in the graph into
unique and repeat edges by analyzing how reads traverse the graph and by using coverage-based
arguments (Online Methods). After removing all unique edges from the assembly graph, only the
connected components formed by repeat edges remain, which reveals the SDs encoded by the repeat
edges in the graph. We define the complexity (length) of an SD as the number (total length) of edges in its
connected component. Figure 4 (left) illustrates a mosaic SD of complexity 7 and length 25.7 kb (the
seven colored repeat edges form a connected component in the Flye assembly graph after removing all
unique edges). An SD is classified as simple if its complexity is 1 and mosaic otherwise'*". Figure 4



(right) shows the distributions of lengths and complexities of SDs identified by Flye and illustrates the
power of the assembly graph for repeat resolution.

There are 1,748 repeat edges longer than 5 kb, forming 749 connected components in the Flye assembly
graph of the HUMAN dataset before performing repeat resolution. After repeat resolution with ultra-long
reads, there are only 765 repeat edges, forming 107 connected components in the assembly graph. 73 (34)
of them represent mosaic (simple) SDs (most simple SDs represent isolated edges and loop-edges). See
Supplementary Note 3 for more details.

A theoretical framework for the repeat graph construction. In addition to the described Flye
algorithm, we provide a mathematical formulation of the repeat characterization problem and describe an
alternative algorithm for the repeat graph construction (Figure 5). The Online Methods section provides
additional details and explains the relation between the theoretical framework and the implementation in
Flye.

DISCUSSION

We have described the Flye algorithm for constructing the assembly graph of SMS reads and
demonstrated that repeat characterization improves genome assembly. We further demonstrated how to
use the assembly graph to resolve unbridged repeats using variations between repeat copies and compared
Flye with the Canu, Falcon, HINGE, Miniasm and MaSuRCA assemblers.

In the case of the BACTERIA datasets, Flye and HINGE showed good agreement in the structure of
constructed assembly graphs. Flye showed substantial improvement compared with HINGE on more
complex eukaryotic datasets and generated the most accurate assemblies of the YEAST and WORM
datasets; Flye and Canu also produced the best assembly contiguity in the case of the WORM dataset. For
the more complex HUMAN and HUMAN+ datasets, Flye generated more contiguous and accurate
assemblies than Canu and MaSuRCA, while being notably faster. Although assemblies of ONT reads
feature rather high base-calling error rates (1.2% for the Flye HUMAN assembly), polishing the Flye
assembly graph using Illumina reads has the potential to reduce the error rates by an order of magnitude.

The fact that Flye substantially improved on the Canu and MaSuRCA assemblies of the human genome
suggests that there are still unexplored avenues for increasing the contiguity of SMS assemblies. We
believe that better algorithms for resolving unbridged repeats in assembly graphs have the potential to
greatly improve SMS assemblies, potentially increasing their NGAS50 values by an order of magnitude.
Flye constructed a repeat graph of the human genome with only 765 repeat edges representing various
long SDs. Our algorithm for resolving unbridged repeats resolved only a small fraction of these SDs since
it is currently limited to simple SDs (the vast majority of human SDs are mosaic). Moreover, it currently
has difficulties resolving highly similar SDs, e.g. SDs with divergence only ~1%. Although we reported
the resolution of highly similar SDs on simulated datasets as did a previous study'®, most unbridged
repeats resolved by Flye and Canu are simple repeats with divergence exceeding 3%. Extending Flye to
mosaic SDs and highly similar SDs has the potential to resolve most of the remaining unbridged repeats,
since the vast majority of SDs in the human genome diverged by more than 1%". Since there are only 53
long SDs (with length exceeding 15 kb) in the human genome that diverged by less than 1%, an SMS
assembler that accurately resolves highly similar unbridged repeats will result in highly contiguous
human genome assemblies, thus reducing the need for additional genome finishing experiments (such as
using Hi-C and/or optical maps).

