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Abstract: Using band structure analysis and reflectance spectrum simulations, we show that
dielectric helices exhibit strong circular dichroism and have polarization stop gaps for light
propagating perpendicular to the helices, despite the lack of helical symmetry along this direction.
We apply perturbation theory to quantitatively explain these effects. We also demonstrate that
even for a single layer of dielectric helices similar phenomena exist. As a result, the helix array
can operate as a dielectric chiral mirror. This dielectric chiral mirror can completely reflect
normally incident light with one circular polarization (right- or left-handed as determined by the
handedness of the helices) without changing the polarization’s handedness while allowing light
with the opposite circular polarization to be entirely transmitted.
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1. Introduction

Three-dimensional chiral metamaterials have been extensively explored for a wide variety of
unusual optical effects such as circular dichroism, polarization stop gaps, optical activity and
negative refractive index [1-7]. The majority of existing three-dimensional chiral structures
utilizes metals [7-9]. On the other hand, there is also interest of exploring dielectric chiral
metamaterials since dielectric has lower loss in the optical frequencies [7, 10].

A natural way to create a three-dimensional chiral dielectric metamaterial is to use a two-
dimensional array of dielectric helices. An example of such a system is shown in Fig. 1, which
consists of a square lattice of helices whose band structure has been previously considered [11].
Such a metamaterial can be experimentally fabricated with techniques such as direct laser
writing [3], angle deposition [12] and thermal evaporation [13]. For the applications of such
metamaterials it is thus important to develop a theoretical understanding. Existing theoretical works
on three-dimensional chiral dielectric metamaterials have mostly focused on light propagating
along the axis of the helices [14—16]. This focus is natural since along the axis direction the effect
of circular dichroism can be easily understood from the helical symmetry. On the other hand,
the recent experiments demonstrated by Liu et al. in [17] and Lee et al. in [18] created helices
with their axis parallel to a substrate. For such experimental systems, it would be of interest to
understand the behavior of light propagating along the direction perpendicular to the helices as
well.

In this paper, using band structure analysis and finite-difference time-domain simulations, we
show that for the structure shown in Fig. 1, there are pronounced effects of circular dichroism
and polarization stop gaps along the direction perpendicular to the helices, in spite of the fact
that there is no helical symmetry of the structure along this direction. We develop a perturbation
theory formalism that completely accounts for these effects. Moreover, we show that these effects
in fact persist even in a single layer of one-dimensional array of helices, which is a metasurface.
These effects enable the creation of a dielectric chiral mirror for normally incident light, for which
the reflectivity can reach 100%, and the handedness of light is preserved during the reflection.
This is in contrast with regular mirrors for which the handedness flips in the reflection process.

The rest of the paper is organized as follows: In Section 2, we introduce an exemplary structure.
In Section 3, we characterize the band structure and the eigenmodes of the structure discussed
in Section 2. We also numerically calculate the reflectance spectra of light that is normally
incident on finite number of layers of helices. We compare and contrast the results for the
direction perpendicular to the helices and the results for the direction parallel to the helices. In
Section 4, we provide field plots to visualize the chirality of the eigenmodes. In Section 5, we
use perturbation theory to give a quantitative explanation of the chirality of the eigenmodes
propagating perpendicular to the helices. In Section 6, we demonstrate the use of a single layer of
helices as a a chiral mirror. We conclude in Section 7.



NG

Research Article Vol. 26, No. 17 | 20 Aug 2018 | OPTICS EXPRESS 21666

Optics EXPRESS

2. Structure description

Fig. 1. (a) is a schematic diagram of a helix array which is parameterized by the lattice
constant a, pitch length p, wire radius r and helix radius R. We specifically worked with
right-handed helices that have p = 1.29q, r = 0.13a and R = 0.29a. Helices are made of
silicon (&p7ix = 11.7) and the host medium is air (¢j,,5; = 1). We consider N number of
helices for reflectance calculations for the direction of propagation perpendicular to the
helices (the I'X direction). A metasurface has N = 1 and a helix array has N = co. (b) shows
the points of interest in the first Brillouin zone. (c) and (d) are, respectively, the views along
the helix axis and along the x axis.

