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Populations of marine organisms on coral reef islands (CRI) are connected in space

and time by seawater that transports propagules of plants, animals, and algae. Yet,

despite this reality, it is often assumed that routine replenishment of populations of

marine organisms on CRI is supported by locally-sourced propagules (hereafter, larvae).

Following large disturbances, however, distantly-sourced larvae from less disturbed CRI

within a regional meta-population are likely to be important for local population recovery,

but evaluating the roles of locally- vs. distantly-sourced larvae remains difficult. While

larval sources are relatively well-known for some fishes, they remain virtually unknown for

most taxa, particularly those associated with the benthos, as exemplified by scleractinian

corals. This review focuses on reef recovery and larval connectivity. Using corals as

examples, we argue that CRI can serve as natural laboratories in which studies of

these issues can enhance understanding of coral reef community dynamics under future

disturbance regimes. Rather than focusing on synthesizing empirical data, we focus

on the capacity for CRI to realize their potential in this research area, concluding that

progress is impeded by the limited breadth, detail, and spatio-temporal concordance
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of existing research. Using long-term observational programs of coral reefs in Mo’orea

(French Polynesia), Okinawa (Japan), and St. John (US Virgin Islands) as examples of

the data currently available, we make the case that new modes of multidisciplinary and

collaborative research will be required to exploit the value of CRI in understanding the role

of connectivity in mediating ecosystem resilience in a future affected by anthropogenic

disturbances.

Keywords: marine larvae, coral reef, scleractinia, connectivity, resilience, ecology

MARINE CONNECTIVITY

Most generally, connectivity (Box 1) refers to the transport
of fluid media (e.g., air, water), chemicals (e.g., nutrients,
dissolved organic matter), and biota (e.g., adult organisms,
reproductive propagules, microbes) among spatially distinct
population patches (Hanski, 1999, 2002). Interest in demographic
connectivity focuses mainly on the passage among populations
of individuals and the genetic information they contain (Doherty
et al., 1995; Planes and Fauvelot, 2002), thereby modulating the
dynamics of local populations as well as the larger networks of
populations to which they belong (Cowen et al., 2006; Holstein
et al., 2014). Population connectivity is integrally related to
metapopulation theory (Paris-Limouzy, 2011; Burgess et al.,
2014), because it represents the capacity for exchanges among
sub-populations to mediate ecosystem resilience (i.e., the ability

to recover following disturbance) by supplying distantly-sourced
recruits to augment locally-sourced recruits (Box 1). Given
that local population dynamics can be strongly influenced by
connectivity, this topic has featured prominently in ecological

research for decades (Limouzy-Paris et al., 1997; Hanski, 2002;
Cowen et al., 2003), and often has been presented as a dichotomy
between connected vs. separated populations (Cowen et al.,
2000). Recent work suggests connectivity is better considered

as a continuum, along which populations can be intermittently
connected by the periodic confluence of temporally constrained
events (Kough and Paris, 2015).

Population connectivity is particularly relevant in the oceans,

because water provides a dense fluid with buoyant and drag forces
(Paris et al., 2013a) supporting the transport of organisms over
large distances (Burgess et al., 2014) while differential advection
and turbulence increase dispersion. Moreover, the majority of
marine taxa has multi-stage life cycles and produce propagules

capable of extensive transport by moving seawater (Wood et al.,
2014). For many common benthic animals, the production of

pelagic larvae supports dispersal among sessile adult populations
(Paris-Limouzy, 2011; Burgess et al., 2014), for example, those
found on the shores of coral reef islands (CRI). Connected
by slow-moving seawater, CRI can create spatially segregated
populations, among which the transport of pelagic larvae can
mediate ecosystem resilience (Gunderson, 2000), although some

oceanic currents can act as barriers to larval migration (Baums
et al., 2006; Suzuki et al., 2016; Wood et al., 2016). Adults
of highly motile taxa have the potential to move among CRI,
although for many typical reef-resident taxa such as reef fishes,
lobsters, and sea urchins, such dispersal appears to be infrequent

Box 1 | Definition of terms used in this paper.

CRI Coral reef island is defined as any island in tropical seas

surrounded by coral reefs

Connectivity Describes the passage of propagules among

populations in a larger metapopulation structure, and

here is operationally defined by the importance of

locally-sources vs. distantly-sourced recruits in

supporting population growth

Local Operationally defined as the focal CRI of study

Distant Operationally defined as any non-local CRI capable of

supplying recruits to the focal CRI

Population Operationally defined as conspecifics on a single CRI

Box 2 | Relationship between connectivity and sources of recruits.

Connectivity = RDistant/(RLocal + RDistant )

Conceptual relationship between connectivity and sources of recruits in

benthic marine populations, defined as originating from the focal CRI RLocal ,

or another CRI RDistant. For a given site, the connectivity index would

be expected to vary from ∼ 0 (representing entirely local recruitment)

to 1 (representing recruitment sourced entirely from distant sources). As

conceived here, this simple ratio is independent of the magnitude or rate of

overall recruitment.

(Saenz-Agudelo et al., 2011), and probably plays a modest role in

connectivity relative to that facilitated by pelagic larvae (Botsford
et al., 2009). Larval connectivity among CRI can be quantified as
the proportional relationship at the population level of distantly-
sourced larvae relative to the sum of locally- and distantly-
sourced larvae recruiting at a site (Box 2). This ratio varies with

time (e.g., seasonally) as a function of the integration time over
which larval recruitment is measured.
CRI provide natural laboratories for studying population
connectivity in a changing world (Kendall et al., 2013; Figure 1),
which is an objective with broad utility in understanding the
conditions favoring a return of community structure to an initial
condition following a disturbance (i.e., ecosystem resilience;
Gunderson, 2000). While CRI represent unique coral reef
habitats that are tractable for the investigations of connectivity
in mediating community recovery following disturbance, the
principles they represent are applicable to a diversity of coral reef
situations, for example, cohesive areas of reef that are being split
into segregated communities through mortality, and fragmented
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FIGURE 1 | Schematic of eight domains (described in the text with corresponding 1–8) requiring integration, concurrent research, and further quantitative data to

allow CRI to achieve their full potential in advancing understanding of the role of connectivity in coral reef resilience. The needs for integration and additional data are

divided into three categories underscoring the chronology of biological events beginning with reproduction and ending with recruitment, as exemplified by scleractinian

corals: responses at propagule and organism levels, pelagic larval transport processes, and analysis of post-settlement and recruitment patterns.

habitats in multiple tropical ecosystems including mangroves,
seagrasses, and soft sediments.

