

1 Superoxide dismutase and pseudocatalase increase tolerance to Hg(II) in *Thermus*
2 *thermophilus* HB27 by maintaining the reduced bacillithiol pool.

3

4 Javiera Norambuena¹, Thomas E. Hanson T², Tamar Barkay^{1*}, Jeffery M. Boyd^{1*}

5

6 ¹Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New
7 Jersey, USA.

8 ²School of Marine Science and Policy, Delaware Biotechnology Institute, and Department
9 of Biological Sciences, University of Delaware, Newark, Delaware, USA.

10

11 *To whom correspondence may be addressed: Jeffrey M. Boyd or Tamar Barkay,
12 Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New
13 Brunswick, New Jersey, 08901, Telephone: (848) 932-5604, E-mail:
14 jeffboyd@SEBS.rutgers.edu (JB) or Telephone: (848) 932 5664, E-mail:
15 tamar.barkay@rutgers.edu (TB).

16

17 Running title: Running title: Bacillithiol, ROS, and mercury resistance

18

19 **ABSTRACT**

20 Mercury (Hg) is a widely distributed, toxic heavy metal with no known cellular role.
21 Mercury toxicity has been linked to the production of reactive oxygen species (ROS), but
22 Hg does not directly perform redox chemistry with oxygen. How exposure to the ionic
23 form, Hg(II), generates ROS is unknown. Exposure of *T. thermophilus* to Hg(II) triggered
24 ROS accumulation and increased transcription and activity of superoxide dismutase
25 (Sod) and pseudocatalase (Pcat); however, Hg(II) inactivated Sod and Pcat. Strains
26 lacking Sod or Pcat had increased oxidized bacillithiol (BSH) levels and were more
27 sensitive to Hg(II) than the wild type. The $\Delta bshA$ Δsod and $\Delta bshA$ $\Delta pcat$ double mutant
28 strains were as sensitive to Hg(II) as the $\Delta bshA$ strain that lacks bacillithiol, suggesting
29 that the increased sensitivity to Hg(II) in the Δsod and $\Delta pcat$ mutant strains is due to a
30 decrease of reduced BSH. Treatment of *T. thermophilus* with Hg(II) decreased aconitase
31 activity and increased the intracellular concentration of free Fe and these phenotypes
32 were exacerbated in Δsod and $\Delta pcat$ mutant strains. Treatment with Hg(II) also increased
33 DNA damage. We conclude that sequestration of the redox buffering thiol BSH by Hg(II),
34 in conjunction with direct inactivation of ROS scavenging enzymes, impairs the ability of
35 *T. thermophilus* to effectively metabolize ROS generated as a normal consequence of
36 growth in aerobic environments.

37

38 **IMPORTANCE**

39 *Thermus thermophilus* is a deep-branching thermophilic aerobe. It is a member of the
40 Deinococcus-*Thermus* phylum that, together with the Aquificae, constitute the earliest
41 branching aerobic bacterial lineages; therefore, this organism serves as a model for early-

42 diverged bacteria (1) whose natural heated habitat may contain mercury of geological
43 origins (2). *T. thermophilus* likely arose shortly after the oxidation of the biosphere 2.4
44 billion years ago. Studying *T. thermophilus* physiology provides clues about the origin and
45 evolution of mechanisms for mercury and oxidative stress responses, the latter being
46 critical for the survival and function of all extant aerobes.

47

48 **KEY WORDS:** *Thermus thermophilus*, reactive oxygen species, mercury, thermophile,
49 bacillithiol, superoxide dismutase, pseudocatalase, iron.

50

51 **INTRODUCTION**

52 All aerobes face oxidative stress, which occurs when the balance between pro-
53 oxidants and antioxidants is tipped towards pro-oxidants. Reactive oxygen species (ROS)
54 are pro-oxidants that are produced by reduction of dioxygen. This can happen
55 intracellularly through the interaction of dioxygen with reduced flavin prosthetic groups
56 (3). The transfer of one- or two-electrons to dioxygen produces superoxide (O_2^-) and
57 hydrogen peroxide (H_2O_2), respectively (4). A three-electron transfer catalyzed by redox
58 active divalent transition metals, such as copper and iron (Fe) via Fenton and Haber-
59 Weiss reactions, can produce hydroxyl radicals ($\cdot OH$). These radicals are short-lived and
60 rapidly react with multiple cellular constituents including DNA (4).

61 Mercury (Hg) does not perform redox chemistry under biological conditions, but
62 in animal models Hg(II) exposure results in oxidative stress (5-9). Increased ROS upon
63 Hg(II) exposure is thought to result from the depletion of cellular redox buffers (5, 8, 10)
64 and/or the inhibition of the electron transport chain allowing electrons to accumulate on
65 flavoproteins (6, 8, 11). In bacteria, Hg(II) triggered the release of Fe(II) from solvent
66 exposed iron sulfur (Fe-S) clusters (12). Oxidation of solvent accessible 4Fe-4S clusters
67 by superoxide or H_2O_2 also results in Fe(II) release (13, 14). An increased pool of non-
68 chelated or “free” cytosolic Fe(II) can accelerate Fenton chemistry (15).

69 Metabolic subsystems have evolved to detoxify Hg(II). Resistance to Hg(II) is
70 encoded by the mercury resistance operon (*mer*), which is widely distributed over the
71 bacterial and archaeal kingdoms (16). The gene composition of this operon varies among
72 organisms, but all *mer* operons encode for the mercuric reductase (MerA), which reduces
73 Hg(II) to elemental mercury. Elemental Hg is volatile and diffuses out of the cell. Many

74 *mer* operons also encode for Hg(II) sequestration and/or transport, and the Hg(II)-
75 responsive transcriptional regulator of the operon, MerR (16). Deeply branching microbes
76 have simple *mer* operons (17); the *T. thermophilus* operon is composed of *merA*, *merR*,
77 and *oah2*. The latter encodes a homolog of O-acetyl-homocysteine sulfhydrylase, an
78 enzyme normally involved in methionine biosynthesis and recycling (18, 19).

79 Our knowledge of the *mer* system comes from studies with the most derived taxa
80 including *Escherichia coli*, *Pseudomonas*, and *Bacillus*. *T. thermophilus* is a deep-
81 branching thermophilic organism that responds differently to Hg(II) exposure than *E. coli*
82 (19). It also possesses a different set of enzymes to detoxify ROS and it uses bacillithiol
83 (BSH) as the primary low molecular weight (LMW) thiol (19). *T. thermophilus* also
84 accumulates high concentrations of intracellular sulfides (324.1 \pm 88.4 nmol/g dry weight)
85 (19). Mercury has a high affinity for cellular thiols (20, 21) and exposure to 3 μ M Hg(II)
86 completely depleted free BSH pools in *T. thermophilus* (19). Interestingly, the cellular
87 concentration of BSH is predicted to be an order of magnitude higher than the
88 concentration of Hg(II) that depleted the reduced BSH pool (presented herein and (19))
89 suggesting that sequestration of BSH by Hg(II) is only depleting a portion of the BSH pool.
90 These findings have led us to ask what happens to the rest of the BSH upon Hg(II)
91 challenge. The disturbance of thiol-containing redox buffers, which play critical roles in
92 ROS detoxification and oxidized protein repair, can lead to ROS accumulation (22). There
93 is not a clearly established connection between Hg(II) and ROS in microbes and even
94 less is known about physiologically diverse microbes like *T. thermophilus* that utilize
95 alternative redox buffers such as BSH.

96 We tested the overarching hypothesis that exposure of *T. thermophilus* to Hg(II)
97 increases ROS accumulation because of decreased availability of reduced BSH. We
98 demonstrate that Hg(II) exposure results in ROS accumulation. This is, in part, the result
99 of Hg(II)-dependent inactivation of the ROS metabolizing enzymes superoxide dismutase
100 (Sod) and pseudocatalase (Pcat). Strains lacking ROS metabolizing enzymes contain
101 decreased levels of reduced BSH and display increased sensitivity to Hg(II). Hg(II)
102 exposure also inactivated aconitase, which requires a solvent accessible Fe-S cluster,
103 and increased free cytosolic Fe pools. This effect likely promotes ROS generation via
104 Fenton chemistry, which we monitored by measuring DNA damage. Taken together,
105 these findings confirm that an enzymatic capacity to detoxify ROS is important for the
106 maintenance of a reduced intracellular thiol pool, which is necessary to mitigate Hg(II)
107 toxicity in *T. thermophilus*.

108

109 **RESULTS**

110 **Mercury exposure results in ROS accumulation and inactivates ROS-**
111 **scavenging enzymes.** We tested the hypothesis that Hg(II) exposure would increase
112 ROS accumulation in *T. thermophilus*. After exposure to Hg(II), total intracellular ROS
113 levels were qualitatively measured with the fluorescent probe 2',7'-
114 dichlorodihydrofluorescein diacetate (H₂DCFDA). Exposure to 4 or 8 μM Hg(II) for 60
115 minutes resulted in a significant increase in DCFDA-based fluorescence suggesting
116 increased ROS accumulation (Fig. 1A).

117 The genome of *T. thermophilus* encodes one manganese-dependent superoxide
118 dismutase (Sod) to detoxify superoxide. It does not possess catalase, but instead,

119 encodes a nonheme catalase, or pseudocatalase (Pcat), that utilizes an active site
120 manganese to metabolize H₂O₂ (23). It also possesses two types of peroxiredoxins:
121 osmotically inducible protein (OsmC) and bacterioferritin comigratory protein (Bcp).
122 These are members of the thiol peroxidase family, which catalyze the reduction of
123 hydroperoxides (24, 25). The genome also encodes a thioredoxin-related protein,
124 thiol:disulfide interchange protein (TlpA), which is involved in oxidative stress responses
125 (26).

