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ABSTRACT

Using the data from the Sloan Digital Sky Survey and the Gaia satellite, we assemble a pure
sample of ~3000 Blue Horizontal Branch (BHB) stars with 7-D information, including posi-
tions, velocities and metallicities. We demonstrate that, as traced with BHBs, the Milky Ways
stellar halo is largely unmixed and can not be well represented with a conventional Gaussian
velocity distribution. A single-component model fails because the inner portions of the halo
are swamped with metal-rich tidal debris from an ancient, head-on collision, known as the
“Gaia Sausage”. Motivated by the data, we build a flexible mixture model which allows us
to track the evolution of the halo make-up across a wide range of radii. It is built from two
components, one representing the radially anisotropic Sausage stars with their lobed velocity
distribution, the other representing a more metal-poor and more isotropic component built up
from minor mergers. We show that inside 25 kpc the “Sausage” contributes at least 50% of
the Galactic halo. The fraction of “Sausage” stars diminishes sharply beyond 30 kpc, which
is the long-established break radius of the classical stellar halo.
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1 INTRODUCTION

Understanding the dynamics of the Milky Way’s stellar halo is
not only key to understanding the formation mechanism of the
halo itself (Eggen et al. 1962; Searle & Zinn 1978), but also for
constraining the mass distribution of the Milky Way (Xue et al.
2008; Gnedin et al. 2010; Deason et al. 2012), the history of struc-
tures accreted in the stellar halo (Frenk & White 1980; Johnston
et al. 2008; Belokurov et al. 2018) and hence the cold dark matter
(CDM) paradigm of hierarchical structure formation. Due to the
wide range of applications for detailed measurements of the ve-
locity ellipsoid of the stellar halo, much effort has been made in
understanding its kinematic structure (Frenk & White 1980; Bekki
& Chiba 2001; Sirko et al. 2004; Battaglia et al. 2005; Smith et al.
2009a; Kafle et al. 2012, 2013). This characterization has some-
times proceeded by using the full phase space distribution func-
tion (Williams & Evans 2015; Das & Binney 2016). More com-
monly, just the first and second moments of the velocity distribu-
tion are measured (Chiba & Yoshii 1998; Xue et al. 2008; Bond
et al. 2010; Bowden et al. 2016; Cunningham et al. 2016).

These kinematic properties of the stellar halo can be com-
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pactly described by the anisotropy parameter (3 defined as:
Gg + 03,
202

B=1- M
where o, 09 and o4 are the velocity dispersions referred to Galac-
tocentric spherical polar coordinates (7,6, ¢). The usefulness of
B is greatly enhanced if the velocity dispersion tensor is aligned
in spherical polar coordinates, as otherwise there are cross-terms
which contain additional kinematic information.

Before the release of Gaia data release 2 (DR2), measure-
ments of 5 have been restricted to the nearby inner halo of the
Milky Way due to the lack of measurements of the proper mo-
tions of stars out to significant distances in the stellar halo (Chiba
& Yoshii 1998; Smith et al. 2009a; Belokurov et al. 2018). Thus, so
far, the attempts to gauge the halo anisotropy in the Galactic out-
skirts have been few and far between (see e.g. Cunningham et al.
2016; Kafle et al. 2017). With the advent of DR2, we now have un-
precedented access to the proper motions of stars deep in the stellar
halo (Gaia Collaboration et al. 2016, 2018). During the preparation
of this manuscript, Bird et al. (2018) measured the velocity disper-
sion in the stellar halo using a sample of ~8600 K-Giant stars from
the Large Sky Area Multi-Object Fibre Spectroscopic Telescope
(LAMOST) Data Release 5 (Cui et al. 2012). This study presented
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the first measurement of the evolution of the velocity ellipsoid in
the Milky Way, out to large Galactocentric radii.

With this paper, we aim to supplement the measurement of
Bird et al. (2018) in two ways. First, we analyze a complemen-
tary data set of Blue Horizontal Branch (BHB) stars from the Sloan
Digital Sky Survey’s (SDSS) Data Release 8, thereby using a dif-
ferent tracer sampled from different parts of the sky. Importantly,
the BHB distances outperform those of K-giant stars due to a much
weaker dependence on age and metallicity. Second, we carry out
a more in-depth analysis that imposes strong outlier filtering and
takes into account measurement error, deconvolving the observed
distribution via fitting of simplified Gaussian mixture models. Ad-
ditionally, our examination is motivated by the most recent detec-
tion of two distinct components in the nearby stellar halo. The inner
halo appears to be dominated by stars deposited in an ancient major
accretion event. This dramatic head-on collision deposited into the
Milky Way stellar debris on highly radial orbits (e.g., Belokurov
et al. 2018; Helmi et al. 2018). This gives rise to a characteris-
tic shape in velocity, the “Gaia Sausage,” a.k.a. “Gaia-Enceladus,”
a.k.a. “Kraken”. These mostly metal-rich stars are mixed with a
more metal-poor and isotropic halo component built up from a su-
perposition of various minor mergers (Myeong et al. 2018b). A
simple and robust prediction arises as to the behavior of the halo ve-
locity ellipsoid with Galactocentric distance. The “Sausage” stars
are not expected to travel far beyond their progenitor’s last apoc-
entre, shown to roughly coincide with the break in the stellar halo
(Deason et al. 2011, 2013, 2018). This implies that the fractional
contribution of this major merger to the Galactic halo varies with
distance and is predicted to diminish substantially beyond 20-30
kpc. Therefore, the overall halo’s velocity anisotropy should reflect
the change in the debris mixture, from radial to isotropic as a func-
tion of distance, or, more specifically from values close to 8 ~ 1
within 20-30 kpc to values close to 3 ~ 0 beyond 30 kpc.

