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ABSTRACT ARTICLE HISTORY
Very high resolution (VHR) airborne data enable detection and phy- Received 30 October 2017
sical measurements of individual coral reef colonies. The bathymetric Accepted 22 June 2018
LiDAR system, as an active remote sensing technique, accurately

computes the coral reef ecosystem’s surface and reflectance usin%

a single green wavelength at the decimetre scale over 1-to-100 km

areas. A passive multispectral camera mounted on an airborne drone

can build a blue-green-red (BGR) orthorectified mosaic at the centi-

metre scale over 0.01-to-0.1 km? areas. A combination of these

technologies is used for the first time here to map coral reef ecolo-

gical state at the submeter scale. Airborne drone BGR values (0.03 m

pixel size) serve to calibrate airborne bathymetric LiDAR surface and

intensity data (0.5 m pixel size). A classification of five ecological

states is then mapped through an artificial neural network (ANN).

The classification was developed over a small area (0.01 km?) in the

lagoon of Moorea Island (French Polynesia) at VHR (0.5 m pixel size)

and then extended to the whole lagoon (46.83 km?). The ANN was

first calibrated with 275 samples to determine the class of coral state

through LiDAR-based predictors; then, the classification was vali-

dated through 135 samples, reaching a satisfactory performance

(overall accuracy = 0.75).
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1. Introduction

Coral reefs host 25% of the marine biodiversity but are increasingly subject to global
ocean-climate changes and local anthropogenic activities. Fine-scale monitoring of coral
reef ecosystems and associated ecosystem services are needed for their management
and spatial planning. Coral reef mapping usually relies on remote sensing for cost-
effectively identifying their structural complexity, benthic composition, and regime
surrogates over large areas (Goodman, Samuel, and Stuart 2013; Hedley et al. 2016).
Spaceborne multispectral imagery demonstrates great spatial potential to accurately
map coral reef colonies (Collin, Hench, and Planes 2012), habitats (Collin et al. 2016),
health (Collin and Planes 2012; Collin, Archambault, and Planes 2014) and resilience
(Rowlands et al. 2012; Knudby et al. 2013; Collin, Nadaoka, and Bernardo 2015). Airborne
passive hyperspectral imagery, provided with dozens of spectral bands, enables coral
reef benthos, substrates, and bathymetry to be significantly improved (Leiper et al.
2014). Airborne (usually on manned aircraft) active light detection and ranging (LiDAR)
is now the reference system for measuring bathymetry, outperforming waterborne
sound detection and ranging (SONAR) devices, which are strongly impeded by shallow
features, specifically in the coastal realm where coral reefs thrive (Costa, Battista, and
Pittman 2009). LiDAR-derived morphometry indices can reveal efficient proxies for
ecosystem characteristics, for example, estimates of reef fish assemblages (Wedding
et al. 2008). Yet despite the increase in discrimination power showed over benthic
habitats bathed with turbid waters, LiDAR indices have not been used to date to exploit
the spectral information associated with water-penetrating green LiDAR wavelength for
coral reef monitoring (Collin, Archambault, and Long 2008, 2011; Collin, Long, and
Archambault 2011).

Unmanned airborne vehicles (UAVs or simply ‘drones’) are becoming an integral com-
ponent of the scientific toolbox for coral reef research and management. Equipped with
blue-green-red (BGR) spectral cameras, drones are able to measure coral reef bathymetry
and derived terrain roughness at very high resolution (VHR) using the photogrammetry
approach (Leon et al. 2015; Casella et al. 2017). The 3D point cloud, permitting 2D orthor-
ectified BGR mosaics and 2.5D digital surface models (DSM), results from the multi-angle
information of a single scene made possible by the spatially-even acquisition of BGR
imagery from a moving airborne drone flying at low altitude (from 30 to 150 m): so-called
‘structure-from-motion’. The images and by-products yield spatial resolution at the centi-
metre scale (i.e. 0.03 m pixel size). Coral reef states can be significantly distinguished using
the resulting 0.03 m BGR orthomosaic drone dataset, enabling classification of reef ecolo-
gical states.

