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SUMMARY

The need to test whether two random vectors are independent has spawned many competing
measures of dependence. We focus on nonparametric measures that are invariant under strictly
increasing transformations, such as Kendall’s tau, Hoeffding’s D, and the Bergsma–Dassios
sign covariance. Each exhibits symmetries that are not readily apparent from their definitions.
Making these symmetries explicit, we define a new class of multivariate nonparametric measures
of dependence that we call symmetric rank covariances. This new class generalizes the above
measures and leads naturally to multivariate extensions of the Bergsma–Dassios sign covariance.
Symmetric rank covariances may be estimated unbiasedly using U-statistics, for which we prove
results on computational efficiency and large-sample behaviour. The algorithms we develop
for their computation include, to the best of our knowledge, the first efficient algorithms for
Hoeffding’s D statistic in the multivariate setting.

Some key words: Dependence; Hoeffding’s D; Independence testing; Kendall’s tau; U-statistic.

1. INTRODUCTION

Many applications require quantification of the dependence between collections of random
variables. Letting X = (X1, . . . , Xr) and Y = (Y1, . . . , Ys) be random vectors, we are interested
in measures of dependence µ which exhibit the following three properties.

Property 1 (I-consistency). If X and Y are independent, then µ(X , Y ) = 0.

Property 2 (D-consistency). If X and Y are dependent, then µ(X , Y ) |= 0.

Property 3 (Monotonic invariance). If f1, . . . , fr , g1, . . . , gs are strictly increasing functions,
then µ(X , Y ) = µ[{f1(X1), . . . , fr(Xr)}, {g1(Y1), . . . , gs(Ys)}]. We also refer to this property as µ

being nonparametric.

If µ is I-consistent, then tests of independence can be based on the null hypothesis µ(X , Y ) = 0.
If µ is also D-consistent, then tests based on consistent estimators of µ are guaranteed to
asymptotically reject independence when it fails to hold. When µ is both I- and D-consistent,
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548 L. WEIHS, M. DRTON AND N. MEINSHAUSEN

(a) Concordant examples
y2 y2

y1 y1
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y2

y1

x1x1

(b) Discordant example

Fig. 1. The bivariate sign covariance τ ∗ can be defined in terms of the probability of concordance and discordance of
four points in R

2 (Bergsma & Dassios, 2014, Fig. 3). Our multivariate extension τ ∗
P is based on higher-dimensional

generalizations of concordance and discordance. For illustration, let x1, . . . , x4 ∈ R and y1, . . . , y4 ∈ R
2. Considering

either of the concordant examples in panel (a), if precisely two tuples (xi, yi) fall in each of the two grey regions,
then the four tuples are concordant for τ ∗

P , but other types of concordance exist. Considering the discordant example
in panel (b), if exactly one (xi, yi) lies in each of the grey regions, here the two partially obscured regions with
smaller x1 value are just translated copies of the two top regions, then the four tuples are discordant; again, other
types of discordance exist. Unlike in the bivariate case, points may be simultaneously concordant and discordant

with respect to τ ∗
P .

we will simply call it consistent. Monotonic invariance is the intuitive requirement that the level
of dependence between two random vectors be invariant under monotonic transformations of
any coordinate. Unfortunately, many popular measures of dependence fail to satisfy all of these
properties. For instance, Kendall’s τ (Kendall, 1938) and Spearman’s ρ (Spearman, 1904) are
nonparametric and I-consistent but not D-consistent, while the distance correlation (Székely et al.,
2007) is consistent but not nonparametric in the above sense.

For bivariate observations, Hoeffding (1948) introduced a nonparametric dependence measure
that is consistent for a large class of continuous distributions. Let (X , Y ) be a random vector taking
values in R

2, with joint and marginal distribution functions FXY , FX and FY . Then the statistic
now called Hoeffding’s D is defined as D =

∫

R2{FXY (x, y)−FX (x)FY (y)}2 dFXY (x, y). Bergsma
& Dassios (2014) introduced a new bivariate dependence measure τ ∗ that is nonparametric and
improves upon Hoeffding’s D by guaranteeing consistency for all bivariate mixtures of continuous
and discrete distributions. As its name suggests, τ ∗ generalizes Kendall’s τ ; where τ counts
concordant and discordant pairs of points, τ ∗ counts concordant and discordant quadruples of
points. The proof of consistency of τ ∗ is considerably more involved than that for D.

Both D and τ ∗ exhibit symmetries that are obfuscated by their usual definitions. Indeed, as
will be made precise, D and τ ∗ can each be represented as the covariance between signed sums
of indicator functions acted on by the subgroup H = 〈(1 4), (2 3)〉 of the symmetric group on
four elements. We generalize this observation to define a new class of dependence measures
called symmetric rank covariances. All such measures are I-consistent and nonparametric, and
they include D, τ ∗, τ and ρ as special cases. Moreover, our new measures include natural multi-
variate extensions of τ ∗ which themselves inspire new notions of concordance and discordance
in higher dimensions; see Fig. 1. While symmetric rank covariances need not be D-consistent,
we identify a subcollection of measures that are. These consistent measures can be interpreted as
testing independence by applying possibly infinitely many independence tests to discretizations
of (X , Y ). Symmetric rank covariances can readily be estimated using U-statistics, and we show
that the use of efficient data structures for orthogonal range queries can give substantial savings.
Moreover, we show that under independence, many of the resulting U-statistics are degenerate
of order two, thus having non-Gaussian limiting distributions. Most of the proofs are presented
in the Supplementary Material.
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Symmetric rank covariance 549

