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Abstract 
MPI is a widely used message passing library for writing parallel programs. The goal of Message Passing 

Interface is to establish a portable, efficient, and flexible standard for message passing that will be widely 

used for writing message passing programs. This chapter motivates the need for using Message Passing 

Interface (MPI) for implementing GIS applications. It introduces MPI data types and communication 

functions. Then, it presents new spatial data types and operations on them using MPI. Finally, it presents 

pseudocode for parallelizing a range query problem and spatial domain decomposition in GIS.  

 

Definitions 
MPI: MPI stands for Message Passing Interface. It is a standard library interface for writing 
parallel programs. 
 
Process: A program in execution or a running program. Operating system schedules different 
processes to run on a CPU. 
 
HPC: High Performance Computing.  
 
MBR: Minimum Bounding Rectangle. 
 
Parallelism: Using multiple processes or threads to solve a problem. 
 
Distributed Memory: A network of inter-connected processors each of which has its own private 
memory. For instance, if a processor needs to access memory of another processor, then it has 
to perform communication. One way to do so is via passing messages using MPI. 

 

Message Passing Interface 
MPI (Message Passing Interface) is a portable, standard interface for writing parallel programs 
using a distributed-memory programming model [2]. It is widely used for writing parallel 
applications, particularly in science and engineering domains. MPI programs run on a variety of 
systems including small compute clusters and supercomputers. The interface contains functions 
for communication and computation among processes. Popular MPI implementations are MPICH, 
MVAPICH and Open MPI. Communication among processes is required because processes do 
not share memory among themselves. MPI supports parallel I/O, i.e. reading and writing data by 
multiple processes in parallel to increase the performance. MPI programs are typically written in 
C/C++ and Fortran. 

 
MPI datatypes: MPI provides a rich set of predefined datatypes [1]. For example, MPI_INT is for 
an integer type and MPI_FLOAT is for a single precision floating point type. However, new derived 
types are required to represent spatial data that are supported by Open Geospatial Consortium 
standard. MPI allows user-defined types that can be used to define Cartesian coordinates. 
 

https://doi.org/10.22224/gistbok/2019.2.6


Simple MPI program: An MPI program is shown below to introduce the basic MPI functions. In 
addition to the four MPI functions used below, there are functions for sending and receiving a 
message between a pair of processes. When an MPI program is run, programmer provides the 
number of processes to be created as shown in Table 1. MPI_COMM_WORLD is a communicator 
object that contains all the processes.  
 

#include <mpi.h> 
#include <stdio.h> 

 
int main(int argc, char *argv[]) 
{ 
   // numProcs is the number of processes, processId is the id of the MPI process 
   int numProcs, processId;   
 
   // Initializes MPI by using the command line arguments 
   MPI_Init(&argc, &argv); 
 
   /*The number of processes is stored in the variable numProcs 
      numProcs gets set using the command-line argument provided while running the program 
   */  
   MPI_Comm_Size(MPI_COMM_WORLD, &numProcs); 
    
   // Each process gets a unique ID which is stored in the variable processId 
   MPI_Comm_Rank(MPI_COMM_WORLD, &processId); 
   
   printf(“Process Id = %d Number of processes = %d \n”, processId,  numProcs);  
 
   // Insert Algorithm here from Section on Range Query parallelization. 

 
   // terminates MPI 
   MPI_Finalize();  

 
   return 0; 
} 

 

 

Table 1. Compiling and running an MPI program. 

Compiling MPI program Running MPI program 

The mpicc command compiles the program and 

creates an executable a.out. 

   mpicc mpiprogram.c 

The mpirun command runs the executable a.out 

using 4 MPI processes ( –np 4 option specifies the 

number of processes to be used in the MPI 

program). 

 

mpirun –np 4 ./a.out 

 
When this program is executed, it will print 0, 1, 2 and 3 for processId and numProcs will be 4. 

