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ABSTRACT

Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G . 21 mag.
Aims. We showcase stellar variability across the Galactic colour-absolute magnitude diagram (CaMD), focusing on pulsating, eruptive, and cata-
clysmic variables, as well as on stars exhibiting variability due to rotation and eclipses.
Methods. We illustrate the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD
and illustrate how variability-related changes in colour and brightness induce ‘motions’ using 22 months worth of calibrated photometric, spectro-
photometric, and astrometric Gaia data of stars with significant parallax.
To ensure a large variety of variable star classes to populate the CaMD, we crossmatch Gaia sources with known variable stars. We also used
the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this
article.
Results. Gaia enables the first investigation of Galactic variable star populations across the CaMD on a similar, if not larger, scale than previously
done in the Magellanic Clouds. Despite observed colours not being reddening corrected, we clearly see distinct regions where variable stars occur
and determine variable star fractions to within Gaia’s current detection thresholds. Finally, we show the most complete description of variability-
induced motion within the CaMD to date.
Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding
of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way previously
accessible only for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over the present
preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and
radial velocities), all for much larger samples of stars.
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1. Introduction

The ESA space mission Gaia (Gaia Collaboration et al. 2016b)
has been conducting a unique survey since the beginning of its
operations (end of July 2014). Its uniqueness derives from sev-
eral aspects that we list in the following paragraphs.

Firstly, Gaia delivers nearly simultaneous measurements in
the three observational domains on which most stellar astronom-
ical studies are based: astrometry, photometry, and spectroscopy
(Gaia Collaboration et al. 2016a; van Leeuwen et al. 2017).

Secondly, the Gaia data releases provide accurate astromet-
ric measurements for an unprecedented number of objects. In
particular trigonometric parallaxes carry invaluable information,
since they are required to infer stellar luminosities, which form
the basis of the understanding of much of stellar astrophysics.
Proper and orbital motions of stars further enable mass measure-
ments in multiple stellar systems, as well as the investigation of
cluster membership.

Thirdly, Gaia data are homogeneous across the entire sky,
since they are observed with a single set of instruments and are
not subject to the Earth’s atmosphere or seasons. All-sky sur-
veys cannot be achieved using a single ground-based telescope;
surveys using multiple sites and telescopes/instruments require
cross-calibration, which unavoidably introduce systematics and

reduce precision via increased scatter. Thus, Gaia will play an
important role as a standard source in cross-calibrating hetero-
geneous surveys and instruments, much like the Hipparcos mis-
sion (Perryman et al. 1997; ESA 1997) did in the past. Of course,
Gaia represents a quantum leap from Hipparcos in many re-
gards, including four orders of magnitude increase in the number
of objects observed, providing additional types of observations
(spectrophotometry, spectroscopy), and providing significantly
improved sensitivity and precision for all types of measurements.

Fourthly, there are unprecedented synergies for calibrating
distance scales using Gaia’s dual astrometric and time-domain
capabilities (e.g. Eyer et al. 2012). Specifically, Gaia will enable
the discovery of unrivalled numbers of standard candles residing
in the Milky Way, and anchor Leavitt laws (period-luminosity re-
lations) to trigonometric parallaxes (see Gaia Collaboration et al.
2017; Casertano et al. 2017, for two examples based on the first
Gaia data release).

Variable stars have since long been recognized to offer cru-
cial insights into stellar structure and evolution. Similarly, the
Hertzsprung-Russell diagram (HRD) provides an overview of
all stages of stellar evolution and—together with its empirical
cousin, the colour-magnitude-diagram (CMD)—has shaped stel-
lar astrophysics like no other diagram. Among the first to notice
the immense potential of studying variable stars in populations,
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where distance uncertainties did not introduce significant scatter,
was Henrietta Leavitt (1908). Soon thereafter, Leavitt & Picker-
ing (1912) discovered the period-luminosity relation of Cepheid
variables, which has become a cornerstone of stellar physics and
cosmology. It appears that Eggen (1951, his fig. 42) was the first
to use (photoelectric) observations of variable stars (in this case
classical Cepheids) to constrain regions where Cepheids occur
in the HRD; nowadays, these regions are referred to as instabil-
ity strips. Eggen further illustrated how Cepheids change their
locus in the colour-absolute magnitude diagram (CaMD) during
the course of their variability, thus developing a time-dependent
CMD for variable stars. Kholopov (1956) and Sandage (1958)
later illustrated the varying locations of variable stars in the HRD
using classical Cepheids located within star clusters. Combining
the different types of Gaia time series data with Gaia parallaxes,
we are now in a position to construct time-dependent CaMD to-
wards any direction in the Milky Way, building on previous work
based on Hipparcos (Eyer et al. 1994; Eyer & Grenon 1997), but
on a much larger scale.

