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Linear structural equation models postulate noisy linear relationships be-
tween variables of interest. Each model corresponds to a path diagram, which
is a mixed graph with directed edges that encode the domains of the lin-
ear functions and bidirected edges that indicate possible correlations among
noise terms. Using this graphical representation, we determine the maximum
likelihood threshold, that is, the minimum sample size at which the likelihood
function of a Gaussian structural equation model is almost surely bounded.
Our result allows the model to have feedback loops and is based on decom-
posing the path diagram with respect to the connected components of its
bidirected part. We also prove that if the sample size is below the threshold,
then the likelihood function is almost surely unbounded. Our work clarifies,
in particular, that standard likelihood inference is applicable to sparse high-
dimensional models even if they feature feedback loops.

1. Introduction. Structural equation models are multivariate statistical mod-
els that treat each variable of interest as a function of the remaining variables and
a random error term. Linear structural equation models require all these functions

to be linear. Let X = (X, ..., X,) be the random vector holding the considered
variables. Then X solves the equation system
(1.1) Xi=hoi+> XjXj+e, i=1,...p,

J#i
where ¢ = (€1, ..., €p) is a given p-dimensional random error vector, and the Ag;
and A;; are unknown parameters. Let Ag = (A1, ..., Aop) and form the matrix

A = (A;;) € RP*P by setting the diagonal entries to zero. Following the frequently
made Gaussian assumption, assume that ¢ is centered p-variate normal with co-
variance matrix £ = (w;;). Writing I for the identity matrix, (1.1) yields that
X = (I — A)~T¢ is multivariate normal with covariance matrix

(1.2) T=U-MN"TQUu-n"".

Here, and throughout the paper, the matrix I — A is required to be invertible.
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The Gaussian models just introduced have a long tradition [Wright (1921,
1934)] but remain an important tool for modern applications [e.g., Grace et al.
(2016), Maathuis et al. (2010)]. Their popularity is driven by causal interpretability
[Pearl (2009), Spirtes, Glymour and Scheines (2000)] as well as favorable statisti-
cal properties that facilitate analysis of highly multivariate data. In this paper, we
focus on the fact that if the matrices A and 2 are suitably sparse, then maximum
likelihood estimates in high-dimensional models may exist at small sample sizes.
This enables, for instance, the use of likelihood in stepwise model selection. It can
often be expected that A is sparse because each variable X; depends on only a few
of the other variables X ;, j # i. Similarly, the number of nonzero off-diagonal
entries of €2 is small unless many pairs of error terms ¢; and ¢; are correlated
through a latent common cause for X; and X ;. We encode assumptions of spar-
sity in (A, 2) in a graphical framework advocated by Wright (1921, 1934). Our
terminology follows conventions from the book of Lauritzen (1996), the review of
Drton (2016) and other related work such as Foygel, Draisma and Drton (2012) or
Evans and Richardson (2016).

Background. A mixed graph is a triple G = (V, D, B) suchthat D CV x V
and B is a set containing 2-element subsets of V. Throughout the paper, we take the
vertex set to be V = {1, ..., p} such that the nodes in V index the given random
variables X1,..., X,. The pairs (i, j) € D are directed edges that we denote as
i — j. Node j is the head of such an edge. We always assume that there are no
self-loops, thatis,i — i ¢ D for all i € V. The elements {i, j} € B are bidirected
edges that have no orientation; we write such an edge as i <> j or j < i. Two
nodes i, j € V are adjacent ifi <> je Bori - jeDor j— i€ D.

Let G’ = (V', D, B') be another mixed graph. If V' C V, D' C D, and B’ C B,
then G’ is a subgraph of G, and G contains G'. If V' = {ig, iy, ..., i} for distinct
i0,11,...,i; and there are |D’| + |B’| = k edges such that any two consecutive
nodes i, and iy, are adjacent in G’, then G’ is a path from i to iy. It is a directed
path if i1 — iy for all h. Adding the edge iy — ig gives a directed cycle.

A mixed graph G is connected if it contains a path from any node i to any other
node j. A connected component of G is an inclusion-maximal connected subgraph.
In other words, a subgraph G’ is a connected component of G if G’ is connected and
every subgraph of G that strictly contains G’ fails to be connected. If G does not
contain any directed cycles, then it is acyclic. If it has only directed edges (B = &),
then G is a digraph. The graphical modeling literature refers to an acyclic digraph
also as directed acyclic graph, abbreviated to DAG.

