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ABSTRACT 
 

Forced convection in porous media has many important applications, one of which is in thermal energy storage 
systems that use low cost materials, such as stones or brick, as heat storage materials. Turbulence is welcomed in 
such thermal energy storage systems since it efficiently enhances heat transfer. Forced convection in porous media 
can be described by the macroscopic momentum and energy equations. In order to close the macroscopic 
equations, we analyzed the microscopic flow and temperature fields in porous media by direct numerical 
simulation (DNS) methods. Two DNS methods were adopted in our study to compare and verify the results. They 
are a finite volume method (FVM) and a Lattice-Boltzmann method (LBM). The porous matrix is made of a large 
number of periodically arranged 3-dimensional spheres. Based on our DNS results, we proposed a macroscopic 
model for calculating forced convection in porous media.  
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1. INTRODUCTION 
 
A porous medium refers to a material consisting of a solid matrix with interconnected voids. Examples of 
porous media are sandstone, soil, coal, brick, and fiberglass. Fluid flows in porous media often occur at low 
velocities and are thus laminar. However, when the Reynolds number, defined based on the size of the matrix 
elements, 𝑑, and the mean flow velocity, 𝑢𝑚, is of the order of 100 or higher, the flow within the pores becomes 
turbulent. 
 
Turbulence is welcomed in many industrial applications because it enhances heat and mass transfer. A thermal 
energy storage system can be used to demonstrate the significance of turbulent porous medium flow. 
Rocks/bricks are often used for storing thermal energy. Although they come at a low cost, these materials have 
low thermal conductivity, leading to a very slow charging and discharging process. To overcome this 
limitation, the porous element size and the mean velocity may be adjusted to make the flow fully turbulent. 
For a tube bank (which can be approximated as a porous medium), a relationship between the Nusselt number 
and the Reynolds number changes from Nu~Re0.36  for Re<300 to Nu~Re0.64  for a fully turbulent flow 
(Re>300) [1]. Heat transfer is thus efficiently enhanced by transition to turbulence.  
 
For engineering applications, it is more practical to solve macroscopic equations to simulate turbulent flows 
and heat transfer in porous media since using microscopic simulations requires the specification of a detailed 
geometry of the porous matrix and also is computationally very expensive. In order to close the volume-
averaged Reynolds stress and temperature fluctuation terms in the macroscopic equations, various turbulence 
models have been developed. The so-called eddy viscosity assumption is commonly adopted in most models 
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to calculate the Reynolds stress. Representative models are those developed by Lee & Howell [2], Prescott & 
Incropera [3], Antohe & Lage [4], and de Lemos & Pedras [5].  
 
However, the eddy viscosity assumption was developed for clear fluid flows (with no solid obstacles) and thus 
its validity for porous medium flows needs to be proven. In our recent direct numerical simulation (DNS) 
studies, we found that the size of turbulent structures in a porous medium is generally limited by the pore size, 
which leads to the pore scale prevalence hypothesis (PSPH) [6-8]. This is in accordance with the hypothesis 
proposed by Nield [9, 10], which states that true macroscopic turbulence, at least in a dense porous medium, 
is impossible because of the limitation on the size of turbulent eddies imposed by the pore scale.   
 
The purpose of the present study is to develop a model for turbulent forced convection in a porous medium. 
Forced convection in a generic porous matrix (GPM) composed of a large number of spheres will be studied 
with DNS methods. The DNS results will be used to further validate the PSPH, propose a macroscopic model 
for a turbulent flow in a porous medium, and determine its coefficients. The proposed macroscopic model will 
also account for local thermal non-equilibrium (LTNE) effects.  
 

2. GOVERNING EQUATIONS AND NUMERICAL METHODS 
 
2.1 Microscopic and macroscopic equations 
 
Forced convection in a porous medium in a heat storage system is typically characterized by local thermal non-
equilibrium. The microscopic governing equations are incompressible Navier-Stokes and energy conservation 
equations. In Cartesian coordinates these equations are 
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where 𝜈 is the kinematic viscosity of the fluid; 𝛼𝑓 and 𝛼𝑠 are the thermal diffusion coefficients of the fluid and 
the solid matrix, respectively; 𝑇𝑓 and 𝑇𝑠 are the fluid and solid temperatures, respectively; and 𝑔𝑖 is a constant 
applied pressure gradient which causes the fluid flow. The viscous heat dissipation is neglected in the thermal 
energy conservation equation (3).  
 