 

 



 

Extending MPI to support spatial data types and operations  
Spatial data types: MPI allows creation of user-defined data types. Implementing spatial data 
types is motivated by the fact that user-defined data types and operations not only enhance the 
abstraction and reusability of a system, but also performance in case of MPI in the presence of 
hardware support. Some of the data types are shown in Table 2. For instance, MPI_Rect can be 
defined as a contiguous type of 4 floating point numbers. Based on these spatial types, 
additional compound types such as multi-point and multi-line can be defined as well. 
 

Table 2. Spatial data types and reduction operators in SpatialMPI [4]. 

Spatial Type 

(MPI Datatype) 

 Spatial Reduction in MPI based GIS application 

MPI Operator  Explanation 

MPI_POINT 

MPI_LINE 

MPI_RECT 

MPI_MIN  

MPI_MAX 

MPI_UNION 

Min point (bottom left corner) 

Max point (top right corner) 

MBR of Geometric Union 

 

MPI Send and Receive operations: In a distributed memory system, processes do not share 
memory. When multiple processes are running in parallel in such a system, they perform some 
computations followed by exchanging messages. For example, if process A sends an integer to 
process B, then using MPI, process A executes MPI_Send function. Process B executes 
MPI_Recv function. Table 3 contains the function prototypes for send and receive functions. 

 
In MPI_Send function, a process needs to specify the destination process, the datatype, and 
count. If the datatype is a scalar quantity, then the count is 1. If the data to be sent is an array, 
then the length of the array needs to be specified as count. In the MPI_Recv function, the status 
argument also needs to be specified. In addition to functions for communication, MPI also 
supports functions for computation among processes. MPI_Reduce function reduces values on 
all processes to a single value. For example, if processes 0 and 1 have values 10 and 20 
respectively, then using sum reduction, the result will be 30. Instead of sum, other operations 
like min and max can also be used. The reduction function can be extended to handle GIS 
functions as well. For more details, readers are encouraged to refer to books and tutorials [3]. 
 

Communication using spatial data types: In MPI, if a process wants to share an item with 
another function, a send function needs to be invoked from a sending process and receive 
function needs to be invoked by a receiving process. Table 3 shows how to express message 
passing between two MPI processes using Point data. Point is defined as a user-defined data 
type using C structure. In some applications, there can be more than one pair of MPI send and 
receive function calls. To distinguish different types of such messages, each message has 
integer valued tag associated with it. MPI send and receive have similar syntax with an 
exception that MPI receive has an additional parameter called MPI_Status. Status can be used 
to get information about the received message. 
  

Table 3. Spatial data communication from MPI Process 0 to Process 1. 

MPI Process 0 MPI Process 1 

Point p(3.0, 5.0); 

int tag = 0; 

Point q; 

int tag = 0; 



 

// Sending a single point to Process 1 

MPI_Send(&p, 1, MPI_POINT, 1, tag, 

MPI_COMM_WORLD); 

 

// Sending 3 points 

Point pArray[3] = {{1,3}, {2,1}, {4,5}}; 

MPI_Send(pArray, 3, MPI_POINT, 1, tag, 

MPI_COMM_WORLD); 

 

/* MPI Send function for reference 

MPI_Send( void* data, int count, MPI_Datatype 

datatype, int destination, int tag, MPI_Comm 

communicator) */ 

MPI_Status status; 

// Receiving a single point from Process 0 

MPI_Recv(&q, 1, MPI_POINT, 0, tag, 

MPI_COMM_WORLD, &status); 

 

// Receiving 3 points 

Point qArray[3]; 

MPI_Recv(qArray, 3, MPI_POINT, 0, tag, 

MPI_COMM_WORLD, &status); 

 

/* MPI Receive function for reference 

MPI_Recv(void* data, int count, MPI_Datatype 

datatype, int source, int tag, MPI_Comm 

communicator, MPI_Status* status) */ 

 

 

Spatial reduction  

Collective Reduction Operators for Spatial types: With derived data types, existing MPI 
reduction operators like MPI_MIN do not work. The min operator can be used to find the 
line/rectangle with minimum length/area among processes. To implement it, a user-defined 
function is required that generates an MBR of geometric union of rectangles [4]. It should be 
noted that reduction is limited to associative and commutative functions. Spatial data types and 
reductions make MPI spatial-aware. 
 