Assembly graphs represent a special case of breakpoint graphs®’, and they are therefore well suited for
analyzing structural variations™*’ and SDs'*"*. Flye assembly graphs provide a useful framework for



reconstructing SDs and planning additional genome finishing experiments.
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FIGURE / TABLE LEGENDS

Figure 1. Flye outline. (2) A “genome” with two 99% identical copies of a repeat R; and two 99%
identical copies of a repeat R,. Segments A, B, C, and D represent non-repetitive regions. (b) A set of
reads sampled from the genome. (¢) Two (misassembled) disjointigs AR;DR,A and R,CR;BR,C derived
from reads. (d) Concatenate of disjointigs. (¢) Repeat plot of the concatenate. (f) Repeat graph constructed
by “gluing” vertices in the concatenate according to the repeat-plot. For each 2-dimensional point (x, y) in
the repeat-plot, we glue vertices x and y in the concatenate. (g) Aligning reads against the repeat graph.
(h) Resolving the bridged repeat R, and reconstructing its two copies R,” andR,’’. The differences
between each copy of this repeat and the consensus of this repeat are shown as small diamonds. (i)
Resolving the unbridged repeat R, with two slightly diverged copies. Supplementary Note 4 describes the
Flye assembly of a simulated genome modeled after the genome shown in Figure la.

Figure 2. Constructing the approximate repeat graph from local self-alignments. (Left) Alignment-
paths for all local self-alignments within a genome XABYABZBU formed by segments X, A, B, Y, Z,
and U. Three instances of a mosaic repeat (AB, AB, and B) are represented as diagonal alignment-paths
in the repeat plot. The self-alignment of the entire genome is shown by the main (dotted) diagonal.
Alignment endpoints are clustered together if their projections on the main diagonal coincide or are close
to each other (clusters of closely located endpoints for the distance threshold d=0 are painted with the
same color). For example, the rightmost endpoints (shown in blue) of all three alignments form a single
cluster because two of them have the same vertical projection and two of them have the same horizontal
projection on the main diagonal. This clustering reveals three clusters (yellow, purple, and blue) with
eight projections to the main diagonal. (Top right) Projections of the clustered endpoints on the main
diagonal define eight vertices (breakpoints) that will be used for constructing the approximate repeat
graph. (Middle right). Breakpoints that belong to the same clusters are glued together. (Bottom right)
Gluing parallel edges in the resulting graph produces the approximate repeat graph.

Figure 3. Resolving an unbridged repeat. (Left) An assembly graph of SMS reads from the E. coli
strain EC9964 genome visualized with Bandage™. (Middle) The untangled assembly graph (after
resolving bridged repeats in the graph on the left) contains a single unbridged repeat REP (and its
complement REP’) of length 22 kb. The incoming edges into the initial vertex (outgoing edges from the
terminal vertex) of edge REP are denoted IN; and IN, (OUT,; and OUT)). Two complementary strands are
fused together in a single connected component. It is unclear whether the genome traverses the assembly
graph as IN;J—>REP—OUT,—REP’ or as IN,—»REP—OUT,—REP’. (Right top) 93, 71, 75, and 76 reads
traverse both IN; and REP, IN, and REP, REP and OUT), and REP and OUT,, respectively. The span of
383 reads falls entirely within edge REP. (Right middle) After assigning 93 reads that traverse both /N,
and REP to the first repeat copy, and 71 reads that traverse both /N, and REP to the second repeat copy,
we “move forward” into the repeat and construct two differing consensus sequences for a 8.6 kb long
prefix of REP with divergence 9.8% (two consensus sequences for a 6.8 kb long suffix of REP when we
“move backward” into the repeat). The length of the repeat edge is reduced to 22.0 — 8.6 — 6.8 = 6.6 kb,
resulting in the emergence of 13 + 18 = 31 spanning reads for this repeat, all of them supporting a cis
transition (IN; with OUT, and IN, with OUT;). (Right bottom) Resolved instances of the repeat with
consensus sequences REP; and REP, and divergence 6.9%.

Figure 4. An SD from the Flye assembly of the HUMAN dataset (left) and the distribution of the
lengths and complexities of all SDs from the same assembly (right). (Left) A mosaic SD of complexity
7 represented as a connected component formed by repeat edges (seven colored edges of total length 25.7
kb) in the assembly graph of the HUMAN dataset (flanking unique edges shown in black). The loop-edge
C with coverage 473x represents a tandem repeat C* with unit length 1.3 kb that is repeated =19 times.
The colored edges of the assembly graph align to a region on chromosome 7 of length 31 kb and two
regions on chromosome 20 of lengths 30 kb and 46 kb. These three instances of SDs were not resolved



using standard ONT reads but were resolved using ultra-long reads in a way that is consistent with the
reference human genome. (Right) Statistics are given before resolving bridged repeats (green), after
resolving bridged repeats with standard ONT reads (orange) and with ultra-long ONT reads (blue). Only
SDs between 5 kb and 50 kb in length and with complexity between 2 and 50 contributed to the “SD
length” and “SD complexity” histograms. Only two SDs have complexity exceeding 50 before repeat
resolution. 545 out of 688 of SDs between 5 kb and 50 kb were resolved using the standard ONT reads,
and ultra-long reads resolved an additional 58 SDs. There were 1,256 simple SDs before repeat resolution
and 143 after repeat resolution with ultra-long reads. Since Flye usually resolves SDs shorter than the
typical read length, the SDs identified by Flye do not include many known human SDs.