By performing time and volume averaging of Eqs. (1) and (2) over a representative elementary volume (REV), 
of Eq. (3) over the fluid part of the REV, and of Eq. (4) over the solid part of the REV, we obtained the 
following macroscopic equations: 
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Here 𝜙 is the porosity of the porous matrix. The operator   ̅denotes time averaging, the operator 〈∙〉𝑖 denotes 
volume averaging over the fluid region of a REV, and the operator 〈∙〉𝑠 denotes volume averaging over the 
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solid region. The operator  𝑖𝜑, where 𝜑 is any dependent variable, is defined as  𝑖𝜑 = 𝜑 − 〈𝜑〉𝑖. Parameters 
𝑎𝑓𝑚 and 𝑎𝑠𝑚 are the thermal diffusivities of the fluid and solid phases of the porous medium, respectively, and 
𝑞̇′′′ is the volumetric heat transfer rate from the solid matrix to the fluid. In order to close Eqs. (5)-(8), we 
studied convection in porous media with DNS methods and investigated the turbulence length scales.  
 
2.2 Direct numerical simulation methods 
 
Two different methods which complement and verify each other were utilized in this study to understand the 
mechanism of turbulence in porous media. They are 
 

 The finite volume method (FVM) which directly solves the Navier-Stokes equations. 
 The Lattice-Boltzmann method (LBM) which determines the particle distribution; this method 

indirectly corresponds to solving the Navier-Stokes equations. 
 
In our FVM, the solution of Eqs. (1)–(3) was advanced in time with the second-order implicit backward method. 
Eq. (4) was not solved in our study because an isothermal boundary condition was used at the surfaces of the 
solid matrix. A second-order central difference scheme was used for spatial discretization. The pressure at the 
new time level was determined by the Poisson equation. The velocity was corrected by the pressure-implicit 
scheme with splitting of operators (PISO) pressure–velocity coupling. 
 
The basic equation for the LBM is a discretized version of the Boltzmann equation [11] with the collision 
operator being treated by the Bhatnagar-Gross-Krook (BGK) model [12], i.e.  
 

𝑓𝑖(𝐱 + 𝛏𝒊Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖(𝐱, 𝑡) = −
1

𝜏
(𝑓𝑖(𝐱, 𝑡) − 𝑓𝑖

𝑒𝑞(𝐱, 𝑡))                                  (9) 
 
where 𝛏𝒊 is a discrete particle velocity, 𝑓𝑖(𝐱, 𝑡) is the probability to find a particle with a velocity 𝛏𝒊 at a position 
𝐱 at a time t, 𝑓𝑖

𝑒𝑞(𝐱, 𝑡) is the equilibrium form of 𝑓𝑖(𝐱, 𝑡), and 𝜏 is the relaxation time, which is related to the 
viscosity of the fluid. Different macroscopic velocities now correspond to different probability distributions of 
the particle velocities. A standard grid for modeling the three-dimensional motions of that kind, shown in Fig. 
1, is called the D3Q19-grid (D3: three-dimensional, Q19: 19 discrete velocities). More details can be found in 
Chen & Doolen [13].  
 
2.3 Techniques for detecting turbulence length scales 
 
Turbulence is characterized by the fluctuating flow field quantities that are strongly affected by eddy structures 
of various sizes, often called coherent structures. These coherent structures are the building blocks of 
turbulence. These structures need to be identified when turbulence is analyzed in detail.  
 
Here we used the two-point correlations to determine the length scale of the turbulent structures. A two-point 
correlation between the quantities 𝑢𝑖 

′ (𝒙) and 𝑢𝑗
′(𝒙 + 𝒓) at a certain time 𝑡 is defined as: 

 
𝑅𝑖𝑗  (𝒓, 𝒙) =   𝑢𝑖

′ (𝒙, 𝑡) 𝑢𝑗 
′ (𝒙 + 𝒓, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                    (10) 

 
where   ̅denotes time (Reynolds) averaging. The length scale of the turbulent structures can be determined by 
the non-zero region of 𝑅𝑖𝑗. However, non-zero correlations are not solely from turbulent fluctuations but also 
can be caused by simultaneous unsteady motions around each of the porous elements. They are called non-
turbulent correlations and they have to be distinguished from the true turbulent correlations due to the turbulent 
coherent structures. This can be done provided the non-turbulent correlations are the same for all values 𝑟 3, 
i.e. the 𝑢𝑖

′ (𝒙𝟎, 𝑡) correlation and 𝑢𝑗
′ (𝒙𝟎 + 𝒓 + 𝑟3𝒆𝟑, 𝑡) correlation have the same non-turbulent correlation 

pattern. Adding 𝑟3𝒆𝟑 to the correlation distance 𝒓 means that now the correlation points are located in two 
parallel planes which are a distance 𝑟3 apart, see Fig. 2. We call this special correlation a two-point lateral 
correlation; it is defined as: 
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𝑅̃𝑖𝑗  (𝑟3, 𝒓, 𝒙) =  𝑢𝑖