Here we describe a methodology for creating the first coral reef ecological state map at
VHR based solely on regional airborne LiDAR ‘predictors’ trained with local ‘response’
imagery from the drone. The bathymetric LiDAR Riegl VQ-820-G, mounted on a small
plane or helicopter, serves as the remotely sensed 1-to-100 km? predictors with four
measurements of surface and intensity (green) per m?2. The BGR GoPro, mounted on a
consumer-grade airborne drone (DJI phantom 2), is used as the remotely sensed 0.01-to-
0.1 km? response. Spearheading machine learners in satellite-based coastal prediction
(Collin, Etienne, and Feunteun 2017), an artificial neural network (ANN) classifier is devel-
oped to provide a robust, yet simple, algorithm linking the two datasets. Our study takes



5678 (&) A.COLLIN ET AL.

place on one of the best-studied islands in the world (Cressey 2015): Moorea (French
Polynesia, Figure 1), a volcanic island with fringing, barrier and outer coral reefs in the
central South Pacific Ocean. It contributes to efforts to build a 4D model—an Island Digital
Ecosystem Avatar (IDEA)—of Moorea and to simulate of future states of the social-ecological
system in support of scenario-based planning (Davies et al. 2016). We follow a drone-based
assessment of ecological state (coral reef state classification; Table 1) and combine it with
LiDAR-based data to spatially classify the coral reef state at VHR over a small area and then
extend this to the whole island. Findings are discussed with a view to how this approach
could advance an automated workflow for coral reef mapping.

2. Materials and methods
2.1. Study site

The study site is located in the northern lagoon of Moorea Island (17°33'S, 149°50'W) in
the Society Archipelago (French Polynesia, Figure 1(a)). Moorea demonstrates a highly
resilient coral reefs (Adjeroud et al. 2009), especially its outer slope, which following the
extremely low coral cover (2%) due to 2007-2010 outbreak of corallivore crown-of-thorns
sea star (Acanthaster planci) and 2010 Oli cyclone strike, is recovering to record rates close
to 70% (Chancerelle, pers. comm.). Located inside the 46.83 km? Moorea lagoon, the study
site covers 11 710 m? with a maximum depth of 2 m. It is bathed in oligotrophic, thus
clear, seawater including various taxa of reef-building corals (Porites, Acropora, Pocillopora,
Montipora), red calcareous algae (Lithothamnium), fleshy algae (red, brown and green) and
a diversity of geomorphic features (rubble, sand and pavement).

2.2. Drone visible response

A drone-based spectral survey (Figure 1(b)) was carried out on 17 August 2015 using a
BGR camera (GoPro Hero 4) mounted on a consumer-grade drone (DJI Phantom 2). Calm
sea and low sun elevation angle were optimal conditions for this survey. A series of 360
geolocated BGR photographs, acquired at 30 m altitude at nadir, were mosaicked then
processed using the photogrammetry software Agisoft Photoscan (http://www.agisoft.
ru). Constrained by nine ground control points and three scale bars, the resulting
orthorectified mosaic (WGS 84 datum and UTM 6S projection) has 0.03 m resolution
(see Casella et al. 2017 for further details) and was therefore deemed as precise enough
to be used as air-truth (Figure 1(c), Collin, Lambert, and Etienne 2018). A total of 410
sampling points over the BGR orthomosaic, corresponding to as many LiDAR soundings,
were visually interpreted by an expert and classified into five ecological states (Figure 2
(a) and Table 1), each one composed of 55 training and 27 validation sub-datasets.

2.3. Lidar surface and intensity predictors

The airborne LiDAR campaign was conducted from 10 to 26 June 2015 (one month
before the drone flight) using a Riegl VQ-820-G hydrographic laser scanner mounted on
a small plane. The sensor was operated at 251 kHz, providing a minimum sounding
density of four points per m? (0.5 m) and vertical accuracy of 0.15 m, computed from



INTERNATIONAL JOURNAL OF REMOTE SENSING ‘ 5679

Figure 1. (a) Moorea Island (French Polynesia) was surveyed by bathymetric LiDAR at island scale
(10-26 June 2015) and over a small study area by airborne drone (17 August 2015; red rectangle).
(b) Natural-coloured (blue-green-red) drone survey provides spectral information at 0.03 m pixel size
(2133 x 6095 pixels), enabling resolution of coral reef (c) assembled colonies, (d) single colonies on
sand/pavement, or (e) anthropogenic features.