While our work can be seen as an extension and generalization of classical rank statistics for
measuring association, recent interest in dependence testing has produced a variety of approaches
to the problem. Broadly, these alternative measures can be organized into those that are based on
information theory (Kraskov et al., 2004; Kinney & Atwal, 2014; Reshef et al., 2011, 2016), char-
acteristic functions (Kankainen & Ushakov, 1998; Székely et al., 2007; Hušková & Meintanis,
2008; Rizzo & Szekely, 2016; Böttcher et al., 2017), grid/binning procedures (Heller et al., 2013,
2016; Ma & Mao, 2017), reproducing kernel Hilbert spaces (Gretton et al., 2005), conditional
distribution functions (Cui et al., 2015), and generalization or modification of Pearson’s correla-
tion coefficient (Breiman & Friedman, 1985; Wang et al., 2017; Zhu et al., 2017). While each of
these measures has distinct advantages, our experiments show that symmetric rank covariances
are competitive in a number of regimes while remaining simple to state and interpret.

2. PRELIMINARIES

2·1. Manipulating random and fixed vectors

We begin by establishing conventions and notation to be used throughout the paper. Let

(Z1, . . . , Zr+s) = Z = (X , Y ) = (X1, . . . , Xr , Y1, . . . , Ys)

be a random vector taking values in R
r+s, and let (X i, Y i) = Z i for i ∈ Z>0 be a sequence of

independent and identically distributed copies of Z . When X and Y are independent we write
X ⊥⊥ Y ; otherwise we write X �

�⊥⊥ Y . We let FXY , FX and FY denote the cumulative distribution
functions for (X , Y ), X and Y , respectively.

We will require succinct notation to describe tuples of vectors, possibly permuted. For any
n � 1, define [n] = {1, . . . , n}. Let w1, . . . , wn ∈ R

d . Then for i1, . . . , im, j1, . . . , jk ∈ [n], let

wi1,...,im = w(i1,...,im) = (wi1 , . . . , wim),

(wi1,...,im , wj1,...,jk ) = (wi1 , . . . , wim , wj1 , . . . , wjk ).

If [n] appears in the superscript of a vector, it should be interpreted as an ordered vector; that is,
we let w[n] = w(1,...,n) = (w1, . . . , wn).

Let Sn be the symmetric group. For σ ∈ Sn and w[n] ∈ R
d×n, let

σw[n] = (wσ−1(1), . . . , wσ−1(n)).

This defines a left group action of Sn on R
d×n, which we will often encounter.As our convention is

that [n] is an ordered tuple when in a superscript, we have that σw[n] = wσ [n] for all w[n] ∈ R
d×n.

We stress that σ(1, . . . , n) = {σ−1(1), . . . , σ−1(n)} |= {σ(1), . . . , σ(n)} in general.

2·2. Hoeffding’s D

A multivariate version of Hoeffding’s D is naturally defined by letting

D(X , Y ) =

∫

Rr×Rs
{FXY (x, y) − FX (x)FY (y)}2 dFXY (x, y).

Since X ⊥⊥ Y if and only if FXY (x, y) = FX (x)FY (y) for all x and y, it is clear that X ⊥⊥ Y implies
D(X , Y ) = 0. The converse need not be true, as the next example shows.
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550 L. WEIHS, M. DRTON AND N. MEINSHAUSEN

Example 1. Let Z = (X , Y ) be a bivariate distribution with pr(X = 1, Y = 0) = pr(X = 0,
Y = 1) = 1/2. Then clearly X and Y are not independent but

D(X , Y ) =
1

2
{FXY (1, 0) − FX (1)FY (0)}2 +

1

2
{FXY (0, 1) − FX (0)FY (1)}2

=
1

2
(1/2 − 1/2)2 +

1

2
(1/2 − 1/2)2 = 0.

Thus, D(X , Y ) is I-consistent but not D-consistent in general. It is, however, consistent for a
large class of continuous distributions.

THEOREM 1 (Multivariate version of Theorem 3.1 in Hoeffding, 1948). Suppose that X and

Y have a continuous joint density fXY and continuous marginal densities fX and fY . Then

D(X , Y ) = 0 if and only if X ⊥⊥ Y .

Proof. The bivariate case is treated in Theorem 3.1 in Hoeffding (1948). The proof of the
multivariate case is analogous. �

Example 1 highlights that the failure of D(X , Y ) to detect all dependence structures can be
attributed to the measure of integration dFXY . This suggests the following modification of D,
which we call Hoeffding’s R:

R(X , Y ) =

∫

Rr+s
{FXY (x, y) − FX (x)FY (y)}2

r
∏

i=1

dFXi(xi)

s
∏

j=1

dFYj (yj).

We suspect that it is well known that R is consistent, but we could not find a compelling reference
for this fact. For completeness we include a proof in the Supplementary Material.

THEOREM 2. Let (X , Y ) be drawn from a multivariate distribution on R
r × R

s. Then

R(X , Y ) � 0, and R(X , Y ) = 0 if and only if X ⊥⊥ Y .

2·3. The Bergsma–Dassios sign covariance τ ∗

Bergsma & Dassios (2014) defined τ ∗ only for bivariate distributions, so let r = s = 1
for this subsection. While τ ∗ has a natural definition in terms of concordant and discordant
quadruples of points, we will give an alternative definition that will be more useful for our
purposes. First, for any w[4] ∈ R

4 let Iτ∗(w[4]) = 1(w1,w2<w3,w4), where w1, w2 < w3, w4 if and
only if max(w1, w2) < min(w3, w4). Then, as shown by Bergsma & Dassios (2014),

τ ∗(X , Y ) = E
[

{

Iτ∗(X [4]) + Iτ∗(X 4,3,2,1) − Iτ∗(X 1,3,2,4) − Iτ∗(X 4,2,3,1)
}

×
{

Iτ∗(Y [4]) + Iτ∗(Y 4,3,2,1) − Iτ∗(Y 1,3,2,4) − Iτ∗(Y 4,2,3,1)
}

]

.