Figure 1 illustrates a schematic of the helix structure under study. It consists of right-handed
helices whose axes lie parallel to the z axis and forms a square lattice in the xy plane. There
are four parameters that define the geometry of the structure: lattice constant a, pitch length
p, wire radius r and helix radius R. We make our calculations with p = 1.29a, r = 0.13a and
R = 0.29a, which were chosen to maximize the circular polarization dependent characteristics.
Helices are made of silicon and embedded in air, whose relative permittivities are gpejix = 11.7
and g5 = 1, respectively. We assume the incident light is in the frequency range below the
silicon band gap, for example the frequency range of 10-100 THz, where silicon is not absorbing
and the permittivity of silicon varies less than 1% around 11.7 so it can be taken as a constant.
For band structure and eigenmode analyses, we use the software MPB [19]. For reflectance
and transmittance calculations, we use an open-source finite-difference finite-domain (FDTD)
solver [20]. Our simulation procedures for calculating the components of linear and circular
polarizations are briefly described as following: there are two independent polarizations for the
incident light along the x direction. Hence we calculate the complex-valued reflectance and
transmittance with the electric field of the input light linearly polarized along the y and z directions
independently. The reflection and transmission coeflicients of any other polarization is a linear
combination of the y and z linearly polarized lights. Accordingly, we transform the reflectance
and transmittance calculated for these two linear polarizations to determine the reflectance and
transmittance for circular polarizations, as will be later presented in Fig. 2.
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3. Band structure and reflectance spectrum

We start our analysis by characterizing the band structure and the eigenmodes for the structure
illustrated in Fig. 1, assuming it is periodic in all three directions. The goal here is to understand the
chirality of the eigenmodes and how strongly a given eigenmode favors one circular polarization
over the other. Figure 1(b) displays the first Brillouin zone with some high symmetry points
labeled. We contrast the I'X direction, where light is propagating perpendicular to the helices,
with the I'Z direction, where light is propagating along the helix axis.

There are two main variables that characterize the chirality of an eigenmode: circular dichroism
index (CD index) and coupling index («). CD index is a measure of the degree of how much
an eigenmode is right- or left-handed circularly polarized [14, 15]. The polarization of any
electromagnetic wave can be written as a linear combination of left-handed circular polarization
(LCP) and right-handed circular polarization (RCP). The CD index ranges from —1 for LCP to
+1 for RCP and is defined as

nrRcp —1NLCP

CD = sgn(l; -Viw)
NRCP T TLCP

1)
where  is the wave vector of the eigenmode. In Eq. (1), the first term on the right hand side gives
the sign of the propagation direction as determined by the direction of the group velocity. nrcp
and 1z cp are the normalized circular polarization coupling coefficients. For the eigenmodes with
the wave vectors along the I'X direction, they are calculated by evaluating the overlap integrals
between the magnetic field f](xo, ¥, z) of the Bloch modes at x = x¢ plane and a circularly
polarized wave described by (9§ —iZ) N2 or ($ +i2) N2 for RCP and LCP, respectively. 7rcp(Lcp)
varies slightly depending on the position of the cross-section plane xp, so we average over all xg
in a unit cell as

|f/f[é()7 Fi2)] - H(x, y, z)dxdydz|?
V//_/”:I(X, v, 2)|*dxdydz

where V is the volume of the unit cell and the integration is done over the entire unit cell.
nrcp(Lcp) for the eigenmodes propagating along the I'Z direction are defined similarly. We note
that either electric or magnetic fields can be used in the circular polarization descriptions and the
calculations of nrcp(Lcp)- In Eq. (2), however, we use magnetic fields instead of electric fields
because electric fields have discontinuities at dielectric boundaries while magnetic fields do not.

The coupling index («) is the second variable that is used to characterize chirality. x measures
the ability of a plane wave to be coupled into a given eigenmode. It is calculated as

(@3]

NRCP(LCP) =

K =T7Rcp tTLCP- A3)

Because RCP and LCP are orthogonal to each other and nrcp(r.cp) are normalized, « ranges
from O for no coupling to 1 for perfect coupling. Because x measures the strength of coupling for
any polarization, it is only used together with the CD index when analyzing chirality.