Previous studies have described the concepts associated with
population connectivity in the marine realm (Cowen et al., 2006;
Cowen and Sponaugle, 2009; Selkoe and Toonen, 2011), but
many of these concepts require nuance in order to translate their
meaning to CRI that have unique features associated with their
physical oceanography, as well as the biological consequences of
small and isolated populations (Paris et al., 2002; Kendall et al.,
2013; Vaz et al., 2013). Many of these features differ from those
affecting geographically large areas of coral reefs (e.g., continental
barrier reefs; Lindo-Atichati et al., 2016), for example, because of
the complex ways in which seawater flows among CRI having
irregular shapes and deep underwater topography (Wolanski
and Hamner, 1988; Paris et al., 2002; Baums et al., 2006).
Submerged in the physical seascape surrounding CRI, near-
shore reefs contain a diversity of organisms with contrasting life-
history strategies that create multiple pathways for connectivity
to mediate recruitment by locally- and distantly-sourced larvae
(Figure 1). These features are likely to affect the resilience
of coral reefs around CRI, and play an important role in
determining whether populations of foundation species recover
from landscape-scale disturbances, or remain in a depleted
state (Munday et al., 2009). Clearly, the factors determining
the dynamics of coral reefs around CRI are complex, and
will not be fully explained by a single program focused on

a single aspect of their ecology (e.g., connectivity). However,
complexity does not imply intractability, and we suggest that
a cohesive program focused on connectivity around CRI will
greatly advance understanding of these issues. Ultimately, such a
program will need to be augmented by studies of other processes,
such as post-settlement success, the role of disturbances,
and the factors controlling adult mortality, to realize its full
potential.

CONTRASTING POPULATION DYNAMICS

AMONG CORAL REEF ISLANDS

Using a framework created by the theoretical and empirical
understanding of connectivity in the marine environment
(Hanski, 2002; Hastings and Botsford, 2006; Burgess et al.,
2014; Thompson et al., 2018), we consider how time-series
analyses of the community structure of coral reefs around CRI
can be interpreted within a connectivity framework. While
such a framework is relevant to understanding the dynamics
of a wide variety of organisms having pelagic propagules,
including many fishes, algae, and invertebrates, we constrain
our review to considering the utility of measures of connectivity
among populations of scleractinian corals in order to enhance
understanding of coral reef community dynamics. Addressing
this topic constitutes a significant research challenge, but
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providing definitive answers to outstanding questions is beyond
the scope of what can be achieved with the available data.

Our objective is to highlight the needs for integration among
studies, specifically addressing different disciplines such as
physical oceanography, ecology, and genetics, and for specific
types of data with the potential to deliver these answers. We
underscore the importance of matched sets of complementary
data that are collected on commensurate scales and can be
used to support synthetic analyses within and among groups of
CRI. We focus on scleractinians because they are the ecosystem
engineers of coral reefs (Jones et al., 1994), and because they
offer the advantage (compared to other taxa such as fishes and
algae) that their settlement, recruitment, and growth provide an
enduring calcified structure suitable for retrospective analyses
of population dynamics. While adopting a restricted taxonomic
approach, we recognize that other organisms (e.g., microbes, fish,
echinoids, and algae) also support genetic exchange among CRI,
and that research addressing connectivity for these groups is
underway (e.g., Saenz-Agudelo et al., 2011; D’Aloia et al., 2015).

We illustrate our contribution using the shallow reefs of
Mo’orea (French Polynesia), Okinawa (Japan), and St. John
(US Virgin Islands), because: (a) they have decadal-scale
records of coral reef community dynamics, (b) the records
have been collected as part of larger programs co-located
with observations of oceanographic conditions, recruitment,
and population genetics, and (c) the projects are managed, or
conducted, by the authors of the present contribution. Mo’orea,
Okinawa, and St. John are surrounded by nearby CRI (i.e.,
within 10’s−100’s of kilometers), thereby creating the potential
for locally- and distantly-sourced larvae to replenish populations
following disturbances. The ecology of the coral reefs around
each of these islands operates within different seascapes capturing
dissimilar physical oceanography, regional-scale variation in
patterns of organism diversity, disturbance histories, and local-
scale anthropogenic effects created by human populations. While
Mo’orea, Okinawa, and St. John provide examples of CRI within
local-scale networks of other CRI, their seascape contexts suggest
each CRI might interpret interactions with neighboring CRI in
different ways. The coral reefs around these locations illustrate
a range of fates similar to those affecting coral reefs around
the world (e.g., Bruno and Selig, 2007; Jackson et al., 2014).
Some reefs around St. John have undergone a phase transition to
macroalgae (Rogers and Miller, 2006; Edmunds, 2015), while the
resilient outer reefs of Mo’orea represent a case of rapid recovery
from major coral mortality caused by a crown-of-thorns (COTs)
outbreak and a cyclone between 2007 and 2010 (Bramanti and
Edmunds, 2016; Holbrook et al., 2018). Okinawa represents
a resilient coral community supported by exceptionally high
recruitment despite frequent major typhoons and historical, yet
recurrent, COTs outbreaks (Goto et al., 2011; Edmunds et al.,
2015).

Previously, analyses of coral communities from 1992 to
2013 around Mo’orea, Okinawa, and St. John have been used
to highlight among-site differences in the benthic community
dynamics (Edmunds et al., 2015), particularly in terms of their
responses to disturbances and their condition (e.g., coral cover)
as of 2013, the most recent sampling included in the previous

analysis. In evaluating why these locations have responded
differently to disturbances (Edmunds et al., 2015), contrasts in
key biological processes among locations emerged, including
the delivery of larvae to benthic surfaces (i.e., coral recruitment
on terracotta tiles) and the density of juvenile corals (colonies
≤ 5-cm diameter) on natural reef surfaces. For example, coral
recruitment varied three orders of magnitude among islands
(Okinawa > Mo’orea > St. John), the density of juvenile corals
differed an order of magnitude among islands (generally Mo’orea
and Okinawa > St. John), and recruitment and density of
juvenile corals showed strong variation among years (Edmunds
et al., 2015). A proxy for recruitment success—the ratio of
the density of juvenile corals to the smaller coral recruits—
differed four orders of magnitude among locations (Mo’orea
> St. John > Okinawa), suggesting that the “post-settlement
gauntlet” (sensu Arnold et al., 2010) was an important factor
driving differential resilience of coral reefs around these CRI.
This earlier analysis underscored the role of post-settlement
mortality and juvenile coral success in mediating differential
coral community dynamics among locations. Here we focus on
the role of pre-settlement events leading to propagule delivery in
determining reef resilience and recovery following disturbances.
Survival during propagule delivery and settlement is among
the earliest links in the chain of events comprising recruitment
success and subsequent reef resilience.

