SpatialMPI: Message Passing Interface (MPI) for GIS Applications

Puri, S. (2019). SpatialMPI: Message Passing Interface for GIS Applications. The Geographic
Information Science & Technology Body of Knowledge (2nd Quarter 2019 Edition), John P. Wilson
(Ed.). DOI: 10.22224/gistbok/2019.2.6

Abstract

MPI is a widely used message passing library for writing parallel programs. The goal of Message Passing
Interface is to establish a portable, efficient, and flexible standard for message passing that will be widely
used for writing message passing programs. This chapter motivates the need for using Message Passing
Interface (MPI) for implementing GIS applications. It introduces MPI data types and communication
functions. Then, it presents new spatial data types and operations on them using MPI. Finally, it presents
pseudocode for parallelizing a range query problem and spatial domain decomposition in GIS.

Definitions
MPI: MPI stands for Message Passing Interface. It is a standard library interface for writing
parallel programs.

Process: A program in execution or a running program. Operating system schedules different
processes to run on a CPU.

HPC: High Performance Computing.
MBR: Minimum Bounding Rectangle.
Parallelism: Using multiple processes or threads to solve a problem.

Distributed Memory: A network of inter-connected processors each of which has its own private
memory. For instance, if a processor needs to access memory of another processor, then it has
to perform communication. One way to do so is via passing messages using MPI.

Message Passing Interface

MPI (Message Passing Interface) is a portable, standard interface for writing parallel programs
using a distributed-memory programming model [2]. It is widely used for writing parallel
applications, particularly in science and engineering domains. MPI programs run on a variety of
systems including small compute clusters and supercomputers. The interface contains functions
for communication and computation among processes. Popular MPIl implementations are MPICH,
MVAPICH and Open MPI. Communication among processes is required because processes do
not share memory among themselves. MPI supports parallel I/O, i.e. reading and writing data by
multiple processes in parallel to increase the performance. MPI programs are typically written in
C/C++ and Fortran.

MPI datatypes: MPI provides a rich set of predefined datatypes [1]. For example, MPI_INT is for
an integer type and MPI_FLOAT is for a single precision floating point type. However, new derived
types are required to represent spatial data that are supported by Open Geospatial Consortium
standard. MPI allows user-defined types that can be used to define Cartesian coordinates.

https://doi.org/10.22224/gistbok/2019.2.6

Simple MPI program: An MPI program is shown below to introduce the basic MPI functions. In
addition to the four MPI functions used below, there are functions for sending and receiving a
message between a pair of processes. When an MPI program is run, programmer provides the
number of processes to be created as shown in Table 1. MPI_COMM_WORLD is a communicator
object that contains all the processes.

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv([])

{

// numProcs is the number of processes, processld is the id of the MPI process
int numProcs, processld;

/I Initializes MPI by using the command line arguments
MPI1_Init(&argc, &argv);
/*The number of processes is stored in the variable numProcs
numProcs gets set using the command-line argument provided while running the program
*/
MPI_Comm_Size(MPI_COMM_WORLD, &numProcs);

I/l Each process gets a unique ID which is stored in the variable processld
MPI_Comm_Rank(MPI_COMM_WORLD, &processld);

printf(“Process Id = %d Number of processes = %d \n”, processld, numProcs);
I Insert Algorithm here from Section on Range Query parallelization.

/l terminates MPI

MPI_Finalize();
return O;
}
Table 1. Compiling and running an MPI program.
Compiling MPI program Running MPI program
The mpicc command compiles the program and The mpirun command runs the executable a.out
creates an executable a.out. using 4 MPI processes (—np 4 option specifies the
mpicc mpiprogram.c number of processes to be used in the MPI
program).
mpirun —np 4 ./a.out

When this program is executed, it will print 0, 1, 2 and 3 for processl/d and numProcs will be 4.