Now, let RP be the space of real p x p matrices A = (A; j) with A;; = 0 when-
ever i — j ¢ D, and write ]RrDeg for the subset of matrices A € RP with I — A
invertible. Note that R? = ergg if and only if G is acyclic. Let PD(B) be the
cone of positive definite p X p matrices 2 = (w;;) with w;; =0 when i # j and
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i <> j ¢ B. Then the linear structural equation model given by G is the set of mul-
tivariate normal distributions A (i, £) with mean vector i € R? and covariance
matrix X in

(13)  PD@G)={U-NTQU-N"":(A,Q eRE x PD(B)}.

reg

We remark that the graph G is also known as the path diagram of the model.

Maximum likelihood threshold. Suppose now that we have independent and
identically distributed multivariate observations X WX~ N (u, ). Let

n n

— 1 1 _ _
(1.4) Xn= - ZX(S) and S, = " Z(X(s) _ Xn)(X(s) —X,)
s=1 s=1
be the sample mean vector and sample covariance matrix. With an additive con-

stant omitted and /2 divided out, the log-likelihood function is
e, 2| Xy, Sy) = —logdet(T) — trace(T71S,) — (X, — )T =71 (X, — ).

The considered models have the mean vector unrestricted and the maximum like-
lihood estimator of p is always X,,. This yields the profile log-likelihood function

(1.5) £(2]S,) = —logdet(X) — trace(SLS,).

Our interest is in determining, for a mixed graph G = (V, D, B), the minimum
number N such that for a sample of size n > N the log-likelihood function is
almost surely bounded above on the set R” x PD(G). As usual, almost surely refers
to probability one when XV, ... X are an independent sample from a regular
multivariate normal distribution, or equivalently, any other absolutely continuous
distribution on R”. Let

((G1Sn) = sup{E(Z[S,) : = € PD(G)}.

Adapting terminology from Gross and Sullivant (2018), the number we seek to
derive is the maximum likelihood threshold

(1.6) mlt(G) :=min{N € N: £(G|S,) < 00 as. ¥n > N}.

Here and throughout, a.s. abbreviates almost surely.
If we constrain the mean vector u to be zero, then the relevant sample covari-
ance matrix is

1 n
1.7 Son=—Y XO(xNT.
( ) 0,n n Szzl ( )
By classical results [Anderson (2003), Chapter 7], mlt(G) = mltg(G) + 1, where
(1.8) mlty(G) = min{N € N: E(Q|S0,n) <ooas.Vn> N}

is the maximum likelihood threshold for the model when the mean vector is taken
to be zero. Our subsequent discussion will thus focus on the threshold mlty(G). We
record three simple yet useful facts.
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FI1G. 1. (a) An acyclic digraph with mlty(G) = 3. (b) A mixed graph with mlty(G) = 4.

(a)

LEMMA 1. Let G=(V, D, B) be a mixed graph. Then

(@) mlto(9) < p=|VI.
(b) If Gy, ..., Gy are the connected components of G, then

.....

(¢) If H is a subgraph of G, then mltg(H) < mlty(G).

PROOF. (a)Itis well known that £(-|Sp ) is bounded above on the entire cone
of positive definite matrices if and only if Sy, is positive definite. Moreover, if S,
is positive, then ¥ = §, is the unique maximizer [Anderson (2003), Lemma 3.2.2].
The matrix Sp , is positive definite a.s. if and only if n > p.

(b) The variables in the different connected components are independent. The
likelihood function may be maximized separately for the different components.
_(© If H and G have the same vertex set, then PD(H) € PD(G) and, thus,
L(H|So.n) < £(G|So.n)- The case where H has fewer vertices can be addressed
by adding isolated nodes and using the fact from (b).

When G is connected, Lemma 1 yields only the trivial bound mlty(G) < p.
However, mlty(G) may be far smaller than p when G is sparse, that is, has few
edges. Indeed, in the well understood case of G being an acyclic digraph, maximum
likelihood estimation reduces to solving one linear regression problem for each
considered variable [Lauritzen (1996), page 154]. The predictors in the problem for
variable j are the variables from the set of parents pa(j) ={k eV : k — j € D}.
If the sample size exceeds the size of the largest parent set, then at least one degree
of freedom remains for estimation of the error variance in each one of the p linear
regression problems. We thus have the following well-known fact.