With evidence of dissimilar community dynamics at three
CRI, the present study began as an analysis of the role
of connectivity in driving temporal differences in coral reef
community structure in these locations. We reasoned that factors
determining connectivity would differ among locations in ways
that could inform our understanding of community dynamics.
A fundamental hypothesis has been developed and can be
addressed by our review: Connectivity patterns provide insight
into how future CRI community dynamics will be influenced by
increasing rates of disturbance associated with climate change
(Emanuel, 2005; Madin and Connolly, 2006).

Initial inspection of the data suggested this hypothesis might
be true. For example, the nearest neighboring CRI, and their
sizes, differ among the locations, with St. John as close as ∼1 km
to CRI ∼500m long, and 2–3 km from CRI ∼15 km long. In
contrast, Mo’orea is ∼16 km from Tahiti which is 60 km long,
and Okinawa is as close as ∼0.5 km from CRI ∼ 3 km long, and
within 30 km there are numerous small CRI. Consistent with
these observations, the areas of coral reef from which larvae can
be sourced vary among locations. For example, a 100 km radius
around each CRI encompasses different areas of reef, ranging
from 159 km2 for Mo’orea, to 221 km2 for St. John, and 407
km2 for Okinawa (data: http://data.unep-wcmc.org/datasets/1).
Likewise, the speeds of net prevailing surface currents also differ
among locations, ranging from 11 to 25 cm s−1 for St. John,
to 9–12 cm s−1 for Mo’orea, and 16–33 cm s−1 for Okinawa
(data: http://bulletin.mercator-ocean.fr). Combining flow speed
and distances to available source communities for coral larvae,
yields estimates of the areas of reef within multiple days of
seawater transport that differ among these CRI. While our
observations and estimated potential larval source areas suggest
that connectivity among nearby islands is a likely hypothesis
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to account for differential resilience among our focal CRI due
to climate change, specifically quantifying these effects proved
beyond the scope the data currently available.

IMPLICATIONS OF CONNECTIVITY FOR

THE RESPONSE OF CORAL REEFS

AROUND CRI TO DISTURBANCES

Coral reefs are subject to numerous disturbances causing coral
mortality (Nyström et al., 2000; Bellwood et al., 2004; Osborne
et al., 2011), and large perturbations to ecosystem structure
and function (Hughes et al., 2007; Mumby et al., 2007).
Many of these disturbances also modify the genetic structure
within populations (Foster et al., 2012), and connectivity to
nearby populations (Box 1). Therefore, not only can disturbances
reduce local coral cover, they can also impede the capacity
for population replenishment through the delivery of larvae
from other locations. For example, most corals and their
photosynthetic symbionts are negatively affected by temperature
elevated beyond normal summer-time values (Hoegh-Guldberg,
1999), with persistence of these conditions causing death through
bleaching (Hoegh-Guldberg, 1999; Hughes et al., 2017). Even
exposure to sub-lethal temperatures, or warmer-than-normal
seasonal low temperatures, can have lingering effects that can
depress fecundity for at least a year (Szmant and Gassman,
1990). Elevated seawater temperature also increases larval
mortality (Randall and Szmant, 2009), as well as accelerates
the development of coral larvae, subsequently reducing their
pelagic larval duration (PLD), and the maximum distances over
which they are likely to be transported by currents (O’Connor
et al., 2007). The multi-faceted effects of seawater temperature on
corals therefore have the potential to affect connectivity among
CRI, with the implications dependent on whether specific CRI
are sources or sinks for coral larvae, and the spatial extent of
disturbance to which they are exposed.

Disturbances with serious implications for coral reefs are
associated with rising concentrations in atmospheric pCO2,
which are driving: (1) elevated seawater temperature (Doney
et al., 2012), (2) increasing intensity and frequency of severe
tropical storms (Emanuel, 2005; Webster et al., 2005), and (3)
declining seawater pH (i.e., ocean acidification; Doney et al.,
2009). All three modes of disturbance have implications for
connectivity among CRI (e.g., by mediating larval production,
survival during dispersal, and settlement success), and the
capacity for specific CRI to serve as larval sources or sinks (i.e.,
through regimes of widespread coral mortality or change in
oceanic currents).

While insight into some aspects of the effects of global climate
change on coral reefs is provided by decades of research on the
thermal biology of corals (e.g., Coles and Jokiel, 1977; Fitt et al.,
2001; Brown and Cossins, 2011), many studies lack mechanistic
understanding and ecological relevance to the suite of conditions
affecting corals in situ. Therefore, current knowledge provides
an incomplete basis to evaluate the effects of rising temperature
on reef corals around CRI and throughout tropical seas. Even
less is known about the possible effects of ocean acidification for

coral connectivity. Although some studies demonstrate adverse
effects of elevated pCO2 on the development of coral larvae
(Nakamura et al., 2011; Fabricius et al., 2017), and their growth
and calcification when settled and metamorphosed (Albright
et al., 2008; Albright and Langdon, 2011), it is not yet clear
whether, but appears likely that, these effects have ecological
relevance for connectivity.

The effects of hurricanes and cyclones on coral reefs are well-
documented (e.g., Woodley et al., 1981; Massel and Done, 1993;
Harmelin-Vivien, 1994), but their projected increased severity
in the coming century (Emanuel, 2005; Mann and Emanuel,
2006) is likely to increase the extent, and the rate of formation,
of vacant space that is available for coral recruitment. While
increased frequency of major storm impacts could increase coral
recruitment by creating open space, more frequent scouring
of benthic surfaces and high sedimentation associated with
coastal run off and physical disturbance of reef sediments could
be expected to impede recruitment and frequently reset CRI
communities to early post-disturbance states (Grigg, 1983). Large
storms can increase ocean mixing (e.g., Bernardo et al., 2017)
and result in net decreases in water column temperatures,
and some corals may synchronize their reproduction to occur
in the period just before wet seasons that are frequently
associated with latitudinal shifts in intertropical convergence
zones (ITCZ) and storms (Mendes and Woodley, 2002). Thus,
coral populations around CRI might receive increased input of
larvae associated with connectivity from nearby CRI under future
climate scenarios of increased storm frequency and disturbance.
However, the combination of physical connectivity among CRI
with increasing disturbance frequency, may not favor ecological
resilience of coral communities as the spatial scale of reef damage
expands.