126 We tested the hypothesis that Hg(II) exposure increases the transcription of genes
127 involved in ROS detoxification. Exposure of *T. thermophilus* to 1 μ M Hg(II) increased
128 transcript levels of *sod*, *pcat*, *osmC*, and *tlpA* (Fig. 1B). This induction was noted after 7.5
129 minutes (not shown) and sustained for at least 30 minutes after Hg(II) exposure (Fig. 1B).
130 Only *bcp* transcript levels were not significantly changed. The strongest induction was
131 observed after 15 min of Hg(II) exposure. The greatest induction was noted for *pcat*, which
132 was induced 107 \pm 23-fold.

133 We next examined whether the increased transcription of *sod* and *pcat* would
134 correlate with increased enzyme activity. Cells were exposed to Hg(II) for 30 min, and
135 then H₂O₂ and superoxide (SOD) scavenging activities were measured in cell-free
136 lysates. Hg(II) exposure significantly increased H₂O₂ consumption by approximately 2-fold.
137 A Δ *pcat* mutant strain lost >90% of the H₂O₂ consumption activity suggesting that
138 Pcat functions in H₂O₂ metabolism (Fig. 1C). Superoxide consumption appeared to
139 increase relative to the unexposed control, but it was not statistically significant (p=0.249)
140 (Fig. 1C). A Δ *sod* strain displayed 8-fold lower superoxide scavenging activity than the
141 Hg(II)-unexposed parent, correlating superoxide consumption with the presence of Sod.

142 Comparing the transcript levels and enzymatic activities revealed a significant
143 disconnect. Hg(II) exposure resulted in greatly increased *sod* and *pcat* transcript levels,
144 without a commensurate increase in Sod and Pcat activities. We tested the hypothesis
145 that Hg(II) exposure was detrimental to Sod and Pcat activities. We used *T. thermophilus*
146 cell-free lysates generated from cells that had not been exposed to Hg(II). Incubation of
147 the cell-free lysate with 100 μ M Hg(II) resulted in a 70% decrease in Pcat activity (Fig.
148 S1C). We were not able to conduct traditionally described SOD assays because xanthine
149 oxidase was inhibited by Hg(II); therefore, we measured Sod and Pcat activities with
150 zymography. When lysates were directly exposed to Hg(II) the activities of both Sod and
151 Pcat were decreased (Figs. 1D and F). Gel-localized activities were verified using the
152 Δ *sod* and Δ *pcat* strains (Figs. 1E and G). The Δ *sod* and Δ *pcat* strains were more sensitive
153 to paraquat and H_2O_2 , respectively (Fig. S1).

154 We examined whether Hg(II) affects Pcat and Sod *in vivo*. To this end, we stopped
155 protein synthesis and incubated cells with and without 1 or 5 μ M Hg(II) before H_2O_2 and
156 superoxide consumption was monitored in cell-free lysates. In absence of Hg(II), Pcat
157 and Sod activities were approximately 50% after 30-minute exposure to chloramphenicol,
158 (533 \pm 26 and 3.9 \pm 0.3 U/mg protein, respectively). Exposure to 5 μ M Hg(II) further
159 decreased consumption of superoxide, by 25% (to 2.9 \pm 0.3 U/mg), and H_2O_2 , by 15% (to
160 453 \pm 15 U/mg), when compared to the chloramphenicol only treated cells (Fig. 1H).
161 Incubation with 1 μ M Hg(II) did not result in a significant decrease in SOD or Pcat activities
162 (not shown). These findings demonstrate that Hg(II) exposure resulted in ROS
163 accumulation and increased activities of Pcat and Sod *in vivo*. However, the strong
164 transcriptional induction of *pcat* and *sod* only translated into modest increases in Sod and

165 Pcat activities. This could be, in part, the result of Hg(II) inhibition of the holo-enzyme or
166 of enzyme maturation.

167

168 **Strains lacking superoxide- or H₂O₂-scavenging activities are more sensitive**
169 **to Hg(II).** We tested the hypothesis that Sod and Pcat have roles in mitigating Hg(II)
170 toxicity. When compared to the parent strain (WT), *T. thermophilus* Δ sod and Δ pcat
171 mutants had increased sensitivity to Hg(II) with 50% inhibitory concentrations (IC₅₀) of 2.5
172 μ M and 3 μ M, respectively (Figs. 2A and B). The WT IC₅₀ for Hg(II) was 4.5 μ M. The Δ sod
173 strain was as sensitive to Hg(II) as the Δ merA strain. Genetic complementation of the
174 Δ sod (Figs. S2A and C) and Δ pcat (Figs. S2B and D) strains verified that the lack of Sod
175 or Pcat was responsible for the observed phenotypes.

176 We tested the hypothesis that the roles of Sod or Pcat in mitigating Hg(II) toxicity
177 were independent of the function of MerA. We compared the Hg(II) sensitivities of the
178 Δ merA Δ sod and Δ merA Δ pcat double mutants to that of the Δ merA mutant. The double
179 mutant strains were more sensitive to Hg(II) than the Δ merA strain (Fig. 2C) suggesting
180 that the roles of Sod, Pcat, and MerA in Hg(II) resistance are independent and
181 complementary.

182 We next tested the corollary hypothesis that ROS accumulation would occur at
183 lower Hg(II) concentrations in the Δ sod and Δ pcat strains compared to the WT strain. We
184 were unable to detect ROS accumulation in the Δ sod and Δ pcat strains in the absence of
185 Hg(II) (Fig. 2D). ROS accumulation was noted in the Δ sod and Δ pcat strains upon
186 exposure to 0.5 and 2 μ M Hg(II), whereas no change in ROS levels were noted in the WT

187 strain. These results led us to conclude that Sod and Pcat mitigate Hg(II) toxicity by
188 controlling ROS accumulation.

189

190 ***T. thermophilus* strains lacking Sod or Pcat contain smaller reduced BSH
191 pools.** We tested the hypothesis that BSH functions in metabolizing ROS or the
192 byproducts or ROS damage. We quantified the reduced BSH pools in the Δ sod and Δ pcat
193 strains by monobromobimane derivatization and HPLC, which quantifies free BSH pools.
194 Free BSH was undetectable in the Δ sod mutant (Fig. 3A) and the Δ pcat strain had 80%
195 less free BSH than the WT strain (7.2 ± 6.7 versus 33.2 ± 10.2 nmol g⁻¹ dry weight for the
196 WT) (Fig. 3A). Importantly, all strains had approximately the same intracellular
197 concentration of total (reduced+oxidized) BSH (Fig. 3A) strongly suggesting that the lack
198 of free BSH is due to its oxidation in the mutant strains or defective recycling of bacillithiol
199 disulfide (BSSB) back to BSH. The same HPLC traces did not display a significant
200 difference in intracellular sulfide concentrations between the WT, Δ sod, and Δ pcat strains,
201 but these peaks were quite broad making it difficult to accurately quantify (data not
202 shown).

203 Reduced BSH is required to detoxify the antibiotic fosfomycin (27) and mitigate
204 oxidative stress (28). The Δ sod and Δ pcat strains were more sensitive to fosfomycin than
205 the WT and had fosfomycin sensitivities similar to that of the Δ bshA strain (Fig. 3B), which
206 cannot synthesize BSH (19). When compared to the WT strain, the Δ bshA strain showed
207 increased sensitivity to H₂O₂ and paraquat; however, the Δ bshA strain was less sensitive
208 to the toxicants than the Δ sod and Δ pcat strains (Fig. S1).

209 ROS-scavenging deficient strains were constructed in the $\Delta bshA$ background to
210 test if Hg(II) sensitivity in the $\Delta pcat$ and Δsod strains was exacerbated by a complete lack
211 of BSH (19). The Hg(II) sensitivity phenotypes corresponding to the $\Delta bshA$ and $\Delta pcat$
212 mutations were not additive (Fig. 3C), but the Δsod strain was more sensitive to 3 μ M
213 Hg(II) than the $\Delta bshA$ strain (Fig. 3D). These results suggested that Sod has a role in
214 preventing Hg(II) toxicity in addition to its role in preventing the oxidation of BSH pool
215 while the Hg(II) sensitivity of the $\Delta pcat$ strain appears to result from a lack of reduced
216 BSH.

217

218 **Hg(II) exposure results in decreased aconitase (AcnA) activity, increased**
219 **free cytosolic Fe, and DNA damage.** BSH plays a fundamental role in Hg(II) resistance
220 in *T. thermophilus* and exposure to 3 μ M Hg(II) completely depleted free BSH pools (19).
221 The Δsod and $\Delta pcat$ strains had decreased concentrations of reduced BSH (Fig. 3A)
222 suggesting that there may be more free Hg(II) in the cytoplasms of the Δsod and $\Delta pcat$
223 strains when challenged with Hg(II). Prior work in *E. coli* found that Hg(II) inactivated
224 fumarase, which requires a solvent accessible Fe-S cluster for catalysis (12). When *T.*
225 *thermophilus* was exposed to 1 μ M Hg(II) for 30 minutes, AcnA activity decreased to 50%
226 of the unexposed control (Fig. 4A). The non-challenged $\Delta pcat$ and Δsod strains had 12
227 and 16% of the activity of the WT strain, respectively (Fig. 4A). Upon exposure to Hg(II),
228 AcnA activity was reduced a further 30-fold in the Δsod strain and 4.5-fold in the $\Delta pcat$
229 strain (Fig. 4A). We next examined whether Hg(II) inactivated *T. thermophilus* AcnA *in*
230 *vitro*. To this end, we added Hg(II) to anaerobic cell-free lysates prior to measuring AcnA

231 activity. AcnA activity decreased as a function of Hg(II) added and was nearly
232 undetectable after exposure to 100 μ M Hg(II) (Fig. 4B).