Although Bergsma & Dassios (2014) conjectured that τ ∗ is consistent for all bivariate distribu-
tions, the proof of this statement remains elusive. The current understanding of the consistency
of τ ∗ is summarized by the following theorem.

THEOREM 3 (Theorem 1 of Bergsma & Dassios, 2014). Suppose that (X , Y ) are drawn from a

bivariate continuous distribution, discrete distribution, or mixture of a continuous and a discrete

distribution. Then τ ∗(X , Y ) � 0, and τ ∗(X , Y ) = 0 if and only if X ⊥⊥ Y .
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Symmetric rank covariance 551

Theorem 3 does not apply to any singular distributions; for instance, it is not guaranteed that
τ ∗ > 0 when (X , Y ) are generated uniformly on the unit circle in R

2.

3. SYMMETRIC RANK COVARIANCE

3·1. Definition and examples

We now introduce a new class of nonparametric dependence measures that depend on X and
Y only through their joint ranks.

DEFINITION 1. Let w[m] ∈ R
d×m. Then the joint rank matrix of w[m] is the [m]-valued d × m

matrix with (i, j) entry

R(w[m])ij = 1 +

m
∑

k=1

1
(wk

i <w
j
i )

;

that is, R(w[m])ij is the rank of w
j
i among w1

i , . . . , wm
i for i ∈ [d].

DEFINITION 2. A rank indicator function of order m and dimension d is a function I : R
d×m →

{0, 1} such that I {R(w[m])} = I (w[m]) for all w[m] ∈ R
d×m. In other words, I depends on its

arguments only through their joint ranks.

DEFINITION 3. Let IX and IY be rank indicator functions that have equal order m and are of

dimensions r and s, respectively. Let H be a subgroup of the symmetric group Sm with an equal

number of even and odd permutations. Define

µIX ,IY ,H (X , Y ) = E

[{

∑

σ∈H

sign(σ ) IX (X σ [m])

} {

∑

σ∈H

sign(σ ) IY (Y σ [m])

}]

. (1)

Then a measure of dependence µ is a symmetric rank covariance if there exist a scalar c > 0 and

a triple (IX , IY , H ) as specified above such that µ = c µIX ,IY ,H . More generally, µ is a summed

symmetric rank covariance if it is the sum of several symmetric rank covariances.

Some of the symmetric rank covariances we consider have the two rank indicator functions
equal to each other, so IX = IY = I . In this case, we also use the abbreviation µI ,H = µI ,I ,H .

Remark 1. In Definition 3, the restrictions on H both allow us to generalize several existing
nonparametric measures of dependence and afford us a number of general properties that we
leverage in our proofs. An interesting alternative choice, suggested by a referee, is to let H be
an arbitrary subset of Sm with some partial order � for which H has a unique upper bound
1̂ and a unique lower bound 0̂. Upon replacing the sign function in (1) by the function σ 	→

m(σ , 1̂), where m : Sm → R is the Möbius function corresponding to (H , �), one obtains a new
collection of measures, which one might naturally call Möbius rank covariances, having many
of the same properties as the symmetric rank covariances. Indeed, all special cases of symmetric
rank covariances considered in this paper are also Möbius rank covariances, and one may recover
Proposition 2 for these measures. While the study of such measures is beyond the scope of this
paper, an avenue of future research might be to investigate the properties of such measures when
using the lattice structure on Sm from Duquenne & Cherfouh (1994).
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552 L. WEIHS, M. DRTON AND N. MEINSHAUSEN

Remark 2. Recall from § 2·3 that for any z[4] ∈ R
4 we write z1, z2 < z3, z4 to mean

max(z1, z2) < min(z3, z4). To simplify the definitions of rank indicator functions, we gener-
alize this notation as follows. Let ∼ be any binary relation on R

d . Then for z[l] ∈ R
d×l and

w[k] ∈ R
d×k we write z1, . . . , zl ∼ w1, . . . , wk to mean zi ∼ wj for all (i, j) ∈ [l] × [k].

It is easy to show that many existing nonparametric measures of dependence are symmetric
rank covariances.

PROPOSITION 1. Let X and Y take values in R
r and R

s, respectively. Consider the permutation

groups Hτ = 〈(1 2)〉 and Hτ∗ = 〈(1 4), (2 3)〉.

(i) Bivariate case (r = s = 1): Kendall’s τ , its square τ 2, and τ ∗ of Bergsma & Dassios

(2014) are symmetric rank covariances. Specifically,

τ = µIτ ,Hτ , τ 2 = µI
τ2 ,Hτ∗ , τ ∗ = µIτ∗ ,Hτ∗ ,

where the one-dimensional rank indicator functions are defined as

Iτ∗(w[4]) = 1(w1,w2<w3,w4), Iτ (w
[2]) = 1(w1<w2), Iτ 2(w[4]) = Iτ (w

1,4)Iτ (w
2,3).