THEOREM 1. Let G = (V, D, @) be an acyclic digraph. Then
mlty(G) = 1 + max|pa(j)|.
Jjev
The quantity |pa(j)| in the theorem is also termed the in-degree of node j.

EXAMPLE 1. If G is the acyclic digraph from Figure 1(a), then the largest
parent sets are of size two, for nodes j € {3, 4, 6}. By Theorem 1, mlty(G) = 3.
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Main result. In this paper, we determine mlty(G) for any mixed graph G =
(V,D,B). For aset AC V, let Pa(A) be the union of A and the parents of its
elements, so

(1.9) Pa(A) =AU [ pa(i).
i€A

Then our main result can be stated as follows.

THEOREM 2. Let G = (V, D, B) be a mixed graph, and let C1, ..., C; be the
vertex sets of the connected components of its bidirected part G, = (V, J, B).
Then

mlty(G) = max l|Pa(Cj)|.
j=l,

Moreover, if n < mltg(G) then é(ngo,n) =00 a.s.

In the special case that G is an acyclic digraph, we have B = @ and Theorem 2
reduces to Theorem 1 because each connected component of G, has only a single
node j € V. Then Pa({;}) = pa(;j) U{j} and [Pa({j})| =1 + [pa(/)I.

EXAMPLE 2. Let G be the graph in Figure 1(b). The parameters of the model
given by G are identifiable in a generic or almost everywhere sense, as can be
checked readily using the half-trek criterion [Barber, Drton and Weihs (2015),
Foygel, Draisma and Drton (2012)]. Hence, PD(G) is a 16-dimensional subset
of the 21-dimensional cone of positive definite 6 x 6 matrices. By Theorem 2,
mltg(G) = 4. Indeed, G., has four connected components with vertex sets C; =
{1}, C2 = {2}, C3 = {3} and C4 = {4, 5, 6}. Adding parents yields Pa(Cy) = {1},
Pa(Cr) ={1, 2,4}, Pa(C3) = {1, 2,3} and Pa(Cs) = {3, 4, 5, 6}.

REMARK 1. If the likelihood function associated with an acyclic digraph G =
(V, D, @) is bounded, then it achieves its maximum. Hence, n > mlty(G) ensures
that the maximum is a.s. achieved. We are not aware of any results in the literature
that, for a more general class of graphs, would similarly guarantee achievement
of the maximum. In fact, we believe that there are mixed graphs G such that even
for sample size n > mltg(G) the probability of the likelihood function failing to
achieve its maximum is not zero. This belief is based on the fact that the set PD(G)
is not generally closed. As a simple example, consider the graph G with edges
1 — 2,2 — 3, and 2 <> 3, for which PD(G) comprises all positive definite 3 x 3
matrices ¥ = (o0;;) with 013 =0 whenever o1, = 0.
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FIG. 2. The graph G' when G is the mixed graph from Figure 1(b). Edge 4 <> 6 has been added.

Outline. In the remainder of the paper we first prove that mlty(G) is no larger
than the value asserted in Theorem 2 (Section 2). Next, we derive mltg(G) for any
bidirected graph G (Section 3). In Section 4, we use submodels given by bidirected
graphs to show that the value from Theorem 2 is also a lower bound on mlty(G) for
any (possibly cyclic) mixed graph, which then completes the proof of Theorem 2.
A numerical experiment in Section 5 exemplifies that even a high-dimensional
model is amenable to standard likelihood inference as long as its maximum likeli-
hood threshold is small. The experiment suggests that likelihood inference allows
one to perform model selection for high-dimensional but sparse cyclic models. In
Section 6, we highlight interesting differences between the maximum likelihood
threshold of Gaussian graphical models given by a directed versus an undirected
cycle. The former model is nested in the latter and the two models have the same
dimension, yet the thresholds are different.

2. Upper bound on the sample size threshold. We prove the upper bound
that is part of Theorem 2.

THEOREM 3. Let G = (V, D, B) be a mixed graph, and let C1, ..., C; be the
vertex sets of the connected components of its bidirected part G, = (V, J, B).
Then

.....

PROOF. Let G’ be the supergraph of G obtained by adding bidirected edges be-
tween any two nodes that are in the same connected component of G, = (V, &, B)
but that are not adjacent in G,. Then Cy, ..., C; are still the vertex sets of the con-
nected components of the bidirected part of G’, and the sets Pa(C) are identical in
G and G'; see Figure 2 for an example. We emphasize that the bidirected part of G’
is a disjoint union of complete subgraphs. The remainder of this proof shows the
claimed bound for G’. By Lemma 1(c), the bound then also holds for G. To sim-
plify notation, we assume that G itself has a bidirected part G.. that is a disjoint
union of complete graphs.