We begin in Section 2 by describing the data that we have
used and how we have filtered it. Next, we describe our methods of
analyzing this data in Section 3. In Section 4, we present the results
of this analysis in the form of the kinematics inferred from our
models. Finally, we discuss the implications of our measurement
for the formation history of the Galaxy and conclude in Section 5.

2 DATA

We aim to measure the evolution of the velocity ellipsoid of the
Milky Way’s stellar halo as a function of Galactocentric radius. To
do this, we need 3D kinematic information for a large sample of
stars in the stellar halo. We supplement the proper motion mea-
surements of the Gaia satellite with spectroscopic radial velocity
and photometric distance relations for a large sample of Blue Hor-
izontal Branch (BHB) stars.

Our initial sample consists of a catalog of 4,985 BHB stars
compiled by Xue et al. (2011) out of data from SDSS DRS (Ai-
hara et al. 2011). The catalog includes sky positions, radial veloc-
ity measurements with error estimates, and distance estimates to
the stars. However, errors on these distance estimates are not pro-
vided. In order to have a more robust inference, we extract our own
distance and (more importantly) distance error estimates. We do
this by cross-matching this sample with SDSS to get the full pho-
tometry information and using it along with the distance estimator
described in Equation 7 of Deason et al. (2011) to produce our own
distance estimates (which are in good agreement with the catalog)
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Figure 1. The Removal of Sagittarius (Sgr) Stream Contaminants. Here,
we display the data in the plane of Sgr longitude A@ versus heliocentric
distance d},e1. The stars in our sample are shown as blue points. Top Panel:
The shaded regions on the plot mark the regions in which we would have
removed stars if they lay within 10° of the plane of the Sgr Stream. The
dark red (blue) region is associated with the leading (trailing) arm, while
the yellow region marks additional bins added on to the leading arm. Bot-
tom Panel: The sample that is left after performing the excision of the Sgr
Stream.

and distance errors, based on Monte Carlo propagation of uncer-
tainty from the photometric uncertainties. This method does not in-
clude systematic errors in the estimator of Deason et al. (2011). We
additionally retrieve metallicity information from cross-matching
our sample with the SDSS spectroscopic parameters table from
DR&. Including the requirement that the stars have measured metal-
licities leaves us with 4,879 BHBs.

To make sure we have a sample of BHBs which are appropri-
ate to use for this measurement, we make a few additional require-
ments of the data, namely:

1. The stars have astrometric measurements from the Gaia satel-
lite.

2. The stars lie within the color box for which the distance esti-
mator from Deason et al. (2011) is valid.

3. The astrometric excess noise measured by Gaia is less than 1
mas.

4. The fractional difference in photometric distance estimate
from Deason et al. (2011) and photometric distance estimate from
Xue et al. (2011) is less than 10%.

5. The parallax v and photometric distance dphoto satisfy @ —
1/dphoto < 40 . This helps us to remove possible Blue Straggler
contaminants (see below for more details).

After applying the above cuts, we are left with 4,126 BHBs.

MNRAS 000, 1-11 (2018)



2.1 Transformation from Measurement Space

We have the following quantities for each star: Right Ascension and
Declination (e, §), proper motions in Right Ascension and Decli-
nation (f« , f4s), errors in those quantities (o, , 0,5 ), covariance of
the proper motion measurements (cov (i« f45)), heliocentric radial
velocity (vnhel) and its error (o4, ,), the base 10 logarithmic helio-
centric distance to the star (Iog; o (dne1)), and its error (O1og, o (dpe;))-
Here, we assume that all observables (proper motions, radial ve-
locities, and logarithm of distance) are Gaussian distributed. Next,
we transform the observables to spherical polar coordinates in the
Galactic rest-frame. To account for measurement error, we Monte-
Carlo propagate the errors from the data space to our Galactocentric
coordinates. We then use these samples to compute the covariance
matrix of the 6-D phase space coordinates in the Galactocentric
frame for each star. We also assume that the resulting uncertain-
ties on the Galactocentric parameters are still Gaussian. This is not
strictly speaking correct, as the transformation does not preserve
the Gaussianity of the distributions. However, having checked the
kurtosis of the propagated distributions, we find that the effects of
any non-Gaussianity are relatively low.

After this transformation, we work with the Galactocentric ra-
dius (r), the velocity resolved with respect to spherical polar co-
ordinates (vr,vg,vs), as well as the errors and covariances be-
tween all these parameters. Note that in our convention, disc stars
have negative angular momentum: that is, (vg,disk) ~ —220
km/s. For the sun’s Galactocentric phase space coordinates, we
use the astropy (?) default values with peculiar motion vy =
(11.1,—232.24,7.25) km/s in Galactocentric Cartesian coordi-
nates, galactocentric distance of rgc, = 8.3 kpc, and height above
the disk of zo = 27 pc which come from Reid & Brunthaler
(2004), Gillessen et al. (2009), Chen et al. (2001), and Schonrich
et al. (2010).