(ii) General case (r, s � 1): both D and R are symmetric rank covariances. Specifically,

D =
1

4
µID,r ,ID,s,Hτ∗ , R =

1

4
µIR,r,s,X ,IR,r,s,Y ,Hτ∗ ,

where for any d � 1 we define

ID,d(w[5]) = 1(w1,w2�w5)1(w3,w4 ��w5) (w1, . . . ∈ R
d),

IR,r,s,X (w[4+r+s]) = 1
{w1,w2�(w5

1 ,...,w4+r
r )T}

1
{w3,w4 ��(w5

1 ,...,w4+r
r )T}

(w1, . . . ∈ R
r),

IR,r,s,Y (w[4+r+s]) = 1
{w1,w2�(w5+r

1 ,...,w4+r+s
s )T}

1
{w3,w4 ��(w5+r

1 ,...,w4+r+s
s )T}

(w1, . . . ∈ R
s),

with wi � wj if and only if wi
� � w

j
� for all � ∈ [d].

Remark 3. In Proposition 1 we see that, unlike for ID,d , the length of the input tuples to
IR,r,s,X and IR,r,s,Y grows with r and s. While this may seem surprising, it is an immediate con-
sequence of the fact that R integrates against the product measure

∏r
i=1 dFXi(xi)

∏s
j=1 dFYj (yj),

each component of which requires its own independent observation.

Remark 4. The bivariate dependence measure Spearman’s ρ can be written as

ρ(X , Y ) = 6 E
[

1(X 1<X 2<X 3)

{

1(Y 1<Y 2<Y 3) + 1(Y 1<Y 3<Y 2) + 1(Y 2<Y 1<Y 3)

− 1(Y 3<Y 1<Y 2) − 1(Y 2<Y 3<Y 1) − 1(Y 3<Y 2<Y 1)

}]

. (2)

In light of Lemma 1, one might expect ρ to be a symmetric rank covariance. However, upon
examining which of the indicators are negated in (2), one sees that the permutations do not respect
the sign operation of the permutation group S3. For instance, 1(Y 1<Y 2<Y 3) and 1(Y 1<Y 3<Y 2) are
related through a single transposition and yet the terms have the same sign above. While it seems
difficult to prove conclusively that ρ is not a symmetric rank covariance, this observation suggests
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Symmetric rank covariance 553

that it is not. Somewhat surprisingly, however, ρ is a summed symmetric rank covariance, which
can be seen by expressing ρ as

ρ(X , Y ) = 3 E
{

b(X [3])b(Y [3]) + b(X [3])b(Y 1,3,2) + b(X [3])b(Y 2,1,3)
}

,

where b(z[3]) = 1(z1<z2<z3) − 1(z3<z2<z1) for all zi ∈ R.

3·2. General properties

Although many interesting properties of symmetric rank covariances depend on the choice of
the group H and of the indicators IX and IY , several properties hold for all such choices.

PROPOSITION 2. Let µ be a symmetric rank covariance. Then µ is nonparametric and

I-consistent. If ν is another symmetric rank covariance, then so is the product µν.

Remark 5. While Proposition 2 guarantees that all symmetric rank covariances are non-
parametric and I-consistent, showing that such measures are D-consistent must be done on
a case-by-case basis and can, in general, be difficult. In the Supplementary Material we
produce, through a natural generalization of Hoeffding’s D and R, a collection of summed sym-
metric rank covariances for which proving D-consistency is relatively straightforward. Thus
the Supplementary Material serves to demonstrate one strategy by which we may recover
D-consistency while also generating a collection of candidate measures for further study.

The property for products in particular justifies squaring symmetric rank covariances, as was
done for bivariate rank correlations in Leung & Drton (2018). Later, it will be useful to express
symmetric rank covariances in an equivalent form.

LEMMA 1. In reference to (1), we have

µIX ,IY ,H (X , Y ) = |H | E

{

IX (X [m])
∑

σ∈H

sign(σ ) IY (Y σ [m])

}

(3)

= |H | E

{

IY (Y [m])
∑

σ∈H

sign(σ ) IX (X σ [m])

}

. (4)

4. MULTIVARIATE τ ∗

Recall from Proposition 1 that τ ∗ = µIτ∗ ,Hτ∗ . Multivariate extensions of τ ∗ should simul-
taneously capture essential characteristics and permit enough flexibility to define interesting
measures of high-order dependence. As a first step to distilling these essential characteris-
tics, it seems natural that any multivariate extension of τ ∗ should use the same permutation
subgroup Hτ∗ .

Remark 6. There are 30 distinct subgroups of S4, exactly 20 of which have an equal number of
even and odd permutations and thus could be used in the definition of a symmetric rank covariance.
Given these many possible choices, it may seem surprising that Hτ∗ appears in the definition of
so many existing measures of dependence, including τ ∗, τ 2, D and R. Some intuition as to the
ubiquity of Hτ∗ can be gleaned from the proof of Proposition 1; see the Supplementary Material,
where we show that Hτ∗ arises naturally from an expansion of {FXY (x, y) − FX (x)FY (y)}2.
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554 L. WEIHS, M. DRTON AND N. MEINSHAUSEN

It now remains to find an appropriate generalization of Iτ∗ . To better characterize Iτ∗ , we
require the following definition.

DEFINITION 4. Let I be a rank indicator function of order m and dimension d.The permutations

σ ∈ Sm such that I (σw[m]) = I (w[m]) for all w[m] ∈ R
d×m form a group which we refer to as

the invariance group G of I . For any symmetric rank covariance µIX ,IY ,H , let GX and GY be the

invariance groups of IX and IY , respectively. We then call G = GX ∩ GY the invariance group of

µIX ,IY ,H .