233 We next tested the hypothesis that Hg(II)-exposure would increase the size of the
234 cytosolic free Fe pool. *T. thermophilus* was exposed, or not, to 4 μ M Hg(II) for 30 minutes
235 and intracellular free Fe was quantified using electron paramagnetic resonance (EPR)
236 spectroscopy (21, 29). Exposure significantly increased the pool of free Fe by 1.7-fold
237 (Fig. 4C). When the WT, Δsod , and $\Delta pcat$ strains were exposed to 0.25 μ M Hg(II), the
238 WT free Fe pool was unaltered while it was significantly increased, 1.8-fold, in the Δsod
239 and $\Delta pcat$ strains; however, at 4 μ M Hg(II) the free Fe pool was elevated in the WT strain
240 (Fig. 4C). Thus, treatment with a lower concentration of Hg(II) was capable of disrupting
241 the Fe homeostasis in the Δsod and $\Delta pcat$ strains when compared to the WT. These
242 strains had similar free Fe levels when cultured in the absence of Hg(II) (Fig. 4C).

243 Free Fe(II) can catalyze Fenton chemistry to produce HO[•] (4) that can damage
244 DNA (30) by producing apurinic/apyrimidinic (AP) sites (31, 32). We hypothesized that
245 Hg(II) exposure would result in increased DNA damage. After exposure to either 2 and 4
246 μ M Hg(II) there was a significant increase in AP sites (Fig. 4D). Repair of AP sites requires
247 base excision repair, which in *T. thermophilus* depends on the Nfo endonuclease IV (33).
248 A *T. thermophilus* Δnfo mutant was more sensitive to Hg(II) than the WT strain (Fig. S3).

249 Taken together these data are consistent with a model wherein Hg(II) exposure
250 decreases the activities of enzymes requiring solvent exposed Fe-S clusters and
251 increases intracellular free Fe. The increase in free Fe likely contributes to increased
252 hydroxyl radicals resulting in increased DNA damage.

253

254 **DISCUSSION**

255 The mechanisms by which metals exert toxicity are not fully understood. These
256 phenomena have largely been examined in model organisms and relatively few studies
257 have been conducted in physiologically or phylogenetically diverse organisms. In this
258 study, we examined the effect of Hg(II) exposure on a deeply branching thermophilic
259 bacterium to expand our knowledge of Hg(II) toxicity and tolerance in phylogenetically
260 and physiologically diverse microbes.

261 Data presented herein, and from our previous study (19), have led to a working
262 model for how Hg(II) exposure affects *T. thermophilus* (Fig. 5). In our model, increased
263 titers of cytosolic Hg(II) results in ROS accumulation, which also may be the result of
264 Hg(II)-dependent inactivation of Sod and Pcat. Strains lacking Sod or Pcat have
265 increased levels of oxidized BSH. Reduced BSH is necessary to buffer both cytosolic
266 Hg(II) and ROS. In the absence of reduced BSH, Hg(II) accumulation inactivates
267 enzymes, such as aconitase, with solvent accessible Fe-S clusters and increases
268 intracellular free Fe. The increased free Fe(II) participates in Fenton chemistry resulting
269 in an increase in hydroxyl radicals causing DNA damage. Thus, exposure to Hg(II) results
270 in oxidative stress even though Hg(II) is not a redox active metal and mutations that
271 diminish cellular defenses against ROS indirectly increase Hg(II) sensitivity. It is also
272 probable that BSH directly acts as a Hg(II) ligand (19, 34).

273 Oxidative stress among the prokaryotes has been mostly examined in *E. coli* with
274 little attention to physiologically diverse microbes. *Thermus* spp. inhabit hot environments
275 where heat lowers maximal oxygen saturation (4.53 mg/L at 65 °C) relative to saturation
276 under conditions utilized to culture *E. coli* (6.73 mg/L at 37 °C) (35). When tested,

277 *Thermus aquaticus* grew better under microaerophilic, as compared to more aerated,
278 conditions correlating with a decreased ability to detoxify ROS (36). These facts may also
279 explain the presence of pseudocatalase rather than catalase (37). Relative to *E. coli*, *T.*
280 *thermophilus* displays a distinct gene expression pattern upon Hg(II) exposure. In *T.*
281 *thermophilus*, *sod*, *pcat*, *osmC* and *tlpA* transcripts, but not *bcp*, were induced in response
282 to Hg(II) (Fig. 1A). In *E. coli*, Hg(II) was found to induce the expression of *sodB* and the
283 peroxiredoxin *ahpC*, but not *katG* and *katE* that encode catalases (38). The *E. coli* *sodA*,
284 which is the *T. thermophilus* *sod* orthologue, was repressed by short term Hg(II) exposure
285 (38). We previously showed that *E. coli* and *T. thermophilus* differentially regulate the
286 transcription of genes required for LMW-thiol synthesis upon Hg(II) exposure (19). Taken
287 together, these findings highlight the fact that these two bacteria, one deep branching and
288 the other highly derived, differ in their responses to Hg(II). The findings reported here,
289 therefore, provide a foundation for future studies to decipher how microbial systems have
290 evolved in response to the combined toxic effects of metals and oxygen.

291 The amount of BSH in *T. thermophilus* cells appears to be lower than the
292 concentration of glutathione typically found in Gram-negative bacteria. Assuming that *T.*
293 *thermophilus* cells have the same volume and dry weight as *E. coli* cells, the cytosolic
294 concentration of BSH would be ~40 μ M under the growth conditions utilized. Previous
295 work found the concentration of BSH in *Bacillus subtilis* and *Deinococcus radiodurans* to
296 be ~200 μ M (39). The concentration of glutathione in *E. coli* cells is ~5 mM (39). The
297 lower concentration of BSH in *T. thermophilus* cells could constrain the ability to use BSH
298 to buffer against ROS when Hg(II) accumulates in the cytosol. This could result in an
299 increased reliance on alternative ROS mitigating factors, such as Sod, to protect the cell.

300 BSH pools were decreased by incubation with Hg(II) (19) and in mutant strains
301 lacking Pcat or Sod. We found that BSH functions to prevent ROS poisoning in *T.*
302 *thermophilus* (Fig. S1). The Δ sod and Δ pcat strains had lower levels of reduced BSH, but
303 the same overall concentration of BSH (Fig. 3A) suggesting that ROS or a byproduct of
304 ROS metabolism results in increased BSH oxidation. A role for BSH as a buffer against
305 ROS accumulation could explain why there was no detectable difference in ROS titers in
306 the Δ sod, Δ pcat, and WT strains in absence of Hg(II). It is currently unknown which
307 enzyme(s) is (are) responsible for reducing BSSB back to BSH in *T. thermophilus*. In
308 yeast and protists glutathione reductase is inhibited by Hg(II) (40, 41) and if *T.*
309 *thermophilus* utilizes a similar enzyme to reduce BSSB, which is likely, it is possible that
310 this enzyme is also inhibited by Hg(II), resulting in a decreased ability to recycle BSSB to
311 BSH (Fig. 5). It was hypothesized that YpdA functions as a BSSB reductase in *B. subtilis*
312 (42). The genome of *T. thermophilus* encodes for a gene product that is 39% identical to
313 YpdA (YP_144481). Future studies will be necessary to determine the effect of this gene
314 product on BSSB recycling.

315 In some cyanobacteria, glutaredoxin reductase posses a mercuric reductase
316 activity (43) and it is thus conceivable that MerA in *Thermus* may serve as a BSSB
317 reductase. This possibility is hard to evaluate with our current mechanistic understanding
318 of MerA, which is largely based on studies with proteobacterial reductases (44, 45). MerA
319 in *Thermus* is a core MerA, lacking the 70 amino acids N-terminus (NmerA) (46) that
320 functions in delivering S-Hg-S to the redox active site of the enzyme (45), and thus must
321 differ from the full length proteobacterial variants in its interaction with its substrates . We

322 also found that the reduced BSH pool in the Δ merA strain was similar to that of the WT
323 (not shown).

324 We previously reported the high concentrations of sulfides in strain HB27 (324.1+
325 88.4 nmol/g dry weight) (19). The natural habitats for *Thermus* spp. are usually moderate
326 to high temperature terrestrial springs with low sulfide and circumneutral to alkaline pH
327 suggesting a chemoorganotrophic metabolism (47, 48). However, genome sequences of
328 several *Thermus* spp., including HB27, revealed presence of genes related to the SOX
329 and PSR system (49). These systems may specify, respectively, mixotrophic growth with
330 reduced sulfur as an energy source and anaerobic polysulfide respiration (50). We are
331 not aware of reports demonstrating such metabolic capabilities in *Thermus*, and our
332 findings in this and our previous (19) papers highlight the need for further research on this
333 topic.

334 Hg(II) readily reacts with sulfide to form HgS and evidence suggests that sulfide
335 production could be a Hg(II) detoxification mechanism (51). We did not notice a significant
336 decrease in the size of the sulfide pool upon challenge with Hg(II) (19); however, the small
337 amount of Hg(II) added to *T. thermophilus* cultures relative to the size of the sulfide pool
338 likely render it impossible to detect a decline in sulfide concentration upon Hg(II) binding.
339 Hydrogen sulfide has been found to aid in the detoxification of ROS (52-54). In the future
340 we would like to decrease the size of the sulfide pool and examine the consequences on
341 ROS metabolism and Hg(II) challenge.