2.2 Removal of Sagittarius

In order to make an unbiased measurement of the shape of the ve-
locity ellipsoid, we remove one obvious unrelaxed substructure, i.e.
the Sagittarius (Sgr) stream. We use the Sgr coordinate system de-
fined in the Appendix of Belokurov et al. (2014). Restricting to
stars within 10° of the plane of the Sgr Stream, we then use the
geometry of the stream given by Hernitschek et al. (2017) to re-
move stars based on their heliocentric distance, rather than rely-
ing on sky position alone, thereby avoiding over-cleaning our data.
Specifically, at a given Sgr longitude Ao, we remove any star which
satisfies:

0 < dhelio - dsgr < 3Usgr + 2 (26+ (USgT)) (2)
or

_3Usgr -2 (25— (Usgr)) < dhelio — dsgr <0 3

where dsgr, Osgr, 20— (0sgr), and 204 (0sgr) are taken from
columns 3,8,11, and 12 (respectively) of tables A4 and AS of Her-
nitschek et al. (2017), and dhelio is the heliocentric distance to a
given star. We also performed removals which included variation
on the mean estimated distance to the Sgr Stream (dsg; ), including
the error estimates on this quantity, d+ (dsgr) and 6— (dsgr). This,
though, made no significant difference to the resulting purity of the
subtraction or the number of stars retained. In an admittedly rather
ad hoc manner, we added two additional bins to the high Ao end
of the leading arm of the Sgr Stream, which mimic the properties
of the last bin on that end. We did this in order to remove additional
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contaminants that we observed in the data. This filtering process is
illustrated in Fig. 1 and reduces our sample size to 3,404 stars.

2.3 Blue Straggler Contaminants

Even after removal of the Sgr Stream, there remain a number of
distinct outliers in the distribution of Galactocentric tangential ve-
locities. In Fig. 2, we illustrate where these outliers are located in
the space of Balmer line shapes and in the space of SDSS colors.
As we are using the photometric distance relation for BHBs from
Deason et al. (2011), if we applied this relation (unknowingly) to a
Blue Straggler (BS) star, which typically is ~ 2 magnitudes intrin-
sically fainter, it would overestimate the distance. This star would
then appear to be moving at much greater velocity on the sky. This
explains the distribution we see in Fig. 2. Stars with large tangen-
tial velocities preferentially lie in the regions of Balmer line shape
space and color-color space where we expect the largest contami-
nation from BSs (see e.g. Figure 2 of Deason et al. (2011) or Figure
1 of Xue et al. (2011)). Motivated by this correlation, we remove all
stars with SDSS colors satisfying u —g < 1.15and g—r > —0.07
as well as stars satisfying v — g < 1.15 and ¢(y) < 0.925. The
first color-color cut is illustrated in the right panel of Fig. 2. After
applying these cuts, we are left with a sample of 3,112 BHB stars.

Finally, we remove stars with [Fe/H] > —0.75, as this sample
of stars, like the high tangential velocity stars of Fig. 2, are observed
to occupy the same areas of Balmer line shape space and color-
color space susceptible to BS contamination. These high metallicity
stars also lie in the region of velocity space associated with the disc,
with small radial velocity dispersion and high mean rotation. It then
makes sense that this contamination appears at high metallicities.

This final cut leaves us with 3,064 BHBs. Assuming that our
cuts in Section 2 did not remove BSs in a spatio-kinematic biased
fashion (this is almost certainly not true for cuts 2 and 5), then we
can place a conservative estimate on the number of Blue Straggler
contaminants in the Xue et al. (2011) catalog. There are 236 stars
removed by our color-color space cut, an additional 56 are removed
by the color-Balmer line shape cut, and 48 more are removed by the
metallicity cut. Assuming a significant fraction of these 340 stars
are actually BSs we can estimate the contamination at roughly 10%
of the data set. This is indeed a small amount of contamination, but
important to take in to account when making kinematic measure-
ments. Based on the remaining stars with high tangential velocity,
we expect our contamination to be much less than 1% after making
the cuts described here.

3 ANALYSIS

We now wish to understand how the velocity ellipsoid evolves as a
function of Galactocentric radius. In order to account for the mea-
surement errors, we implement a Gaussian deconvolution of the
data performed in velocity space augmented by metallicity.

We take a relatively simple approach to this deconvolution by
considering only four bins in Galactocentric radius. Motivated by
the work of Belokurov et al. (2018) and Deason et al. (2018), we
place the edge of our last bin at just beyond the apocenter of the
ancient, massive, radial accretion event suggested by these works.
We choose the other bin edges so that the first three bins have
roughly the same number of stars. The edges of these four bins are
r = 4.9,13.1,19.2, 30,67.93 kpc, the first and last edges being
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Figure 2. Kinematic and Spectral Parameters of the BHB sample after Removal of Sgr Stream Contaminants. Left Panel: We show the distribution of
Galactocentric tangential velocities. Stars with total tangential velocity greater than 500 kms ! are plotted as large points in purple. The color of the points
indicates the magnitude of their tangential velocity, with more pink being higher velocity. Middle Panel: We show the distribution of the BHB stars in the
space of the scale width, b(~), of the H~ line versus the line’s shape, c¢(-y). The black dotted line is the dividing line used in Deason et al. (2011) to divide
Blue Stragglers (BSs) from BHBs (although this was in the space of b vs. ¢ for the combined parameters across the Hy, HJ, and HS lines). We see that the
higher velocity stars lie preferentially on the BS side of this dividing line. Right Panel: We show the distribution of the BHBs in SDSS color-color space, where
apparent high-velocity stars clearly lie preferentially in one corner of the diagram. According to Deason et al. (2011), this is exactly the region of color-color
space where we expect BS contamination to be highest. Motivated by this, we exclude all stars within the black-box from our study.

set by the limits of the data. These bins contain 880, 895, 884, and
405 stars, respectively. Since we are using relatively large distance
bins and the BHBs have small photometric distance errors, the arti-
ficial movement of stars between bins due to distance uncertainties
should be negligible.