ForX = —-A)"TQU —A)~', we have

£(2|S0.n) = log(det(I — A)?) — logdet(2) — trace((I — A)Q~' (I — A)T o).
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The set PD(B) comprises all block-diagonal p x p matrices with / blocks deter-
mined by the connected components of G.,. Therefore, if A = (Aj;) € Rfe)g and
Q2 € PD(B), we have

€(ZS0.n) = log(det(I — A)?)

l
2.1) — > [logdet(Qc;.c;)
j=1
+trace({Qc; ¢, (T = 8)7 S (1 — M)e, ]
Let X1, ..., X, be the columns of the data matrix
X=(x® . X<”>)T e R<P,

Then So,, = 1XTX, and
9 T
Qcjc; = [ =) Soull = D¢, ¢,

1 T
= ;[X(I - Nyv.c;] [XU = A)v.c,]
is the sample covariance matrix of the vector of error terms

Xi— Y MuXpu€eCj.
kepa(u)

Fix A € R?

reg* Then, forany j =1, ...,1, the function

(2.2) Qc;.c; = —logdet(Qc; c;) — trace{QEj]’Cj[(I — N So, (I — A)]Cj,cj}

is bounded if and only if Qc 5.C; is positive definite. If it is bounded, then ch 5.C;
is the unique maximizer [Anderson (2003), Lemma 3.2.2]. We claim that if n >
|[Pa(C;)|, then SAZCj,cj is a.s. positive definite. Indeed, by the lemma in Okamoto
(1973), all square submatrices of X are a.s. invertible. If n > [Pa(C})|, this implies
that the vectors Xy, k € Pa(C;), are a.s. linearly independent. The columns of
X(I = A)v,c; are linear combinations of these vectors. Because I — A is invertible,
the submatrix (I — A)v,cj has full column rank |C;|. Therefore, X(/ — A)v,cj

a.s. has full column rank |C;|, which implies positive definiteness of Qc 5.Cj-
Because a union of null sets is a null set, if n» > max;—, _; [Pa(C})|, then a.s.

all matrices Q¢ ;.c; for j=1,..., 1 are simultaneously positive definite. We may

.....

thus proceed by substituting all ch,c_,- into the log-likelihood function £(X|So. )
displayed in (2.1). The resulting profile log-likelihood function is

€(A1S0,0) = log(det(I — A)?) — p
(2.3)

l
— > logdet([( = &) SonT = M]¢, ¢))-
j=1
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In order to show that £(A|Sp.,) is a.s. bounded from above, we apply a block-
version of the Hadamard inequality, which yields that

I
2.4) log(det( — A)%) < ) logdet([(1 = M) (I = M)]¢, ¢,):
j=1

recall that the sets C; form a partition of V = {1, ..., p}. Using (2.4) in (2.3), we
see that up to a constant the exponential of £(A[Sp ) is bounded above by the
product of the terms

det([(/ — AT (I — M]c;.c;)
det([(1 — M) T So.n(I — M)c;.c;)
_ det((I — AT) ¢, paccyI — Mpacc)).c;)
det((I — AT)c; pacc;)(So.n)Pacc).Pacc)(I — M)pacc)).c;)

(2.5)

for j=1,...,1. Let 1;(Sp, ) be the minimum eigenvalue of the Pa(C;) x Pa(C})
submatrix of Sp ,. This submatrix is the sample covariance matrix of the variables
indexed by Pa(C). Therefore, if n > [Pa(C})|, then A ;(So,,) is a.s. positive. Now,
(S()’n)pa(cj ),Pa(Cj) = Aj(80,,)1 in the positive semidefinite ordering. Using Obser-
vation 7.2.2 and Corollary 7.7.4(b) in Horn and Johnson (1990), we obtain that the
ratio in (2.5) is a.s. bounded above by A ; (So,n)_lc.f| <o0. O

3. Bidirected graphs. Consider a bidirected graph G = (V, &, B). Then
PD(G) = PD(B) is a set of sparse positive definite matrices. We prove that the
bound from Lemma 1(a) is an equality when the bidirected graph G is connected.