Extending MPI to support spatial data types and operations

Spatial data types: MPI allows creation of user-defined data types. Implementing spatial data
types is motivated by the fact that user-defined data types and operations not only enhance the
abstraction and reusability of a system, but also performance in case of MPI in the presence of
hardware support. Some of the data types are shown in Table 2. For instance, MPIl_Rect can be
defined as a contiguous type of 4 floating point numbers. Based on these spatial types,
additional compound types such as multi-point and multi-line can be defined as well.

Table 2. Spatial data types and reduction operators in SpatialMPI [4].

Spatial Type Spatial Reduction in MPI based GIS application
(MPI Datatype)

MPI Operator Explanation
MPI_POINT MPI_MIN Min point (bottom left corner)
MPI_LINE MPI_MAX Max point (top right corner)
MPI_RECT MPI_UNION MBR of Geometric Union

MPI Send and Receive operations: In a distributed memory system, processes do not share
memory. When multiple processes are running in parallel in such a system, they perform some
computations followed by exchanging messages. For example, if process A sends an integer to
process B, then using MPI, process A executes MPI_Send function. Process B executes
MPI_Recv function. Table 3 contains the function prototypes for send and receive functions.

In MPI_Send function, a process needs to specify the destination process, the datatype, and
count. If the datatype is a scalar quantity, then the count is 1. If the data to be sent is an array,
then the length of the array needs to be specified as count. In the MPI_Recv function, the status
argument also needs to be specified. In addition to functions for communication, MPI also
supports functions for computation among processes. MPI_Reduce function reduces values on
all processes to a single value. For example, if processes 0 and 1 have values 10 and 20
respectively, then using sum reduction, the result will be 30. Instead of sum, other operations
like min and max can also be used. The reduction function can be extended to handle GIS
functions as well. For more details, readers are encouraged to refer to books and tutorials [3].

Communication using spatial data types: In MPI, if a process wants to share an item with
another function, a send function needs to be invoked from a sending process and receive
function needs to be invoked by a receiving process. Table 3 shows how to express message
passing between two MPI processes using Point data. Point is defined as a user-defined data
type using C structure. In some applications, there can be more than one pair of MPI send and
receive function calls. To distinguish different types of such messages, each message has
integer valued tag associated with it. MP| send and receive have similar syntax with an
exception that MPI receive has an additional parameter called MPI_Status. Status can be used
to get information about the received message.

Table 3. Spatial data communication from MPI Process 0 to Process 1.

MPI Process 0 MPI Process 1

Point p(3.0, 5.0); Point q;
int tag =0; int tag =0;

MPI_Status status;
// Sending a single point to Process 1 // Receiving a single point from Process 0
MPI_Send(&p, 1, MPI_POINT, 1, tag, MPI_Recv(&q, 1, MPI_POINT, 0, tag,
MPI_COMM_WORLD); MPI_COMM_WORLD, &status);
// Sending 3 points // Receiving 3 points
Point pArray[3] = {{1,3}, {2,1}, {4,5}}; Point gArray[3];
MPI_Send(pArray, 3, MPI_POINT, 1, tag, MPI_Recv(gArray, 3, MPl_POINT, 0, tag,
MPI_COMM_WORLD); MPI_COMM_WORLD, &status);
/* MPI Send function for reference /* MPI Receive function for reference
MPI_Send(void* data, int count, MPI_Datatype MPI_Recv(void* data, int count, MP|_Datatype
datatype, int destination, int tag, MPl_Comm datatype, int source, int tag, MPI_Comm
communicator) */ communicator, MP|_Status* status) */

Spatial reduction

Collective Reduction Operators for Spatial types: With derived data types, existing MPI
reduction operators like MPI_MIN do not work. The min operator can be used to find the
line/rectangle with minimum length/area among processes. To implement it, a user-defined
function is required that generates an MBR of geometric union of rectangles [4]. It should be
noted that reduction is limited to associative and commutative functions. Spatial data types and
reductions make MPI spatial-aware.