We now single out two properties of Iτ∗ :

Property 4. Iτ∗ is a rank indicator function of order 4;

Property 5. the invariance group of Iτ∗ is 〈(1 2), (3 4)〉.

These properties inspire the following definition.

DEFINITION 5. A symmetric rank covariance µIX ,IY ,H is a τ ∗ extension if IX and IY are rank

indicators of order 4 with invariance group 〈(1 2), (3 4)〉 and H = Hτ∗ .

From the possible τ ∗ extensions we consider two notable candidates.

DEFINITION 6. For any d � 1, let IP : R
d×4 → {0, 1} be the rank indicator, where for any

w[4] ∈ R
d×4 we have IP(w[4]) = 1(w3,w4 ��w1,w2). We then call µIP ,IP ,Hτ∗ the multivariate partial

τ ∗ and write τ ∗
P = µIP ,IP ,Hτ∗ .

The definition of IP is inspired by ID; see Proposition 1.

DEFINITION 7. For any d � 1, let IJ : R
d×4 → {0, 1} be the rank indicator, where for any

w[4] ∈ R
d×4 we have IJ (w[4]) = 1(w1,w2≺w3,w4). We then call µIJ ,IJ ,Hτ∗ the multivariate joint τ ∗

and write τ ∗
J = µIJ ,IJ ,Hτ∗ .

Our definition of τ ∗
J comes immediately from τ ∗ upon replacing the total order < with ≺.

Although this might be the most intuitive multivariate extension of τ ∗, it is easily seen to not be
D-consistent, as the next example shows. In both of the above definitions, the extensions reduce
to τ ∗ when r = s = 1.

Example 2. Let X = (X1, . . . , Xr), where r is even and X1, . . . , Xr ∼ Ber(1/2) are indepen-
dent. Now let Y = XOR(X1, . . . ., Xr), that is, let Y = 1 if

∑r
i=1 X r is odd and Y = 0 otherwise.

Then, letting (X i, Y i) be independent and identically distributed replicates of (X , Y ), IJ (X [4]) = 1
if and only if X 1 = X 2 = (0, . . . , 0) and X 3 = X 4 = (1, . . . , 1). Thus Ij(X

[4]) = 1 implies
Y 1 = Y 2 = Y 3 = Y 4 = 0 and hence that

∑

σ∈Hτ∗
sign(σ ) IJ (Y σ [4]) = 0. Therefore we have

that τ ∗
J (X , Y ) = 0 while X �

�⊥⊥ Y .
This behaviour occurs only when r is even. If r is odd, then τ ∗

J (X , Y ) = 2−4r+2.

Unlike for τ ∗
J , we have yet to discover an example where τ ∗

P(X , Y ) is zero when X �
�⊥⊥ Y . This

leads us to conjecture that τ ∗
P , like the subclass of measures from the Supplementary Material, is

D-consistent.
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Symmetric rank covariance 555

5. ESTIMATION VIA U-STATISTICS

5·1. Standard form of U-statistics estimating symmetric rank covariances

Symmetric rank covariances can be readily estimated using U-statistics. As naïvely computing
these U-statistics is often intractable, we will show how efficient data structures from compu-
tational geometry can often be used to substantially decrease run-time. We will then consider
the asymptotic properties of our estimators and exhibit a collection of symmetric rank covari-
ances whose U-statistics have non-Gaussian asymptotic distributions under the null hypothesis
of independence. In the bivariate setting, these results will allow us to show explicitly that the
asymptotic distributions of the U-statistics corresponding to D, R and τ ∗ are, up to scaling, the
same when X and Y are continuous and independent, a behaviour first observed by Nandy et al.
(2016).

Let µ = µIX ,IY ,H be as in (1). We let κ : R
(r+s)×m → R be the symmetrized kernel function

defined by

κ(z1, . . . , zm) =
1

m!

∑

σ∈Sm

k(zσ [m]),

where the unsymmetrized kernel function k : R
(r+s)×m → R is defined by

k(z[m]) =

{

∑

σ∈H

sign(σ ) IX (xσ [m])

} {

∑

σ∈H

sign(σ ) IY (yσ [m])

}

.

Then we define, for n � m and z[n] ∈ R
d×n,

Uµ(z[n]) =
1

(

n
m

)

∑

1�i1<···<im�n

κ(zi1,...,im). (5)

We call Uµ the U-statistic corresponding to µ. Clearly, Uµ(Z [n]) is unbiased for µ(X , Y ). For
ease of computation we will sometimes rewrite κ using the following proposition.

PROPOSITION 3. For any z[m] ∈ R
d×m,

κ(z[m]) =
|H |

m!

∑

γ∈Sm

IX (xγ [m])
∑

σ∈H

sign(σ ) IY (yσγ [m]) (6)

=
|H |

m!

∑

γ∈Sm

IY (yγ [m])
∑

σ∈H

sign(σ ) IX (X σγ [m]). (7)

5·2. Efficient computation

The U-statistics defined by (5) are a sum over n choose m elements and thus, assuming that
the indicator functions IX and IY can be computed in O(m) time, require O(m nm) operations in a
naïve computation. While this might be feasible for small m and n, it will be prohibitive for even
moderate sample sizes.Although subsampling can be used to approximate our statistics of interest,
it is not always clear how many samples of what size should be taken to obtain an acceptable
approximation error, and when many such samples are needed, subsampling approximations may
not be fast. Fortunately, we show that when specializing to the U-statistics estimating D, R, τ ∗

P and
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556 L. WEIHS, M. DRTON AND N. MEINSHAUSEN

τ ∗
J , the use of efficient data structures from computational geometry can reduce the asymptotic

run-time of the computations. While our observations do not generalize to all symmetric rank
covariances, there appear to be many, such as τ 2, for which a similar approach can be used to
reduce run-time. For very large samples, these computational strategies could be combined with
subsampling procedures to achieve low approximation error more rapidly.