′(𝒙, 𝑡) 𝑢𝑗
′ (𝒙 + 𝒓 +  𝑟3𝒆𝟑, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                         (11) 

 
When the quantity 𝑅̃𝑖𝑖 is subtracted from 𝑅𝑖𝑖 defined by Eq. (10), the difference 
 

  𝑅̂𝑖𝑗 = 𝑅𝑖𝑗 −  𝑅̃𝑖𝑗                                                                    (12) 
 

corresponds to the true turbulent correlations provided 𝑟3 is so large that there are no correlations due to the 
large-scale turbulent structures in 𝑅̃𝑖𝑗. 
 

 

 

 
 

Fig. 1 Grid structure and velocities with the 
D3Q19 discretization. 

Fig. 2 Correlation points in two parallel planes 

 
3. GENERIC POROUS MATRIX 

 
The generic porous matrix (GPM) is composed of aligned distributed spheres with the diameter d and distance s 
apart from each other. The GPM used in this study and the representative elementary volume (REV) are shown in 
Fig. 3. Periodic boundary conditions are used in all three directions. Fluid flow and heat transfer are produced by 
a constant applied pressure gradient 𝑔𝑖  and a constant temperature difference Δ𝑇  in the 𝑥1  direction, i.e. 
𝑇(0, 𝑥2, 𝑥3) + Δ𝑇 = 𝑇(𝐿1, 𝑥2, 𝑥3), where 𝐿1 is the length of the domain. The bulk temperature of each REV is 
calculated according to our DNS results. Two values of the pore size s, 1.0 and 1.1, were adopted. Their 
corresponding porosity values are 0.48 and 0.61. 
 

4. RESULTS AND DISCUSSIONS 
 
4.1 Accuracy of DNS methods 
 
Our DNS methods have already been verified by solving problems involving turbulent flow in porous media, see 
our studies in [6-8]. Here we focused on the mesh independence of our DNS results. Direct numerical simulation 
solutions need numerical grids that are fine enough to resolve the smallest scales involved. Quite generally these 
smallest scales are of the order of the Kolmogorov scale 𝜂 = 𝜈3/4/𝜀1/4. A perfect DNS solution would comply 
with the condition Δ𝑥𝑖/𝜂 ≤ 1, where Δ𝑥𝑖 are the mesh sizes in the three dimensions of the solution domain. Since 
𝜂 is not uniformly distributed, we compare our mesh sizes with the mean Kolmogorov scale 𝜂𝑚 for the flow 
domain. A typical FVM case has 270,000 cells in each REV and 9.72 million cells in total. The mesh is 
concentrated near the wall. Δ𝑥𝑤 𝜂𝑚⁄  is smaller than 0.1, where Δ𝑥𝑤 is the distance from the first cell to the wall. 
The largest Δ𝑥𝑖/𝜂𝑚 is smaller than 10. Uniformly distributed meshes were used for our LBM cases. The case with 
the highest Reynolds number has 680,000 cells in each REV and 174 million cells in total. The Δ𝑥𝑖/𝜂𝑚 values for 
all the LBM cases are smaller than 2. However, we were still unable to achieve Δ𝑥𝑖/𝜂 ≤ 1 everywhere in the flow 
domain, especially very close to the solid walls where the local dissipation rate 𝜀 is very large. Our simulations 
should therefore be considered as “low resolution DNS”.   
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However, we found that our mesh resolution is sufficient to calculate parameters such as the friction coefficient 
and the Nusselt number correctly, which are of the primary interest for the present study. The friction coefficient 
and the Nusselt number only change slightly when the mesh resolution is increased.  

 

 
 

 
Fig. 3 Generic porous matrix (GPM) used in our study; 96 (8 × 4 × 4)  REVs were used for the LBM 
simulations and 36 (4 × 3 × 3) REVs were used for the FVM simulations.  

 
4.2 Turbulent length scales and the PSPH 
 
Fig. 4 shows the instantaneous velocity field and the vortical structures identified by the iso-surfaces of 𝑄. The 
quantity Q is the second invariant of the instantaneous velocity gradient tensor, which is defined as − 1

2

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
. 