Many variability (ground- and space-based) surveys have ex-
ploited the power of identifying variable stars in stellar popula-
tions at similar distances, e.g. in star clusters or nearby galaxies
like the Magellanic Clouds. Ground-based microlensing surveys
such as the Optical Gravitational Lensing Experiment (OGLE;
e.g. Udalski et al. 2015), the Expérience pour la Recherche
d’Objets Sombres (EROS Collaboration et al. 1999), the Massive
Compact Halo Objects project (MACHO; Alcock et al. 1993) de-
serve a special mention in this regard. The data will continue to
grow with the next large multi-epoch surveys such as the Zwicky
Transient Facility (Bellm 2014) and the Large Synoptic Sur-
vey Telescope (LSST Science Collaboration et al. 2009) from
ground, and the Transiting Exoplanet Survey Satellite (TESS;
Ricker et al. 2015) and PLATO (Rauer et al. 2014) from space.

Another ground-breaking observational trend has been the
long-term high-precision high-cadence uninterrupted space pho-
tometry with CoRoT/BRITE (Auvergne et al. 2009; Pablo et al.
2016, with time bases up to 5 months) and Kepler/K2 (Gilliland
et al. 2010; Howell et al. 2014, with time bases up to 4 years
and 3 months, respectively) provided entirely new insights into
µmag-level variability of stars, with periodicities ranging from
minutes to years. These missions opened up stellar interiors from
the detection of solar-like oscillations of thousands of sun-like
stars and red giants (e.g., Bedding et al. 2011; Chaplin & Miglio
2013; Hekker & Christensen-Dalsgaard 2017, for reviews), as
well as hundreds of intermediate-mass stars (e.g., Aerts 2015;
Bowman 2017) and compact pulsators (e.g., Hermes et al. 2017).
Our results provided in Sects 3 and 4 on the variability fractions
and levels are representative of mmag-level variability and not
of µmag-levels as found in space asteroseismic data.

Still, any of these asteroseismic surveys can benefit from the
Gaia astrometry, so that distances and luminosities can be de-
rived, as De Ridder et al. (2016) and Huber et al. (2017) did with
Gaia DR1 data. Gaia will also contribute to these surveys with
its photometry and some surveys will also benefit from the Gaia
radial velocities (depending on their operating magnitude range).

Stellar variability comprises a large variety of observable
features due to different physical origins. Figure 1 shows the up-
dated Variability Tree (Eyer & Mowlavi 2008), which provides
a useful overview of the various types of variability and their
known causes. The Variability Tree has four levels: the distinc-
tion of intrinsic versus extrinsic variability, the separation into
major types of objects (asteroid, stars, AGN), the physical origin
of the variability, and the class name. In this article, we follow
the classical distinction of the different causes of the variability

phenomena: variability induced by pulsation, rotation, eruption,
eclipses, and cataclysmic events. A large number of variability
types can already be identified in the Gaia data, as described in
the subsequent sections.

Herein, we provide an overview of stellar variability across
the CaMD, building on the astrometric and photometric data of
the second Gaia data release (DR2). Future Gaia DRs will en-
able much more detailed investigations of this kind using longer
temporal baselines, greater number of observations, and added
classes of variable stars (such as eclipsing binaries, which will
be published in DR3).

This paper is structured as follows. Section 2 shows the lo-
cation of different variability types in the CaMD, making use of
known objects from the literature which are published in Gaia
DR2, but without any further analysis of the Gaia data. Section 3
presents the fraction of variables as a function of colour and ab-
solute magnitude, obtained by processing the Gaia time series
for the detection of variability (Eyer et al. 2018). Section 4 in-
vestigates the variability level in the CaMD, employing statistics
and classification results (some of which are related to unpub-
lished Gaia time series). Section 5 shows the motion of known
variables stars in the CaMD, that is, a time-dependent CaMD,
which includes also sources not available in the DR2 archive but
as online material. Section 6 summarizes and presents an outlook
to future Gaia DRs. Further information on the literature cross-
match and on the selection criteria applied to our data samples
can be found in Appendices A and B, respectively.

2. Location of variability types in the CaMD

The precision of the location in the CaMD depends on the
precision of the colour on one side, and on the determination
of the absolute magnitude on the other side. The precision of
the absolute magnitude of variable stars depends on the photo-
metric precision, the number of measurements, the amplitude
of variability, and the relative parallax precision σ̟/̟. The
upper limits of σ̟/̟ employed in this article vary between
5 and 20 per cent, so the uncertainty of the absolute magni-
tude solely due to the parallax uncertainty can be as large as
5 (ln 10)−1σ̟/̟ ≈ 0.43 mag.

As we determined the colour as a function of integrated BP
and integrated RP spectro-photometric measurements with tight
constraints on the precision of these quantities (see Appendix B),
there are parts of the CaMD that are not explore herein. For ex-
ample, the faint end of the main sequence presented in fig. 9
of Gaia Collaboration et al. (2018) does not fulfill the condition
on the precision in BP, so our diagrams do not include M, L, T
brown dwarfs (which are fainter than MG ∼ 14 mag).