For the remainder of this section we assume that we have observed data z[n] ∈ R
d×n. Moreover,

to simplify our run-time analyses, we will assume that d is bounded, so that for any functions
f , g : N → N and h : N

2 → N we have that O{ f (d) + g(d)h(n, d)} = O{h(n, d)}.
As the U-statistics defined above depend on z[n] only through their joint ranks, we will make

the further assumption that z[n] = R(z[n]) ∈ [n]d×n, so that we have transformed z[n] into its
corresponding matrix of joint ranks. The computational effort of this procedure is O{n log2(n)},
and as none of the algorithms we will present has a run-time less than this, performing this
pre-processing step does not change the overall analysis.

In the bivariate case, it follows easily from the discussion in Hoeffding (1948) that D can be
computed in O(n log2 n) time, while more recently it has been shown that τ ∗ can be computed
in O(n2) time (Heller & Heller, 2016; Weihs et al., 2016). These computational savings largely
rely on the ability to efficiently perform orthogonal range queries.

DEFINITION 8. Let z[n] ∈ R
d×n.Then the question of how many zi lie in B ⊂ R

d is an orthogonal

range query on {z1, . . . , zn} if B = I1 × · · · × Id and, for 1 � i � d, Ii is an interval of the form

(li, ui), [li, ui), (li, ui] or [li, ui] for some li, ui ∈ R.

As the next proposition shows, by using a simple dynamic programming approach one can
easily construct an nd tensor so that any orthogonal range query on z[n] can be answered in O(1)

time. See Heller & Heller (2016) for the bivariate case.

PROPOSITION 4. Let z[n] ∈ R
d×n be such that z[n] = R(z[n]). Then let A ∈ N

(n+1)×···×(n+1)

be a d-dimensional tensor, indexed by elements of {0, . . . , n}d , whose (i1, . . . , id) ∈ {0, . . . , n}d

entry is

A(i1, . . . , id) =

n
∑

i=1

1{zi=(i1,...,id )},

so that A(i1, . . . , id) equals the number of elements zi with value (i1, . . . , id). Now define B ∈

N
(n+1)×···×(n+1) recursively so that it has (i1, . . . , id) ∈ {0, . . . , n}d entry B(i1, . . . , id) = 0 if any

ij = 0 and

B(i1, . . . , id) = A(i1, . . . , id) +

d
∑

s=1

∑

�∈{0,1}d\{0d }
∑

k �k=s

(−1)s+1B{(i1, . . . , id) − �}

otherwise. Then for any l = (l1, . . . , ld), u = (u1, . . . , ud) ∈ {0, . . . , n}d , the answer to the

orthogonal range query as to how many zi lie in B = (l1, u1] × · · · × (ld , ud] is

∑

�∈{0,1}d

(−1)
∑d

j=1 �j B(l
�1
1 u

1−�1
1 , . . . , l

�d

d
u

1−�d

d
).

When d is bounded and B is given, the above sum takes O(1) time to compute.
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Proof. This follows from application of the inclusion-exclusion principle. �

Unfortunately, the above tensor takes O(nd) time to construct, so when d � m this procedure
already takes at least as long as computing the U-statistic naïvely. In such cases, the range-tree
data structure provides a better balance between quickly computing the answer to an orthogonal
range query and the effort required for its construction.

PROPOSITION 5 (de Berg et al., 2008). Let z[n] ∈ R
d×n. There exists a data structure, called a

range-tree, which takes O{n log2(n)d−1} time to construct and can answer any orthogonal range

query on z[n] in O{log2(n)d−1} time.

See de Berg et al. (2008, § 5) for a detailed exposition on range-trees, along with a discussion of
the above proposition and orthogonal range queries in general. Because to the best of our knowl-
edge there exists no open source, for completely general implementation of range-trees, we make
such an implementation freely available at https://github.com/Lucaweihs/range-tree. Range-trees
are closely related to binary search trees, such as red-black trees, which have previously been
used to efficiently compute the U-statistics corresponding to τ and τ ∗ (Christensen, 2005; Weihs
et al., 2016). Using these data structures, we can achieve substantial run-time savings.

When using the algorithms described in the Supplementary Material, the asymptotic run-
times of computing UD, UR, Uτ∗

P
and Uτ∗

J
are O{n log2(n)d−1}, O(nd), O{n2 log2(n)2d−1} and

O{n2 log2(n)2d−1}, respectively. When computing these statistics naïvely, their asymptotic run-
times are O(n5), O(n4+d), O(n4) and O(n4), respectively.

5·3. Null asymptotics

Determining the asymptotic distribution of Uµ under the null hypothesis of independence, i.e.,
X ⊥⊥ Y , requires an understanding of the functions

κi(z
1, . . . , zi) = E{κ(z1, . . . , zi, Z i+1, . . . , Zm)}.

To this end, we introduce some simplifying lemmas and propositions.

LEMMA 2. Suppose that X ⊥⊥ Y . Let S ⊂ [m] and let G be the invariance group corresponding

to µ. Partition H into equivalence classes E1, . . . , Et , where h, h′ ∈ H are equivalent if there

exists g ∈ G such that gh(i) = h′(i) for all i ∈ S. If each Ei contains an equal number of even

and odd permutations, then for any z1, . . . , zm ∈ R
r+s we have E{k(W [m])} = 0, where W i = zi

if i ∈ S and W i = Z i otherwise.