Figure 1 illustrate spatial reduction. Table 4 shows an example. Here, MPI_Reduce function 
parameters written in order correspond to the input rectangle, output rectangle, count, data type, 
reduction operation, root process and communicator. Each process specifies an input rectangle 
and the output rectangle (MBR of geometric union of input rectangles) is computed and is 
available at root process with id as 0. 
 

Table 4. Example usage in C language. 

Spatial type: Rectangle *in_rect, *out_rect; 

Reduction operator: MPI_UNION 

MPI_Reduce(in_rect, out_rect, 1, MPI_RECT, MPI_UNION, 0, MPI_COMM_WORLD); 

 

/* MPI_Reduce function prototype for reference  

MPI_Reduce(void* send_data, void* recv_data, int count, MPI_Datatype datatype, 

MPI_Op op, int root, MPI_Comm communicator);  

*/ 

 



 
Figure 1: Spatial Reduction on Minimum Bounding Rectangles. 

 

Range Query 
Example: Two dimensional range query using a query rectangle. 
 
Input: Base layer containing N rectangles and a given query rectangle. 
 
Output: All rectangles from the base layer overlapping with the query rectangle should be 

returned. List of overlapping rectangles denoted by variable outputList. 

 
Integer variables: startIndex, endIndex, numRectangles, processId, numProcs; 
 
Algorithm: Each MPI process reads N rectangles in the base layer and calls rectangle 
intersection function on a subset of the input rectangles given by startIndex and endIndex. 
 
 
Steps 

1. Compute startIndex, endIndex for each MPI process. 
startIndex = (processId * N) / numProcs; 
endIndex = ((processId + 1) * N) / numProcs; 

 
2. Each process computes rectangle Intersection (input rectangle, query rectangle).  

The input rectangles overlapping with query rectangle are added to the output list. 
              for ( int i = startIndex; i<endIndex; i++) 
              { 
                    if( intersect(R_i, q) ) 
                        outputList.add(R_i); 
              } 

 
     3.   Process 0 aggregates the result from all processes 
           if( processId == 0 ) 
           { 
                  Rectangle queryResults[N];  
                  for(int pId = 1; pId < numProcs; pId++) 
                  { 
                      int numOutput = N; 
                      MPI_Recv(queryResults, N, MPI_RECT, pId, tag, MPI_COMM_WORLD,   
                                                                                                                                    &status); 
                  } 
           } 



           else 
           { 
                 // find the number of rectangles in output list for sending it to process 0. 
                 int numOutput = outputList.length; 
                 MPI_Send(outputList, numOutput, MPI_RECT, 0, tag, MPI_COMM_WORLD); 
           } 
 
In Step 3, Process 0 uses receive function to gather data from other processes in a loop. It 
should be noted that a receiving process (with rank 0) does not know how many query 
rectangles it will receive from other processes. The exact number is only known by each 
sending process (with rank 1 to numProcs – 1) at runtime. However, the maximum count can be 
no more than N. As such, the count variable in MPI send function is set as N. The exact number 
can be extracted from the status variable by the receiver. Step 3 can be implemented using 
MPI_Gatherv function as well instead of multiple point-to-point messages [2]. 
              

Spatial domain decomposition using MPI 
Domain decomposition requires data stored in an arbitrary order to be partitioned among 
processes where each partition is assigned to an MPI process. For parallel processing in GIS, 
spatial data is often partitioned using a uniform or adaptive grid. Each partition is assigned to 
unique process to carry out spatial computation using the data in the partition. Operations like 
range query can be parallelized in an efficient manner if the data is already partitioned among 
processes.  
 