Figure 5. Constructing the repeat plot of a tour in the graph (left) and constructing the repeat
graph from a repeat plot (right). (Left) A tour 7= ...A1B,C;Ds...BsCsD7Es...AgB19C11D12E+3... in a
graph G with red, green, and blue instances of a repeat that includes two copies of vertices A and E and
three copies of vertices B, C, and D. Dots represent multiple vertices that appear before, between, and
after these three instances of the repeat. The repeat plot Plot;(G) consists of three diagonals representing
the three instances of the repeat in the tour. The trivial self-alignment of the entire genome against itself is
shown by the main dotted diagonal (the points below this diagonal are not shown). Since vertex A in the
graph is visited twice in tour 7, it results in a single point (1, 9) in Plot;(G). Vertex B results in points (2,
5), (2, 10), and (5, 10); vertex C results in points (3, 6), (3, 11), and (6, 11); vertex D results in points (4,
7), (4, 12), and (7, 12); and vertex E results in the point (8, 13). (Right) Constructing the punctilious
repeat graph from the repeat plot by gluing vertices with indices i and j for each point (i, j) in the repeat
plot. Each non-branching path in the graph is substituted by a single edge with length equal to the number
of edges in this path. The lengths of the short edges (A, B) and (D, E) in the resulting graph are equal to 1
and the length of the long edge (B, D) is equal to 2 (for edge length threshold d = 1). The punctilious
repeat graph (second graph from the bottom) is transformed into the repeat graph (bottom-most graph) by
contracting short edges (A, B) and (D, E).

dataset assembler length | #contigs | NG50 reference reference  #misassemblies  NGAS0
(Mb) (kb) coverage % identity (kb)
YEAST Flye 12.1 28 670 98.3% 99.95% 5 560
o Canu 12.4 33 708 99.5% 99.95% 13 603
Falcon 12.1 42 562 97.5% 99.81% 27 562
HINGE 12.2 45 440 91.9% 98.81% 19 361
Miniasm+ABruijn 12.2 36 600 98.2% 99.93% 11 592
YEAST Flye 12.1 28 810 98.7% 99.04% 9 660
ONT

Canu 12.2 41 800 99.1% 98.96% 18 655
Falcon 11.9 41 662 97.4% 98.81% 17 637
HINGE 12.2 64 309 92.5% 97.94% 59 292
Miniasm+ABruijn 11.6 24 723 98.8% 99.03% 12 723

WORM Flye 103 85 3,256 99.5% 99.93% 111 1,893

Canu 108 175 2,954 99.7% 99.93% 190 1,974

Falcon 101 106 2,291 98.7% 99.78% 118 1,242

HINGE 103 64 2,710 98.0% 99.40% 174 1,441

Miniasm+ABruijn 108 178 2,314 99.6% 99.93% 181 1,437

HUMAN Flye+Pilon 2,776 1,069 7,886 96.4% 99.70% 879 6,349




Canu+Pilon 2,730 2,195 3,209 95.4% 99.49% 1,200 2,870
MaSuRCA 2,768 1,269 4,670 95.1% 99.84% 1,500 3,812
HUMAN+ Flye+Pilon 2,823 782 18,181 97.0% 99.69% 1,487 11,800
Canu+Pilon 2,815 798 10,410 96.8% 99.81% 1,455 7,007
MaSuRCA 2,876 1111 8,425 97.5% 99.80% 2,101 5,581

Table 1. Assembly statistics for the YEAST, WORM, HUMAN and HUMAN+ datasets generated using
QUAST 5.0. The NG50 of an assembly is the largest possible number Z, such that all contigs of length L or longer
cover at least 50% of the genome. Given an assembled set of contigs and a reference genome, the corrected
assembly is formed after breaking each erroneously assembled contig at its breakpoints resulting in shorter contigs'.
The NGAS50 of an assembly is defined as the NG50 of its corrected assembly. The minimum contig size was set to 5
kb for the YEAST and WORM assemblies and to 50 kb for the HUMAN assemblies. The human reference was
modified by masking the low-complexity centromere regions of the chromosomes.