THEOREM 4. Alfg = (V, @, B) is connected, then mlty(G) = p. Moreover, if
n < mlty(G) then £(G|So.n) = 00 a.s.

The proof of the theorem makes use of two lemmas. We derive those first.

LEMMA 2. Ifn < p, then the kernel of So n a.s. contains a vector q € R with
all coordinates nonzero.

PROOF. The matrix Sp , has the same kernel as

X=(X<1> X(n))TGR"Xp.

Partition the matrix as X = (X1, X»), where the square submatrix X; contains
the first n columns. The determinant being a polynomial, the lemma in Okamoto
(1973) yields that X is a.s. invertible.

We claim that for all j < n, the kernel of X almost surely contains a vector
g with g,11 =---=¢qp, =1 and g; # 0. Without loss of generality, it suffices
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e

F1G. 3. A bidirected graph labeled in such a way that for any j the nodes i > j induce a connected
subgraph.

®

to treat the case of j = 1. By the above discussion, we may assume that X is
invertible. Then a partitioned vector (u, v) € R? is in the kernel of X if and only
ifu= —X1_1X2v. Lete=(1,..., )T € R?~". The claim is true if and only if the
vector u = —Xl_lee has first entry u; # 0. Multiplying u; with det(X;) gives
a polynomial f(X) such that u; = 0 only if f(X) = 0. The lemma in Okamoto
(1973) yields the claim if we can argue that the product f(X)det(Xy) is not the
zero polynomial. To this end, it is enough to exhibit one matrix X such that u; # 0
and det(X;) # 0. Take X; = I and let X, have a single nonzero entry X ,4+1 = —1.
Thenu = (1,0,...,0)7.

Because a union of null sets is a null set, the kernel of X almost surely contains
avector g withg,y1 =---=qp,=1andg; #0forall j <n. U

LEMMA 3. Let g be any vector with all entries nonzero. There exists a matrix
3. € PD(G), such that the vector g has precisely one nonzero entry.

PROOF. For a subset of nodes A C V, let G4 = (A, &, B4) be the subgraph
of G induced by A, that is, B4 = BN (A x A). Since G is connected, we may
assume that the vertex set V = {1, ..., p} has been relabeled such that the induced
subgraph Gy;11,...,p) is connected foralli =1, ..., p — 1 [Diestel (2010), Proposi-
tion 1.4.1]. Figure 3 shows an example of a bidirected graph that is labeled in this
way.

We now show how to construct £ = (oy;) € PD(G) such that (Xq); = 0 for all
J < p- Since g # 0 and X will be positive definite, we then have (Xq), # 0. As
% must be symmetric, we only have to specify the entries oy; with k </.

We construct ¥ one row (and by symmetry, column) at a time according to
the following iterative procedure. At stage i = 1, ..., p, the first i — 1 rows and
columns have been specified; none when i = 1. Let X;},[;] = (o)« i<i be the ith
leading principal submatrix. We set oj; to be the smallest natural number with
the property that det(X;,;}) > O; that such a choice is possible is clear from a
Laplace expansion of the determinant. For i = 1, we get g;; = 1. Next, as long
as i < p, we choose i* € {i + 1,..., p} such that i <> i* € B, which is possible
because Gy, ... py is connected. For all k > i + 1 and k # i*, we set oj; = 0 if
i <> k¢ Bandoj, =1ifi < k € B. We then complete the ith row and column by
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setting

oiir=— Y ouqi/qi:

IeV\[i*)

the division by ¢;= is well defined as all entries of g are nonzero.

By construction, the matrix X is positive definite as all leading principal minors
are positive. Moreover, X;; = 0 whenever i # j and i <> j ¢ B. It follows that
3 € PD(B) = PD(G). Finally, foralli < p — 1,

qi
(2q)i =0iigix + Y ouqr = —(Z 6i1f>qi* + Y ouq =0.
[751‘* l;éi* %* l;ﬁi* |:|

PROOF OF THEOREM 4. By Lemma 1(a), we have mltg(G) < p. Hence, we
need to show that the likelihood function is a.s. unbounded if n < p.

Assume that n < p. By Lemma 2, the kernel of the sample covariance ma-
trix Sp,, a.s. contains a vector ¢ with all entries nonzero. By Lemma 3, we
may choose a matrix ¥ such that ¥¢ has one nonzero entry. Without loss of
generality, we assume the vertex set to be labeled such that ¥q = ce), where
ceR\ {0} and e, = (0,...,0, )T € RP. Based on these choices, we will de-
fine a sequence of covariance matrices {%,}7°, in PD(G), with the property that
limy— o6 £(2¢]S0,,) = 0o. This then implies that the likelihood function is a.s. un-
bounded.