342 Hg(II) inhibited Sod, Pcat, and AcnA *in vivo* and *in vitro*, but a higher concentration
343 of Hg(II) was required to inhibit these enzymes *in vitro*. Moreover, the concentrations of
344 Hg(II) necessary to inhibit SOD and Pcat *in vitro* were much higher than predicted to

345 accumulate inside cells under the growth conditions utilized. Among the scenarios that
346 could explain this discrepancy, the most plausible explanation might be the difference in
347 available Hg(II) *in vivo* and *in vitro*. Mercury bioavailability is greatly affected by the
348 presence of ligands (55-57). If cell lysis during preparation of crude cell extracts releases
349 ligands that are compartmentalized within intact cells, these may greatly reduce Hg(II)
350 bioavailability in *in vitro* assays. This is suggested by our laboratory's protocols for
351 mercuric reductase assays whereby resting cells and crude extract activities are
352 measured at 10 and 100 μ M Hg(II) (58), respectively. The high concentrations of sulfide
353 in strain HB27 (19), which are likely present as labile organic and inorganic persulfides
354 and polysulfides (59), may greatly limit Hg(II) bioavailability in crude cell extracts. The
355 precise nature of the intracellular sulfide pool in strain HB27 and how it interacts with
356 metal exposure and other stressors will be an important future avenue of investigation.

357 This study reports on the effects of Hg(II) on *T. thermophilus*, which belongs to one
358 of the earliest aerobic bacterial lineages. We report that ROS detoxification is important
359 for Hg(II) tolerance; therefore, in *T. thermophilus*, resistance to Hg(II) is achieved through
360 both *mer*-based detoxification (18, 19) and the oxidative stress response. We previously
361 suggested that the *mer* system evolved in response to Earth oxygenation due to the
362 increased availability of oxidized Hg species (46). It is likely that these same
363 environmental changes led to the evolution of the oxidative stress response. While
364 numerous reports have documented metal-induced oxidative stress [reviewed in (10, 60,
365 61)], few examined how responses to this stress alleviate metal toxicity among
366 prokaryotes. Our findings in *T. thermophilus* alert us to these hitherto little-studied aspects
367 of metal homeostasis.

369 **EXPERIMENTAL PROCEDURES**

370

371 **Chemicals and bacterial growth conditions**

372 *Thermus thermophilus* HB27 (WT) and its mutants were cultured at 65°C in 461
373 Castenholz TYE medium (complex medium; CM) (18). When cultured in liquid medium,
374 cells grown in 3 mL of medium in 10 mL test tubes incubated perpendicular, and shaken
375 at 200 rpm. Test tubes were used to grow cells for ROS analysis, RNA extraction,
376 resistance assays, and AP site quantification. Flasks (2:3 gaseous headspace to liquid
377 medium ratio) were used to grow cultures to generate cell free extracts for enzyme
378 assays, zymograms, thiol content determination, and for intracellular Fe-concentration
379 determination. Solid culture medium was supplemented with 1.5% (wt/vol) agar.
380 Kanamycin (Kan) and Hygromycin B were supplemented at 25 μ g mL⁻¹ and 40 μ g mL⁻¹,
381 respectively. Unless otherwise stated, overnight (ON) cultures of *T. thermophilus* were
382 diluted in fresh medium to optical density (OD)₆₀₀ of 0.1 and further grown to OD₆₀₀ of
383 ~0.3 before challenged with toxicants (fosfomycin, paraquat, or HgCl₂). Mercury was used
384 as HgCl₂ for all assays. Protein concentrations were determined using Bradford procedure
385 (Bio-Rad Laboratories Inc., Hercules, CA).

386

387 **Mutant construction**

388 The in-frame deletions for *sod* (WP_011172643.1) and *pcat* (WP_011174225.1) were
389 performed as previously described (19). DNA primers used in this study are listed in table
390 S1. Gene replacements were confirmed by DNA sequencing. For genetic
391 complementation, the 16S rRNA gene (*rrsB*: TT_C3024), was replaced with the

392 complementing gene constructs according to Gregory and Dahlberg (62). All mutant
393 strains used the native gene promoter to express resistance cassettes or genes.

394

395 **Monitoring reactive oxygen species**

396 The fluorophore 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) (63-65) was used
397 for ROS monitoring. Cells were incubated for 60 minutes in the presence or absence of
398 Hg(II). Cells from 1 mL of culture were pelleted, washed with phosphate buffered saline
399 (PBS), resuspended in 500 μ L of 10 μ M H₂DCFDA in PBS, and incubated for 30 min at
400 37°C. After incubation, cells were washed with PBS and lysed by sonication.
401 Fluorescence was measured (Perkin Elmer HTS 7000 Plus Bio Assay Reader) at 485 nm
402 as excitation and 535 nm as emission wavelengths. Data were normalized to protein
403 concentration.

404

405 **RNA extraction, cDNA synthesis and qPCR**

406 For induction of gene expression, cells were exposed to 1 μ M Hg(II) for 15 or 30 min.
407 Three mL aliquots were removed and mixed with RNA protect (QIAGEN). RNA extraction
408 and cDNA synthesis were performed as previously described (19). Transcripts were
409 quantified by qPCR (iCycler iQ, Bio-Rad Laboratories Inc., Hercules, CA) as previously
410 described (19). DNA primers and cycling temperatures used are listed in Table S2.

411

412 **Enzymatic assays**

413 Cultures (25 mL) were exposed to Hg(II) for 30 minutes, cells pelleted, washed with PBS,
414 and cell pellets were frozen until further use. Crude cell extracts were prepared as

415 previously described (58). All enzyme assays were performed at 50°C. For exposure of
416 crude cell lysates, Hg(II) was added at the indicated concentrations and incubated for 5
417 min before measuring enzymatic activity. The assay described by Oberley and Spitz (66)
418 was used to determine SOD activity with 30 µg of crude extract. One unit was defined as
419 the amount of enzyme needed to reduce the reference rate by 50% (66). Measurements
420 were carried out with an AVIV 14 UV-VI spectrophotometer. Catalase activity was
421 measured as described by Beers and Seizer (67) with 0.6 mg of protein extract. One unit
422 was defined as the amount of enzyme needed to degrade 1 µmole of H₂O₂ per min (ε =
423 43.6 M⁻¹cm⁻¹ for H₂O₂). For aconitase activity, cell lysis was performed under anaerobic
424 conditions as described elsewhere (68) with 20 µg of protein extract. One unit was defined
425 as the amount of enzyme needed to degrade one µmole of DL-isocitrate per sec (ε = 3.6
426 mM⁻¹cm⁻¹ for cis-aconitate). To determine the *in vivo* Hg(II)-dependent inhibition of H₂O₂
427 and superoxide consumptions, protein synthesis was stopped by adding 150 µg
428 chloramphenicol/mL to cells grown to OD₆₀₀ of ~0.3, before 5 µM Hg(II) was added. Cells
429 were incubated for 30 min before harvesting as described above. Catalase and aconitase
430 activities were measured with a UVmini-1240 spectrophotometer (Shimadzu Corp. Kyoto,
431 Japan).

432

433 **Resistance assays**

434 Overnight cultures were diluted to O.D₆₀₀ 0.1 in fresh CM and various concentrations of
435 toxicant (fosfomycin, paraquat, or HgCl₂) were added to individual samples at different
436 concentration ranges. Resistance was assessed as the percentage of growth observed
437 at the indicated times relative to the control that was unexposed to the toxicant (100% of

438 growth). Soft agar assays were used to assess H₂O₂ sensitivity. Cells were grown as for
439 liquid assays and 40 µL of the culture was added to 4 mL of CM soft agar (0.8% wt/vol)
440 and then poured over a 25 mm petri dish with CM agar. Ten µL of 10 mM H₂O₂ was added
441 to the center of the plate. The halo of growth inhibition was measure after 24 hours
442 incubation.

443

444 **Zymograms**

445 SOD and catalase in-gel activities were performed as described elsewhere (69). For SOD
446 and Pcat activities, 25 µg and 50 µg, respectively, of cell lysates were loaded on the gels.
447 Cell lysates were prepared as described for enzymatic assays.

448

449 **Thiol concentration determination**

450 Extraction and quantification of low molecular weight thiols was performed as previously
451 described (19). Briefly cells were resuspended in D-mix (acetonitrile, HEPES, EDTA and
452 mBrB) and incubated for 15 minutes at 60°C in the dark. Free-thiols are complexed with
453 mBrB before the reaction was stopped with methanesulfonic acid. Samples are
454 centrifuged and cell debris was separated from the soluble thiols before quantifying LMW
455 thiols by HPLC. Cell debris was dried to determine the dry weight of cell material derived
456 from each sample. For total BSH determinations, cells were exposed to 10 mM DTT for
457 30 min prior to thiol extraction.

458

459 **Intracellular iron quantification**

460 The assay followed the description of LaVoie *et al.* (21). Cultures (100 mL) were exposed
461 to Hg(II) for 30 min. Cells were pelleted by centrifugation, resuspended in 5 mL of PBS

462 with 10 mM diethylene triamine pentaacetic acid (DTPA) and 20 mM deferoxamine
463 mesylate salt (DF), shaken at 37 °C for 15 min at 180 rpm, and pelleted at 4 °C. Cells were
464 washed once with ice-cold 20 mM Tris–HCl (pH 7.4), resuspended in the same buffer
465 with 15% (v/v) glycerol, and stored at -80 °C. For EPR analysis, cell suspensions were
466 thawed on ice and 200 µL aliquots were dispensed into 4-mm OD quartz EPR tubes and
467 frozen in liquid nitrogen. Continuous-wave (CW) EPR experiments were performed with
468 an X-band Bruker EPR spectrometer (Elexsys580) equipped with an Oxford helium-flow
469 cryostat (ESR900) and an Oxford temperature controller (ITC503). EPR parameters used
470 in our experiments were: microwave frequency, 9.474 GHz; microwave power, 20 mW;
471 modulation amplitude, 2 mT; and sample temperature, 25 °K. The Fe(III):DF concentration
472 of each sample was determined by comparing the peak-to-trough height of EPR signal at
473 g = 4.3 against the standard sample with a known Fe(III):DF concentration (50 µM FeCl₃
474 and 20 mM DF in 20 mM Tris–HCl at pH 7.4 with 15% [v/v] glycerol).