Storms reflect local weather that is mediated by climatic
phenomena, including El Niño, La Niña, Pacific Decadal
Oscillation (PDO), the Atlantic Multi-decadal Oscillation
(AMO), and latitudinal shifts in the Intertropical Convergence
Zones (ITCZ), which may also change in intensity as global
temperature rises (Cai et al., 2014). These phenomena bring
large-scale changes in local conditions including seawater
temperature and oceanic circulation (Cai et al., 2014) that have
the potential to alter the transport of pelagic larvae among
CRI (Treml et al., 2015; Wood et al., 2016). The effects of
these disturbances are likely to be intensified by rising sea level
resulting from the melting of polar ice caps and steric thermal
expansion of seawater (Stammer et al., 2013), which in turn, will
affect physical connectivity amongCRI (Veron, 1995). Coral reefs
that fringe submarine volcanoes in deep water—for example,
Mo’orea and Oahu—are unlikely to experience major changes
in absolute reef area, or the ways in which seawater circulates
among them, as sea level rises. In contrast, a rise in sea level of
only a few decimeters will inundate shallow island platforms in
locations such as the Maldives and the Bahamas (Khan et al.,
2002; Dasgupta et al., 2009), thereby increasing the area of
benthic surfaces for reef growth, and perhaps increasing the
net transport of seawater among islands (Veron, 1995). On a
smaller scale, increases in sea level of only a few centimeters could
enhance the passage of seawater over reef crests separating outer-
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and back-reef communities (Monismith et al., 2013; Taebi and
Pattiaratchi, 2014), and if the corals and algae at the crest are
unable to accrete vertically to restrict the flow, this change could
enhance connectivity between outer- and back-reef habitats and
mediating their ecological resilience.

Finally, major disturbances, as well as numerous more minor
and chronic mechanisms, are likely to alter species assemblages
on CRI. The near-extirpation of Acropora spp. throughout the
Caribbean by white band disease (Aronson and Precht, 2001)
provides one example of this possibility. This loss increased
the likelihood of local-recruitment for the coral community
remaining, because with the rarity of spawning Acropora spp.
(Aronson and Precht, 2001; Alvarez-Filip et al., 2009), many
shallow Caribbean reefs now have high relative abundances of
Porites astreoides (Green et al., 2008; Burman et al., 2012).
Although spawning corals generally disperse greater distances
than brooding corals (Connolly and Baird, 2010; Figueiredo et al.,
2013), which favors strong connectivity among CRI, regional
declines in population sizes of these corals are likely to reduce
their total larval production. As species assemblages of reef corals
and other taxa are modified through ecosystem degradation
(Adjeroud et al., 2009; Done et al., 2015), the abundance of taxa
producing larvae that can be transported large distances is likely
to decrease, and probably will alter both connectivity among CRI
and ecosystem resilience.

ACHIEVING THE POTENTIAL FOR CRI TO

ADVANCE STUDIES OF CORAL REEF

RECOVERY

The previous section highlights the complex processes that
must be understood to evaluate the ecological implications of
connectivity among CRI; achieving this understanding presents
significant research challenges. There are compelling reasons to
address these challenges because CRI can be used to answer
long-standing questions regarding the dynamics of coral reef
communities, both in CRI and more generally, throughout
tropical regions (Table 1). Initially we reasoned that CRI for
which time-series analyses of coral communities are well
developed would provide opportunities to answer at least some
of these questions. Yet despite the large quantities of data
provided by the time series for our three focal sites, the data
remained incomplete or spatio-temporally incompatible for one
or more response variables (Table 2). Where data were more
complete, often the sampling frequencies were inconsistent
among variables, making it challenging to integrate data streams
to achieve emergent properties of value in understanding of
connectivity (Figure 2).

Although the biological and physical data available for
Mo’orea, Okinawa, and St. John, are extensive by comparison
to most CRI (Table 2), substantial limitations were encountered
when we attempted to use them to quantify the role
of connectivity in mediating coral community dynamics.
Quantitative information from eight domains was required for
this effort (described below), but in all cases the data available
were limited. The temporal mismatch among data from CRI

TABLE 1 | Select questions addressing fundamental mechanisms mediating coral

reef community dynamics in an age of strong anthropogenic disturbances that

could be addressed using revised programs of integrated time-series analyses at

CRI that address Domains 1–8 (in the text).

Question Data types

1. Under what circumstances is hydrodynamic connectivity (and

larval transport therein) strong vs. weak among adjacent CRI?

1,3–8

2. Where are the sources and sinks for larvae among adjacent

CRI, and how are those related to their degree of resilience?

3–5,7,8

3. How will patterns of hydrodynamic connectivity among CRI be

altered as a result of Global Climate Change, and will these effects

differ spatially across tropical oceans?

3, 4,5

4. How much stochasticity in larval recruitment is created by

inter-annual temporal variation in the hydrodynamic regime?

3–5,7,8

5. To what extent is there self-recruitment vs. external recruitment

within CRI?

5,7,8

6. How does spatio-temporal variation in hydrodynamic regime

interact with biological attributes of larvae (e.g., arising from

brooding vs. broadcasting reproduction) to modulate patterns of

connectivity?

1–5,7,8

Data types identify the domains from which data will need to be drawn to answer the

questions.

(Figure 2) is exemplified by coral recruitment, which typically
is estimated by using settlement tiles. Such tiles rarely are made
from the same material among studies; they are not deployed in
a standardized orientation and duration; and their deployments
are not matched in space or time to local measurements of
physical oceanographic processes. Genetic population structure
typically was measured for a small number of taxa representing
a limited fraction of the local biodiversity. Sampling of biological
and physical processes rarely was repeated over multiple years,
and empirical data to parameterize changes in connectivity as a
result of global climate change were scant. Some of these issues
reflect the origins of time-series studies of coral reefs around
CRI, which usually began as isolated efforts with modest research
budgets, and were situated in locations of convenience such as
near existing marine labs, or haphazardly with respect to the
ecology and physical oceanography of a specific region. Even
the longest of these times-series studies are not yet adequate
for understanding climate change effects. These limitations leave
investigators with an imperfect, or largely absent, set of tools
for studying the role of connectivity in mediating coral reef
resilience.