METHODS

Repeat characterization problem. Below we describe the abstract repeat characterization problem and
explain how it relates to genome assembly. Consider a tour 7= v, v,, ... v, of length n visiting all vertices
of a directed graph G. We say that the i-th and j-th vertices in the tour 7T are equivalent if they correspond
to the same vertex of the graph, i.e., v;=v;. The set of all pairs of equivalent vertices forms a set of points
(i, j) in a two-dimensional grid that we refer to as the repeat plot Plotr(G) of the tour T (Figure 5). The
transformation of a tour 7 traversing a known graph G into the repeat plot Plot7(G) is a simple procedure.
Below, we address the reverse problem that is at the heart of genome assembly, repeat characterization
and synteny block construction: given an arbitrary set of points Plot, in a two-dimensional grid, find a
graph G = G(Plot) and a tour 7 in this graph such that Plot = Plot;(G).

A dot-plot of a genome is a matrix that graphically represents all repeats in a genome”'. In the case of
repeat characterization, we are interested in the dot-plot Plot formed by non-overlapping alignment-paths
representing all high-scoring local self-alignments of a genome against itself (below, we refer to these
alignments as simply self-alignments). Each self-alignment reveals two instances of a repeat
corresponding to contiguous segments x and y in the genome (x and y are called the spans of the
alignment). Given a genome of length »n and a set of its self-alignments Plot, the repeat characterization
problem amounts to constructing a graph G and a tour T of length » in this graph (each segment of the
genome corresponds to a subpath of the graph traversed by the tour) such that Plot = Plot(G) and the tour
T is alignment-compatible. A tour is alignment-compatible with respect to the dot-plot Plot if, for each
alignment with spans x and y in Plot, paths in the graph corresponding to segments x and y coincide.

Generating the repeat plot of a genome. Our goal is to construct both the repeat graph of a genome and
an alignment-compatible tour in this graph. Constructing the de Bruijn graph of a genome based on long
k-mers will not solve this problem since the differences between imperfect repeat copies mask the repeat
structure of the genome. Constructing the de Bruijn graph based on short k-mers will not solve this
problem due to the presence of repeating short k-mers within long repeats (these k-mers lead to a tangled
repeat graph). Thus, at the initial stage, Flye generates all self-alignments (repeats) of a genome and
combines them into a repeat plot Plot. However, it is unclear how to solve the reverse problem of
generating the repeat graph G(Plot) of the genome.

To address this problem for a “genome” representing a concatenate of accurate short reads, a previous
study' described various graph simplification procedures, e.g., bubble and whirl removals, that are now at
the heart of various short read assemblers such as SPAdes"’. However, it is not clear how to generalize



these procedures to make them applicable to error-prone SMS reads. Below we show how to modify the
concept of a punctilious repeat graph' so it can be applied to assembling SMS reads.

Constructing a punctilious repeat graph. Let Alignments = Alignments(Genome, minOverlap) be the
set of all sufficiently long (of length at least minOverlap) self-alignments of a genome Genome. Flye sets
the minOverlap parameter as the N90 of the read-set, i.e., reads longer than N90 account for ~<90% of the
total read length (minOverlap varies from 3000 to 5000 nucleotides for SMS datasets analyzed in this

paper).

Given a set of self-alignments Alignments of a genome Genome, we construct the punctilious repeat
graph RepeatGraph(Genome, Alignments) by representing Genome as a path consisting of |Genome|
vertices (Figure 5) and by “gluing” each pair of vertices (positions in the genome) that are aligned against
each other in one of the alignments in Alignments'. Gluing vertices v and w amounts to substituting them
by a single vertex that is connected by edges to all vertices that either vertex v or vertex w was connected
to. We consider branching vertices (i.e., vertices with either in-degree or out-degree differing from 1) in
the resulting graph and substitute each non-branching path between them by a single edge of length equal
to the number of original edges in this path. Edges in the punctilious repeat graph are classified as long
(longer than a predefined threshold d with default value 500 nucleotides) and short (Figure 5).