43,798 comparisons (Pastol, Chamberlain, and Sinclair 2016). This bathymetric LiDAR
pulses an electromagnetic radiation (532 nm wavelength, namely green) from the
aircraft and records its travel time in air and water by means of a waveform (Collin,
Archambault, and Long 2008). LiDAR surface and intensity are computed on-the-fly for
each sounding by converting the time between sea surface and bottom green echoes
into distance (knowing the light speed into water), and by recording the peak of bottom
green echo, respectively. Maximum depth ever recorded by bathymetric LiDAR reached
76.1 m in Moorea Island during the studied survey (Pastol, Chamberlain, and Sinclair
2016) given the water clarity due to oligotrophic waters. Since our Moorea study limits
to the shallow waters (< 10 m depth), LiDAR intensity has been directly processed with
no water correction. As each LiDAR surface and intensity sounding is duly located by the
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Figure 2. Maps of the (a) natural-coloured imagery with 410 air-truth sampling sites (red transpar-
ent disks), (b) bathymetric LiDAR surface soundings, and (c) bathymetric LiDAR intensity (532 nm
wavelength) soundings. (a) is at 0.03 m, whereas (b) and (c) are at 0.5 m pixel size.

combination of HR global navigation satellite system and inertial measurement unit,
digital surface and intensity models (DSM and DIM, Figure 2(b, ¢)) can be calculated
using ordinary kriging method applied to LiDAR sounding clouds. LiDAR points and
rasters were geographically referenced to WGS84 UTM 6S and altimetrically zeroed as
the mean sea level (SHOM 2016). Drone-derived imagery was registered with LiDAR data
using a 1°* degree polynomial function and resampled with cubic convolution.

2.4. Artificial neural network classification

Given their performance in a comparative analysis (Collin, Etienne, and Feunteun 2017),
we use an ANN approach as a classification procedure binding the drone-based air-truth
and LiDAR-based variables.

The ANN builds non-linear classifications by minimizing least squares using a
multi-layer perceptron classifying ecological state response, h(X) (Table 1) with the
LiDAR surface and intensity predictors, X, through a constant, k, and intermediate
weighted, w;, functions called neurons, n; (Heermann and Khazenie 1992):

h(X) = k(zl_ w,-n,-(X)) (n
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Table 1. Ecological description of the five coral reefscape states identified on airborne drone blue-
green-red imagery (0.03 m spatial resolution) enabling a coral reef state classification to be created
and colour-coded.

Drone-based

state
Ecological Acropora/ Acropora/ Porites stony ~ Microalgae on Sand on
composition Pocillopora/ Pocillopora/ corals rubble pavement
Montipora Montipora stony corals
stony corals with red calcareous algae
Structural Very High High roughness Medium Low roughness Very low
complexity roughness roughness roughness
Coral reef state 1 2 3 4 5
Colour class

Neurons n; are hereinafter based on hyperbolic tangents. ANN constrained by a single
hidden layer provided with two neurons so the number of neurons to be in synergy with
the number of inputs (predictors, Figure 3). Trained by the 275 calibration samples, the
ANN will be validated by the remaining 135 validation samples.

Input Layer Hidden Layer Output Layer

Coral reef
state class

v

Inten (X5) Neuron 2 (n,)

Figure 3. Conceptual flowchart explaining how the combination of LiDAR surface and intensity can
predict the ecological state class through an intermediate hidden layer provided with two neurons.
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2.5. Performance analysis

The agreement between validation and classified pixels in the five ecological states
was quantified using the confusion matrix, from which overall, producer’s and user’s
accuracies (OA, PA and UA, respectively) were computed (Congalton and Green
2009). PA and UA were calculated as the correctly classified pixels in each coral
state divided by the number of calibration pixels of the corresponding state, and the
total number of pixels that were classified in that state, respectively. OA was
reckoned as the correctly classified pixels in all states divided by the total number
of pixels.

3. Results
3.1. Local coral reef state at very high resolution

The OA of the ANN classification reached a satisfactory performance (OA = 0.75),
showing that the dual combination of LiDAR surface and intensity variables had a
robust explanatory power of the variability of coral reef states (Table 2). Contrary to
coral reef states 1, 5 and 3 that were adequately assigned (UA = 0.84, 0.80 and 0.74,
respectively), intermediate coral reef states 2 and 4 were moderately classified with
UA of 0.68 and 0.68, respectively (Table 2). Contrary to UA statistics, PA measures
were evenly correct (From 0.81 to 0.71, Table 2). The ANN classifier was applied to
each pixel of LiDAR DSM and DIM (Figure 2(b, c), respectively) in order to continu-
ously map ecological state (Figure 4(b)) provided with 0.5 m spatial resolution
(142 x 422 pixels).