Nonetheless, and despite the aforementioned limitations, CRI
provide a unique opportunity to study population connectivity
in systems likely to change in coming decades (Kendall et al.,
2013; Edmunds et al., 2014). To achieve this potential, there
are important information needs for additional data that
must be addressed (Botsford et al., 2009). In part, these
needs can be met by adding new dependent variables to
strengthen ongoing time series, applying emerging technologies
(and reducing costs associated with their application), and
promoting uniform methods and inter-calibration for physical
and ecological observations among studies. It may also be
valuable to profoundly revise of the ways that community
structure on CRI is measured, notably by adding new locations
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TABLE 2 | Summary of concordance and mismatches among data types originating from time-series analyses of coral reef communities around three CRI, St. John,

Mo’orea, and Okinawa.

Location Variable/feature No. of sites Frequency (samples/y) Duration (y) Taxonomic resolution

St. John Coral recruitment 5 1 10 Family

Coral Cover 8 1 32 Species/Genus

Temperature 3 ∼ 10−5 28 n/a

Larvae n/m

Juvenile corals 6 1 24 Species/genus

Flow speed 1 1 1 n/a

Genetics n/m

Mo’orea Coral recruitment 5 0.5 10 Family

Coral Cover 6 1 12 Genus

Temperature >10 ∼ 10−5 12 n/a

Larvae n/m

Juvenile corals 2 1 12 Genus

Flow speed 3 10−5 12 n/a

Genetics 17

Okinawa Coral recruitment 20 1 15 Family

Coral Cover 20 1 15

Temperature 15 ∼ 10−5 5

Larvae n/m

Juvenile corals 20 1 15 Genus

Flow speed 2 ∼ 10−5 5

Genetics 20 <1 1

The mismatches in space and time among these data streams motivates the identification of domains within which coordination among studies, and enhanced data delivery, is required

to achieve the research potential of CRI to advance studies of connectivity and reef resilience. n/m, not measured; n/a, not applicable.

FIGURE 2 | Schematic illustrating the mismatch between scales of space (ordinate) and time (frequency of sampling, abscissa) in time-series analyses of CRI that are

relevant to evaluating the roles of connectivity to reef resilience following disturbance. Shading indicates approximate longevity (number of years that sampling is

sustained) of repeated sampling: blue = 1 year, brown = ≤ 20 y, red = ≤ 30 y.

that are selected in a pro-active manner to test specific
hypotheses. Placement of such locations might be motivated by
existing data to identify “hotspots” of larval sources (or sinks)

or ecosystem resilience (Kough et al., 2013; Wood et al., 2014).
Other approaches might use physical oceanographic modeling
(Werner et al., 2007; White et al., 2010; Paris et al., 2013a; Treml
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et al., 2015) to identify locations where community structure
might be particularly sensitive to variation in larval connectivity,
and differential reliance on local-recruitment vs. recruits from
more distant locations (Kough et al., 2013; Snyder et al., 2014).

We propose eight domains in which time-series observations
and analyses of CRI can be expanded to enhance understanding
of connectivity and its role in modulating ecosystem resilience.
The domains we describe are not intended to provide an
exhaustive list of research needs, and largely are restricted to
pre-settlement and recruitment periods. Clearly, the ecological
patterns thus established are modified though post-settlement
processes, and while such events are of great importance (Almany
and Webster, 2006; Arnold and Steneck, 2011), they are beyond
the scope of the current review. We intend here to summarize
research needs with the greatest promise in rapidly advancing an
understanding of the roles of connectivity in reef resilience. The
eight domains are presented (Figure 1) to underscore research
applicable to studying the focal taxon of this review (i.e., the
Scleractinia), for which virtually all known larvae are pelagic and
dispersive to a greater or lesser extent (Gleason and Hofmann,
2011).

PROPAGULES AND ORGANISMS

1. Multi-decadal time series are required to identify biological
phenomena on CRI that operate over a wide range of time
scales.

Ecological interactions often play out over long time scales, and
it can be a challenge for ecologists to distinguish secular trends
from noise in a time series. For this reason, long time series can
be especially valuable for identifying trends in abundance and
species composition of communities and detecting state shifts.
Yet despite the clear need for such data, and the establishment of
programs with the potential to deliver these data, multi-decadal
analyses are rarely published or effectively managed to promote
their discovery, access, and use. The acute need for access to
data collected over ecologically meaningful time scales justifies
devoting adequate resources to their management.

Multi-decadal time series on CRI are not abundant (e.g.,
Graham et al., 2011), but data from such diverse locations as
the Caribbean (Graham et al., 2011), the Great Barrier Reef
(Connell, 1997; Connell et al., 1997; Sweatman et al., 2011;
Johns et al., 2014; Done et al., 2015; Tanner, 2017), northwestern
Australia (Gilmour et al., 2013), Okinawa (van Woesik et al.,
2011), Palau (Golbuu et al., 2007), and the Central South Pacific
(Adjeroud et al., 2009; Holbrook et al., 2018) have revealed the
dynamic interplay between physical and natural disturbances and
the potential for subsequent community recovery. Lengthy time
series provide the opportunity to capture rare events, as well as
effects of repeated disturbances of different types. Sampling over
long periods has revealed that after severe disturbance the return
of the coral assemblage to its pre-disturbance state may take a
decade or longer, depending on the life-history characteristics
of the component species and the species interactions that set
the pace of re-establishment of the community on the reef. For
some CRI, repeated or chronic disturbances over decades have

resulted in a different community state (Graham et al., 2011,
2015). The issue of shifting baselines is likely to become more
critical as future climate change results in more frequent and
intense disturbances to coral reefs.