For ¢t > 0, define

1

3.1) Ti=% -
t t+a’%q

quTE.

T
p

the (p, p) entry that equals c¢> > 0. Hence, %; has zeros in the same entries as
¥ € PD(G) does. Let K = ()~ L. By the Woodbury matrix identity [Woodbury
(19501,

Since X g = ce), the matrix Zg)(Zg)! = czepe is zero with the exception of

K, =)' =K +1qq".

For all ¢ > 0, the matrix K; is positive definite because K is positive definite and
gq’ positive semidefinite. Thus, X; is positive definite for all # > 0 as well. We
conclude that X, € PD(G) for all r > 0.

Inserting ¥; into the log-likelihood function from (1.5), we have

£(2¢|S0,n) = logdet(K;) — trace(K;So.)
=logdet(K + tqu) — trace(K So.,) — 1q” So.nq
=logdet(K + tqu) — trace(K So.,)
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® ® ®
(a) @%‘ (b) @_’@‘/ (c) @‘—’@/

FIG. 4. In reference to the graph from Figure 1(b), the panels show: (a) the connected component
Gy with vertex set C4 = {4,5, 6}, (b) a choice for Ha C G4 and (c) the bidirected graph Hy~ .

because ¢ is in the kernel of Sy ,. By the matrix determinant lemma,
det(K +1qq") = (1 + 19" £q) det(%),

which converges to infinity as  — oo because det(X) > 0 and g7 g > 0 by pos-
itive definiteness of X. [J

4. Lower bound from submodels. We return to the case where G =
(V, D, B) is an arbitrary, possibly cyclic, mixed graph. The following result uses
the characterization of the maximum likelihood threshold for bidirected graphs to
yield a lower bound on mlty(G).

THEOREM 5. Let G = (V, D, B) be a mixed graph, and let Cy, ..., C; be the
vertex sets of the connected components of its bidirected part G, = (V, J, B).
Then

.....

Moreover, if n < mltg(G) then lﬁ(ngo’n) =00 a.s.

PROOF. For j=1,...,I,let Bj=BN(Cj x C;) and D; = D N (Pa(C;) x
C;). In other words, B; is the set of bidirected edges between nodes in C;, while
D is the set of directed edges with head in C;. The sets B; and D partition B and
D, respectively. The graphs G; = (Pa(C}), Dj, Bj) thus form a decomposition of
G. Because each graph §; is a subgraph of G, Lemma 1(c) yields that

.....

Next, for each j, choose a subgraph H; of G; by taking the bidirected part of
G; and adding for each node in Pa(C}) \ C; precisely one of its outgoing directed
edges. Then let ”H;" be the bidirected graph obtained by converting the directed
edges of H; into bidirected edges. An example is shown in Figure 4. Since in H ;
each node i € Pa(C;) \ C; is the parent of precisely one node in Cj, it follows
from Theorem 5 in Drton and Richardson (2008) that H ; and 7—[;" define the same
set of covariance matrices. Consequently,

PD(’H;-_)) =PD(H;) CPD(G)).
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Now use Lemma 1(c) and apply Theorem 4 to the connected bidirected graph Hf
to conclude that

mlto(G;) > mltg(H;) = mltg(H5”) = |Pa(C})|. O

5. Numerical experiment. A model with low maximum likelihood threshold
is amenable to standard likelihood inference even when the modeled observations
are high dimensional and the sample size is rather small. We demonstrate this for a
structural equation model associated with a directed graph and allowing for cycles.
Specifically, we consider a graph G, = (V,,, E ;) with an even number p of nodes.
As previously, we enumerate the vertex set as V, = {1, ..., p}. Let p’ = p/2, and

define the edge set as EszE,I) UEE,Z)UES),Where
EV={i—>it+l:i=1....p —1}Uu{p -1},
EP={i+3—>i:i=1...p -3}U{l>p -2}
Uf2—p' —1}u{3-p'},
EQ ={p'+i—izi=1..p'}

The first set of edges defines a directed cycle of length p’, and the second set of
edges gives many shorter cycles of length 4. The third set of edges attaches, in
bipartite fashion, additional nodes that play the role of covariates; one covariate
for each node in the long cycle. Figure 5 illustrates this with a picture of Gap.