The punctilious repeat graphs of real genomes are very complex due to various artifacts"'*. For example,
the starting/ending points of alignment-paths corresponding to three repeat copies starting at positions x,
y, and z in the genome hardly ever start at points (x, y), (x, z), and (y, z) in the repeat plot. Because each

repeat with m copies in the genome results in m airwise alignments and each of the correspondin m
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alignment-paths may have unique starting (ending) vertices that differ from all other starting/ending
positions, there will be many gluing operations for the starting (ending) positions of this repeat. Note that
each of these operations may form a new branching vertex in the punctilious repeat graph. For example,
gluing the endpoints of the three diagonals in Figure 5 results in the branching vertices A, B, D, and E in
the graph. Punctilious repeat graphs of real genomes often contain many branching vertices making it
difficult to compactly represent repeats. We address this challenge by transforming the punctilious repeat
graph into a simpler graph.

From punctilious repeat graph to repeat graph. As described before, the endpoints of alignment-paths
representing the same repeat might not be coordinated among all pairwise alignments of this repeat. These
uncoordinated alignments result in a complex repeat graph with an excessive number of branching
vertices and many short edges (shorter than a threshold ). The repeat graph RepeatGraph(Genome,
Alignments, d) is defined as the result of contracting all short edges in the punctilious repeat graph
(Figure 5). The contraction of an edge is the gluing of the endpoints of this edge, followed by the removal
of the loop-edge resulting from this gluing. Since the genome represents a tour visiting all edges in the
repeat graph, we define the multiplicity of an edge in the repeat graph as the number of times this edge is
traversed in the tour. Edges of multiplicity 1 are called unique edges and all other edges are called
repeats.

Approximate repeat graphs. The described approach, although simple in theory, results in various
complications in the case of real genomes, particularly in the case of inconsistent pairwise alignments
(see Supplementary Note 5). In the case of short reads, various graph simplification procedures"" result
in a modified repeat graph that represents a more sensible repeat characterization, but sacrifice the fine
details of some repeats in favor of revealing the mosaic structure shared by different repeat copies.
However, in the case of SMS assemblies, repeat graph (and A-Bruijn graph) construction results in
excessively complex graphs that make the previously proposed graph simplification algorithm' inefficient
and make it difficult to select sensible parameters for graph simplification. For example, it is unclear how



to select an adequate bubble_size parameter for bubble removal (small values of this parameter result in
complex A-Bruijn graphs while large values result in oversimplified A-Bruijn graphs). While there exists
a “sweet spot” for this parameter in short read assembly, we were not able to find such a spot for long
read assembly. That is why we departed from the original A-Bruijn framework and opted to construct a
different version of the repeat graph (called the approximate repeat graph) based only on the endpoints of
diagonals in the genomic dot-plot rather than the entire diagonals as in a previous study'. This approach
led to a great reduction in running time and allowed us to bypass the bubble/whirl-removal steps (and the
challenge of choosing parameters for these operations) altogether.

Some branching vertices in the repeat graph arise from the contraction of multiple vertices in the
punctilious repeat graph; e.g., vertices A and B were contracted into a single vertex A/B in the repeat
graph in Figure 5. Consider the set of all vertices in the punctilious repeat graph that gave rise to
branching vertices in the repeat graph (vertices A, B, D and E in Figure 5) and let Breakpoints =
Breakpoints(Genome, Alignments, d) be the set of all positions in the genome that gave rise to these
vertices (Breakpoints = {1,2,4,5,7,8,9, 10, 12, 13} in Figure 5). This set of vertices forms a set of
short, contiguous genomic segments (segments [1, 2], [4, 5], [7, 8, 9, 10], and [12, 13] in Figure 5) that
contain all horizontal and vertical projections of the endpoints of all alignments in Alignments.

Flye approximates the set Breakpoints by recruiting all horizontal and vertical projections of the
endpoints of alignments from Alignments to the main diagonal in the repeat plot. Figure 2 presents three
alignments, resulting in eight projected points on the main diagonal. Two alignment endpoints are close if
either of their projections on the main diagonal are located within distance threshold d (including the case
when a vertical projection of one endpoint coincides with or is close to a horizontal projection of another
endpoint).