Many time-series programs on coral reefs have focused
primarily on assessing patterns in cover of live coral. A
priority in the development of future time-series programs on
CRI should be to quantify other aspects of the community,
including the extent to which the coral taxonomic assemblage
as well as other components of the reef community, including
fishes, macroalgae, and non-coral invertebrates, re-assemble to
their pre-disturbance state following perturbations (Holbrook
et al., 2008; Johns et al., 2014; Done et al., 2015; Han et al.,
2016; Tanner, 2017). Knowledge of the physical mechanisms
and biotic interactions that influence community re-assembly
and determine the similarity of pre- and post- disturbance
communities is central to our understanding of community
resilience in the face of climate change. It will be important to
distinguish between recovery of a reef to a pre-disturbance level
of coral cover as opposed to re-assembly to its pre-disturbance
taxonomic structure and ecological function (i.e., “recovery
without resilience” sensu Berumen and Pratchett, 2006).

2. Major natural disturbances including catastrophic storms,
outbreaks of predators (e.g., Crown of Thorns Seastars),
bleaching, or disease, create opportunities to quantify
connectivity independent of varying historical precedence, as
these disturbances typically result in large areas being reduced
to an early successional state.

Despite the recurrence of large disturbance events in coral
reef locations, resources rarely are mobilized in a systematic
fashion to realize the potential to understand their effects on
coral reefs. Patterns of initial recruitment one-to-several seasons
following disturbances are likely to set population trajectories for
subsequent multi-year periods (Bramanti and Edmunds, 2016).
Adaptive sampling schemes to track disturbances and deploy
recruitment tiles could facilitate understanding of patterns of
initial recruitment among sites and regions. A large-scale,
adaptive sampling approach would be able to capture such
effects, but requires collaboration among researchers at multiple
locations, and resource flexibility to facilitate rapid response
to disturbance events. Targeting of study locations could also
be aided by advanced remote sensing and prognostic models
to predict, for example, storm tracks and large-scale bleaching
events. Advances in remote sampling of sea surface temperature
and estimation of bleaching likelihood associated with degree-
heating-weeks provide one example of physical environmental
observations at large spatial scales that could be used to target
the location and deployment times of recruitment studies based
on patterns of disturbance. While studies of the ecological effects
of disturbances on coral reefs date to the beginning of modern
coral reef science (Connell, 1978), such studies have largely been
ad hoc and subject to the vagaries of disturbances occurring in
regions near existing research stations and ongoing time-series
programs. A more coordinated and international effort involving
long-term deployment of recruitment sampling substrata and
instrumentation for targeted physical sampling (e.g., of sea water

Frontiers in Marine Science | www.frontiersin.org 8 August 2018 | Volume 5 | Article 290



Edmunds et al. Connectivity Among Coral Reef Islands

temperature, waves, and currents) to capture changes following
disturbance events is likely to greatly enhance understanding of
connectivity among CRI.

3 Evaluating the location of larvae in the water column
during transport among CRI is of central importance in
understanding how they are transported by currents among
CRI.

Biological connectivity among CRI is ultimately mediated by
the behavior of larvae in the water column (Paris et al., 2007;
Butler et al., 2011; Treml et al., 2015), and while analyses of
seawater flow (Domain 4 below) and PLD (Domain 5 below) can
go a long way to evaluating the potential for transport, realized
transport will depend on the temporal structuring of the physical
location of larvae in the water column (Paris et al., 2007). Larvae
that remain near the benthos are unlikely to be transported
great distances, whereas those in wind-driven surface currents
potentially can be transported over vast distances (Harii and
Kayanne, 2003; Paris et al., 2007). Unfortunately, however, there
is still little known about the vertical migration of most larvae of
coral reefs species in the seawater column in situ, or how long
they remain in each location during ontogeny (but see Paris and
Cowen, 2004; Irisson et al., 2010; Butler et al., 2011; Suzuki et al.,
2011). In situ experiments with newly released larvae in enclosed
acrylic tubes offer potential to advance this data need (Raimondi
and Morse, 2000; Tay et al., 2011), but more sophisticated free
drifting devices offer the potential for analyses of movement and
orientation over lengthy periods (Paris et al., 2008, 2013b; Irisson
et al., 2009). The observation that full sibs of coral reef animals
settled together following several weeks of larval transport points
to the need to better understand the role of larval behavior during
the planktonic phase (Bernardi et al., 2012).

TRANSPORT AND DISPERSION

4 High resolution, long-term measurements of physical
oceanography of CRI and archipelagoes, particularly for near
shore locations, are essential for understanding connectivity
among CRI.

Quantifying ocean current patterns over a wide range of space
and time scales is essential for understanding transport processes
leading to connectivity among CRI (Thompson et al., 2018).
Knowledge of these patterns can be gained from observations
obtained from a variety of stationary platforms established
at island research stations, and moving platforms including
deployed drifters and buoys, oceanographic cruises, satellites,
and ships of opportunity. Direct measurements can be used
to parameterize and initialize ocean circulation models, often
designed using nested, or flexible grid spacing approaches that
can simulate transport processes on large scales, corresponding
to archipelagoes, and small scales, corresponding to the size of
corals themselves.

The most geographically extensive observations of ocean
current patterns come from altimeter satellites that can be used to
estimate currents at the sea surface. The observations are coarse
in space (∼1/4◦ resolution), but have been used, for example, to

explore possible pathways for larval transport over long distances
such as among CRI (Kendall et al., 2013). These observations
are available for most CRI including Mo’orea, Okinawa, and
St. John. Satellite observations have the major advantage of
providing long-duration time series of ocean current patterns.
The satellites resolve the “mesoscale” (i.e., 10–100 km), which
includes important flow structures such as eddies, boundary
currents, and large frontal features. These spatial scales are also
accessible by global ocean circulation models, which can be
validated by the satellite observations, while providing important
insights into the dynamics of large-scale current systems. The
ARGO network (∼ 4000 floats) supplies additional data on large
scales about water properties and large-scale flow patterns in
addition to critical validation data for ocean circulation models
(Werner et al., 2007).

The next step down the “cascade” of processes informing
connectivity among CRI are currents transporting the larvae on
a spatial scale of 1–10 km, and the variability associated with
these currents (D’Aloia et al., 2015). These systems are largely
below the resolution limits of mesoscale circulation models and
satellite observations (with the exception of along-track satellite
observations), but may be observed and estimated with drifting
floats, shipboard surveys, and increasingly with autonomous
surface and underwater vehicles (together considered as AUVs),
and oceanographic radars for measuring surface currents.
Current patterns at these scales are arguably the most difficult
to quantify because of the difficulty in sustaining time-series
observations of sufficient duration, such as from ships, to
understand the dominant processes and long-term trends.
Oceanographic radars and AUVs are emerging as critical
approaches for obtaining these time series.