There are several effects that can influence the average loca-
tion of a star in the CaMD (in both axis), including interstellar
extinction, stellar multiplicity, rotation, inclination of the rota-
tion axis, and chemical composition. In this work, we do not
correct for such phenomena and instead rely on the apparent
magnitudes and colours measured by Gaia, computing ‘abso-
lute’ magnitudes using Gaia parallaxes. We note that interstel-
lar extinction and reddening can be significant at the considered
distances (up to 1 kpc), in particular for objects in the Galactic
plane. This leads to distortions of certain observed features, such
as the long tail in the red clump extending to redder and fainter
magnitudes.

The stellar variability aspects covered in the second Data
Release of Gaia include a limited number of variability
classes (Holl et al. in prep.), namely, Long Period Vari-
ables, Cepheids, RR Lyrae stars, SX Phoenicis/δScuti stars,
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such as corrupt measurements so that their location in the CaMD
may be incorrect (Arenou et al. 2018). However, we stress that
such issues are limited to a small fraction of sources so that most
known variable classes are recovered as expected. The cyclic ap-
proach of the Gaia data processing and analysis will allows us
to correct such unexpected features in the future data releases.

2.1. Pulsating variable stars

Figure 2 shows the positions of different classes of pulsating
variable stars based on the Gaia data and can be compared to its
theoretical counterpart in the recent textbooks on asteroseismol-
ogy (fig. 1.12 in Aerts et al. 2010) and on pulsating stars (Catelan
& Smith 2015). We refer to these books for further details de-
scribing specific variability classes. Here, we only consider the
following types of pulsating variable stars:

1. Long Period Variables; red giant stars that populate the red-
dest and brightest regions of the CaMD. They include Miras,
semi-regular variables, slow irregular variables, and small
amplitude red giants.

2. α Cygni stars; luminous supergiant stars that pulsate in non-
radial modes. They are particularly affected by interstellar
extinction as they are young massive stars residing in the
Galactic disc, so their position in Fig. 2 must be treated with
caution.

3. δScuti stars; Population-I stars of spectral types A and F with
short periods (< 0.3 d) that pulsate in dominantly in pressure
modes, but may also reveal low-order gravity modes of low
amplitude.

4. SX Phoenicis stars; Population-II high amplitude δScuti
stars with periods typically shorter (< 0.2 d) than δScuti
stars.

5. γDoradus stars; stars with spectral type A and F stars with
period from 0.3 to 3 d that pulsate dominantly in high-order
gravity modes, but may also reveal low-amplitude pressure
modes.

6. RR Lyrae stars (Bailey’s type ab and c); Population-II hori-
zontal branch stars with periods from 0.2 to 1 d that pulsate
in pressure mode. C-type RR Lyrae stars are bluer than ab-
type stars.

7. Slowly Pulsating B (SPB) stars; non-radial multi-periodic
gravity-mode pulsators of spectral type B and with periods
typically in the range from 0.5 to 5 d.

8. β Cephei stars; late O to early-B spectral type non-supergiant
stars with dominant low-order pressure and gravity modes,
featuring periods in the range from 0.1 to 0.6 d. Several of
them have been found to also exhibit low-amplitude high-
order gravity modes as in the SPB stars (e.g., Stankov &
Handler 2005). The β Cephei stars are located in the Galactic
disc so that their CaMD position is easily affected by inter-
stellar extinction.

9. Classical Cepheids (prototype δCephei); evolved
Population-I (young intermediate-mass) stars featuring
radial p-mode pulsations with periods of approximately
1 − 100 d. Cepheids can be strongly affected by interstellar
extinction as they reside in the Galactic disc and can be
observed at great distances.

10. Type-II Cepheids; Population-II stars pulsating in p-mode
that were historically thought to be identical to classi-
cal Cepheids. Type-II Cepheids consist of three different
sub-classes (separated by period) commonly referred to as
BL Herculis, W Virginis and RV Tauri stars, whose evolu-
tionary scenarios differ significantly, although the three sub-
classes together define a tight period-luminosity relation.

11. PV Telescopii stars; these include the sub-classes V652 Her,
V2076 Oph, and FQ Aqr (Jeffery 2008), which are rare
hydrogen-deficient supergiant stars that cover a wide range
of spectral types and exhibit complex light and radial veloc-
ity variations.

12. Rapidly oscillating Am and Ap stars; chemically peculiar A
stars that exhibit multiperiodic non-radial pressure modes in
the period range of about 5 − 20 min.

13. V361 Hydrae (or EC 14026) stars; subdwarf B stars on the
extreme horizontal branch that pulsate in pressure modes
with very short periods of ∼ 1 − 10 min.