3.2. Moorea coral reef state at very high resolution

Insofar as the ANN prediction was adequate enough to be extended, the digital
ecological classification was mapped at the island scale. Moorea LiDAR DSM and DIM
were first rasterized at 0.5 m spatial resolution (Figure 5(a, b)) and then entered as inputs
to the ANN classification, which produced a digital model of coral reef ecological state
over the whole island (Figure 5(c), 40,364 x 34,588 pixels). Moorea classes are dominated
by sand on pavement (56.8%), followed by Porites stony corals (14.1%) and Microalgae

Table 2. Confusion matrix synthesizing the quality of the artificial neural network classification
applied to the independent 135 validation pixels (27 pixels per coral reef state).

Reference class

STATE 1 2 3 4 5 Total UA
Classified class 1 21 2 2 0 0 25 0.84
2 4 17 3 1 0 25 0.68
3 1 3 20 2 1 27 0.74
4 0 1 1 19 7 28 0.68
5 0 1 2 3 24 30 0.80
Total 26 24 28 25 32 135

PA 0.80 0.71 0.71 0.76 0.75
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. AcroporalPocilloporalMontipora stony corals

AcroporalPocilloporalMontipora stony corals
with red calcareous algae

. Porites stony corals
- Microalgae on rubble

. Sand on pavement

Figure 4. (a) Natural-coloured (blue-green-red) airborne drone orthomosaic (2133 x 6095 pixels, 0.03 m
pixel size), along with (b) digital coral reef state classification based on the drone response, LiDAR surface
and intensity predictors and two-neuroned artificial neural network classifier (142 x 422 pixels with 0.5 m
pixel size).

on rubble (13.8%), then Acropora/Pocillopora/Montipora stony corals with red calcareous
algae (10.9%), and finally Acropora/Pocillopora/Montipora stony corals (4.4%). Overall, the
coverage of hard corals (from state 1 to 3) appears significantly greater in the leeward
side than the windward side.

4. Discussion
4.1. Airborne drone as ‘air-truth’

The five coral reef ecological states were based on VHR BGR orthorectified mosaic
derived from a consumer-grade multispectral camera driven by an airborne drone.
This innovative procedure is supported by our knowledge of in situ coral reef features
that can be discriminated at the centimetre scale. Insofar as both ecological composition
and structural complexity are easily deduced from the BGR dataset, relatively inexpen-
sive drone deployment can be used to obtain air-truth data directly even in places with
little technical capacity. The geolocated photographs can be remotely processed and
analysed in the cloud, given a suitable internet connection. With an easy-to-implement
flight planning mobile application, rapid surveys could be conducted at even very
remote locations with little infrastructure/capacity after short-term events such as
cyclone/storm and bleaching. The number of states could be increased by either flying
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Figure 5. Digital (a) surface, (b) intensity (532 nm wavelength), and (c) coral reef state classification
derived from bathymetric LiDAR soundings (40,364 x 34,588 pixels at 0.5 m pixel size).

at lower altitude (to gain in spatial resolution) or using drone-mounted LiDAR that can
enhance the vertical accuracy, for example, to differentiate coral from macroalgae
(Leiper et al. 2014).

The use of this air-truth, in the form of a cost-efficient UAV-borne BGR orthomosaic,
has a strong potential to be applicable to other worldwide coral lagoons and even to a
large panel of coastal and aquatic areas, provided with relatively clear waters. This air-
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truth leverages a high ratio of covered space unit per time unit while collecting
centimetre-scale data, considerably outperforming submerged acquisitions, hindered
by the very high viscosity of water.