In the spirit of putting forward a cohesive analysis of dielectric helices, we first replicate the
previous results of Kao et al. in [15] on the propagation parallel to the helix axis. Chirality
emerges naturally in this case as the dielectric helix can guide the wave to form a helical wave
of propagation. This feature is also reflected on the band structure as shown in Fig. 2(b). Here
the circular markers on the bands describe eigenmodes and their polarization characteristics.
Right-handed elliptically polarized eigenmodes, which have a positive CD index, are denoted in
red tones and left-handed elliptically polarized eigenmodes, which have a negative CD index, are
denoted in blue tones. The size of a marker indicates the coupling index « of that eigenmode.
The lowest four bands are almost perfectly left- or right-handed circularly polarized as can be



0.7

0.6

0.5

0.4

0.3

0.2

Normalized frequency (a/A)

0.1

C"00.0 05 10 Z r X 00 05 1000 05 10

Reflectance Reflectance

Fig. 2. (a) The intensity reflectance spectrum for incident light parallel to the helix axis (z
axis). There are 4 turns of helices in this direction and the structure is periodic in x and y
directions. (b) The band structure along the I'Z direction and (c) along the I'X direction
of the helix array illustrated in Fig. 1. The markers on bands characterize the eigenmodes
whose CD indices are denoted by the color and coupling indices are represented by the size
of the markers. (d) and (e) are the reflectance spectra for propagation along the I'X direction
for the helix stacks of N = 4 layers and N = 1 layer, respectively. The helices are periodic in
the z direction in (d) and (e). In (a), (d), and (e), red and blue lines represent the reflectance
spectra when the incident light are of RCP or LCP, respectively.

seen from the color code. Meanwhile, there exists a frequency region (bounded by the two dotted
lines) wherein only the eigenmodes with LCP are supported which indicates the existence of a
polarization gap [8]. We also calculate the intensity reflectance spectrum of a finite system (4
turns of helices in the z direction) as shown in Fig. 2(a), where the red and blue curves represent
the reflectance when the incident waves have RCP and LCP, respectively. As expected, light with
RCP is almost totally reflected inside the polarization gap.

However, the direction of incident light being parallel to the helix axis is not the only case
where the helix array exhibits a strong chiral response. In Fig. 2(c), we show the band structure
along the I'’X direction, which describes the property of the system when the incident direction is
perpendicular to the helices. Similar to the eigenmodes shown in Fig. 2(b), the eigenmodes in
Fig. 2(c) are also strongly circularly polarized. Moreover, there also exists a frequency range
between the two dashed lines wherein the system only supports the eigenmodes with RCP. This
region’s lower frequency boundary is marked by the maximum of the third band which has
eigenmodes that are either linearly polarized (gray markers) or left-handed elliptically polarized.
The upper frequency edge is bounded by the fifth band which favors left-handed elliptically
polarized eigenmodes. A direct consequence of having such a frequency region that favors one
particular circular polarization can be seen in the reflectance spectra. For the reflectance spectrum
calculations along the I'X direction, we assume that the structure is periodic in the y and z
directions and regard the helices on the same yz plane as forming a single layer. In this direction
of propagation, the x axis, we take N layers of helices. For a stack of N = 4 layers, the incident
light with LCP is nearly perfectly reflected while the incident light with RCP is transmitted with
almost no reflection in the region bounded by the dashed lines as shown in Fig. 2(d). We observe
this clear region of high reflectance of LCP for stacks of 4 or more layers. Interestingly, this high
reflectance is preserved even for a single layer (N = 1), which is a metasurface, as shown in Fig.
2(e). There is again almost 100% reflectance of the incident light with LCP but in a narrower
frequency region.
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4. Field plots
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Fig. 3. (a) Cross sections are taken along the direction of propagation given by xq (i, ii, iii, iv, v).
(b) The magnetic field intensities of the first four bands’ eigenmodes for the wave vector
k= (0.3,0,0)27/a. The length and the direction of the white arrow on each cross section
show the average magnetic field’s intensity and direction, respectively. Tracing the arrows
one can see that the fields rotate either in the clockwise (for left-handed elliptically polarized)
or counter-clockwise (for right-handed elliptically polarized) direction. Bands 1 and 4 are
predominately right-handed elliptically polarized while bands 2 and 3 are predominately
left-handed elliptically polarized as predicted by the eigenmode analysis shown in Fig. 2(c).