Lemma 2 allows us to identify conditions guaranteeing that Uµ is degenerate, that is, cases in
which n1/2(Uµ − EUµ) converges to zero in probability.

PROPOSITION 6. Suppose that the conditions of Lemma 2 hold for µ whenever S is a singleton

set. If X ⊥⊥ Y , then κ1 ≡ 0 and hence Uµ is a degenerate U-statistic.

As an application of Lemma 2 and Proposition 6, we deduce the known result that τ ∗, D and
R are degenerate U-statistics under independence and that their κ2 functions take a simple form.

LEMMA 3. Let IX and IY be rank indicators of order m � 4 and dimensions r and s, respectively.

Let µ = µIX ,IY ,Hτ∗ be a symmetric rank covariance. Suppose that X ⊥⊥ Y . If the invariance group

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

-a
b
s
tra

c
t/1

0
5
/3

/5
4
7
/5

0
3
8
4
7
5
 b

y
 U

n
iv

e
rs

ity
 o

f W
a
s
h
in

g
to

n
 u

s
e
r o

n
 0

3
 M

a
y
 2

0
1
9



558 L. WEIHS, M. DRTON AND N. MEINSHAUSEN
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Fig. 2. Total variation distance from kernel density estimators of
the finite-sample distributions of Uτ∗ (solid), UD (dashed) and UR

(dotted) to the probability density functions of their asymptotic dis-
tributions. The horizontal axis is plotted on a log-scale. Here n ∈
{15, 30, 60, 120, 240} is the sample size. The finite-sample distribu-
tions are quite close to the asymptotic distributions even when n is

only around 60.

of µ contains the subgroup G = 〈(1 2), (3 4)〉, then κ1(z
1) ≡ 0, so Uµ is a degenerate U-statistic

and

κ2(z
1, z2) =

4
(

m
2

) E
{

aIX (x1, x2, X 3,...,m)
}

E
{

aIY (y1, y2, Y 3,...,m)
}

,

where for any rank indicator I of order m � 4 we define

aI (w
[m]) =

∑

σ∈Hτ∗

sign(σ )I (wσ [m]).

By construction, all multivariate τ ∗ extensions satisfy the above conditions, as do τ ∗, D and R.

As noted by Nandy et al. (2016), the U-statistics corresponding to τ ∗ and D have, up to a scalar
multiple, the same asymptotic distribution under the null hypothesis that X ⊥⊥ Y and (X , Y ) are
drawn from a continuous bivariate distribution. We give a simple proof of this fact, as well as
showing that UR has an asymptotic distribution that is also a scalar multiple of the others, and
clarify the constant multiple by which the distributions differ.

PROPOSITION 7. Let

Z =

∞
∑

i=1

∞
∑

j=1

1

i2j2
(χ2

1,ij − 1),

where {χ2
1,ij : i, j ∈ N+} is a collection of independent and identically distributed χ2

1 random

variables. Then n Uτ∗ → 36Z/π4, and both n UD, n UR → Z/π4 in distribution.

To better understand at what sample size n the finite-sample distributions of Uτ∗ , UD and
UR become well approximated by their asymptotic distributions, Fig. 2 plots the total variation
distance between kernel density estimates of the finite-sample distributions of Uτ∗ , UD and
UR for n ∈ {15, 30, 60, 120, 240} against the probability density functions of their asymptotic
distributions. We observe good agreement even for n = 60. Unfortunately, clarifying the exact
asymptotic behaviour in higher dimensions seems significantly more difficult than in the bivariate
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(b)

Fig. 3. Kernel density estimates of the finite-sample distributions of (a) n Uτ∗
J

and (b) n UD for samples of size n = 70
taken from (X , Y ), where X , Y1, Y2 ∼ N (0, 1), (Y1, Y2) are jointly normal with correlation ρ, and X ⊥⊥ Y . Here ρ

varies in {0, 1/5, . . . , 1}, with the lighter lines corresponding to kernel density estimates for smaller values of ρ.

case. In part this is because, unlike in the continuous bivariate case, the distributions of the random
vectors X and Y influence the asymptotic properties of our multivariate U-statistics. Indeed, even
when r = 1, s = 2, and X and Y are normally distributed, Fig. 3 suggests that the correlation
between Y1 and Y2 affects the large-sample behaviour. Because of these difficulties, we leave this
problem for future work.

6. SIMULATIONS

All of the following experiments were run in R (R Development Core Team, 2018) using the
package SymRC, which can be obtained from https://github.com/Lucaweihs/SymRC.

We test whether a univariate response Y is independent of a set of covariates X = (X1, . . . , Xr),
using the U-statistics corresponding to D, R, τ ∗

P and τ ∗
J .As explicit asymptotic distributions for UD,

UR, Uτ∗
P

and Uτ∗
J

are not known, we will use permutation tests. Unfortunately the computational
complexities of UR, Uτ∗

P
and Uτ∗

J
are such that, while it is possible to perform permutation tests for

a single moderately sized sample, it becomes computationally prohibitive to perform the many
thousands of tests needed for Monte Carlo approximation of power. We therefore approximate
the results of permutation tests in the following way. First we create a reference distribution
for our U-statistic of interest under X ⊥⊥ Y by, for R = 1000 replications, randomly generating
x1, . . . , xn independently from the marginal distribution of X and y1, . . . , yn independently from
the marginal distribution of Y and saving the value of the U-statistic for this dataset. For an
independent and identically distributed sample D = {(x̄1, ȳ1), . . . , (x̄n, ȳn)} from the true joint
distribution of (X , Y ), we then compute a p-value as the proportion of observations in the reference
distribution that are greater than or equal to the value of the U-statistic when computed on D.