Fig. 5 shows the instantaneous temperature field and iso-surfaces of the thermal dissipation rate. The thermal 
dissipation rate is defined as 𝑘𝑓

𝜕𝑇𝑓

𝜕𝑥𝑖

𝜕𝑇𝑓

𝜕𝑥𝑖
. The thermal dissipation rate corresponds to the entropy generation rate in 

the temperature field when the temperature variation is small. It also corresponds to the entransy dissipation rate, 
which was proposed recently by Guo [14]. Jin and Herwig [15] argued that the thermal dissipation rate will be 
associated with certain sizes of vortical structures since it indicates the conversion rate of mechanical energy into 
internal energy. Figs. 4b and 5b show that turbulent structures are of the pore size or smaller with some of them 
reaching into neighboring pores but not further. 
 

  
Fig. 4 Instantaneous flow fields, Re=342, LBM results. (a) Velocity magnitude; (b)Vortical structures identified 
by iso-surfaces of 𝑄. 

 
In Fig. 6 the two-point correlations 𝑅11, 𝑅̃11, and 𝑅̂11, computed according to Eqs. (10)-(12), are shown. In both 
cases (𝜙 = 0.48 and 0.61) non-zero turbulent correlations can be found only within a distance 𝑠 away from the 
correlation point. 𝑅11 is almost identical to 𝑅̃11 when the flow is laminar. Our DNS results confirmed the pore 
scale prevalence hypothesis (PSPH), i.e., that the size of turbulent eddies is restricted by the pore size.  
 
4.3 A preliminary macroscopic model for turbulent convection in porous media 
 
According to the PSPH, the effects of turbulence are confined within each REV, thus Eqs. (5)-(8) can be 
simplified to 

REV 

(a) (b) 

GPM 
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𝜕(𝑢𝐷𝑖)

𝜕𝑥𝑖
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+

𝜕(𝑢𝐷𝑖𝑇𝑓𝐷)

𝜕𝑥𝑖
= 𝑎̃𝑓𝑚

𝜕2𝑇𝑓𝐷

𝜕𝑥𝑖
2 +

𝑞̇′′′

𝜌𝑐𝑝
                                                         (15) 

𝜕𝑇𝑠𝐷

𝜕𝑡
= 𝑎𝑠𝑚

𝜕2𝑇𝑠𝐷

𝜕𝑥𝑖
2 −

𝑞̇′′′

𝜌𝑐𝑝
                                                                  (16) 

 
where 𝑢𝐷𝑖 = 𝜙〈𝑢̅𝑖〉𝑖  is the superficial velocity, 𝑝𝐷 =  𝜙〈𝑝̅〉𝑖  is the mean pressure, 𝑇𝑓𝐷 = 〈𝑇̅𝑓〉𝑖  is the mean 
temperature in the fluid region, and 𝑇𝑠𝐷 = 〈𝑇̅𝑠〉𝑠 is the mean temperature in the solid region. The time averaged 
drag 𝑅̅𝑖 can be modeled by the Brinkman-Forchheimer extension of the Darcy law, i.e.  
 

𝑅̅𝑖 = −𝜙(𝑅̅𝐷𝑖 + 𝑅̅𝐹𝑖 + 𝑅̅𝐵𝑖) = −𝜙 (
𝜈

𝐾
∙ 𝑢𝐷𝑖 +

𝐶𝐹

√𝐾
|𝐮𝐷| ∙ 𝑢𝐷𝑖 −

𝜕

𝜕𝑥𝑗
(𝜈

𝜕𝑢𝐷𝑖

𝜕𝑥𝑗
))                         (17) 

 

  
Fig. 5 Instantaneous heat transfer field, Re=610, FVM results. (a) Temperature 𝑇𝑓 ; (b) Iso-surfaces of the 

thermal dissipation rate 𝑘𝑓
𝜕𝑇𝑓

𝜕𝑥𝑖

𝜕𝑇𝑓

𝜕𝑥𝑖
.  
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Fig. 6 Two-point correlations. (a) 𝜙 = 0.48 , Re=342; (b) 𝜙 = 0.61 , Re=566. Re = 𝑢𝑚𝐾1/2 𝜈⁄  is the 
Reynolds number, where 𝑢𝑚 is the mean flow velocity. 