475

476 **Quantification of apurinic or apyrimidinic (AP) sites**

477 Cells were exposed to Hg(II) for 60 min. Three mL of cultures were pelleted and washed
478 with PBS prior to DNA extraction using QIAamp DNA kit (QIAGEN). AP sites were
479 quantified using the Oxiselect™ Oxidative DNA Damage Quantification Kit (Cell Biolabs).

480

481 **Statistical analysis**

482 One-way ANOVA followed by a Dunnet test analysis was performed for multiple group
483 comparison to a control. For two group comparisons (controls vs treatment), student's t-
484 tests were performed.

485 **Data availability**

486 All data will be provided upon request.

487

488 **FUNDING**

489 JN was a recipient of a Becas Chile from CONICY, Chile. The Boyd Laboratory is
490 supported by the National Science Foundation grant MCB-1750624. The Barkay
491 Laboratory was supported by the National Science Foundation grant PLR-1304773.

492

493 **ACKNOWLEDGMENTS**

494 We thank Judy Wall and Tim McDermott for their thoughtful and thorough reviews of this
495 manuscript. Addressing their comments resulted in a greatly strengthened study. We
496 thank Alexei M. Tyryshkin, Ph.D., for his help with the EPR experiments and Akira
497 Nakamura, Ph.D., for kindly providing us with a plasmid harboring the Hygromycin B
498 resistance.

499

500 **REFERENCES**

- 501 1. Hartmann RK, Wolters J, Kröger B, Schultze S, Specht T, Erdmann VA. 1989. Does *Thermus* represent another deep Eubacterial branching? *Syst Appl Microbiol* 11:243-249.
- 502 2. Geesey GG, Barkay T, King S. 2016. Microbes in mercury-enriched geothermal
503 springs in western North America. *Sci Total Environ* 569-570:321-331.
- 504 3. Messner KR, Imlay JA. 2002. Mechanism of superoxide and hydrogen peroxide
505 formation by fumarate reductase, succinate dehydrogenase, and aspartate
506 oxidase. *J Biol Chem* 277:42563-42571.
- 507 4. Imlay JA. 2003. Pathways of oxidative damage. *Annu Rev Microbiol* 57:395-418.
- 508 5. Valko M, Morris H, Cronin MTD. 2005. Metals, toxicity and oxidative stress. *Curr
509 Med Chem* 12:1161-1208.

512 6. Miller DM, Lund BO, Woods JS. 1991. Reactivity of Hg(II) with superoxide:
513 Evidence for the catalytic dismutation of superoxide by Hg(II). *J Biochem Mol*
514 *Toxicol* 6:293-298.

515 7. Ariza ME, Bijur GN, Williams MV. 1998. Lead and mercury mutagenesis: Role of
516 H₂O₂, superoxide dismutase, and xanthine oxidase. *Environ Mol Mutagen* 31:352-
517 361.

518 8. Lund BO, Miller DM, Woods JS. 1991. Mercury-induced H₂O₂ production and lipid
519 peroxidation in vitro in rat kidney mitochondria. *Biochem Pharmacol* 42
520 Suppl:S181-187.

521 9. Ariza ME, Williams MV. 1999. Lead and mercury mutagenesis: Type of mutation
522 dependent upon metal concentration. *J Biochem Mol Toxicol* 13:107-112.

523 10. Ercal N, Gurer-Orhan H, Aykin-Burns N. 2001. Toxic metals and oxidative stress
524 part I: mechanisms involved in metal-induced oxidative damage. *Curr Top Med*
525 *Chem* 1:529-539.

526 11. Nath KA, Croatt AJ, Likely S, Behrens TW, Warden D. 1996. Renal oxidant injury
527 and oxidant response induced by mercury. *Kidney Int* 50:1032-1043.

528 12. Xu FF, Imlay JA. 2012. Silver(I), mercury(II), cadmium(II), and zinc(II) target
529 exposed enzymic iron-sulfur clusters when they toxify *Escherichia coli*. *Appl*
530 *Environ Microbiol* 78:3614-3621.

531 13. Keyer K, Imlay JA. 1996. Superoxide accelerates DNA damage by elevating free-
532 iron levels. *Proc Natl Acad Sci U S A* 93:13635-13640.

533 14. Jang S, Imlay JA. 2007. Micromolar intracellular hydrogen peroxide disrupts
534 metabolism by damaging iron-sulfur enzymes. *J Biol Chem* 282:929-937.

535 15. Imlay JA, Chin SM, Linn S. 1988. Toxic DNA damage by hydrogen peroxide
536 through the Fenton reaction in vivo and in vitro. *Science* 240:640-642.

537 16. Barkay T, Miller SM, Summers AO. 2003. Bacterial mercury resistance from atoms
538 to ecosystems. *FEMS Microbiol Rev* 27:355.

539 17. Boyd ES, Barkay T. 2012. The mercury resistance operon: from an origin in a
540 geothermal environment to an efficient detoxification machine. *Front Microbiol*
541 3:349.

542 18. Wang Y, Freedman Z, Lu-Irving P, Kaletsky R, Barkay T. 2009. An initial
543 characterization of the mercury resistance (*mer*) system of the thermophilic
544 bacterium *Thermus thermophilus* HB27. *FEMS Microbiol Ecol* 67:118.

545 19. Norambuena J, Wang Y, Hanson T, Boyd JM, Barkay T. 2018. Low molecular
546 weight thiols and thioredoxins are important players in Hg(II) resistance in *Thermus*
547 *thermophilus* HB27. *Appl Environ Microbiol* 84:e01931-17.

548 20. Oram PD, Fang X, Fernando Q, Letkeman P, Letkeman D. 1996. The formation of
549 constants of mercury(II)-glutathione complexes. *Chem Res Toxicol* 9:709-712.

550 21. LaVoie SP, Mapolelo DT, Cowart DM, Polacco BJ, Johnson MK, Scott RA, Miller
551 SM, Summers AO. 2015. Organic and inorganic mercurials have distinct effects
552 on cellular thiols, metal homeostasis, and Fe-binding proteins in *Escherichia coli*.
553 *J Biol Inorg Chem* 20:1239-1251.

554 22. Murphy Michael P. 2009. How mitochondria produce reactive oxygen species.
555 *Biochem J* 417:1-13.

556 23. Hidalgo A, Betancor L, Moreno R, Zafra O, Cava F, Fernandez-Lafuente R, Guisan
557 JM, Berenguer J. 2004. *Thermus thermophilus* as a cell factory for the production

558 of a thermophilic Mn-dependent catalase which fails to be synthesized in an active
559 form in *Escherichia coli*. *Appl Environ Microbiol* 70:3839-3844.

560 24. Clarke DJ, Ortega XP, Mackay CL, Valvano MA, Govan JR, Campopiano DJ,
561 Langridge-Smith P, Brown AR. 2010. Subdivision of the bacterioferritin
562 comigratory protein family of bacterial peroxiredoxins based on catalytic activity.
563 *Biochemistry* 49:1319-1330.

564 25. Flohe L, Toppo S, Cozza G, Ursini F. 2011. A comparison of thiol peroxidase
565 mechanisms. *Antioxid Redox Signal* 15:763-780.

566 26. Achard ME, Hamilton AJ, Dankowski T, Heras B, Schembri MS, Edwards JL,
567 Jennings MP, McEwan AG. 2009. A periplasmic thioredoxin-like protein plays a
568 role in defense against oxidative stress in *Neisseria gonorrhoeae*. *Infect Immun*
569 77:4934-4939.

570 27. Gaballa A, Newton GL, Antelmann H, Parsonage D, Upton H, Rawat M, Claiborne
571 A, Fahey RC, Helmann JD. 2010. Biosynthesis and functions of bacillithiol, a major
572 low-molecular-weight thiol in Bacilli. *Proc Natl Acad Sci U S A* 107:6482-6486.

573 28. Chi BK, Gronau K, Mäder U, Hessling B, Becher D, Antelmann H. 2011. S-
574 Bacillithiolation protects against hypochlorite stress in *Bacillus subtilis* as revealed
575 by transcriptomics and redox proteomics. *Mol Cell Proteomics* 10:M111.009506.

576 29. Woodmansee AN, Imlay JA. 2002. Quantitation of intracellular free iron by electron
577 paramagnetic resonance spectroscopy. *Methods Enzymol* 349:3-9.

578 30. de Mello Filho AC, Meneghini R. 1985. Protection of mammalian cells by o-
579 phenanthroline from lethal and DNA-damaging effects produced by active oxygen
580 species. *Biochim Biophys Acta* 847:82-89.

581 31. Kanno S, Iwai S, Takao M, Yasui A. 1999. Repair of apurinic/apyrimidinic sites by
582 UV damage endonuclease; a repair protein for UV and oxidative damage. *Nucleic
583 Acids Res* 27:3096-3103.

584 32. Kidane D, Murphy DL, Sweasy JB. 2014. Accumulation of abasic sites induces
585 genomic instability in normal human gastric epithelial cells during *Helicobacter
586 pylori* infection. *Oncogenesis* 3:e128.

587 33. Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K,
588 Nakagawa N, Masui R, Kuramitsu S. 2010. Molecular mechanisms of the whole
589 DNA repair system: A comparison of bacterial and eukaryotic systems. *J Nucleic
590 Acids* 2010:179594.

591 34. Rosario-Cruz Z, Boyd JM. 2015. Physiological roles of bacillithiol in intracellular
592 metal processing. *Curr Genet* 62:59-65.