14. V1093 Her (or PG 1716) stars; subdwarf B stars on the ex-
treme horizontal branch that pulsate in gravity modes with
periods of 1 − 4 h.

15. ZZ Ceti stars; white dwarfs featuring fast non-radial gravity-
mode pulsations with periods of 0.5 − 25 min.

The CaMD of pulsating stars carries a great deal of infor-
mation, much of which has shaped the understanding of stellar
structure and evolution and can be found in textbooks. Briefly
summarized, we notice the following particularly interesting fea-
tures of Fig. 2.

– Extinction affects variability classes belonging to different
populations unequally, as expected. Stars located away from
the Galactic disk are much less reddened and thus clump
more clearly. This effect is particularly obvious when com-
paring RR Lyrae stars and classical Cepheids, both of which
occupy the same instability strip, and cannot be explained
by the known fact that the classical instability strip becomes
wider in colour at higher luminosity (e.g., see Anderson et al.
2016; Marconi et al. 2005; Bono et al. 2000, and references
therein).

– Interstellar reddening blurs the boundaries between variabil-
ity classes. Correcting for interstellar extinction will be cru-
cial to delineate the borders of the instability strips in the
CaMD, as well as to deduce their purity in terms of the frac-
tion of stars that exhibit pulsations while residing in such
regions.

– Practical difficulties involved in separating variable star
classes in the way required to construct Fig. 2 include a) that
variable stars are often subject to multiple types of variability
(e.g. γ Doradus/δ Scuti, β Cephei/SPB hybrid pulsators, pul-
sating stars in eclipsing binary systems, or pulsating white
dwarfs that exhibit eruptions), and b) that naming conven-
tions are often historical or purely based on light curve mor-
phology, so that they do not account for different evolution-
ary scenarios (e.g., type-II Cepheids). With additional data,
and a fully homogeneous variable star classification based
on Gaia alone, such ambiguities will be resolved in the fu-
ture unless they are intrinsically connected to the nature of
the variability.

– We notice multiple groups of ZZ Ceti stars along the white
dwarf sequence. The most prominent of these is located
GBP −GRP ≃ 0 and MG ≃ 12 as seen in Fontaine & Brassard
(2008)

2.2. Variability due to rotation and eclipses

Figure 3 shows stars whose variability is induced by rotation.
There are three primary categories: spotted stars, stars deformed
by tidal interactions and objects whose variability is due to light
reflected by a companion. Following the nomenclature in the
literature (Table A.1), we list the following variability classes
separately, although we notice occasional overlaps among the
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Fig. 2. Known pulsating variable stars retrieved from pubished catalogues are placed in the observational CaMD, with symbols and colours
representing types as shown in the legend (see A.1 for the references from literature per type). All stars satisfy the selection criteria described in
Appendix B. The background points in grey denote a reference subset of objects with a stricter constraint on parallax (̟ > 1 mas), which limits
the sample size, extinction, and reddening. The effects of interstellar matter and other phenomena (see text) are not corrected for. The condition
on the relative precision of GBP measurements introduces artificial cuts in the distributions of low-mass main sequence stars and red (super)giants.

definitions of these variability classes. The following types are
included in Fig. 3.

1. α2 Canum Venaticorum stars; highly magnetic variable Bp
and Ap MS stars.

2. Spotted stars; rotational modulation variability from spots.
3. BY Draconis stars; main sequence stars with late spectral

types (K and M) that exhibit quasi-periodic light curves due
to spots and chromospheric activity.

4. RS Canum Venaticorum stars; spotted stars whose rotation-
induced variability is frequently accompanied by other phe-
nomena, such as eclipses and flares.

5. Ellipsoidal variables; variability (without eclipses) due to or-
bital motion of a star distorted by a stellar companion.

6. Solar-like stars with magnetic activity. Stars of this type in
Fig 3 are limited to a catalogue focused on the Pleiades,
which explains a thin distribution of the main sequence. We
can see a hint of the binary sequence.

7. SX Arietis stars; similar to α2 Canum Venaticorum stars al-
beit with higher temperature. We notice that some overlap of
the two distributions occurs for these two variability types.

8. Binary systems with a strong reflection component in the
light curve with re-radiation of the hotter star’s light from
the cooler companion’s surface.

9. FK Comae Berenices stars; spotted giant stars.

Figure 3 shows the following properties, among other things:

– RS Canum Venaticorum stars are significantly brighter than
BY Draconis stars near the bottom of the main sequence (at
cool temperatures).

– the reflection binary class is primarily present among very
compact (subdwarf) stars; there is a cluster near absolute
mag 4, GBP −GRP ∼ −0.4 mag.

– There seems to be a dearth of rotational spotted variables
around GBP − GRP ∼ 0.4, which corresponds with the tran-
sition region of stars with a radiative versus convective outer
envelope.

– SX Arietis stars form a fairly well-defined hot temperature
envelope of the most luminous alpha2 Canum Venaticorum
variables.