We investigate two different deconvolutions of our data. The
first implements a single Gaussian, while the second implements
a version of a Gaussian Mixture Model (GMM) informed by the
works of Belokurov et al. (2018), Myeong et al. (2018b), Lancaster
et al. (2018) and Deason et al. (2018). In all of our fits, we de-
fine a likelihood function (a single Gaussian in the first case, a sum
of Gaussians in the second) and sample the resulting posterior us-
ing the program emcee, which is an implementation of Goodman
and Weare’s Affine Invariant Markov Chain Monte Carlo Sampler
(Goodman & Weare 2010; Foreman-Mackey et al. 2013). For both
cases, we use 200 walkers and use 2000 steps as our ‘burn-in,’ fol-
lowed by 2000 steps to explore the parameter space. We addition-
ally verify the validity of our fitting code on fake generated data.

3.1 Single Gaussian Model

We fit each of the four Galactocentric distance bins with a Gaussian
distribution whose means, variances, and covariances in all dimen-
sions are free parameters (except for covariances between metal-
licity and velocity space, which are set to zero). We additionally
include an outlier component that consists of a single Gaussian.
This outlier component is isotropic in the space of Galactocentric
tangential velocities, and the width of the Gaussian in this space is
allowed to vary as a free parameter, 0.t The properties of the out-
lier in the space of radial velocity and metallicity take fixed values,
described further below. We include this component to account for
any further contamination from Blue Stragglers, which will have
much larger tangential velocity dispersion than the rest of our sam-
ple. Our fit to each bin then has 13 free parameters: the mean veloc-
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Figure 3. Evolution of the correlation coefficients between the
different Galactocentric  spherical-polar  velocities. The correla-

tion between two random variables X and Y is defined here as
Corr(X,Y)=Cov(X,Y)/y/Var(X)Var(Y). We illustrate these quan-
tities instead of the tilt of the velocity ellipsoid as these parameters
remain small even when the ellipsoid has nearly equal variance in two
given directions. Note that the radial bins are artificially offset so that the
errorbars are easier to observe. These errorbars span the 16th to the 84th
percentiles of the 1d posteriors in each of these parameters.

ities fty,., v, and Hogs the dispersions ov,., 0y, and Tugs and the
covariances (‘tilt’) in these velocities Cov(ve, vr ), Cov(vg, vy ) and
Cov(vg, vg), the mean metallicity ji(re/m), the dispersion in metal-
licity o (e 1), the dispersion in tangential velocity of the isotropic,
zero-mean outlier distribution oout, and the fraction of outlier con-
tamination fous.
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Parameter Priors r=49—-13.1kpc r=13.1—-19.2kpc 7 =19.2—-30.0kpc 7 =30.0—67.93 kpc
o,y [km/s] - 0.51%31% 7.42%278 0.887279 6.811551
fhog [kn/s] - 7.1272%9 9.23%2:58 3.9172:42 15.2873-38
fho,. Tkm/s] - —-10.897552 —0.091539 —5.0373-38 ~5.691589
Ty [k/s] [0.400] 95.0112:33 81.0712:53 79.3872:38 79.811559
v [kmi/s] [0.400] 87.847231 81.6412:5% 69.627193 85.821458
v, [kmis] [0.400] 140.0913-39 123.90732-59 104.947251 96.571354
Corr(vg,vg)  [-0.5,0.5] 0.051053 —0.011963 0.02+554 —0.1015:58
Corr(vg,vr)  [-0.5,0.5] 0.097053 0.05195% 0.0719:58 0.0019-5¢
Corr(vr,vg)  [-0.50.5] 0.011953 0.07195% 0.0479:58 0.0419 56
[i[re /1) [dex] [-3,0] —-1.72%561 —-1.75%001 —-1.757061 ~1.84715:62
0oy [dex] [0,4] 0.197061 0.207561 0.207051 0.22+952
Oout [km/s]  [500,3000]  1601.657 93550 1594.84195375 1263.467 338513 1315.08 1356954
fout [0,0.01] 0.000979-0585 0.001079-0035 0.001279-0524 0.002570:0032
In Limed - -16260.83 -16279.96 -15865.73 -7556.01

Table 1. Priors and Posterior estimates on all parameters in the single Gaussian fit, with outlier model. All priors are uniform within the bounds quoted,
those without bounds, we place no prior on. Values quoted are 16th, 50th, and 84th percentiles of the 1d PDF in each parameter. In the last row we quote the
likelihood values evaluated at the 1d medians in each parameter in each bin.

We do not assume alignment of the dispersion tensor in spher-
ical polars. In fact, the alignment of the velocity dispersion tensor
is an important diagnostic of the gravitational potential (Smith et al.
2009b; An & Evans 2016). From earlier studies based on samples
of halo stars with noisier proper motions, the covariance of veloc-
ities in spherical polar or tilt is believed to be small (e.g., Smith
et al. 2009b; Evans et al. 2016). This seems to be true of the RR
Lyrae population in the stellar halo, which has been recently anal-
ysed using Gaia DR2 proper motion data by Wegg et al. (2018).