Flye clusters close endpoints together based on single linkage clustering. Applying this procedure (with d
= 0) to eight breakpoints (projected endpoints) in Figure 2 results in three clusters (breakpoints in the
same cluster are painted with the same color). Figure 2 illustrates that gluing breakpoints that belong to
the same clusters (and further collapsing parallel edges) results in an approximate repeat graph of the
genome. However, although this procedure led to the correct repeat graph in the simple case shown in
Figure 2, the approximate repeat graph constructed based on the clustering of closely located breakpoints
may differ from the repeat graph constructed based on the punctilious repeat graph. Supplementary Note
6 illustrates that mosaic repeats and inconsistencies of local alignments may result in an “incorrect”
clustering-based repeat graph. Below we explain how Flye extends the set Breakpoints to address this
complication.

Extending the set of breakpoints. As described above, Flye constructs the initial set Breakpoints by
projecting all endpoints of the alignments (in the set of self-alignments Alignments) onto the main
diagonal in the repeat plot. Each point in an alignment-path in the |Genome|x|Genome| grid has two
projections (horizontal and vertical) on the main diagonal. Note that projections of some internal points in
an alignment-path may belong to Breakpoints; for example, both projections of the middle-point of the
longest alignment-path in Figure 2 (shown in purple) belong to Breakpoints. Such internal points should
be re-classified as new alignment endpoints (by breaking the alignment-path into two parts) to avoid
inconsistencies during the construction of the repeat graph. However, for some internal points, only one
of their two projections belongs to Breakpoints, leading to complications in the path-breaking process.
Below we explain how to break the alignment-paths into subpaths (and, at the same time, extend the set
Breakpoints) to address this complication.

A point in an alignment-path is called valid if both its projections belong to Breakpoints, and invalid if
only one of its projections belongs to Breakpoints. A set Breakpoints is called valid if all points in all
alignment-paths are valid, and invalid otherwise. In the case that the constructed set Breakpoints is
invalid, our goal is to add the minimum number of points to this set to make it valid. See Supplementary



Note 6 for an example of an invalid point and a discussion on the importance of extending the set
Breakpoints to make it valid.

Flye iteratively adds the missing projection for each invalid point to the set Breakpoints on the main
diagonal until there are no invalid points left. Afterwards, it combines close points in Breakpoints into
segments using single linkage clustering (as described above). The set of resulting segments (defined by
their minimal and maximal positions on the main diagonal) forms a set BreakpointSegments. Two
segments from BreakpointSegments are equivalent if there exists a point in one of the alignment-paths
such that one of its projections to the main diagonal falls into the first segment and another falls into the
second segment.

Each repeat of multiplicity m typically corresponds to m segments in BreakpointSegments corresponding
to m starting positions of this repeat in the genome (and the same number of segments corresponding to
its ending positions). Note that the number of breakpoint segments resulting from this repeat is reduced as
compared to the number of breakpoints, which can be as large as (T;) for the starting positions of the
repeat (and the same number for its ending positions). Flye takes advantage of this reduction by selecting
middle points of each breakpoint segment and only gluing these middle points rather than all breakpoints.
Essentially, it redefines the endpoints of each alignment-path as the middle points of corresponding
breakpoint segments.

Specifically, Flye constructs the approximate repeat graph by generating the set BreakpointSegments,
selecting a middle point from each segment in BreakpointSegments, and gluing the two middle points for
every pair of equivalent segments. Afterwards, it glues together parallel edges (edges that start and end at
the same vertices) if the genome segments corresponding to these edges are aligned in Alignments, i.e., if
there exists an alignment with its x- and y-spans overlapping both these segments. For brevity, below we
refer to the approximate repeat graph resulting from this procedure simply as the repeat graph.

From the repeat graph of a genome to the assembly graph of contigs. The ABruijn assembler®
constructs a set of contigs but stops short of constructing the repeat graph of a genome based on these
contigs (Supplementary Note 7 describes the challenge of assembling contigs into a repeat graph). The
contig construction in ABruijn essentially amounts to finding extension reads for extending paths in the
(unknown) repeat graph of the genome. Each extension read increases the length of the growing path until
the extension process becomes ambiguous, i.e., when it reaches a branching vertex in the (unknown)
repeat graph. Afterwards, ABruijn decides whether to continue or to stop the path extension in order to
avoid assembly errors. Since ABruijn does not know the exact locations of branching vertices, it uses the
last extension read to extend the path beyond the branching vertex by at least minOverlap nucleotides. As
a result, each linear contig constructed by ABruijn satisfies the overhang property: it extends by at least
minOverlap nucleotides before the first branching vertex and after the last branching vertex it traverses.
Note that the same minOverlap value is used during repeat graph construction.