The magnetic field distributions for the eigenmodes in the first four bands are presented in Fig.
3(b) for the cross-sections taken along the x axis as shown in Fig. 3(a). For each band, we plot
the field distributions corresponding to the wave vector k= (0.3,0,0)27/a. The intensity and
the direction of the real magnetic field averaged over a given cross section are denoted by the
length and the direction of an arrow, respectively. The average real field intensity does not change
significantly across different cross sections. On the other hand, as the wave propagates, the average
real field direction rotates clockwise or counter-clockwise for left- and right-handed elliptically
polarized eigenmodes, respectively. We plot the magnetic fields rather than the electric fields
because of the discontinuous nature of electric field distributions caused by the large difference
between gperix = 11.7 and €p05; = 1. The plots in Fig. 3(b) provide a direct visualization of the
chiral nature of the eigenmodes in the system.
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5. Perturbation theory

To quantitatively understand how the elliptical polarization state emerges for propagation along
the I'X direction, in this section we provide a discussion by connecting the behavior of the array
of helices to the behavior of the array of straight rods using perturbation theory. We consider the
array of rods that has the same structural parameters (a, 7, Enost» Erod = Ehelix) as those of the
array of helices in our study. For the helical structure, the center of the helix wire is described by
the following equation of a helical trajectory:

x(t) = R - cos(t),
y(l) =R Sil’l(l), (4)
(1) = £z,

2r

where R and p are, respectively, the radius and the pitch of the helical trajectory, and ¢ is the
coordinate along the trajectory. When R = 0 (for any p), the helical trajectory becomes a straight
line. Accordingly, we employ R (for fixed p = 1.29a) as a tuning parameter to control the chirality
in a structure.

(a) (b) (©)

0.8
> @
® 9 ° °

0.7 e, %
= ®
=06
>
(&)
S 05
=)
g
=04
el
@ ° RCP
203 1
©
E
o
=202 kK |0

—» TE 1.0
0.1 — M 05 -1
LCP
0.0
r XTr xTr X

Fig. 4. The band structures of the rod array (a) and the helix arrays with (b) R = 0.07a and
(c) R = 0.14a. As R increases, the chirality increases. The eigenmodes, as a result, become
more elliptically polarized. In (b) and (c), the CD indices and the coupling indices of the
eigenmodes are denoted by the markers’ color and size, respectively.

In Fig. 4, we show the band structures of three arrays that only differ by R. The band structure
in Fig. 4(a) is of such an array of straight rods (R = 0). Its bands can be classified as either
transverse-electric (TE) or transverse-magnetic (TM), where TE bands have magnetic fields
solely along the z axis and TM bands have electric fields solely along the z axis. When R is
increased from 0, the structure transforms from an array of rods to an array of helices. Figure 4(b)
shows the band structure corresponding to R = 0.07a. Compared to the band structure of the rod
array, we see that the eigenmodes in general acquire chiral characteristics. This is in contrast with
the bands in Fig. 4(a) where the bands are either TE or TM and hence non-chiral. On the other
hand, the overall shape of the band structure in Fig. 4(b) strongly resembles that in Fig. 4(a). This
observation, that chirality develops for R # 0, but the shape of the bands resemble those of the
array of rods, persists as we further increase R, as shown in Fig. 4(c) where R = 0.14a.

The observation in Fig. 4, about the similarity between the band structures of the array of
rods and the array of helices, strongly suggests that one can quantitatively understand the band
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structure of the array of helices using perturbation theory starting from the band structure of
the array of rods. We apply perturbation theory assuming the following: (i) The rod array is the
unperturbed system, (ii) the helix array is the perturbed system, (iii) the perturbation is defined
by a small change Ae due to shifting dielectrics caused by chirality, and (iv) R characterizes the
strength of the perturbation.