The likelihood for this model, £(D|0), where D is the vector
of all data points, and 6 is the vector of model parameters, is given
by:

cDlo) =[] > fLi(Dil6) “4)

i j=d,o

Here, the product index ¢ runs over all data points and the sum
index j runs over the two different components of the model (1)
the ‘data’ component, denoted by a subscript d and (2) the ‘outlier’
component denoted by a subscript o. Also, f; is the fraction of
component j that makes up the total data set. We then have the
likelihoods for the components defined as:

La(D;i0) =N (Vi|u,z?)N([Fe/H]i\M[Fe/H],U[Fe/H],i) (%)

where N denotes a normal distribution, v; is the velocity of
data point ¢ in Galactocentric spherical polar coordinates, f
(Kvg s fog s fv,.) is the mean in velocity space of the single Gaus-

sian. The full covariance matrix in velocity space 3¢ is a sum
of the covariance matrix from measurement error X; and the co-
variance matrix of the model being fit 9. Additionally, [Fe/H]; is

MNRAS 000, 1-11 (2018)

the metallicity of data point 4, while i[pe/m) and o[pe/m),; are the
mean and dispersion. Again, the latter quantity is a combination (in
quadrature) of the individual measurement error and the standard
deviation of the model.

The outlier component of the model is relatively rigid, its
properties being described solely by its fractional contribution and
dispersion in tangential velocity. Its likelihood is defined as:

Lo(Di]0) = N (vi]0,27) N ([Fe/H]; |ptipe/n1s ofpe/my,i)  (6)

where v; is the velocity of data point 7, O denotes that the out-
lier has zero mean in the velocity space, and X7 3+ X%is
the covariance matrix of the distribution which is a combination of
measurement error in the velocity space 3; and the width of the
outlier component X° = diag (of,ut, o2ut, af,out), where o, out
is the dispersion in the radial velocity space and is set to 150 km/s
and ooyt is the dispersion in the tangential velocity space and is
allowed to vary as a free parameter of the fit. The parameters of the
outlier component in metallicity space are also fixed throughout the
fit KFe/H] = —1.75, and O[Fe/H],i = 0.2.

3.2 Gaussian Mixture Model

Our second model is a Gaussian Mixture Model (GMM) (Press
et al. 2007) that is motivated by the results of several recent works
which have suggested that the stellar halo could be largely domi-
nated by a single, ancient, extremely radial merger (Belokurov et al.
2018; Myeong et al. 2018a,b; Deason et al. 2018; Kruijssen et al.
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Figure 4. The Single Gaussian fit to the Velocity Distributions. We show the results of independently fitting each of our four distance bins, allowing for
variation in all parameters of the distribution save for covariance between the velocity components and metallicity. We compare our model to the data by
sampling from our best-fit model (specified by 1-D posterior medians) and convolving each sampled point with a randomly selected error from the data. This
should provide a fair way of comparing the model with the data and takes into account the uncertainties. It is clear from the tangential velocity distributions
that the data distribution is not well-fit by a single Gaussian. Note that since the outlier model has a negligible contribution, we do not show it here.

2018; Helmi et al. 2018). Our mixture model consists of two com-
ponents, one representing the more metal-poor, largely isotropic
stellar halo, and the other representing the more metal-rich, radi-
ally anisotropic stars from the putative massive, accretion event (the
“Sausage”). This dichotomy is clearly seen in the plots of the stel-
lar halo in action space at different metallicities presented in e.g.
Belokurov et al. (2018) and Myeong et al. (2018b). In the mixture
model, anticipating the insights gained from the results of our sin-
gle Gaussian fit, we do not include any outliers, nor do we allow
any tilt in the velocity ellipsoid. These assumptions significantly
reduce the complexity of the model, speeding our calculations and
helping avoid possible degeneracies that could arise from a large
number of parameters.

The first of our two components is a single Gaussian, meant
to represent the large isotropic portion of the halo, with zero mean
in all velocity components and whose velocity tensor in the tangen-
tial direction is enforced to be isotropic (0t,h = v, = 0v,). We
additionally allow the mean metallicity fi[re 1) 1, metallicity dis-
persion ojre/n),h, and fractional contribution of this component,

fn, to vary. This then leaves five free parameters describing this
component {1, Tu, by [U[Fe/H],h> O[Fe/H],hs Jh}-