Figure 4 shows eclipsing binary systems as well as stars iden-
tified to host exoplanets identified by the transit method. Sym-
bols differentiate the following sub-classes:

1. Eclipsing binaries of type EA; prototype Algol. Binaries
with spherical or slightly ellipsoidal components with well-
separated, nearly constant light curves in between minima.
Secondary minima can be absent.

2. Eclipsing binaries of type EB; prototype βLyrae. Binaries
with continuously changing light curves and not clearly de-
fined onsets or ends of eclipses. Secondary minima are al-
ways present, but can be significantly less deep than primary
minima.
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3. Eclipsing binaries of type EW; prototype W Ursae Majoris.
The components are nearly or actually in contact and minima
are virtually equally strong. Onsets and ends of minima are
not well defined.

4. Stars known to exhibit exo-planetary transits from the litera-
ture.

From Fig. 4, we observe the following:

– EA stars are present almost throughout the CaMD.
– We notice groups of EB stars that are overluminous com-

pared to the white dwarf sequence. These are likely white
dwarf stars with main sequence companions.

– The majority of these stars hosting exoplanets are identified
by Kepler and only very few of them have detectable transits
in the Gaia data, because of different regimes of photometric
precision and time sampling.

2.3. Eruptive and cataclysmic variables

Figure 5 focuses on eruptive variable stars. As for the rotation-
ally induced variables, we adopt the nomenclature from the liter-
ature (see Table A.1), which includes partially overlapping defi-
nitions. The following types are considered.

1. S Doradus stars; Luminous Blue Variables, that is, massive
evolved stars that feature major and irregular photometric
variations due to heavy mass loss by a radiation-driven wind.

2. R Coronae Borealis stars; carbon rich supergiants that emit
obscuring material and as a consequence have drastic rapid
dimming phases.

3. Wolf-Rayet (WR) stars; the almost naked helium core left
over from originally very high mass evolved stars, featuring
strong emission lines of hydrogen, nitrogen, carbon, or oxy-
gen. WR stars are undergoing very fast mass loss and can be
significantly dust-attenuated.

4. γCassiopeiae stars and stars with B spectral types exhibiting
hydrogen emission lines, i.e. Be stars; emitting shell stars.
During their ‘eruptive’ phenomena, they become brighter.

5. Flare stars; magnetically active stars that display flares. This
category incudes many subtypes of magnetically active stars,
such as UV Ceti-type, RS CVn-type, T Tauri stars, etc.

6. UV Ceti stars; usually K-M dwarfs displaying flares.
7. T Tauri stars (classical and weak-lined); young pre-main se-

quence stars, either accreting strongly (classical) or show-
ing little sign of accretion (weak-lined). Such stars show
variability due to either magnetic activity (e.g., rotational
modulation, flares) or accretion (quasi-periodic, episodic, or
stochastic variations), aside from pulsations that may also
occur in some of them.

About Fig. 5 we comment on following properties:

– The absence of eruptive variables among hot main sequence
(non supergiants) is noticeable. This region is populated by
pulsating stars, such as γDoradus and δ Scuti stars, cf. Fig. 2.

– Wolf Rayet stars, R Coronae Borealis stars, and S Doradus
stars are among the most luminous stars in this diagram.

Figure 6 illustrates cataclysmic variables:

1. Cataclysmic variables (generic class), typically novae and
dwarf novae involving a white dwarf. Many of these stars
are situated between the main and white dwarf sequences.

2. U Geminorum stars; dwarf novae, in principle consisting of a
white dwarf with a red dwarf companion experiencing mass
transfer.

3. Z Andromedae stars; symbiotic binary stars composed of a
giant and a white dwarf.

Further information on cataclysmic variables can be found, e.g.,
in Warner (2003) and Hellier (2001).

We notice the following in Fig. 6:

– There is a clump of cataclysmic variables in the ZZ Ceti vari-
ability strip location near G ∼ 12 and GBP −GRP ∼ 0.1.

– The most significant clump of cataclysmic variables is near
G ∼ 4 and GBP − GRP ∼ 0.1 mag, they are probably binary
systems with stars from the extreme horizontal branch and
the main sequence.

3. Variable Object Fractions across the CaMD

The different types of brightness variations as presented in the
CaMD may strongly depend on the colour and absolute mag-
nitude as seen in Sect. 2, because they are driven by different
physical mechanisms.

Similarly, the variable object fraction – defined as the num-
ber of variable objects per colour-magnitude bin divided by the
total number of objects in the same bin – is expected to depend
on the location in the CaMD. The variable object fraction was
previously determined based on variable objects detected using
for example the Hipparcos time series (ESA 1997). Here we sig-
nificantly expand this investigation using 13.5 million stars with
heliocentric distances of up to 1 kpc that satisfy the astrometric
and photometric selection criteria listed in Appendix B as well
as (a) at least 20 observations in the G, GBP, and GRP bands,
and (b) a relative parallax error < 5 per cent. In order to reduce
the number of objects affected by significant extinction, stars at
low Galactic latitudes (from −5 to 5 deg) are excluded. This ef-
fectively reduces the number of disc variables such as classical
Cepheids and βCephei stars.