At smaller scales (i.e., <1 km) are current patterns linking
the inter-island scales with currents on the fore reef and on the
inner-shelf closer to shore. At these scales, turbulent surface and
bottom boundary layers often merge and cross-shore circulation
decreases due to the island boundaries (Wolanski, 2017). To
disperse from spawning areas or to reach settlement habitat,
coral larvae and those of other taxa typically must cross the
inner-shelf region surrounding CRI. Due to the shallower water
depths, the fore reef and inner-shelf are generally more easily
accessible for the placement of instrumentation to measure
currents and water properties, notwithstanding the potential to
lose shallow water instrumentation during large storms and swell
events. Ease of instrument placement facilitates the acquisition
of long time series such as have been obtained at Mo’orea and
Okinawa using oceanographic moorings equipped with current
meters, wave sensors, and instruments to measure various water
properties. Fine-scale bathymetry data are particularly important
for analyzing and modeling currents at these scales (Lindo-
Atichati et al., 2016).

At the smallest scales (i.e., 1 mm−1m) of flows around
and through coral colonies, and their interactions with coral
larvae and micro-scale habitats where larvae ultimately settle
or where they initially disperse (Monismith, 2007; Hench and
Rosman, 2013). Quantifying these flows requires instruments
with high spatial resolution and rapid temporal sampling
such as microstructure sensors, acoustic Doppler velocimeters,
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high-resolution current profilers, and specialized high-resolution
water property sensors.

5 Quantification of dispersal patterns of multiple taxa is needed
to understand connectivity.

Although the relationship between dispersal distance, pelagic
larval duration (PLD), and competency period is complicated
by issues of scale and experimental approach (Bradbury et al.,
2008; Weersing and Toonen, 2009; Selkoe and Toonen, 2011;
Dawson et al., 2014), marine invertebrates, including corals,
have varying capacity for dispersal, often associated with PLD
and reproductive mode (Connolly and Baird, 2010). For most
broadcast-spawning corals, like Acropora spp., PLD or time
at first competency is ∼5–8 d after spawning, based upon
experimental data (Nishikawa et al., 2003; Nishikawa and Sakai,
2005) and field observations (Suzuki et al., 2011). Peaks of
larval settlement occur on the seventh day following spawning
in Acropora tenuis, and on the first day post-spawning in the
brooding coral, Stylophora pistillata. In contrast, the broadcast-
spawner Platygyra daedalea, has a short PLD with a settlement
peak∼ 2.50–2.75 days following fertilization (Miller andMundy,
2003). In fine-scale geographic analysis, P. daedalea showed
higher genetic differentiation than Goniastrea favulus, which
spawns sticky, negatively buoyant eggs (Miller and Ayre, 2008).

In addition to differences among taxa in dispersal capabilities,
life history theory predicts that selection should favor dispersal
polymorphisms in habitats that exhibit high temporal or spatial
variability or for which competition for available space is high,
such as most coral reefs (McPeek and Holt, 1992; Dingle,
1996). Such dispersal polymorphisms, in which some individuals
ignore suitable habitat to disperse long distances whereas
others of the same species or even among progeny of single
individuals remain close to their natal site, are well-documented
in terrestrial systems, but have rarely been investigated in
marine taxa (Dingle, 1996; Toonen and Pawlik, 2001). A
handful of examples exist among marine species (e.g., Gibson
and Chia, 1989; Raimondi and Keough, 1990; Krug, 2001;
Toonen and Pawlik, 2001; Marshall and Keough, 2003), but
to date only a single study comparing short and long-distance
dispersal within a single species has been published for corals
(Torda et al., 2013).

Nevertheless, the few larvae with the greatest dispersal are
the ones that maintain connectivity among reefs, and population
connectivity of even brooding corals can be maintained by
relatively low numbers of migrants (van Oppen et al., 2008).
Even in brooding corals like some Pocillopora damicornis sensu
lato, PLD is ∼100 days based on experimental analyses and
competency model predictions (Richmond, 1987). Thus, long
PLD is not exclusive to broadcast-spawning corals (Graham et al.,
2008), and PLD alone is a poor predictor of mean dispersal ability
(Bradbury et al., 2008; Weersing and Toonen, 2009; Selkoe and
Toonen, 2011). The success of larval dispersal and recruitment in
augmenting coral populationsmay be influenced by the fecundity
of the species and by habitat characteristics (Hughes et al., 2000).
Therefore, opportunities for larval dispersal and recruitment
may not only vary by species but also within species (e.g.,
Gibson and Chia, 1989; Krug, 2001) and even among individual

families (Toonen and Pawlik, 2001), especially after taking into
account differences among CRI in habitat size and distance to
nearest neighboring CRI. These observations underscore the
importance of more synoptic analyses of dispersal potential and
variability in dispersal behaviors for a wide variation of coral reef
species.

SETTLEMENT AND RECRUITMENT

6 Time-series analyses of population structure of a wide diversity
of taxa and functional groups of benthic organisms are needed
to understand community-wide patterns of connectivity
among CRI.

Time-series programs on CRI vary widely in time of initiation,
spatial scope, taxa that are quantified, and method and frequency
of sampling. Scleractinians are the foundational taxon, and
they are often the major focus of study. Percent cover of
live coral is the primary state variable reported, but to assess
processes of disturbance and recovery, temporal patterns of
population structure and colony sizes of key species, as well
as overall taxonomic composition of corals, are needed. These
data enable observations of recruitment to be better linked to
colony survival and growth, both of which are key processes
leading to the re-establishment of the coral community following
disturbances. Additionally, tropical reefs support a high diversity
of non-coral taxa that represent a variety of functional groups
and trophic levels, and these components of the community
should be incorporated into time-series analyses. Time-series
programs that include measurement of population structure of
fish, mobile and sessile invertebrates, and algae, matched with
population genetic information, could enable comparisons of
connectivity among taxa of widely differing life history strategies,
trophic status, behavior, and longevity (Selkoe et al., 2016). Such
knowledge will be critical for understanding the potential and
realized patterns of re-assembly of a CRI community following
disturbance, as well as the degree to which the community
structure will change in light of future environmental and
climate conditions. For example, herbivores play a critical
role in suppressing the establishment of fleshy algae following
landscape-scale disturbances that kill corals, thus maintaining
the reef in a condition suitable for settlement and survival of
corals (Adam et al., 2011, 2014; Han et al., 2016; Holbrook
et al., 2016). In these cases, connectivity patterns of corals and
herbivorous species are both important, and understanding them
will enable more informed predictions about the potential for
reefs to recover from disturbance.