The eigenmodes of a perturbed system can be expanded in terms of the eigenmodes of an
unperturbed system [21]:

E%Ae|E°
|Eiy = EJ) + ) % |ED) . )

i Yo T %o
where we use the Dirac notation for eigenmodes and inner products. IEP) is the i-th normalized
eigenmode of the unperturbed system with the normalized eigenfrequency wy; and |E;) is the
perturbed system’s i-th normalized eigenmode. The normalization is defined as (E?IalEJQ) =i
where ¢; ; is the Kronecker delta and ¢ is the position-dependent relative permittivity of the

unperturbed system. Ag is the perturbing Hamiltonian.

In Eq. (5), the calculation of the inner product (EJ(.)IASIE?) requires special attention. When
the perturbation involves the shift of dielectric boundaries, the discontinuity of the perpendicular
electric field components needs to be taken into account carefully [22]. We adopt the smoothing
technique given by Johnson et al. in [22] to express (EleAsIElQ) as a surface integral:

(EJ|As|ED) = / dA%[sH(E?j” . Eg.{”) - &'0% DY )], (6)
where €| = &nelix — €nost and sll = sE;lix - s;{l)s ;- B is the shifted distance of the dielectric
boundary (between gpejix and pos,) towards gpos. E1 (D1) and E|| (D)) are the electric (dis-
placement) field components that are normal and parallel to the dielectric boundary, respectively.
* stands for the conjugation operation. We remark that the use of || and &, in Eq. (6), as detailed
by Johnson et al. in [22], does not arise due to the homogenization of the dielectric helix array,
but rather is based on a smoothing technique applied at the dielectric-air interface at the surface
of the helix. This smoothing technique avoids the discontinuous transition from &5 t0 Epeix
and creates a dielectric function that changes smoothly and allows all field components to be
continuous. Equation (6) combined with Eq. (5) provides a way to connect the eigenmodes of a
helix array with the eigenmodes of a rod array.

In general, the summation in Eq. (5) becomes exact to the first order of the perturbation, if the
original basis is complete and the summation is over all the eigenmodes. In practice, one only
needs to include a small number of eigenmodes to achieve a good approximation. Our analysis
includes the lowest 6 eigenmodes (|EY) for j = 1, ..., 6). The average CD indices calculated by
the perturbation theory using Eq. (5) and Eq. (6) are shown by the dots in Fig. 5(a). The dots
for each band are in an agreement with the respective line in Fig. 5(a), which is the numerically
calculated CD indices using MPB simulations. The use of a finite number of eigenmodes in the
summation as an approximation is justified by the coupling strength between eigenmodes. In
Eq. (5), the coupling term (E;)lAle?) / (wai - w(z),j) determines the coupling strength between
the unperturbed eigenmodes |E?) and |E?). Due to the form of the denominator, the strongest
couplings are from the eigenmodes that have similar frequencies. Since in the unperturbed system
the first TE band and the first TM band have similar frequencies, and moreover these bands have
frequencies that are quite different from all the other bands, the first two bands of the helical
systems can be well approximated as the hybridization between the first TE and the first TM
bands of the unperturbed system. The perturbation theory thus predicts that, as R increases from
0, the first two bands of the helical system should have chirality with similar strength but opposite
sign. The prediction agrees quite well with exact numerical simulations of the first two bands in
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the helical system as shown in Fig. 5(a). Similar behaviors are also seen for the third and fourth
bands of the helical system. As a side note, in applying the perturbation theory of Eq. (5), the
complete basis should include longitudinal eigenmodes at w = 0. However, the contribution of
such longitudinal eigenmodes is small since the frequency of such eigenmodes are quite far from
the other eigenmodes of the unperturbed system.
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Fig. 5. Comparison of the perturbation theory solution (solid dots) and the direct numerical
calculation (lines) of the average CD indices of the first four bands along the I'X direction
for a helix array with r = 0.13a, (a) p = 1.29a and varying R, (b) R = 0.1a and varying p,
(¢) p =1.29a, R = 0.1a and varying 4.