The second - or the “Sausage” - component is built from two
Gaussians, which are identical except for their mean radial veloci-
ties. They are set as fi,,.,1 = +0 and fiy,.,2 = —J, where the radial
velocity separation ¢ is treated as a free parameter in the fit. This
heuristic model mimics the behaviour found in the local sample of
SDSS-Gaia stars from Belokurov et al. (2018), in which, after sub-
tracting a zero-mean Gaussian Mixture model, there are distinct
‘lobes’ at high positive and high negative radial velocity. Our pa-
rameterization has a simple physical explanation. If a component of
the stellar halo is well-mixed and highly radially anisotropic, then
the velocity distribution of the stars can still be Gaussian to a good
approximation at any spot (e.g., Osipkov 1979; Merritt 1985; Evans
& An 2006). However, if the component comes from a single accre-
tion event, then a sample restricted to a small volume lying between
the apocenters and pericenters of stars from the accretion event will
be missing the stars ‘turning around’ on their orbits. Thus, we will
only observe stars at large negative (incoming) or positive (outgo-
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Parameter Priors r=49—-13.1kpc r=13.1—-19.2kpc 7 =19.2—-30.0kpc 7 =30.0—67.93 kpc
fix [km/s] - —4.49755° 11.547225 14137232 —27.39755-40
[4{Fe /1), [dex] [-3,01 -1.821963 -1.887051 ~1.8579:52 -1.861552
H(Fe ] ,x [dex] [-3,0] —-1.621962 —1.601552 —-1.6279:52 -1.29%919
O(re/H], 1 [dex] [0,4] 0.10795¢ 0.097053 0.1575:62 0.17+054
O[re,H],c [dex] [0,4] 0.217952 0.181062 0.17+5:62 0.12779-29
O, 1 [kV/s] [0,400] 129.2415-59 122.031538 113.6272%9 95.2113-55
o4 1 [kmis] [0,400] 114.27%558 105.411392 96.727358 79.331357
Top,r [km/s] [0,400] 109.93 11191 78.2115 3 62.9177-59 176.3618%-75
ot [km/s] [0,400] 58.1813-18 34.0271-78 29.1472:9¢ 145.69737-78
Sout [km/s] [0,500] 104.1611 551 98.6015-2% 67.757523 82.87157 30
fn [0.01,0.99] 0.52705¢ 0.551053 0.5575:53 0.961052
10 Lomed - ~16205.77 —16084.97 ~15714.09 —7552.66

Table 2. Priors and Posterior estimates on all parameters in the Gaussian Mixture Model fit. All priors are uniform within the bounds quoted, those without
bounds, we place no prior on. Values quoted are 16th, 50th, and 84th percentiles of the 1d PDF in each parameter. In the last row we quote the likelihood

values evaluated at the 1d medians in each parameter in each bin.

ing) radial velocity. The two ‘lobes’ are expected to be overlapping
near the peri and the apo of the debris and move further apaprt in
between the turning points. Given the fact that the orbital velocities
increase towards the Galactic Center, combined with the action of
the apsidal precession, the maximal separation between the lobes is
likely attained at small Galactocentric radii.

For this Sausage component, in addition to §, we then have
the following free parameters representing the shape of each of
the two Gaussians: the radial velocity dispersion o, r, the tangen-
tial velocity dispersion, o;,r = 0y, = 0v,, the mean metallicity
[Fe/H],r» and metallicity dispersion o[pe11),.. We also allow for
mean rotation fiy,,» in this component, motivated by the findings
of Belokurov et al. (2018), Helmi et al. (2018), and Myeong et al.
(2018Db), giving us six free parameters.

We then have the likelihood for this GMM defined similarly
to Eq. (4) as:

LDlo) =1 D_ fiL:(Dil6) @)
i j=r,h

where ¢ is again a product over the data points, and j is a sum over
the different components of the model (r for the radially anisotropic
component and h for the isotropic halo component), while f; de-
notes the fractional contribution from component j.

The likelihood of the isotropic halo component is given by:

Ln (D;|0) =N (Vz’\O, 2];) N ([Fe/H]iLLL[Fe/H],h: J[Fe/H],i)
(®

where the velocities are normally distributed about zero mean with
a covariance matrix X} which is a combination of measurement
error and the intrinsic dispersions.

The likelihood of the radially anisotropic or Sausage compo-
nent is a bit more complicated. It is given by:

x N ([Fe/H],| e a),r: OFe 1) )
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where the means are ;1 = (/1% ,0, 6), o = (u%, 0, 75), and the
covariance of the Gaussian 3Jj is a combination of the measurement

error 3J; and the intrinsic dispersions X" = diag o2 5 o2 & agr

We then fit each Galactocentric distance bin individually using the
above likelihood. We do not require the Sausage component to have
a larger radial velocity dispersion than the isotropic component, nor
do we impose any requirement that it is of higher metallicity. We
adopt very conservative (unifrom) priors for each parameter in our
fit and allow for each of these characteristics to arise from the fit.

For the single-Gaussian component fit to the data there are a
total of 52 free parameters (13 for each of the four distance bins)
while for the two-component model there are 44 free parameters
(11 for each of the four distance bins). In this sense, the two-
component model actually has fewer degrees of freedom than the
single Gaussian model.

4 RESULTS

After sampling the model parameters using emcee, we obtain their
posterior distribution functions (PDFs), which have only a single
mode and have shapes very close to Gaussian. In Tab. 1 and 2
we show the parameter estimates from our fits, quoted as the 16th,
50th, and 84th percentiles of the 1d posteriors in each parameter.
For each model parameter, we use the median (50th percentile) of
the 1d PDF as a parameter estimate. To assess the performance of
the model against the data, we use these estimated best-fit param-
eters to sample the model and convolve each sampled point with a
Gaussian error sampled randomly from the data set. The resulting
predictive distributions can be compared to the data in Fig. 4, 5,
and 6.

Upon inspection of Fig. 4, it is clear that the distribution of the
data is not well explained by a single Gaussian component. This is
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Figure 5. The Gaussian Mixture Model (GMM) Fit. We show the results of independently fitting each of our four distance bins, allowing for variation in all
parameters of the model. Similarly to Fig. 4, in order to compare data to model, we sample from our best fit model and convolve each sampled point with a

randomly selected error from the data set.

most evident in the distributions of tangential velocities. Especially
in the inner three radial bins, the central regions of the distribution
exhibit strong deviations from the best-fit model.