Figure 1 illustrate spatial reduction. Table 4 shows an example. Here, MPI_Reduce function
parameters written in order correspond to the input rectangle, output rectangle, count, data type,
reduction operation, root process and communicator. Each process specifies an input rectangle
and the output rectangle (MBR of geometric union of input rectangles) is computed and is
available at root process with id as 0.

Table 4. Example usage in C language.

Spatial type: Rectangle *in_rect, *out_rect;
Reduction operator: MPI_UNION
MPI_Reduce(in_rect, out_rect, 1, MPI_RECT, MPI_UNION, 0, MPI_COMM_WORLD);

/* MPI_Reduce function prototype for reference
MPI_Reduce(void* send_data, void* recv_data, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm communicator);

*/

r2

rd
Input Rectangles Output Rectangle

Figure 1: Spatial Reduction on Minimum Bounding Rectangles.

Range Query

Example: Two dimensional range query using a query rectangle.
Input: Base layer containing N rectangles and a given query rectangle.

Output: All rectangles from the base layer overlapping with the query rectangle should be
returned. List of overlapping rectangles denoted by variable outputList.

Integer variables: startindex, endindex, numRectangles, processld, numProcs;

Algorithm: Each MPI process reads N rectangles in the base layer and calls rectangle
intersection function on a subset of the input rectangles given by startindex and endindex.

Steps
1. Compute startindex, endindex for each MPI process.
startindex = (processld * N) / numProcs;
endIndex = ((processld + 1) * N) / numProcs;

2. Each process computes rectangle Intersection (input rectangle, query rectangle).
The input rectangles overlapping with query rectangle are added to the output list.
for (inti = startindex; i<endIndex; i++)

if(intersect(R_i, q))
outputList.add(R _i);
}

3. Process 0 aggregates the result from all processes
if(processld == 0)
{
Rectangle queryResults[N];
for(int pld = 1; pld < numProcs; pld++)
{
int numOutput = N;
MPI_Recv(queryResults, N, MPI_RECT, pld, tag, MPI_COMM_WORLD,
&status);

else

{

// find the number of rectangles in output list for sending it to process 0.

int numOutput = outputList.length;

MPI_Send(outputList, numOutput, MPI_RECT, 0, tag, MPI_COMM_WORLD);
}

In Step 3, Process 0 uses receive function to gather data from other processes in a loop. It
should be noted that a receiving process (with rank 0) does not know how many query
rectangles it will receive from other processes. The exact number is only known by each
sending process (with rank 1 to numProcs — 1) at runtime. However, the maximum count can be
no more than N. As such, the count variable in MPI send function is set as N. The exact number
can be extracted from the status variable by the receiver. Step 3 can be implemented using
MPI_Gatherv function as well instead of multiple point-to-point messages [2].

Spatial domain decomposition using MPI

Domain decomposition requires data stored in an arbitrary order to be partitioned among
processes where each partition is assigned to an MPI process. For parallel processing in GIS,
spatial data is often partitioned using a uniform or adaptive grid. Each partition is assigned to
unique process to carry out spatial computation using the data in the partition. Operations like
range query can be parallelized in an efficient manner if the data is already partitioned among
processes.

In this section, we will discuss the partitioning of a set geometries using a uniform grid with C
cells. Let us assume there are N polygons and P processes. Each process has access to only a
portion of the data stored in disk as shapefiles. Figure 2 shows the distribution in a uniform grid
with 4 cells and 2 processes. We can see that geometries read by an MPI process locally is
projected to a grid by process PO and P1. Shaded area represents tasks assigned to each
process. Here, a task means computational work associated with a grid cell. The first process
reads 4 blue geometries and a red geometry. The second process reads 4 red geometries in the
third and fourth quadrants. After partitioning, each cell in a grid should contain only those
geometries that overlap with it. In order to do so, the first step is to determine the four corners of
the grid. This can be done by a reduction operation. A union of all the geometries would
produce the dimension of the universe as shown in Figure 1.