In addition to R, p is the second parameter that is effective on chirality. To investigate the effect
of p, we apply the same analysis when p is the tuning parameter of chirality and R is fixed to
0.1a. The perturbation theory results and the numerical calculations again agree well as shown
in Fig. 5(b). Large values of p make helices more similar to rods, therefore, perturbation theory
is more accurate for large p.

We also investigate the effect of the lattice spacing. For this purpose, we denote the lattice
spacing as d, and retain a simply as a length unit. p and R are respectively fixed to 1.29a and
0.1a. As a varies, we observe smaller changes in the direct numerical calculation of the CD index,
as shown by the lines in Fig. 5(c), compared to the changes due to varying R or p, as shown in
Fig. 5(a,b). On the other hand, perturbation theory solutions become less accurate for smaller 4.
This can be explained by the fact that when helices are placed together a helix is more strongly
affected by the perturbation in its neighbors. Therefore, the perturbation becomes stronger as
helices come closer and the first-order perturbation results become less accurate.

Finally, we numerically calculate the average CD indices of the first 4 bands for ranges of R
and p to understand the dependence on chirality parameters R and p, as shown in Fig. 6. We
notice that the behaviors of the bands 1 and 2 are similar to each other while the bands 3 and 4
also share similar characteristics. This similarity is in agreement with the discussion given above.
It is also important to mention that the absolute value of the CD index does not monotonically
increase with an increase in R or p. Only certain combinations of R and p give the highest
absolute value of the CD index.

6. Utilization as a chiral mirror

In previous sections, we provide detailed discussions of the chiral behavior of the structure
from the band structure perspective. Remarkably, the strong chiral behavior persists even when
we consider the case with only a single layer of helices, for which the structure becomes a
metasurface. In Fig. 7 we show the reflectance and transmittance of this metasurface for normally
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Fig. 6. The absolute value of the average CD index as a function of p and R for the first four
bands for the structure in Fig. 1 along the I'X direction.
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Fig. 7. The intensity reflectance ((d) and (f)), and transmittance ((e) and (g)) spectra for the
incident wave with circular polarization ((d) and (e)) and linear polarization ((f) and (g)).
(a), (b) and (c) illustrate how circularly polarized incident waves interact with an ordinary
mirror and a helix metasurface. (h), (i) and (j) illustrate how linearly polarized incident
waves interact with an ordinary mirror and a helix metasurface.

incident light with either linear or circular polarizations. Strong reflection is observed near the
frequency of 0.53a/A. Near this frequency, for left-handed circularly polarized incident waves,
the reflected wave is also circularly polarized with the same handedness. This is in contrast to a
reflection off of an conventional metallic mirror where the handedness flips upon reflection. For
linearly polarized incident light, the reflected light has left-handed circular polarization regardless
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of the direction of the incident linear polarization. Similar handedness-preserving mirrors, or
chiral mirrors, have been previously achieved either with metallic structures or with dielectric
photonic crystal slab structures at off-normal incidence [23-25]. There are various applications
proposed for chiral mirrors such as reflective circular polarizers, bolometers and self-polarizing
cavities [23]. Here our work provides a realization of a dielectric chiral mirror for normal incident
light.

7. Conclusion

In summary, we have shown that there are strong effects of circular dichroism and polarization
stop gaps in dielectric helices for light propagating along a direction perpendicular to the helices,
despite the nonexistence of helical symmetry along this direction. We have used band structure
analysis and finite-difference time-domain simulations to demonstrate these effects. We have
also presented a quantitative discussion using perturbation theory to explain how these effects
emerge. Finally, we have shown that strong circular dichroism effects persist even for a single
layer of helices such that it reflects one circular polarization 100% while completely transmitting
the other. Such reflection moreover preserves the handedness of the incident light’s polarization,
unlike a regular mirror in which handedness flips upon reflection. We have thus shown that such
a structure behaves as a chiral mirror. The work here should motivate further explorations of
dielectric helix structures for various applications.

Funding

Air Force Office of Scientific Research MURI program (FA9550-12-1-0471); National Science
Foundation (NSF) (CBET-1641069).

Acknowledgments

The authors would like to acknowledge the discussions with Prof. John A. Rogers, and his group
members Philipp Gutruf, Zheng Yan and Mengdi Han.