593 35. Mortimer CH. 1981. The oxygen content of air-saturated fresh waters over ranges
594 of temperature and atmospheric pressure of limnological interest. *Int Ver Theor
595 Angew* 22:1-23.

596 36. Allgood GS, Perry JJ. 1986. Characterization of a manganese-containing catalase
597 from the obligate thermophile *Thermoleophilum album*. *J Bacteriol* 168:563-567.

598 37. Whittaker MM, Barynin VV, Antonyuk SV, Whittaker JW. 1999. The oxidized (3,3)
599 state of manganese catalase. Comparison of enzymes from *Thermus
600 thermophilus* and *Lactobacillus plantarum*. *Biochemistry* 38:9126-9136.

601 38. Onnis-Hayden A, Weng H, He M, Hansen S, Ilyin V, Lewis K, Guc AZ. 2009.
602 Prokaryotic real-time gene expression profiling for toxicity assessment. *Environ Sci
603 Technol* 43:4574-4581.

604 39. Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ,
605 Claiborne A, Helmann JD, Fahey RC. 2009. Bacillithiol is an antioxidant thiol
606 produced in Bacilli. *Nat Chem Biol* 5:625-627.

607 40. Picaud T, Desbois A. 2006. Interaction of glutathione reductase with heavy metal:
608 The binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol
609 pair and the flavin. *Biochemistry* 45:15829-15837.

610 41. Shigeoka S, Onishi T, Nakano Y, Kitaoka S. 1987. Characterization and
611 physiological function of glutathione reductase in *Euglena gracilis* z. *Biochem J*
612 242:511-515.

613 42. Helmann JD. 2011. Bacillithiol, a new player in bacterial redox homeostasis.
614 *Antioxid Redox Signal* 15:123-33.

615 43. Marteyn B, Sakr S, Farci S, Bedhomme M, Chardonnnet S, Decottignies P, Lemaire
616 SD, Cassier-Chauvat C, Chauvat F. 2013. The *Synechocystis* PCC6803 MerA-like
617 enzyme operates in the reduction of both mercury and uranium under the control
618 of the glutaredoxin 1 enzyme. *J Bacteriol* 195:4138.

619 44. Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers AO,
620 Pai EF, Miller SM. 2005. NmerA, the metal binding domain of mercuric ion
621 reductase, removes Hg²⁺ from proteins, delivers it to the catalytic core, and
622 protects cells under glutathione-depleted conditions. *Biochemistry* 44:11402-
623 11416.

624 45. Lian P, Guo HB, Riccardi D, Dong A, Parks JM, Xu Q, Pai EF, Miller SM, Wei DQ,
625 Smith JC, Guo H. 2014. X-ray structure of a Hg²⁺ complex of mercuric reductase
626 (MerA) and quantum mechanical/molecular mechanical study of Hg²⁺ transfer
627 between the C-terminal and buried catalytic site cysteine pairs. *Biochemistry*
628 53:7211-7222.

629 46. Barkay T, Kritee K, Boyd E, Geesey G. 2010. A thermophilic bacterial origin and
630 subsequent constraints by redox, light and salinity on the evolution of the microbial
631 mercuric reductase. *Environ Microbiol* 12:2904-2917.

632 47. Brock TD. 1981. Extreme thermophiles of the genera *Thermus* and *Sulfolobus*.
633 The Prokaryotes pp 978-984

634 48. Kristjansson JK, Alfredsson GA. 1983. Distribution of *Thermus* spp. in Icelandic
635 hot springs and a thermal gradient. *Appl Environ Microbiol* 45:1785-1789.

636 49. Murugapiran SK, Huntemann M, Wei C-L, Han J, Detter JC, Han C, Erkkila TH,
637 Teshima H, Chen A, Kyrpides N, Mavrommatis K, Markowitz V, Szeto E, Ivanova
638 N, Pagani I, Pati A, Goodwin L, Peters L, Pitluck S, Lam J, McDonald AI,
639 Dodsworth JA, Woyke T, Hedlund BP. 2013. *Thermus oshimai* JL-2 and *T.*
640 *thermophilus* JL-18 genome analysis illuminates pathways for carbon, nitrogen,
641 and sulfur cycling. *Stand Genomic Sci* 7:449-468.

642 50. Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T,
643 Curmi P, Iwata S. 2008. Molecular mechanism of energy conservation in
644 polysulfide respiration. *Nat Struct Mol Biol* 15:730-737.

645 51. Glendinning KJ, Macaskie LE, Brown NL. 2005. Mercury tolerance of thermophilic
646 *Bacillus* sp. and *Ureibacillus* sp. *Biotechnol Lett* 27:1657-1662.

647 52. Spassov SG, Donus R, Ihle PM, Engelstaedter H, Hoetzel A, Faller S. 2017.
648 Hydrogen sulfide prevents formation of reactive oxygen species through PI3K/Akt

649 signaling and limits ventilator-induced lung injury. *Oxid Med Cell Longev*
650 2017:3715037.

651 53. Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C. 2008. Hydrogen sulfide
652 inhibits myocardial injury induced by homocysteine in rats. *Amino Acids* 34:573-
653 585.

654 54. Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C. 2004. Endogenous
655 hydrogen sulfide regulation of myocardial injury induced by isoproterenol. *Biochem
656 Biophys Res Commun* 318:756-763.

657 55. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. 2013. Mechanisms
658 regulating mercury bioavailability for methylating microorganisms in the aquatic
659 environment: a critical review. *Environ Sci Technol* 47:2441-2456.

660 56. Barkay T, Gillman M, Turner RR. 1997. Effects of dissolved organic carbon and
661 salinity on bioavailability of mercury. *Appl Environ Microbiol* 63:4267-4271.

662 57. Farrell RE, Germida JJ, Huang PM. 1993. Effects of chemical speciation in growth
663 media on the toxicity of mercury(II). *Appl Environ Microbiol* 59:1507-1514.

664 58. Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T. 2005.
665 Mercury adaptation among bacteria from a deep-sea hydrothermal vent. *Appl
666 Environ Microbiol* 71:220-226.

667 59. Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP. 2014.
668 The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in
669 *Staphylococcus aureus*. *Mol Microbiol* 94:1343-1360.

670 60. Nies DH. 1999. Microbial heavy-metal resistance. *Appl Microbiol Biotechnol*
671 51:730-750.

672 61. Hobman JL, Crossman LC. 2015. Bacterial antimicrobial metal ion resistance. *J
673 Med Microbiol* 64:471-497.

674 62. Gregory ST, Dahlberg AE. 2009. Genetic and structural analysis of base
675 substitutions in the central pseudoknot of *Thermus thermophilus* 16S ribosomal
676 RNA. *RNA* 15:215-223.

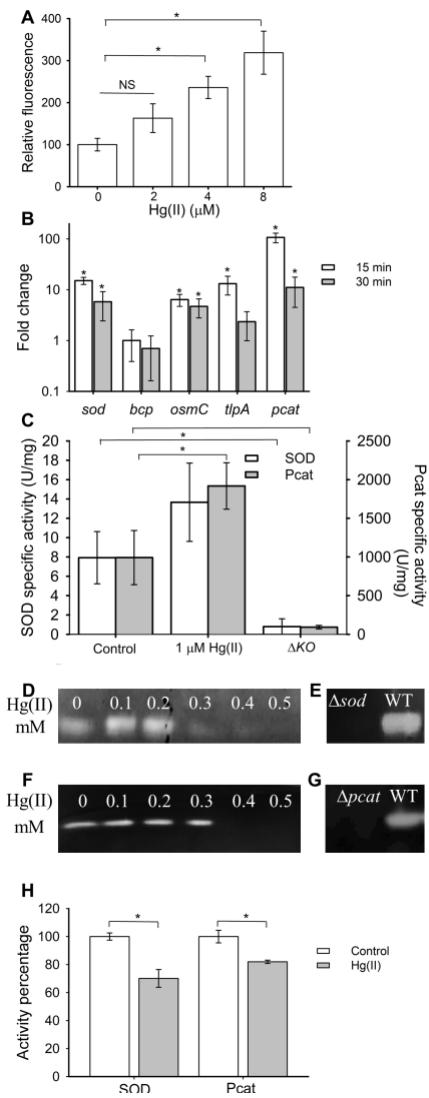
677 63. Wang H, Joseph JA. 1999. Quantifying cellular oxidative stress by
678 dichlorofluorescein assay using microplate reader. *Free Radic Biol Med* 27:612-
679 616.

680 64. Myhre O, Andersen JM, Aarnes H, Fonnum F. 2003. Evaluation of the probes 2',7'-
681 dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive
682 species formation. *Biochemical Pharmacology* 65:1575-1582.

683 65. Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. 2015. Bacillithiol has a
684 role in Fe-S cluster biogenesis in *Staphylococcus aureus*. *Mol Microbiol* 98:218-
685 242.

686 66. Spitz DR, Oberley LW. 1989. An assay for superoxide dismutase activity in
687 mammalian tissue homogenates. *Anal Biochem* 179:8-18.

688 67. Beers RF, Jr., Sizer IW. 1952. A spectrophotometric method for measuring the
689 breakdown of hydrogen peroxide by catalase. *J Biol Chem* 195:133-140.

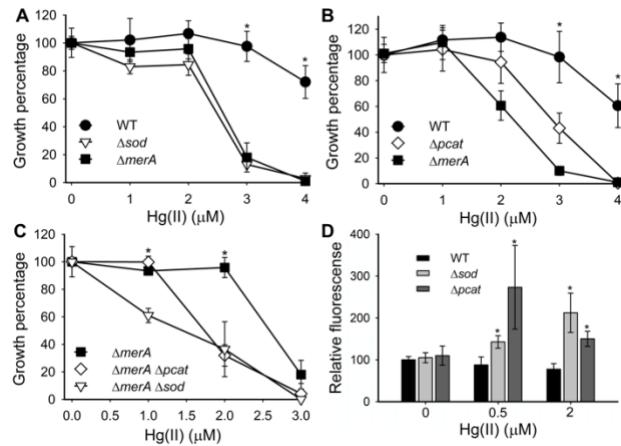

690 68. Mashruwala AA, Boyd JM. 2017. The *Staphylococcus aureus* SrrAB regulatory
691 system modulates hydrogen peroxide resistance factors, which imparts protection
692 to aconitase during aerobic growth. *PLoS One* 12:e0170283.