In this section, we will discuss the partitioning of a set geometries using a uniform grid with C 
cells. Let us assume there are N polygons and P processes. Each process has access to only a 
portion of the data stored in disk as shapefiles. Figure 2 shows the distribution in a uniform grid 
with 4 cells and 2 processes. We can see that geometries read by an MPI process locally is 
projected to a grid by process P0 and P1. Shaded area represents tasks assigned to each 
process. Here, a task means computational work associated with a grid cell. The first process 
reads 4 blue geometries and a red geometry. The second process reads 4 red geometries in the 
third and fourth quadrants. After partitioning, each cell in a grid should contain only those 
geometries that overlap with it. In order to do so, the first step is to determine the four corners of 
the grid. This can be done by a reduction operation. A union of all the geometries would 
produce the dimension of the universe as shown in Figure 1.  
 
Applying spatial union using MPI reduce: For spatial partitioning, the dimension of the universe 
needs to be determined which is an MBR spatially containing all the geometries read by all the 
processes. New MPI UNION operator on MBRs can be used to find the grid dimensions from 
the union of MBRs generated by individual processes during data partitioning. This can be done 
in two steps. In the first step, each process computes an MBR containing all the geometries it 
reads. The second step requires spatial reduction using union operation that we covered earlier. 
Then the dimension of grid cells is computed based on the number of partitions required.  
 
Exchanging spatial data using MPI Communication: C cells can be assigned to P processes in a 
round-robin fashion. For instance, in Figure 2, cell I and II is assigned to the first process and 
the remaining cells are assigned to the second process. A geometry from a 2D map may belong 
to one or more cells and since we know the bounding boxes of all the grid cells, each process 
can determine to which cell(s) a locally-read geometry belongs to. As such, based on the X and 
Y coordinates, each geometry is mapped to a cell in a 2-dimensional uniform grid. Since 
geometries belonging to a grid cell may not be locally available to the cell owner, a 



communication step is required to complete the domain decomposition. As shown in the figure, 
P0 needs to send geometry A to P1. This ensures that P1 gets all the geometries that are in its 
spatial domain. 

 

 
 

Figure 2. Need for communication of shape A during spatial data decomposition among two MPI 

processes with ranks 0 and 1. Rank 0 calls MPI_Send function and Rank 1 calls MPI_Recv function. 

 

To summarize, we covered a few MPI functions here. MPI is a distributed memory programming 
model. MapReduce is also a distributed memory programming model. However, MPI is different 
when compared to MapReduce. MPI requires that the parallelism is coded explicitly by the 
programmer. A programmer has to devise strategy to partition the problem (domain 
decomposition) into tasks so that a process is responsible for a subset of tasks. Potential 
challenges in MPI programs include deadlocks and load imbalance. 
 

Learning Objectives 
• Define Message Passing Interface (MPI) 

• Parallelize range query using MPI 

• Define spatial data types, communication and union operation using MPI 

• Partition spatial data using MPI 

 

Learning Questions 
 

1. What is the output of MPI_Reduce if Process P0 contains r1 = {1, 2, 3, 4} and P1 
contains r2 = {4, 4, 5, 5}. Let us assume the order of coordinates is minX, maxX, minY, 
maxY. 

 



2. Write MPI Send and Receive code for sending 2 rectangles from process 1 to process 0. 
Compile and run the program. 

 
3. In the Range Query problem, if there are 101 rectangles, 1 query rectangle and 4 MPI 

processes, describe how the problem can be parallelized. Hint: calculate the start index 
and end index for each process. 

 
4. Assume that the domain decomposition has already been done and there are P 

processes and C grid cells. Given a query rectangle, provide a strategy to implement 
Range Query problem in this scenario.  
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