Applying spatial union using MPI reduce: For spatial partitioning, the dimension of the universe
needs to be determined which is an MBR spatially containing all the geometries read by all the
processes. New MPI UNION operator on MBRs can be used to find the grid dimensions from
the union of MBRs generated by individual processes during data partitioning. This can be done
in two steps. In the first step, each process computes an MBR containing all the geometries it
reads. The second step requires spatial reduction using union operation that we covered earlier.
Then the dimension of grid cells is computed based on the number of partitions required.

Exchanging spatial data using MPI Communication: C cells can be assigned to P processes in a
round-robin fashion. For instance, in Figure 2, cell | and Il is assigned to the first process and
the remaining cells are assigned to the second process. A geometry from a 2D map may belong
to one or more cells and since we know the bounding boxes of all the grid cells, each process
can determine to which cell(s) a locally-read geometry belongs to. As such, based on the X and
Y coordinates, each geometry is mapped to a cell in a 2-dimensional uniform grid. Since
geometries belonging to a grid cell may not be locally available to the cell owner, a

communication step is required to complete the domain decomposition. As shown in the figure,
PO needs to send geometry A to P1. This ensures that P1 gets all the geometries that are in its
spatial domain.

Process 0 Process 1

I |
= @
[IV [
L]

(b). Local view of uniform grid
at Process 1 (P1).

P1is assigned Cell Il and IV.

P1 receives a geometry from PO.

(a). Local view of uniform grid
at Process 0 (PO).

PO is assigned Cell | and II.

PO sends the geometry A to P1.

Figure 2. Need for communication of shape A during spatial data decomposition among two MPI
processes with ranks 0 and 1. Rank O calls MPI Send function and Rank 1 calls MPI Recv function.

To summarize, we covered a few MPI functions here. MPI is a distributed memory programming
model. MapReduce is also a distributed memory programming model. However, MPI is different
when compared to MapReduce. MPI requires that the parallelism is coded explicitly by the
programmer. A programmer has to devise strategy to partition the problem (domain
decomposition) into tasks so that a process is responsible for a subset of tasks. Potential
challenges in MPI programs include deadlocks and load imbalance.

Learning Objectives
¢ Define Message Passing Interface (MPI)
o Parallelize range query using MPI
o Define spatial data types, communication and union operation using MPI
o Partition spatial data using MPI

Learning Questions

1. What is the output of MPI_Reduce if Process PO contains r1 = {1, 2, 3, 4} and P1
contains r2 = {4, 4, 5, 5}. Let us assume the order of coordinates is minX, maxX, minY,
maxy.

2. Write MPI Send and Receive code for sending 2 rectangles from process 1 to process 0.
Compile and run the program.

3. Inthe Range Query problem, if there are 101 rectangles, 1 query rectangle and 4 MPI
processes, describe how the problem can be parallelized. Hint: calculate the start index
and end index for each process.

4. Assume that the domain decomposition has already been done and there are P
processes and C grid cells. Given a query rectangle, provide a strategy to implement
Range Query problem in this scenario.

Acknowledgement
This work is partly supported by the National Science Foundation Grant No. 1756000.

References

[1] Gropp, W. D., Gropp, W., Lusk, E., & Skjellum, A. (1999). Using MPI: Portable parallel
programming with the message-passing interface (Vol. 1). MIT press.

[2] MPI: A Message-Passing Interface Standard Version 3.1 (2015), Message Passing Interface
Forum. hitps://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[3] Blaise Barney, MPI tutorial, https://computing.linl.gov/tutorials/mpi/

[4] Puri, S., Paudel, A., & Prasad, S. (2018) MPI-Vector-10: Parallel I/0O and Partitioning for Geo-
Spatial Vector Data, International Conference on Parallel Processing (ICPP).

[5] Puri, S., & Prasad, S. (2015) A Parallel Algorithm for Clipping Polygons with Improved
Bounds and a Distributed Overlay Processing System Using MPI, 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid).

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