693 69. Weydert CJ, Cullen JJ. 2010. Measurement of superoxide dismutase, catalase and
694 glutathione peroxidase in cultured cells and tissue. *Nat Protoc* 5:51-66.

695

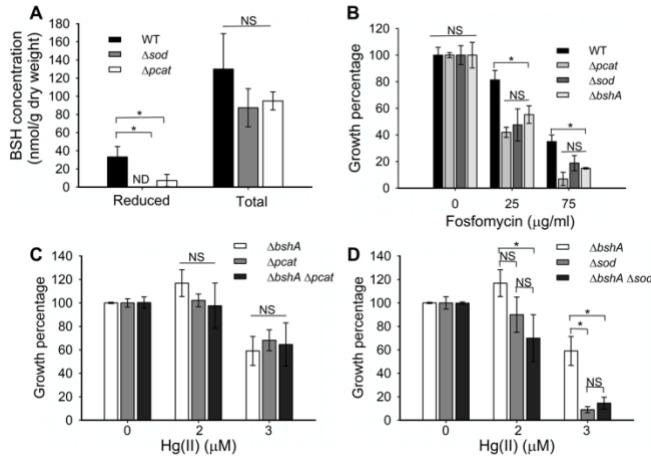
696

697

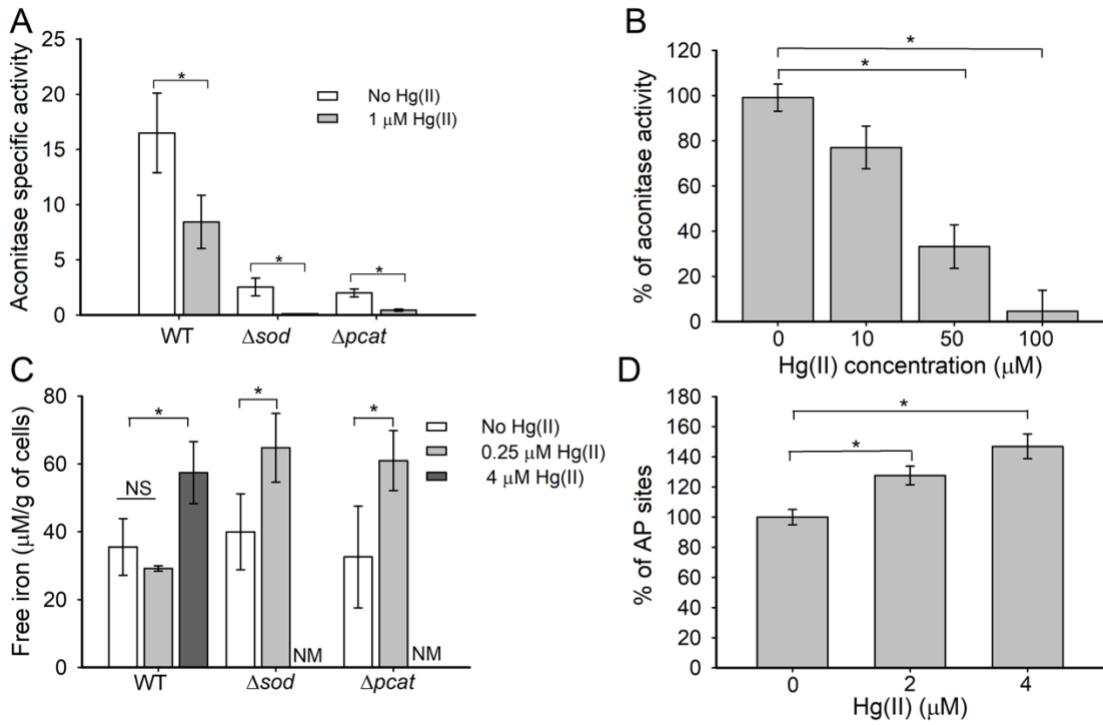

698 **Figures**

699

700 **Figure 1. Mercury exposure induces ROS, increases Sod and Pcat expression, and**
 701 **inhibits SOD and Pcat activities.** (A) Cultures of *T. thermophilus* (WT) were exposed to
 702 varying concentrations of Hg(II) for 60 minutes before total ROS was measured using
 703 H₂DCFDA. (B) Induction of superoxide dismutase (*sod*), bacterioferritin comigratory
 704 protein (*bcp*), organic hydroperoxide reductase (*osmC*), thiol peroxidase (*tlpA*) and
 705 pseudocatalase (*pcat*) transcription, was measured in the WT strain after 15 or 30
 706 minutes of exposure to 1 μ M of Hg(II). (C) WT cells were exposed to 0 or 1 μ M of Hg(II)

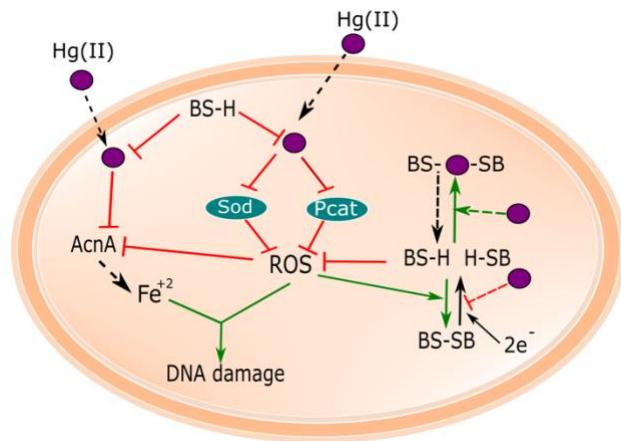

707 for 30 minutes and superoxide (white) and H₂O₂ (grey) consumption was monitored. Each
708 activity was compared to activity of the respective Δ sod or Δ pcat mutant strains (indicated
709 as Δ KO in the figure) not exposed to Hg(II). (D-G) Crude protein extracts of the WT strain
710 where incubated with different Hg(II) concentrations. Qualitative zymograms where
711 revealed for (D and E) SOD activity or (F and G) Pcat activity. Cell extracts of the (E) WT
712 and Δ sod strains or (G) WT and Δ pcat are also shown. (H) WT cells were exposed to 150
713 μ g/mL of chloramphenicol and incubated for 30 min with 0 (white) or 5 μ M of Hg(II) (grey);
714 superoxide (SOD) and H₂O₂ (Pcat) consumption were monitored and activity percentages
715 (relative to the unexposed strain [control]) are shown. For panels A, B, and C, each point
716 represents the average of at least three independent experiments and standard
717 deviations are shown. For panel H, 3 replicate experiments are shown. Student's t-tests
718 were performed on the data in panels A and C, and * indicates $P \leq 0.05$. A Mann-Whitney
719 Rank Sum Test was performed on the data in panel B and * $P \leq 0.05$. NS denotes not
720 significant.

721


724 **Figure 2. *T. thermophilus* strains lacking superoxide- or H₂O₂-scavenging activities**
 725 **are more sensitive to Hg(II) and have increased ROS levels upon Hg(II) exposure.**

726 Culture optical densities were determined after 21 hours (A and C) or 18 hours (B) of
 727 growth. Growth in the unexposed control was considered 100% of growth. (D) Cultures
 728 were grown and one-half of each was exposed to Hg(II) for 60 minutes before ROS were
 729 quantified using DCFDA. The fluorescence obtained for the unexposed WT strain was
 730 considered 100% fluorescence. Each point represents the average of three independent
 731 cultures and standard deviations are shown. Student's t-tests were performed and *
 732 indicates a P ≤ 0.05.

734


735 **Figure 3. *T. thermophilus* strains lacking Sod or Pcat have decreased levels of**
 736 **reduced BSH pools.** (A) Cultures were grown to an OD₆₀₀ of 0.3 and exposed, or not, to
 737 10 mM DTT for 30 minutes before LMW thiols were quantified with mBrB. DTT treated
 738 cells were used to measure total BSH. (B) Final culture optical densities were recorded
 739 after 20 hours of growth in cultures exposed to various concentration of fosfomycin. (C)
 740 Effect of Hg(II) on cell growth was evaluated after 20 hours of growth in the $\Delta pcat$, $\Delta bshA$,
 741 and $\Delta pcat \Delta bshA$ strains and (D) in the Δsod , $\Delta bshA$, and $\Delta sod \Delta bshA$ strains. Unexposed
 742 controls were considered 100% of growth. Each point represents the average of three
 743 independent cultures and standard deviations are shown. Student's t-tests were
 744 performed on the data and * indicates a P ≤ 0.05. NS denotes not significant and ND
 745 denotes no signal detected.

746

747 **Figure 4. Hg(II) stress results in aconitase inactivation, increased intracellular free**
 748 **iron, and DNA damage.** (A) Aconitase activity was monitored in cell free lysates after
 749 whole cells had been exposed, or not, to 1 μM Hg(II) for 30 minutes. (B) Cell-free lysates
 750 from the WT strain were exposed to 0-100 μM Hg(II) before aconitase activity was
 751 determined. (C) The concentration of free Fe was quantified after exposure to 0.25 μM
 752 Hg(II) or to 4 μM Hg(II) for 30 minutes. Cell weight is reported as wet weight. (D) DNA
 753 damage was determined by quantifying the number of apurinic/apyrimidinic sites (AP
 754 sites) in the WT strain (cells unexposed to Hg(II) had an average of 8.38±0.77 AP sites
 755 per 100,000 base-pairs of DNA). Each point represents the average of at least three
 756 independent cultures and standard deviations are shown. Where shown, student's t-
 757 tests were conducted on the data and * indicates $P \leq 0.05$. NS denotes not significant
 758 and NM denotes not measured.