Fig. 7 illustrates this Gaia based high-resolution map of
the variable object fraction in the CaMD at the precision level
of approximately 5–10 mmag. Variability is identified in about
9 per cent of the stars based on a supervised classification of
Gaia sources. This method depends heavily on the selection of
the training set of constant and variable objects. Minor colour-
coded features can be due to training-set related biases. The de-
tection of variability further depends on the amplitude of the
variables, their apparent magnitude distribution, and the instru-
mental precision. The accuracy of the fraction of variables is af-
fected also by the number of sources per bin of absolute magni-
tude and colour, which can be as low as one in the tails of the
two-dimensional source number density distribution.

Figure 7 contains many informative features, despite possi-
ble biases. Future data releases will significantly improve upon
Fig. 7 by correcting for reddening and extinction and using larger
number of objects with more accurate source classifications. For
the time being, we remark that:

– The classical instability strip is clearly visible with variabil-
ity in about 50-60 per cent of the stars (although extinction
limits the precision of this estimate).

– For evolved stars, red giants, and asymptotic giant branch
stars, we find that higher luminosity and redder colour im-
plies a higher probability of variability.
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Fig. 3. Same as Fig. 2 but for rotational-induced variability types.

Fig. 4. Same as Fig. 2 but for eclipsing binaries (of types EA, EB, EW) and known host-stars exhibiting exoplanet transits. As expected, eclipsing
binaries can be anywhere in the CaMD, that explains why they are a main source of contamination for instance of pulsating stars.
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Fig. 5. Same as Fig. 2 but for eruptive variability types.

Fig. 6. Same as Fig. 2 but for cataclysmic variables and some sub-types.
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Fig. 7. Variable object fraction across the CaMD shown as a colour scale as labeled. This figure is not based on variable objects from the literature.
Instead, variability is detected directly using Gaia data and employing supervised classification for sources with at least 20 observations in the
G, GBP, and GRP bands. All objects satisfy the selection criteria described in Appendix B, but with more restrictive constraints on the parallax
precision (parallax_over_error > 20) and on the parallax value (̟ > 1 mas) that limits the sample (size, extinction, and reddening). In order
to reduce the impact of extinction, objects at low Galactic latitudes (from −5 to 5 deg) are excluded. About 9 per cent of the 13.5 million stars
that satisfy the above mentioned criteria are variable. It is noted that some of the bins (especially the outlying ones) can contain only a few or
even single sources. The condition on the relative precision of GBP measurements introduces artificial cuts in the distributions of low-mass main
sequence stars and red (super)giants.

– The red clump has a very low fraction of variable stars in
the Gaia data. Kepler photometry of red clump stars has re-
vealed complex variability at the µmag level that has been
used extensively for asteroseismology, cf. Sect. 1 and refer-
ences therein.

– The classical ZZ Ceti location is extremely concentrated in
colour and magnitude, with variability in about half of the
stars.

– Extreme horizontal branch stars show a high probability of
variability.

– The hottest and most luminous main sequence stars are very
frequently variable

– There is a clear gradient towards larger fractions of variables
above the low-mass main sequence stars.

4. Variability amplitudes across the CaMD

Figure 8 shows variability amplitudes as a function of position
in the CaMD. Here, we quantify variability amplitudes using the
G-band Inter-Quartile Range (IQR). Objects are selected accord-
ing to the general criteria described in Appendix B, with stricter
conditions on the parallax (greater than 1 mas) and its relative
precision (better than 5 per cent). To prevent the false impres-
sion that faint (and very bright) sources have intrinsically higher
amplitudes, we corrected for the instrumental spread of the IQR

as a function of the median G magnitude. This correction was
determined using sources classified as constant in the all-sky
classification (Rimoldini et al., in preparation) and subtracted
in quadrature from the measured IQR. Instead of plotting indi-
vidual data points in Fig. 8, we show the (colour-coded) mean
of the corrected G-band IQR of sources within each square bin
measuring 0.02 mag in both colour and magnitude after trim-
ming the top and bottom 5 per cent. This binning was applied to
each variability type individually, and cuts were applied to se-
lect minimum classification probabilities per type to minimize
incorrect classifications. We emphasize the location of variable
object classes featuring large amplitudes by plotting classes with
higher IQR on top of variability classes with lower IQR.