Fig. 5 clearly shows that the 2-component mixture model is a
much better fit to the shape of the velocity ellipsoid, especially in
the inner halo » < 30 kpc. More quantitatively, one can tell that
the 2-component mixture model provides a better fit to the data
from parameters provided in the bottom row of Tables 1 and 2:
the difference of the sum of the likelihoods over all distance bins is
In (Lmed,cmM) —In (Limed,single) = 405 despite the smaller num-
ber of parameters in the mixture model. We enforce no constraint
that requires the Sausage component to be dynamically colder in
the tangential velocities: this comes out naturally from the fit. Sim-
ilarly, the Sausage is naturally chosen to be more metal-rich by our
fit.

In Fig. 6 we show the residuals of our two models in the plane
of Galactocentric radial velocity versus Galactocentric azimuthal
velocity in the third Galactocentric distance bin (rge = 19.2 — 30
kpc). This comparison further illustrates the failings of the single
Gaussian model as well as the reason why the ‘sausage’ component
is picked out to be the tangentially cold component in our GMM fit.

Another indication that this model makes good physical sense
is the behavior of the parameters of the fit as a function of radius,
as shown in Fig. 7. The fractional contribution of the Sausage falls
sharply at distances beyond 20 kpc, as the isotropic component be-
comes dominant. This corresponds to the proposed apocentric pile-
up of stars connected with the ancient, radial accretion event (e.g.,
Deason et al. 2018). The velocity separation of the lobes also de-
creases with increasing radius. This is expected from the physical
interpretation of the lobes as the infalling and outgoing parts of a
highly eccentric merger event. The lobes attain the furthest sepa-
ration close to the Galactic Center, when the stars are moving the
fastest. They then approach each other on moving outwards, es-
sentially totally overlapping with one another in the third distance
bin. According to this interpretation, we would expect the isotropic
component to become completely dominant beyond the apocenter
radius ~ 20 — 30 kpc and the § parameter to therefore become
largely unconstrained, which is exactly what we see.

In Fig. 8, we summarize the kinematic properties of the Milky
Way’s stellar halo inferred from the fits. We display how the veloc-
ity dispersions in the radial and tangential directions evolve for our
four different distance bins. In light blue, the quantities predicted
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Figure 7. The Behavior of the components in the GMM fit with Galacto-
centric distance. Values shown are 1-D medians of the given parameter over
the posterior, the errors are based on th 16-th and 84-th percentiles of the 1-
D posterior distribution. Top panel: We show the evolution of the fractional
contribution of the two components. Note that the radially anisotropic or
Sausage component falls off dramatically beyond ~ 20 kpc. Bottom panel:
We show how the separation of the lobes in Galacto-centric radial velocity
of the Sausage changes.

are calculated by computing the standard deviation in each veloc-
ity component directly from the data (and subtracting the mean
velocity error in quadrature, cf Bird et al. 2018). Note that to do
this measurement we also perform ‘sigma-clipping’ whereby we
recursively remove any star that lies outside of 40 according to the
calculated standard deviation. This helps to beat down the contam-

MNRAS 000, 1-11 (2018)

ination by outliers such as Blue Stragglers. We then show the quan-
tities inferred by our single Gaussian Model (in pink), along with
each component of the GMM (isotropic in light green and radial in
dark blue). Finally, the orange curve gives the combination of both
components in the GMM model, which is derived from sampling
the parameters of the GMM model.

There are two main points to be made. The first comes from
a comparison of the dispersion calculated directly from the data
(when mean error is subtracted in quadrature), and that inferred
from deconvolution. The lesson to be learned here is that taking
measurement error in to account (in a rigorous way) when perform-
ing calculations such as these is important and can lead to different
answers, especially when the errors are large or when the dataset
contains a mixture of points with wide range of uncertainties. In
fact, testing this method on fake data, generated to have similar
errors to those found in our last Galactocentric distance bin, we
found that simple dispersion-based method underestimated /3 by
about 0.4. The second point here is, surprisingly, that changing the
underlying model being fit to the data does not result in drastically
different estimates of the second moments of the velocity ellipsoid.
While our GMM model is clearly a much better fit to the data, it
predicts generally the same velocity dispersions as the single Gaus-
sian fit. This is most likely due to the fact that the contribution of
the two components of our GMM is either nearly equal (inner halo)
or completely dominated by one component (outer halo), meaning
that a single Gaussian fit would try to fit equally between the two
components, resulting in a similar velocity dispersion.

5 CONCLUSIONS

‘We have assembled a high-purity set of blue horizontal branch stars
(BHBs) with spectroscopic data from the Sloan Digital Sky Survey
and astrometric data courtesy of the Gaia satellite. The sample of
3064 BHBS has seven dimensional phase space information (posi-
tions, velocities and metallicities). This enables the kinematic prop-
erties of the BHBs in the Milky Way halo to be studied out to ~ 40
kpc.