759

761

762 **Figure 5. Working model for ROS generation by Hg(II).** Exposure of *T. thermophilus*
763 to Hg(II) (purple) results in the inactivation of two ROS detoxifying enzymes (Sod and
764 Pcat) and ROS accumulation. Hg(II) decreases bioavailable BSH, which is necessary to
765 prevent Hg(II) intoxication and ROS accumulation. The presence of Sod and Pcat are
766 necessary to maintain reduced BSH pools, as well as metabolize superoxide and H₂O₂,
767 respectively. Hg(II) accumulation inactivates enzymes, such as aconitase, with solvent
768 accessible Fe-S clusters and increases intracellular free Fe. The free Fe²⁺ participates in
769 Fenton chemistry producing hydroxyl radicals, which damage DNA. Systems inhibited are
770 shown in red and systems favored upon Hg(II) toxicity are shown in green.

771

772 Supplementary Material Figure Legends and Tables:

773

774 **Figure S1. Δsod , $\Delta pcat$ and $\Delta bshA$ strains are more sensitive to ROS than the WT**
775 **strain and Pcat is inhibited by Hg(II).** (A) The WT, Δsod , and $\Delta bshA$ strains were grown
776 with and without paraquat and culture optical densities after 18 hours of growth are
777 shown. Growth in the unexposed control was considered 100% of growth. (B) The zone

778 of clearing monitored after exposure to 10 mM H₂O₂ was evaluated on soft agar plates.
779 (C) Cell-free lysates from the WT strain were exposed to 0-100 µM Hg(II) before catalase
780 activity was determined. Each point represents the average of three independent cultures
781 and standard deviations are shown. Student's t-tests were performed on the data and *
782 indicates P ≤0.05.

783

784 **Figure S2. Genetic complementation of Δ sod and Δ pcat strains.** (A) Zymogram
785 showing superoxide consumption activity in cell lysates from the WT, Δ sod, and
786 complemented Δ sod *rrsB* ::*sod* (*rrsB*::*sod* in the figure) strains. (B) Zymogram showing
787 hydrogen peroxide consumption activity of cell free lysates from the WT, Δ pcat, and
788 complemented Δ pcat *rrsB*::*pcat* (*rrsB*::*pcat* in the figure) strains. (C) Hg(II) resistance for
789 WT, Δ sod and *rrsB* ::*sod* (*rrsB*::*sod* in the figure) and (D) WT, Δ pcat and *rrsB*::*pcat*
790 (*rrsB*::*pcat* in the figure). Culture optical densities were determined after 21 hours of
791 growth. Growth in the unexposed control was considered 100% of growth. Pictures of
792 zymograms are representative of three independent experiments. Each point represents
793 the average of three independent experiments and standard deviations are shown.
794 Student's t-tests were performed on the data and * indicates P ≤0.01 when compared to
795 the WT.

796

797 **Figure S3. A Δ nfo strain is more sensitive to Hg(II) than the WT.** Strains were cultured
798 with various concentrations of Hg(II) and final optical densities were measured after 20
799 hours. Growth in the unexposed control was considered 100% of growth. Each point
800 represents the average of at least three independent cultures, and bars represent

801 standard deviations. Student's t-tests were performed against the WT strain and *
802 denotes $P \leq 0.001$.

803

804

805

806

Table S1 Primers and conditions used for qPCR.

Primer	Sequence	C* (μ M)	T (°C)	Size (bp)	Source
gyrase-F	GGCGGAGGTATGGGC	1	61	134	Norambuena et al 2018
gyrase-R	CGCCGTCTATGGAGCCG	0.25			
SOD-F	CGTTCAAGCTTCCTGACCTAGG	1.25	59	117	this study
SOD-R	CGTTGAGGTTCGTCACGTAGGC	1.25			
osmC-F	GATTGAGCTTCTGACCGAGGC	1.25	60	126	this study
osmC-R	AGGACGATCTCCTTCACCCC	1.25			
bcp-F	GAAGTACGGCCTGAACTTCC	1.25	58	132	this study
bcp-R	TCTATGAGGAAGGTCTGGCG	1.25			
TpIA-F	TGGCTTGCTTGGAGAACGC	1.25	60	141	this study
TpIA-R	CAGAGGTGTTGGCAAGGC	1.25			
pcat rev	CGCCACCAGCTCAATGT	1.25	57	105	this study
pcat for	ATGTACCAGTCCTCAACTTCC	1.25			

807

*C indicates final concentration of the primers

808

Table S2 PCR Primers used to construct mutant strains.

KO strain	Primer	Sequence
Δsod	1 fum ecoRi for	TCGC GGG GAATT C AGGGAAC
	E HTK SOD rev	ATTGGTC CTT CATA T TCACCTCCGC
	A sod HTK for	GGAAGC GG GAGGTGAAGTATGAAAGGACCAATAATAA
	B sod htk rev	GCTATAAGGCTAT GGG ATCAA A ATGGTATGCGTT
	4 sod bamh1 rev	GGC GG ATCC GGG C TT A
	F HTK SOD for	GCATACCATTGAT CCC CAGC TT TAGC
	5 fum upins for	GGAAGGTCAAC CCC ACCCAG
	6 sod downins rev	AAGGCC CT C CT TCGGC
$\Delta pcat$	A cat	AAAGGAGGGAGAAGATGAAAGGACCAATAATAATG
	B cat	GCCAGGCTAAGGGTCAA A ATGGTATGCGTT
	Ndel 1 cat	GGGCC AC ATATGCCAGAAG
	E cat	TTATTGGTC CTT CATCTT CC CT CC TT
	F cat	TACCATTGACC CT AGC CT GG CC GTAG
	4.3 cat ecoR1	CCCAAGCCC GA ATT CT CCC
	5 cat	ACCCAGGTGT CT CGAGG
	6 cat	CTGGACC GGG TAC CC CC
$\Delta pcat$ <i>hygB</i>	Ndel 1 cat	GGGCC AC ATATGCCAGAAG
	E cat hygB KO rev	AGGCT TTT CATCTT CC CT CC TT CG
	B cat hygB KO rev	AGGCTAAGGGCTATT CC TTGCC CT
	A cat hygB KO for	GAGGGAGAAGATGAAAAAGC CT GA CT CA
	4.3 cat eco R1	CCCAAGCCC GA ATT CT CCC
	F cat hygB KO for	AAAGGAATAGC CC TTAGC CT GG CC

Δsod $hygB$	1 fum ecoRi for	TCGC GGG GAATT C AGGGGAAC
	E sod hygB rev	TTCAGGCTTTCTACTTCACCTCCGCTTC
	A sod hygB for	CGGAGGTGAAGTATGAAAAAGCCTGAACTCAC
	B sod hygB rev	GCTATGGGGACTATTCCCTTGCCCTCG
	F sod hygB for	GCAAAGGAATAGTCCCCATAGCCTATAGCC
	4 SOD HygB rev hindIII	GCCTGAAGCT T GC G GTGG
Δnfo	p1 ecoR1 nfo	GGCCTGGT GG AATT CC GAAC
	E nfo Htk rev	TGGTCCTTCATCCCCGAAGCCTACCACAGG
	B nfo HTk	GGGCGCTAAAATGGTATGCGTTTG
	A nfo htk	TGGTAGGCTCGGGGGATGAAAGGACCAATAATAATG
	p4 bamHI nfo	CCGG G ATCCTGGTGAACCTG
	F nfo for	ACGCATACCATTGAGCGCCCCACCC
	p5 nfo	CCGTCC T GTCTACCTCCTG
	p6 nfo	GGAGGATAGATGGCACGG
$rrsB::pcat$	1.2 ecori Hp 16S for	GTCCGGGGGG A ATT C GAGGAGC
	E cat::16S	GAATAAGCCAGGATTCAAGATGGGGCATGGACCTCC
	G cat::16S for	ATGCC CCC CATCTGAAATCCTGGCTTATTCTAGCGCC
	H cat::16S rev	AGGCTTTTCATTACTTGGC TT CTCG
	A hygB cat::16S for	GCCAAGTAAATGAAAAAGCCTGAAC T ACCG
	B hygB cat::16S rev	TCGAGGAAGTCCATCTATTCC TT GCC CT CGG
	F cat::16S rev	GCAAAGGAATAGATGGACTTC CT CGAGGCC TT TC
	4 HindIII 16S rev	CTGC G AAAAGAAGCT T CTCCC
$rrsB::sod$	1.2 ecori Hp 16S for	GTCCGGGGGG A ATT C GAGGAGC
	E SOD::16S rev	CTTGCCGCTCAAGATGGGGCATGG
	G SOD::16S rev	CCCCATCTGAGCGGCAAGGGGCTTGTGAGG
	H SOD::16S rev	CTTTTCATT C AGGC TT CTGAAGAACTCC
	A hygB SOD::16S for	CAAGAAGGC T GAATGAAAAAGCCTGAAC T ACCG

	B hygB sod::16S rev	TCGAGGAAGTCCATCTATTCC <u>TTGCCCTCGG</u>
	F sod::16S rev	GCAAAGGAATAGATGGACTTC <u>CTCGAGGCC</u> TTTC
	4 HindIII 16S rev	CTGCGAAA <u>AGAAGCTT</u> CTCCC

811 ¹Underlined sequences indicate restriction enzyme cutting sites.

812