As a statistical problem we consider testing absence of the edge 1 — 2 from
the graph Gjoo. In other words, we test the hypothesis Hp : A2 = 0 in the model
given by Giop. The parametrization for Gjoo is generically one-to-one as can be
confirmed, for instance, using the half-trek criterion [Barber, Drton and Weihs
(2015), Foygel, Draisma and Drton (2012)]. Assuming zero means for the p = 100
dimensional observation vector, the model corresponds to a p + 3p/2 = 250 di-
mensional set of covariance matrices. We test Hy using the likelihood ratio test
for three rather small sample sizes, namely, n = 15, 20 and 25. Our main result
guarantees that the test is well defined as the log-likelihood function for Gyqg a.s.
admits a finite supremum at these sample sizes. The optimization needed to com-
pute the likelihood ratio statistics is performed using the algorithm of Drton, Fox
and Wang (2018).

For each sample size, we use 200 Monte Carlo simulations to approximate the
size of the test as well as its power at nonzero values of Ajp. Specifically, we
consider the setting where A1 ranges through [—1, 1], and all other edge coeffi-
cients are set to 1/3. We consider nominal significance level 0.05 and calibrate
the likelihood ratio test using a chi-square distribution with 1 degree of freedom.
A chi-square limiting distribution cannot always be expected [Drton (2009)], but
is valid at the considered identifiable parameter. The power functions are plotted in
Figure 6. The asymptotically calibrated test clearly exhibits good power at stronger
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FI1G. 5. A directed graph with cycles and maximum in-degree 3.

signals and is seen to be only slightly liberal. This suggests that likelihood infer-
ence allows one to perform model selection in high-dimensional but sparse cyclic
models.

1.0

0.8
|

Power
0.6

0.4

Edge coefficient

FI1G. 6. Monte Carlo approximation to power function of a likelihood ratio test.
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6. Connections to undirected graphical models. The structural equation
models we considered are closely related to the Gaussian graphical models given
by undirected graphs [Lauritzen (1996)]. The latter are dual to the models given
by bidirected graphs in the sense that it is not the covariance matrix but its in-
verse that is supported over the graph [Kauermann (1996)]. To be more precise,
let G = (V, E) be an undirected graph, whose edges we take to be unordered pairs
{i, j} comprised of two distinct nodes i, j € V ={1,..., p}. Let PD(Q_) be the
cone of positive definite p x p matrices K = (k;;) with k;; = 0 whenever i # j
and {i, j} ¢ E. The Gaussian graphical model given by G is the set of multivariate
normal distributions NV'(u, ¥) with arbitrary mean vector i € R” and a covariance
matrix that is constrained to have £~ € PD(G).

Suppose G = (V, D, @) is an acyclic digraph that is perfect, that is, i, j € pa(k)
implies that i and j are adjacent. Then PD(G) is equal to the set of covariance
matrices of the Gaussian graphical model given by the skeleton of G [see, e.g.,
Andersson, Madigan and Perlman (1997), Corollaries 4.1, 4.3]. The skeleton is
the undirected graph G_ = (V, E) with {i, j} € E whenever i and j are adjacent
in D. When G is perfect then G_ is chordal. Theorem 1 implies that the maxi-
mum likelihood threshold of the Gaussian graphical model of a chordal graph is
the maximum clique size; see Grone et al. (1984), Theorem 7 or Buhl (1993),
Theorem 3.2.

The maximum likelihood threshold of graphical models given by nonchordal
graphs is more subtle to derive. Many interesting results exist, but the threshold
has not yet been determined in generality [Buhl (1993), Gross and Sullivant (2018),
Uhler (2012)]. Moreover, it has been shown for a sample size below the threshold
that the likelihood may be bounded with positive probability. In the remainder of
this section we focus on chordless cycles, which were the first known examples of
this phenomenon. We note that in the literature the maximum likelihood threshold
for Gaussian graphical models is typically introduced as the minimum sample size
at which the likelihood function admits a maximizer. The maximizer is then unique
by strict convexity of the log-likelihood function as a function of the inverse co-
variance matrix. By the duality theory in Dahl, Vandenberghe and Roychowdhury
(2008), if the likelihood function of a Gaussian graphical model does not achieve
its maximum, then it is unbounded; see also Theorem 9.5 in Barndorff-Nielsen
(1978).