Constructing disjointigs. ABruijn and other existing SMS assemblers invest significant effort into
making sure that generated contigs are correctly assembled (represent subpaths of the genomic tour in the
repeat graph). In contrast to ABruijn, Flye does not attempt to construct accurate contigs at the initial
assembly stage but instead generates disjointigs as arbitrary paths in the (unknown) repeat graph of the
genome. However, it constructs an accurate repeat graph (assembly graph) from error-prone disjointigs.

Flye randomly walks in the (unknown) assembly graph to generate random paths from this graph. Each
non-chimeric read from Reads defines a subpath of a genomic tour in an assembly graph. Flye extends
this path by switching from the current read to any other overlapping read (with sufficiently long common



jump-subpath) rather than a carefully chosen overlapping read®, avoiding a time-consuming test to check
whether this selection triggers an assembly error.

Since the resulting F1lyeWalk algorithm (see Supplementary Note 8) does not invoke the contig
correctness check, it constructs paths (chains of overlapping reads) that do not necessarily follow the
genome tour through the assembly graph. Although it may appear counter-intuitive that inaccurate
disjointigs constructed by F1lyeWalk result in an accurate assembly graph, note that inaccurate paths
(disjointigs) in the de Bruijn graph (a special case of the assembly graph) certainly result in an accurate
assembly graph. Indeed, an assembly graph constructed from arbitrary paths in a de Bruijn graph is the
same as the original de Bruijn graph (as long as these paths include all k-mers from the assembly graph).
See Supplementary Note 9 for additional details.

Constructing assembly graph from disjointigs. Similarly to ABruijn, Flye generates disjointigs
satisfying the overhang property, which, as will be explained below, represents an important condition for
constructing the repeat graph. Flye further concatenates all disjointigs (separated by delimiters) in an
arbitrary order into a single string Concatenate. It further uses the longest jump-subpath approach® to
generate the set Alignments of all sufficiently long self-alignments within the resulting concatenate and
constructs the assembly graph as the repeat graph of the concatenate RepeatGraph(Concatenate,
Alignments, d).

It has been shown that the repeat graph of concatenated accurate reads (alignments between reads do not
extend beyond delimiters in the concatenate of all reads) approximates the repeat graph of the genomel.
Thus, the assembly graph constructed from accurate contigs (which can be viewed as virtual reads) also
approximates the repeat graph of the genome (see Supplementary Note 10).

Figure 3, left presents the assembly graph of the SMS reads from an E. coli genome. Flye further
untangles this graph into a graph with just six edges (Figure 3, middle) as described below.

Resolving bridged repeats in the assembly graph. Flye aligns all reads to the constructed assembly
graph (see Supplementary Note 11) and uses them to identify the repeat edges in this graph (see
Supplementary Note 12). It further transforms the assembly graph into the condensed assembly graph by
contracting all its repeat edges. Aligning a read to the assembly graph induces its alignment to the
condensed assembly graph, and we focus on bridging reads that align to multiple edges in the condensed
assembly graph. Untangling incident edges e = (w, v) and f = (v, u) in the condensed assembly graph
amounts to substituting them by a single edge (w, u). Below we describe how Flye uses bridging reads to
untangle the condensed assembly graph and how this untangling contributes to resolving repeats in the
assembly graph.

A bridging read in the condensed assembly graph is called an (e, f)-read if it traverses two consecutive
edges e and f'in this graph. For each pair of incident edges e and f'in the condensed assembly graph, we
define transition(e, f) as the number of (e, f)-reads plus the number of (f°, e’)-reads, where e’ and f” are
complementary edges for e and f, i.e., edges representing a complementary strand.

Given a set of bridging reads in the condensed assembly graph, we construct a transition graph as
follows. Each edge e in the condensed assembly graph corresponds to vertices ¢” and ¢’ in the transition
graph, representing the head (start) and tail (end) of e, respectively. A complementary edge for e
correspond to the same vertices, but in the opposite order. Each (e, f)-read defines an undirected edge
between ¢'and /" in the transition graph with weight equal to transition(e, ).