This procedure differs from a standard permutation test only in that the reference distribution,
and hence the critical value for rejection, is slightly different. Empirical tests using small samples
suggest, however, that results obtained with the above procedure generalize well to those obtained
using a true permutation test. Computing UD is sufficiently fast that we do not need to use the
above procedure and instead employ a standard permutation test.

For comparison, we compute the power of the permutation test based on the distance covari-
ance dcov, as computed by the R package energy (Rizzo & Szekely, 2016). While dcov is not
a nonparametric measure, we can create a nonparametric version of it by instead considering
the measure drank

cov = dcov{(FX1[X1], . . . FXr [Xr]), (FY1[Y1], . . . , FYs[Ys])}; we also compute the
power of a test based on this measure. Of course, in practice, we do not know FX1 , . . . , FYs and
so must estimate them with the marginal empirical cumulative distribution functions. In each
of our simulations, we estimate the power using 1000 sample datasets from the relevant joint
distribution.
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Fig. 4. Empirical power of permutation tests using UD (short-dashed line with symbol D), UR (medium-dashed,
R), Uτ∗

P
(dotted, P), Uτ∗

J
(dot-dashed, J), dcov (long-dashed, C), and d rank

cov (short-long-dashed, E) in the continuous
case. The horizontal dashed line shows the nominal 0·05 level. Here σ is the standard deviation of the additive
noise ε. In panel (a), the line with symbol T corresponds to dcov after applying the strictly increasing transformation

y 	→ sign(y) log(|y| + 10) to Y .
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Fig. 5. Empirical power of permutation tests of independence for a jointly discrete distribution when
n ∈ {16, 20, . . . , 48}. See the caption of Fig. 4 for the correspondence between line types and tests.

We consider two cases in which we generate samples of size 50 from jointly continuous
distributions. First we set r = 2, let X1 and X2 be independent samples from a N (0, 1) distribution,
and take Y = X1X2 + ε where ε ∼ N (0, σ 2) with σ ∈ {0, . . . , 5}. Figure 4(a) depicts the power
of the tests of the hypothesis that X ⊥⊥ Y . For comparison, we include the power of the distance
covariance when Y has been monotonically transformed by the function f (y) = sign(y) log(|y|+

10); this transformation substantially reduces the power of the distance covariance while having
no impact on the power of the other tests as they are nonparametric. In the second case, we let
X1, X2 and ε be as above but define Y = exp{−(X1 − X2)

2} + ε. Figure 4(b) displays the power
of the tests as σ varies in [0, 2]. The power of the test based on τ ∗

J is always near the nominal
0·05 level, suggesting that τ ∗

J (X , Y ) = 0 and hence that τ ∗
J is not D-consistent in this case.

We also consider two cases in which (X , Y ) is generated from a jointly discrete distribution.
Unlike in the continuous case, the sample size n will vary with n ∈ {16, 20, . . . , 48}. First,
we set r = 2, let X1 and X2 be independent samples from a Ber(1/2) distribution, and take
Y = XOR(X1, X2). We compute the power of our tests for various sample sizes and plot the results
in Fig. 5(a). As we would expect from Example 2, the power of the test based on τ ∗

J equals zero
at all sample sizes. Secondly, we set r = 3, let X1, X2 and X3 be independent samples from a
Ber(1/2) distribution, and define Y = XOR(X1, X2, X3). Figure 5(b) displays the power of the tests
in this setting. Unlike in the previous case, the power of the test based on τ ∗

J is quite high; again,
recall from Example 2 that this is because r is odd.
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Fig. 6. Empirical power of permutation tests of independence when
n ∈ {16, 20, . . . , 48}. Here Y ∼ Ber[expit{6 sin(X1X2)}] so that the
joint distribution (X , Y ) is neither jointly continuous nor jointly dis-
crete. See the caption of Fig. 4 for the correspondence between line

types and tests.

We conclude with a mixed case, where the covariates X1 and X2 are continuous but the
response, Y , is binary. In particular, we let X1 and X2 be independent N (0, 1) while Y ∼

Ber[expit{6 sin(X1X2)}]. Our empirical power computations are displayed in Fig. 6.
No independence test dominates the others in our simulations. The fact that the nonparametric

tests often perform nearly as well as, or better than, the distance covariance is surprising, however,
as they are invariant with respect to such a wide range of transformations. Indeed, drank

cov never
performs substantially worse than dcov in our experiments. While it is certainly not a proof, the
fact that the tests based on τ ∗

P have power beyond the nominal level in all cases suggests that,
unlike τ ∗

J , perhaps τ ∗
P is indeed D-consistent.

Although the use of orthogonal range query data structures reduces the asymptotic complexity
of computing our U-statistics of interest, such results give little guidance on which algorithms
should be used for realistic sample sizes. In empirical experiments, see the Supplementary
Material, we find that UD, UR and Uτ∗

J
all substantially benefit from the use of a non-naïve

approach in practical samples. However, the U-statistic Uτ∗
P
, probably because of the many large

constant factors that are hidden in the asymptotic analysis, is more quickly computed using a
naïve approach.
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Supplementary material available at Biometrika online includes all the proofs, a review of the
asymptotic theory of U-statistics, a description of a class of D-consistent summed symmetric rank
covariances generalizing Hoeffding’s D, and experiments demonstrating the empirical efficiency
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