EXAMPLE 3. Let C » be the undirected chordless cycle with vertex set V =
{1,..., p} and edge set E = {{1,2},{2,3},...,{p — 1, p}, {1, p}} for p > 3. As-
suming the mean vector 4 to be zero, the Gaussian graphical model given by C »
has maximum likelihood threshold mlty(C ») = 3. However, if n = 2, then the like-
lihood function of the model with zero means is bounded, and achieves its maxi-
mum, with positive probability [Buhl (1993), Theorem 4.1].



1550 DRTON, FOX, KAUFL AND POULIOT

O—
w @+—0O

FIG. 7. (a) The undirected cycle Cy. (b) The directed cycle Cy.

Let PD(C ») ! be the set of matrices with an inverse in PD(C ). In other Words
PD(C »)” I is the set of covariance matrices of the graphlcal model for C
an acyclic digraph G = (V, D, @) satisfies PD(G) C PD(C y~1, then PD(Q) has
smaller dimension than PD(C p)_l. If PD(G) 2 PD(C p)_l, then the dimension of
PD(G) is larger. However, a subset of the same dimension is found when consid-
ering digraphs with cycles. Specifically, take C, = (V, D, @) to be the digraph
with vertex set V ={1,...,p} andedgeset D ={1 - 2,2—>3,....,p—1—
p, p— 1}. Then PD(C,) € PD(Cp) ! Indeed, if ¥ = (I — A)~ Tsz(l A)~! for
A eRP and Qe PD(B), then =~ ' = (I — A)Q~'(I — A)T has entries

Teg
1 AZ.
oy R e
i a)i,‘)L Wi+1,i+1
(6.1) L = __Ahikl ifje{i—1,i+1},
Wi+1,i+1
0 otherwise.

Here, we identify p + 1 = 1. Recall that for a digraph Q2 = (w;;) is diagonal. The
zeros in (6.1) now confirm that PD(C,) C PD(C »)” I Moreover, PD(C p) is a full-
dimensional subset as both PD(C),) and PD(C p) clearly have dimension 2p.

EXAMPLE 4. The graphs C4 and C4 are depicted in Figure 7. A matrix in
PD(Cy) is parameterized as

1 A2 A A
A b R 0 A
w11 w22 w22 ) w11

A 1 A A
BT s « ) 0
6.2) w22 w2y w33 w33 5
A 1 A A
0 I T
w33 w33 W44 w44 5
A A 1 A
_i 0 _ﬁ — 4+ 241
w11 w44 w44 W11

By Theorem 4.1 in Buhl (1993), mlto(C p) =3 for all p > 3. In contrast, our
new Theorem 2 implies that mlto(C,) = 2 for all p > 3. Consequently, it must
hold that PD(C,) C PD(C p)_l. Indeed, the set PD(C;,) comprises matrices that
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satisfy an additional inequality. Applying a trick used by Drton and Yu (2010) in a
different context, observe that negating the entry A > changes only the entries 21_21

and 22_11 , which are negated. All other entries of ! are preserved under the sign
change of A17. The inequality is obtained by noting that not every positive definite
matrix in PD(C),) remains positive definite after negation of a single off-diagonal
entry [Drton and Yu (2010), Example 5.2]. We conclude that if a sample of size
2 has the likelihood function given by C » unbounded, then the divergence occurs
only along sequences of matrices that do not represent a system with a feedback
cycle asin C,.

7. Discussion. Our main result, Theorem 2, determines the maximum likeli-
hood threshold of any linear structural equation model. This threshold is the small-
estinteger N such that the Gaussian likelihood function is a.s. bounded for all sam-
ples of size at least N. According to our result, the maximum likelihood threshold
of models with feedback loops is surprisingly low. Indeed, the maximum likeli-
hood threshold of any digraph, acyclic or not, is equal to the maximum in-degree
plus one. In contrast, bidirected edges, which represent the effects of unmeasured
confounders, can result in a large maximum likelihood threshold by merely form-
ing long paths. If G is a bidirected spanning tree, then there are only p — 1 edges
yet mltg(G) = p, which is the largest possible value by Lemma 1(a).

When the structural equation model is given by an acyclic digraph, boundedness
of the likelihood function implies that the maximum is achieved. As we empha-
sized in Remark 1, the question of when the maximum is a.s. achieved is still
poorly understood for general mixed graphs and constitutes an important topic for
future work.
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