Note that the transition graph is bipartite for the simple case when the two subgraphs of the condensed
assembly graphs, corresponding to complementary strands, do not share vertices. However, it is not



necessarily bipartite in the case of genomes that contain long inverted repeats. Flye thus applies
Edmonds’ algorithm™ to find a maximum weight matching in the transition graph and uses this matching
for untangling the condensed assembly graph. For each edge (¢, /") in the constructed matching, Flye
additionally checks the confidence of the transition between edges e and f'(see Supplementary Note 13 for
details) and untangles e and f for each edge (', ") in the transition graph that passes this check. Flye
iteratively untangles edges in the condensed assembly graph and performs the corresponding iterative
repeat resolution in the assembly graph.

Note that consecutive edges e and f'in the condensed assembly graph are not necessarily consecutive in
the assembly graph. Thus, after Flye untangles e and £, it uses one of the bridging (e, f)-reads to fill the
gap between the end of e and the start of f'in the assembly graph. Afterwards, most repeat edges in the
assembly graph either represent long unbridged repeat edges (that are not bridged by any reads) or form
paths consisting of repeat edges with total lengths typically exceeding the median read length.

Resolving unbridged repeats in the assembly graph. Flye takes advantage of the small variations
between different repeat copies to resolve unbridged repeats. It identifies the variations between repeat
copies, matches each read with a specific repeat copy using these variations, and uses these matched reads
to derive a distinct consensus sequence for each repeat copy. The success of this approach is contingent
upon the presence of a sufficiently large number of variations between the different repeat copies.
Therefore, the first step is to estimate the number and positions of variations between the repeat copies
and to calculate the divergence of the various repeat copies from reads alone. Supplementary Note 14
describes how Flye calculates the divergence between repeat copies. The current version of Flye is limited
to resolving unbridged repeats of multiplicity two in both haploid (e.g., bacterial) and diploid (e.g.,
human) genomes.

The idea of the algorithm is to assign each read to a specific repeat copy and then use the assigned reads
to derive a distinct consensus sequence for each repeat copy. For example, the 93 reads that traverse
edges IN; and REP (Figure 3) can be assigned to one repeat copy and the 75 reads that traverse edges IN,
and REP can be assigned to another repeat copy. However, it is unclear how to assign other reads
mapping to the edge REP to a specific repeat copy. Flye uses reads starting in the incoming edges (93 and
75 reads in Figure 3) to “move forward” into the repeat and construct two different prefixes of the repeat
REP corresponding to the two copies of the repeat. In parallel, it uses reads ending in the outgoing edges
(71 and 76 reads in Figure 3) to “move backward” into the repeat and construct two different suffixes of
this repeat.

In each iteration of the algorithm, reads are assigned to a specific repeat copy, and then all the reads
assigned to each repeat copy are used to construct a consensus sequence for that copy. Thus, as the
algorithm proceeds, more reads are assigned to specific repeat copies and the consensus sequence for each
repeat copy grows longer. The algorithm terminates when no new reads can be assigned to read copies
and the consensus sequences stop growing in length. There are two goals: to obtain distinct consensus
sequences for each repeat copy and to determine the correct pairings of incoming and outgoing edges for
each repeat copy.

Supplementary Note 15 describes each successive iteration of the algorithm in details. Supplementary
Note 16 evaluates its accuracy on simulated data, and Supplementary Table 2 provides information about

Flye’s performance on the unbridged repeats from the BACTERIA dataset.

Code Availability. The Flye code used in this study is available in the online version of the paper. The
most recent Flye version is freely available at http://github.com/fenderglass/Flye.

Data Availability: All described datasets are publicly available through the corresponding repositories:



¢ The supplementary files, including the assemblies generated by Flye, are available at
https://doi.org/10.5281/zenodo. 1143753

* NCTC PacBio reads: http.//www.sanger.ac.uk/resources/downloads/bacteria/nctc/.

* PacBio metagenome dataset:
https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome Project MockB_Shotgu
n.

e PacBio C. elegans dataset: https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-
set

* PacBio/ONT S. cerevisiae dataset: https://github.com/fg6/YeastStrainsStudy

* The ONT reads from the HUMAN/HUMAN-+ datasets are available at:
https://github.com/nanopore-wgs-consortium/NA12878. The matching Illumina reads are
available as SRA project ERP00122. The Canu HUMAN+ assembly was downloaded from:
https.//eenomeinformatics.github.io/nal2878update. MaSuRCA assemblies are available from:
http://masurca.blogspot.com/
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