Traditionally, the stellar halo has often been represented by
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Figure 8. Radial Evolution of the Kinematic Properties of the Halo. Light
green lines represent the isotropic component of the GMM, while the dark
blue represents the Sausage component. Orange lines represent the mea-
surement from the combination of two components. Pink lines represent the
results for the single Gaussian model. Finally light blue lines are used for
quantities calculated directly from standard deviations of the data, includ-
ing sigma clipping, and compensating for measurement error in quadrature.
Values shown are 1-D medians of the given parameter over the posterior,
the errors are based on th 16-th and 84-th percentiles of the 1-D posterior
distribution. Top Panel: Radial velocity dispersion with Galactocentric ra-
dius. Middle Panel: Tangential velocity dispersions. For the ‘Data’ and the
‘Single Gaussian’ models there is a difference between the dispersion in the
polar velocity o4, and the azimuthal velocity o, & these are shown sepa-
rately as the dash-dotted and dotted lines, respectively. Bottom Panel: We
show the evolution of the radial anisotropy parameter, defined by Eq. 1.

a single distribution function (e.g., Posti et al. 2015; Williams &
Evans 2015). The underlying assumption is that the stars are well-
mixed and relaxed in a steady potential. However, it has perhaps
never been entirely clear that stellar halos satisfy such require-
ments. The time taken for stars in the outer parts of galaxies to
exchange angular momenta with each other is longer than a Hub-
ble time, so unrelaxed structures are expected to be abundant.

Nonetheless, if the velocity distributions of the BHB stars are
fitted with a single Gaussian with spatially varying dispersions,
then some interesting conclusions can be obtained. First, the tilt
angles or covariances are small. The velocity dispersion tensor is
closely aligned with the spherical polar coordinate system. This re-
sult has been seen before with poorer quality proper motion data
(Smith et al. 2009b; Evans et al. 2016) and has recently been con-
firmed in the inner halo by Wegg et al. (2018) for a large sample
of 15651 RR Lyrae with accurate proper motions from Gaia data
release 2 (DR2). The only non-singular potential for which spher-
ical alignment occurs everywhere is spherically symmetric (Smith
et al. 2009b; An & Evans 2016). Secondly, the best single Gaussian
fit confirms that the stellar halo is radially anisotropic. Although the
dispersions evolve with radius, the anisotropy parameter is constant
at 5 = 0.6 in the inner halo, dropping to values of 0.3 beyond the
proposed apocenter of the Gaia Sausage. The radial velocity dis-
persion Uf,r is largest. Although o2 » and o2 , can be different, the
best fit usually has the two angular dispersions the same within 1o.
This also suggests that the potential is close to spherical.

The data however exhibit significant deviations from a single
Gaussian velocity distribution. The central regions of the angular
velocity distributions, especially in the inner halo, are not well-
matched. This contributes to the emerging picture of the Milky
Way’s stellar halo as possessing multiple unrelaxed components
and motivated us to seek a new model. We devised a Gaussian Mix-
ture Model (GMM) of an unusual form, using the insights supplied
by Myeong et al. (2018b), Deason et al. (2018), and Belokurov
et al. (2018) in their studies of the halo in action space, orbital
elements space, and velocity space respectively. The first compo-
nent of the GMM is an isotropic Gaussian with dispersions aligned
in spherical polar coordinates. Although we make no assumptions
about its metallicity, our choice is inspired by the largely isotropic
metal-poor halo (e.g., Myeong et al. 2018b). The second compo-
nent is built from a sum of two Gaussians, each one of which mim-
ics the lobes of the velocity distribution of the “Gaia Sausage” seen
by Belokurov et al. (2018). The Gaussians are radially anisotropic
and have means in Galactocentric radial velocity separated by ¢ to
represent the incoming and outgoing parts of an unrelaxed struc-
ture created by the remote infall of a dwarf galaxy. Note that a very
similar modelling approach has been recently applied to the local
halo data by Necib et al. (2018).

The GMM provides a better match to the data. In particu-
lar, the Sausage component is dynamically colder in the tangen-
tial velocities than the isotropic component. Similarly, the Sausage
component is more metal-rich than the isotropic component. These
properties emerge naturally from the fit, but are in good agreement
with previous attempts to characterize this ancient accretion event.
The behaviour of the velocity offset between two lobes in the model
also makes good physical sense. It is largest (§ ~ 100 kms™') in
the inner Galaxy, where we expect the stars to be moving fastest
but having not reached pericenter yet, and it drops dramatically at
distances of ~ 20 kpc. This is believed to mark the apocentres of
the stars that once belonged to the Sausage Galaxy (Deason et al.
2018). This interpretation is further confirmed by the contribution
of the Sausage component dropping dramatically beyond ~ 30 kpc,
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consistent with the results of Deason et al. (2011). Here, for the
first time, we directly track the change in the stellar halo composi-
tion over a large range of radii. Our results strongly argue that the
stellar halo of the Milky Way is in large part unrelaxed, even in its
innermost parts.

Our model fit provides further evidence for the inner 30 kpc
of the stellar halo of the Milky Way being in large part domi-
nated by an ancient, massive, radial merger event. According to
our models, this massive event contributed a significant fraction
of the stellar halo’s mass. Its fractional contribution to the stellar
halo varying as a function of radius, but it makes up ~ 50% of the
metal-poor stellar halo in the inner 30 kpc. As our sample is bi-
ased towards metal-poor stars, and thus against the metal-rich Gaia
Sausage (see Belokurov et al. 2018), this should really be viewed
as a lower bound on the fractional contribution of this merger event
to the overall halo contents. The prospects of larger datasets with
seven-dimensional phase space information suggests elaborations
of our work here will shortly be possible. In particular, it is unclear
whether the Gaia Sausage is the residue of a single very radial in-
fall, or two or more infalls, one prograde and one retrograde (c.f.,
Kruijssen et al. 2018). The methodology of this paper applied to the
kinematics and chemistry of still larger samples of halo stars may
enable further clues to be deduced about the remote history of our
Galactic home.
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