7 Most measures of recruitment around CRI are inconsistent
and restricted temporally to sampling events driven by logistics
rather than ecological questions.

Recruitment is a critical process in the sustaining the structure
and dynamics of reef communities, particularly for CRI.
For example, recovery of coral populations following major
disturbances depends on the level of connectivity with adjacent
fecund populations, and on the growth and propagation of newly
settling larval recruits (e.g., Hughes and Connell, 1999; Arnold
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and Steneck, 2011; Doropoulos et al., 2015). However, given the
long life span of most corals [i.e., ∼ 4 y for a recruit of < 1-
mm diameter to become a mature adult colony of >5 cm (Penin
et al., 2010)], understanding the implication of recruitment
in coral recovery requires long-term analysis on population
dynamics and demography (Adjeroud et al., 2017). Frequent
sampling is necessary to resolve rapidly occurring events such as
episodic recruitment, sudden-onset, lethal diseases, or transient
population perturbations (Connell et al., 1997; Graham et al.,
2011).

Due to the logistic difficulty of quantifying recruitment on
time scales allowing cycles of community replenishment to
be detected, few studies have examined the interplay among
recruitment, dynamics of adult populations, and disturbances,
on a relevant time-scale (> 10 y; but see Connell et al., 1997).
Moreover, it is difficult to taxonomically resolve recruits, and
only limited progress has been made with genetic tools for
this purpose (e.g., Shearer and Coffroth, 2006; Suzuki et al.,
2012). All of these limitations explain why the majority of
surveys of coral recruitment have documented variability in
recruitment in a restricted spatio-temporal window, and why
they have not achieved their potential to link connectivity,
recruitment, and critical processes such as recovery following
disturbances (Graham et al., 2011; Adjeroud et al., 2017).
Ongoing development of genetic tools to identify the geographic
origin of coral larvae and recruits, such as DNA parentage
analysis, represent an interesting way to evaluate better the
relative contribution of local- vs. distant-recruitment, and to
identify potential “sources” and “sinks” among networks of CRI
(Adjeroud et al., 2017). In addition, subdivision of sampling
intervals could be effective for estimating larval connectivity
among CRI. For example, replacing the settlement tiles at 2 or 3
days intervals after a spawning event may reveal settlement peaks
of local- and distantly-sourced recruits (Suzuki et al., 2011).

8 Distinguishing local- from distant-recruits for multiple taxa is
central to understanding the role of connectivity around CRI,
and essential for understanding connectivity of virtually all
taxa on coral reefs.

Genetic studies have become an essential component for
understanding recruitment and connectivity in marine systems
across both ecological and evolutionary timescales (e.g., Almany
et al., 2017). These studies are readily integrated into research
on the relationship between connectivity among CRI and
community resilience provided that sampling design is consistent
with the space and time scale required by research questions
relying on genetic data. For example, to determine the origin of
recruits, the most reliable approach is parentage analysis, which
has potential to assign recruits to specific parents at the natal site
(Harrison et al., 2013; D’Aloia et al., 2015; Selkoe et al., 2016; but
also see Christie et al., 2017), but could also miss some long
distance connections outside of the sampling area. In contrast,
to determine the relative importance of multiple environmental
drivers of population structure, a probabilistic approach (sensu
Paris et al., 2013b; Selkoe et al., 2016) may be sufficient to identify
the origin of recruits, or to differentiate individuals according

to whether they originated from local-recruitment or from more
distant locations (Box 2).

In each genetic approach, the required sampling regimes
will differ in order to address trade-offs in methodologies. For
example, in parentage analysis, statistical power is increased by
maximizing the proportion of the regional population sampled,
whereas for probabilistic assignment of individuals to a natal
site, power is increased by maximizing the number of natal sites
sampled (Christie et al., 2017). Additionally, to untangle the
effects of distant recruitment from the effects of post-settlement
success, a different experimental design is required (e.g., Toonen
and Grosberg, 2011). While distant sources of larvae may have a
low proportional influence on genetic population structure on a
healthy reef where settlement space is limited and competition
with the preexisting populations is strong, distantly-sourced
larvae may drive or modulate recovery following disturbance
(Harris et al., 1984; Jennings, 2000; Armsworth, 2002; Baskett
and Salomon, 2010). Alternatively, rare survivors of disturbance
that are easily missed in ecological surveys may serve as
sources of recruits that can drive local community recovery
(Edmunds et al., 2016; Tsounis and Edmunds, 2016; Cros et al.,
2017). Ultimately distinguishing among these possibilities would
require comparing genetic data from adult and recruits to
examine multi-generational patterns of structure and/or kinship
(Toonen and Grosberg, 2011; Iacchei et al., 2013). Conducting
such an analysis on recruitment pulses following disturbance
on CRI (Bramanti and Edmunds, 2016), for example, would be
particularly relevant.

CONCLUSIONS

CRI are abundant and unique reef formations throughout
most tropical seas, and characterized by diverse and productive
ecosystems on their shores. Over the last few decades, however,
multiple assaults of natural and anthropogenic origin have driven
coral cover downward on most CRI, and imposed multiple cycles
of community destruction and recovery. Some CRI are notable in
their long history of ecological and oceanographic research, but
much of this effort has been insular and focused on single CRI
selected for study based on happenstance or peculiar historical
presence. This emphasis has overlooked the potential of CRI
to serve as natural laboratories to investigate connectivity as an
ecological process shaping community dynamics, and to answer
critical questions addressing mechanisms of coral reef resilience
(Table 1). Not only has this restricted intellectual advancement
in the field of coral reef biology, but also it has deprived resource
managers of access to the full spectrum of tools necessary to
advance reef conservation. Achieving the potential of CRI to
meet this need will require more than integrating the information
currently available. As we describe above, there are clear needs for
new data (Domains 1–8, above) and more coherence in spatio-
temporal scales of sampling of biological and physical variables.
Critically, there is much to be gained from the pro-active
selection of new CRI for use in time-series analysis designed to
address specific hypotheses.
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