4.2, Airborne lidar surface and intensity

The gradient of ecological states (from 1, well-developed hard coral, to 5, sand) was
positively correlated with both surface (r = 0.93) and intensity (r = 0.93), showing that
coral coverage decreases with depth and LiDAR green reflectance. The coral shrinkage with
depth can be explained by the coral growth and structural complexification towards the
surface (as a photosynthetic symbiont), what corroborates results derived from a space-
borne reef health proxy (Collin, Hench, and Planes 2012). The negative trend between coral
state and green reflectance coincides with in situ spectral measurements, making explicit a
greater reflectance of increasingly depigmented blue- and brown-mode coral reefs in the
coral health chart (Leiper et al. 2009). This increase in green reflectance (decrease in green
absorbance) is linked to the loss of peridinin pigments contained in symbiotic zooxanthellae
living in coral tissues (Collin and Planes 2012). Even if most bathymetric LiDAR systems use
the single green wavelength, this electromagnetic radiation is relevant to distinguish coral
reef state as highlighted in the elaboration of both the green-purple and the ‘red edge’-
green normalized difference ratios (Collin, Hench, and Planes 2012; Collin, Archambault, and
Planes 2014; respectively).

Inner classification results (UA) revealed that coral- and sand-dominant states (1, 3
and 5) were successfully recognized, contrary to both assemblages of corals and rubble
colonized by calcareous and micro-algae (2 and 4), respectively. We could assume that
the spectral mixing due to the presence of algae on relatively ‘pure’ states was not very
effectively resolved by the ANN classifier built from only LiDAR surface and intensity. We
advocate the experiment of a coral reef state classification using an innovative bathy-
metric LiDAR, augmented by an added spectral wavelength (i.e. 355 nm, as the third
harmonic of the 1064-nm laser), likely to detect the coral fluorescence as well as
intermediate states (Sasano et al. 2012).

4.3. Moorea coral reef states’ spatial patterns

The coral reef state classification, spatially classified at VHR, is a strong asset to outline
hotspots of healthy coral reefs, thus of associated biodiversity and ecosystem services.
The centimetre and decimetre scales targeted in this study greatly enhance the spatial
resolution of coral reefs’ diagnoses and prognoses, surpassing other recent studies using
object-based image analysis, which bottom at 2 m or 10 m (Phinn, Roelfsema, and
Mumby 2012; Roelfsema et al. 2013). LiDAR-based spatially explicit classification, pro-
vided with decimetre sounding density over 100 km?, offers an unpublished map of
Moorea coral reefs’ health. Two main spatial patterns emerged from the spatially explicit
classification: westward polarization of healthy fringing reefs and northward polarization
of healthy barrier reefs.

Wide healthy fringing reefs along west shorelines strongly contrast with thin ones along the
eastern coast. This outstanding geographic difference is very susceptible to be the conse-
guence of the dominant easterly winds (i.e. Southeast trade winds), which entail significantly
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greater amounts of rain then carried sediment, which, in turn, deposit onto and stress coral
colonies (Fabricius 2005), impeding the development of eastern fringing coral reefs.

More extended barrier reefs are obvious in the northern compared to the southern
lagoon. This patterning might be explained by the two dominant swell systems originat-
ing from South: 40% SE and 25% SSW (Etienne 2012). Swell average height tends to be
higher than 4 m during Austral winter, what creates, at the reef, significant wave height
greater than 8 m (e.g. Teahupoo spot in Southern Tahiti Iti, Etienne 2012). The exposure
to this high to very high energy flow hinders the efficient settlement of coral larvae and
breaks the coral assemblage structure (Madin and Connolly 2006). This interpretation is
corroborated by the third dominant swell system (22% NE, Etienne 2012), which con-
strains NE lagoon to exhibit slightly less extended barrier reefs compared to NW.

5. Conclusion

This original research has demonstrated that airborne bathymetric LiDAR data are
able to reliably map five ecological states in coral reef systems at VHR over shallow,
clear waters. Reef state information can be gleaned from an airborne drone
equipped with a multispectral imaging sensor. Novel findings can be summarized
as follows:

(1) Coral reef state at the colony-scale (pixel size = 0.03 m) can be sourced from a
BGR camera mounted on an airborne low-altitude drone;

(2) LiDAR surface and intensity are powerful predictors of coral reef ecological state
at the colony-scale (pixel size = 0.03 m);

(3) ANN is an efficient classification approach to predict ecological state based only
LiDAR surface and intensity (OA = 0.75);

(4) LiDAR surface and intensity are powerful predictors of ecological state at the
landscape scale (pixel size = 0.5 m);

(5) Healthy fringing and barrier coral reefs in Moorea are located on the western and
northern parts of the lagoon, respectively.
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