Figure 8 contains the following stellar variability types based
on the all-sky classification (Rimoldini in prep.): α2 Canum Ve-
naticorum, αCygni, βCephei, cataclysmic, classical Cepheids,
δScuti, γCassiopeiae, γDoradus, Mira, ellipsoidal, RR Lyrae of
Bailey’s type ab and c, semiregular, slowly pulsating B stars,
solar-like variability due to magnetic activity (flares, spots, and
rotational modulation), SX Arietis, and SX Phoenicis. We did
not include other classes (listed in Eyer et al. 2018) for clarity
or because there were too few objects. We note that any specific
selection criteria applied to the objects shown in Fig. 8 introduce
biases that can highlight or diminish the prominence of certain
phenomena. Nevertheless, Fig. 8 provides a first detailed illustra-
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bright stars, radial velocity time series will add a third and un-
precedented dimension to Fig. 10.

An animated version of Fig. 10 is provided at https://
www.cosmos.esa.int/web/gaia/gaiadr2_cu7.

6. Conclusions

The Gaia mission enables a comprehensive description of phe-
nomena related to stellar variability. In this paper, we have fo-
cused on stellar variability across the CaMD, showcasing loca-
tions occupied by different variability types as well as variable
object fractions, variability amplitudes, and variability-induced
motions described by different variability classes across the
CaMD.

The wealth of information related to variable stars and con-
tained in Gaia DR2 is unprecedented for the Milky Way. The
CaMD can provide guidance for further detailed studies, which
can focus on individual regions or clumps, e.g. to investigate
the purity of instability strips and how sharply such regions
are truly defined or how they depend on chemical composition.
Of course, additional work is required to this end, and accu-
rately correcting for reddening and extinction will be crucial.
The (time-dependent) CaMD will play an important role for im-
proving variable star classification by providing additional at-
tributes, such as the expected direction of variability for specific
variable classes, and for illustrating stellar variability to non-
expert audiences.

The CaMD of variable stars can further point out interre-
lations between variability phenomena that are otherwise not
easily recognized and possibly identify new types of variabil-
ity. Detailed follow-up observations from the ground will help
correct previous misclassifications and in-depth studies of pe-
culiar and particularly interesting objects. Thanks to the pre-
sented variable stars residing in the Milky Way, it will be pos-
sible to obtain particularly high signal-to-noise data, e.g. using
high-resolution spectroscopy. Finally, the observed properties of
variable stars in the CaMD, such as instability strip boundaries
or period-luminosity relations, provide crucial input and con-
straints for models describing pulsational instability, convection,
and stellar structure in general.

Future Gaia data releases will further surpass the variabil-
ity content of this second data release3. By the end of mission,
Gaia data are expected to comprise many tens of millions of
variable celestial objects, including many additional variability
types, as well as time series BP and RP spectra. Eventually, time
series of radial velocities and spectra from the radial velocity
spectrometer will be published for subsets of variables. Finally,
the variability classification of future Gaia data will also make
use of unsupervised clustering techniques aimed at discovering
entirely new (sub-)clusters and classes of variable phenomena.
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Appendix A: Literature per variability type

See Table A.1 for details on the references from literature re-
garding the objects included in Figs. 2–6 and 10.

Appendix B: Selection criteria

Astrometric and photometric conditions are applied to all
CaMDs for improved accuracy of the star locations in such di-
agrams. Astrometric constraints include limits on the number
of visibility periods (observation groups separated from other
groups by at least four days) per source used in the secondary
astrometric solution (Gaia Collaboration et al. 2018), the excess
astrometric noise of the source postulated to explain the scatter
of residuals in the astrometric solution for that source (Gaia Col-
laboration et al. 2018), and the relative parallax precision (herein
set to 5 but increased up to 20 in some applications):

1. visibility_periods_used > 5;
2. astrometric_excess_noise < 0.5 mas;
3. parallax > 0 mas;
4. parallax_over_error > 5.

Photometric conditions set limits for each source on the relative
precisions of the mean fluxes in the GBP, GRP, and G bands, as
well as on the mean flux excess in the GBP and GRP bands with
respect to the G band as a function of colour (Evans et al. 2018):

5. phot_bp_mean_flux_error / phot_bp_mean_flux< 0.05;
6. phot_rp_mean_flux_error / phot_rp_mean_flux< 0.05;
7. phot_g_mean_flux_error / phot_g_mean_flux < 0.02;
8. (phot_bp_mean_flux + phot_rp_mean_flux) /

{phot_g_mean_flux * [1.2 + 0.03 * (phot_bp_mean_mag
- phot_rp_mean_mag)2]} < 1.2.

The ADQL query to select a sample of sources that satisfy
all of the above listed criteria follows.