 
The permeability 𝐾 is calculated according to the Kozeny’s equation [10]: 
 

𝐾 =
𝑑2𝜙3

𝛽(1−𝜙)2                                                                     (18) 
  
where the coefficient 𝛽 is 140. The model coefficient 𝐶𝐹 was determined according to our DNS results. Fig. 7 
shows the relationship between the friction coefficient 𝑓𝑘 = 𝐾1/2(𝑑𝑝/𝑑𝑥) 𝜌𝑢𝑚

2⁄  and the Reynolds number 
Re𝐾 = 𝑢𝑚𝐾1/2 𝜈⁄ . The discrepancies between the FVM and LBM results are mainly due to the uncertainties 
of the numerical solutions of a nonlinear system. Also, the LBM equations are only an approximation of the 

(a) (b) 

(a) 
𝑅11

𝑢𝑚
2   

 

𝑅̃11

𝑢𝑚
2   

 
𝑅11−𝑅̃11

𝑢𝑚
2   

 

𝑅11

𝑢𝑚
2   

 

𝑅̃11

𝑢𝑚
2   

 
𝑅11−𝑅̃11

𝑢𝑚
2   

 

(b) 
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incompressible Navier-Stokes equations. Different initial fields may lead to uncertainties in the transition 
region. Despite of these discrepancies, 𝑓𝑘 can be reasonably well approximated by  
 

𝑓𝐾 =
1

Re𝐾
+ 0.105                                                                (19) 

 
which indicates that the coefficient 𝐶𝐹 is 0.105. This qualitatively agrees with [10], which states that 𝐶𝐹 ranges 
from 0.1 to 0.55. The parameter 𝜈 is an effective viscosity involved in the Brinkman’s term. Vafai and Tien 
[16] suggested that 𝜈  can be approximated as 𝜈 𝜙⁄ . However, in our recent study, we found that 𝜈  is 

proportional to 𝑠2 |
𝜕𝑢𝐷𝑖

𝜕𝑥𝑗
| at large Reynolds numbers, where 𝑠 is the pore size. According to [17], the effective 

thermal diffusivity 𝑎̃𝑓𝑚 can be calculated as 
 

 𝑎̃𝑓𝑚 = 𝑎𝑓𝑚 + 𝛾𝐾1/2|𝑢|                                                     (20) 
 
where the coefficient 𝛾 has a value of 0.025. The parameters 𝑎𝑓𝑚 and 𝑎𝑠𝑚 can be approximated by 𝜙𝑎𝑓 
and (1 − 𝜙)𝑎𝑠, respectively, and 𝑞̇′′′ is calculated as 
 

𝑞̇′′′ = 𝛼𝐴′′′(𝑇𝑓𝐷 − 𝑇𝑠𝐷)                                                           (21) 
 
where 𝐴′′′ is the solid surface area per unit volume, and 𝛼 is the heat transfer coefficient. The parameter 𝛼 can 
be calculated from the local Nusselt number, 1 𝛼⁄ = 𝑑 (Nu𝑘𝑓)⁄ + 𝑑 (𝛽𝑘𝑠)⁄ . The constant 𝛽 is 10 [9]. Nu can 
be correlated with Re𝐾

  and the Prandtl number Pr as follows: 
 

Nu = 𝐴Re𝐾
𝑚Pr𝑛                                                                 (22) 

 
Fig. 8 shows the relationship between the Nusselt number Nu and Re𝐾 at various Prandtl numbers. The DNS 
results indicate that the Nusselt number can be well fitted by Eq. (22) with 𝐴 = 3.6, 𝑚 = 0.57, and 𝑛 = 0.37, 
which is close to the parameter values suggested in [10]. 
 

  
Fig. 7 Friction coefficient 𝑓𝐾 at various porosities and 
Reynolds numbers.  

Fig. 8 Nusselt number Nu at various Prandtl and 
Reynolds numbers, 𝜙 = 0.61.  

 
5. CONCLUSIONS 

 
We performed a direct numerical simulation study of turbulent forced convection in a porous medium composed 
of aligned spheres. We also validated the pore scale prevalence hypothesis (PSPH). Based on the PSPH we 
proposed a macroscopic model for forced convection in porous media. The model coefficients were determined 
from our DNS results. The effects of local thermal non-equilibrium are taken into account in the macroscopic 
model.  
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NOMENCLATURE 
 
𝑎𝑒  effective thermal diffusivity (m2s-1) 
𝑎𝑚  thermal diffusivity of a porous medium 

(m2s-1) 

𝐶𝐹 constant in the Forchheimer’s term (-) 
𝐾 permeability (m2) 
Nu Nusselt number (-) 

𝑅𝑖 time averaged drag (ms-2) 
𝑅𝑖𝑗 two point correlation (m2s-2) 
Re Reynolds number (-) 
Pr Prandtl number (-) 
𝑢𝐷𝑖 superficial velocity  

 ( ms-1 ) 
𝜙 porosity (-) 
𝛼 heat transfer coefficient (Wm-2K-1) 
𝜈 effective diffusivity (m2s-1) 
𝛾 temperature dispersion coefficient (-) 

 
Subscripts 
𝑓 fluid 𝑠 solid 
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