SELECT TOP 10 source_id

FROM gaiadr2.gaia_source

WHERE visibility_periods_used > 5

AND astrometric_excess_noise < 0.5

AND parallax > 0

AND parallax_over_error > 5

AND phot_bp_mean_flux_over_error > 20

AND phot_rp_mean_flux_over_error > 20

AND phot_g_mean_flux_over_error > 50

AND phot_bp_rp_excess_factor < 1.2*(1.2+0.03*

power(phot_bp_mean_mag-phot_rp_mean_mag,2))
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Table A.1. Literature references of stars as a function of variability type and the corresponding number of sources depicted in Figs. 2–6, after
selections based on reliability, photometric accuracy, and astrometric parameters (Appendix B). Figure 10 includes only subsets of variability types
and of sources per type.

Variability Type Reference # Sources

Pulsating α Cygni Hip97, VSX16 17
β Cephei PDC05 20
Cepheid ASA09, Hip97, INT12 155
δ Scuti ASA09, Hip97, JD07, Kep11b, Kep11c, SDS12 724
γ Doradus FKA16, Kep11b, Kep11c, VSX16 561
Long Period Variable ASA12, Hip97, INT12, Kep11b, NSV04 5221
PV Telescopii VSX16 3
Rapidly Oscillating Am star VSX16 8
Rapidly Oscillating Ap star VSX16 25
RR Lyrae, fundamental mode (RRab) ASA09, ASA12, Cat13a, Cat13b, Cat14b, Cat15, Hip97, 1676

INT12, LIN13, NSV06, VFB16, VSX16
RR Lyrae, first overtone (RRc) ASA09, ASA12, Cat13b, Cat14b, Hip97, INT12, Kep11b, 611

LIN13, MA14, VFB16, VSX16
RV Tauri ASA12, Hip97, VSX16 48
Slowly Pulsating B star IUE03, Hip97, PDC05 78
SX Phoenicis ASA12, Hip97, VSX16 41
Type-II Cepheid ASA12, Cat14b, Hip97, VSX16 21
V361 Hya (also EC 14026) VSX16 41
V1093 Her (also PG 1716) VSX16 1
ZZ Ceti VSX16 61

Rotational α2 Canum Venaticorum Hip97, VSX16 598
Binary with Reflection VSX16 27
BY Draconis VSX16 713
Ellipsoidal ASA12, Cat14b, Hip97, Kep11b, VSX16 398
FK Comae Berenices Hip97 3
Rotating Spotted Kep15b 16 593
RS Canum Venaticorum ASA12, Cat14b, Hip97, VSX16 1381
Solar-Like Variations HAT10 176
SX Arietis Hip97, VSX16 14

Eclipsing EA, β Persei (Algol) ASA09, Cat14b, Hip97, LIN13, VSX16 8123
EB, β Lyrae ASA09, Cat14b, Hip97, LIN13, VSX16 3096
EW, W Ursae Majoris ASA09, Hip97, VSX16 3248
Exoplanet JS15 278

Eruptive B-type emission-line star ASA12, VSX16 86
Classical T Tauri Star VSX16 75
Flares (UV, BY, TTS) Kep11a, Kep13, Kep15a, MMT15 478
γ Cassiopeiae Hip97, VSX16 84
R Coronae Borealis VSX16 4
S Doradus ASA12, INT12 2
T Tauri Star (TTS) VSX16 173
UV Ceti INT12, VSX16 425
Weak-lined T Tauri Star VSX16 119
Wolf-Rayet INT12, VSX16 15

Cataclysmic Cataclysmic Variable (generic) Cat14a, OGL15, VSX16 132
U Geminorum INT12, VSX16 4
Z Andromedae INT12, VSX16 5

Notes. ASA09: Pigulski et al. (2009); ASA12: Richards et al. (2012); Cat13a: Drake et al. (2013a); Cat13b: Drake et al. (2013b); Cat14a: Drake
et al. (2014a); Cat14b: Drake et al. (2014b); Cat15: Torrealba et al. (2015); FKA16: Kahraman Aliçavuş et al. (2016); HAT10: Hartman et al.
(2010); Hip97: ESA (1997); INT12: Alfonso-Garzón et al. (2012); IUE03: Niemczura (2003); JD07: Debosscher et al. (2007); JS15: J. South-
worth, http://www.astro.keele.ac.uk/jkt/tepcat/observables.html (as of Aug. 2015); Kep11a: Walkowicz et al. (2011); Kep11b:
Debosscher et al. (2011); Kep11c: Uytterhoeven et al. (2011); Kep13: Shibayama et al. (2013); Kep15a: Wu et al. (2015); Kep15b: Reinhold &
Gizon (2015); LIN13: Palaversa et al. (2013); MA14: Abbas et al. (2014); MMT15: Chang et al. (2015); NSV04: Woźniak et al. (2004); NSV06:
Kinemuchi et al. (2006); OGL15: Mróz et al. (2015); PDC05: P. De Cat, http://www.ster.kuleuven.ac.be/~peter/Bstars/ (as of Jan.
2005); SDS12: Süveges et al. (2012); VFB16: Braga et al. (2016); VSX16: Watson et al. (2016, 2015, 2006).
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